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ABSTRACT

Sorting is a fundamental operation of all computer systems, having been a long-
standing significant research topic. Beyond the problem formulation of traditional
sorting algorithms, we consider sorting problems for more abstract yet expressive
inputs e.g., multi-digit images and image fragments, through a neural sorting net-
work. To learn a mapping from a high-dimensional input to an ordinal variable,
the differentiability of sorting networks needs to be guaranteed. In this paper we
define a softening error by a differentiable swap function, and develop an error-
free swap function that holds non-decreasing and differentiability conditions. Fur-
thermore, a permutation-equivariant Transformer network with multi-head atten-
tion is adopted to capture dependency between given inputs and also leverage its
model capacity. Experiments on diverse sorting benchmarks demonstrate that our
method performs better than or comparable to existing baseline methods.

1 INTRODUCTION

Traditional sorting algorithms (Cormen et al., 2022), e.g., bubble sort, insertion sort, and quick
sort, are a well-established approach to arranging given instances in computer science. Since such a
sorting algorithm is a basic component to build diverse computer systems, it has been a long-standing
significant research area in science and engineering, and the sorting networks (Knuth, [1998; |Ajtai
et al.l |[1983), which are structurally designed as an abstract device with a fixed number of wires,
have been widely used to perform a sorting algorithm on computing hardwares.

Formally, given an unordered sequence s = [s1, . .., $,] € R™, we sort s to an ordered sequence S,:
so=P's, (1

where a permutation matrix P € {0, 1}™*™ allows us to transform the sequence in ascending order.
Our goal of solving (T)) is to compute P by considering s: P = f(s), where f is a sorting algorithm.
Beyond the formulation of traditional sorting algorithms, the sorting algorithm can be extended to
solving a formulation for sorting more abstract and expressive inputs (e.g., multi-digit images and
image fragments), each of which contains ordinal information semantically:

X,=P'X, 2)

where X, and X are ordered and unordered inputs, respectively. Note that X = [xq,. .. ,xn}T €
R"™*4 where d is an input dimensionality. Let us assume that a mapping g maps an input X €
RY to an ordinal variable s € R. If g is unclear, computing P in (2) is more challenging than
in () because x is often a highly implicative high-dimensional variable. To find a generalized
mapping g where a ground-truth set {(X(()Z), Pgt), X(M)}N | is given as training examples, it requires
an effective training scheme. In particular, to leverage a gradient-based learning scheme for the
adequate mapping, f([g(x1),. .., g(xy,)]) needs to be differentiable, which is not the case in general.
There has been recent research (Grover et al., [2019; |Cuturi et al.|[2019; Blondel et al., 2020; |[Petersen
et al.| 20215 2022) to tackle the differentiability issue of such a composite function.

In this paper, following a sorting network-based sorting algorithm with differentiable swap functions
(DSFs) (Petersen et al., 20215 [2022), we first define a softening error by a sorting network, which
indicates a difference between original and smoothed elements. Then, we propose an error-free
DSF and develop the sorting network with error-free DSFs and permutation-equivariant networks.
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Specifically, to resolve an error accumulation problem that is induced from a soft DSF, our error-
free DSF allows us to guarantee a zero error where X is properly represented as s. In addition,
a permutation-equivariant network with multi-head attention (Vaswani et al.l 2017) is adopted to
capture dependency between high-dimensional inputs and also leverage the model capacity of the
neural network, instead of an instance-wise convolutional neural network (CNN).

Before introducing the main sections, we summarize our contributions:

(i) We define a softening error that measures a difference between original and smoothed values;

(ii) We propose an error-free DSF that resolves the error accumulation problem of conventional
DSFs and is still differentiable;

(iii)) We adopt a permutation-equivariant network with multi-head attention as a mapping from
inputs to ordinal variables ¢g(X), unlike g(x);

(iv) We demonstrate that our proposed method is effective in diverse sorting benchmarks, compared
to existing baseline methods.

We will make our codes publicly available upon publication.

2  SORTING NETWORKS WITH DIFFERENTIABLE SWAP FUNCTIONS

Following traditional sorting algorithms such as bubble sort, quick sort, and merge sort (Cormen
et al., |2022)) and sorting networks that are constructed by a fixed number of wires (Knuth, [1998;
Ajtai et al.,[1983), a swap function is a key ingredient of sorting algorithms and sorting networks:

(2',y') = swap(,y), 3)
where ' = min(z, y) and ¥’ = max(x, y), which makes the order of  and y correct. For example,
ifx > y, then 2’ = y and y’ = z. Without loss of generality, we can express min(-, -) and max(-, -)
to the following equations:

min(z,y) = zlo(y —2)| +ylo(z —y)| and max(z,y) = zlo(z—y)] +ylo(y — )], 4)
where | -| rounds to the nearest integer and o (+) € [0, 1] transforms an input to a bounded value, i.e.,
a probability over the input. Computing (@) is straightforward, but they are not differentiable. To
enable to differentiate a swap function, the soft versions of min and max are defined:

min(z,y) = zo(y — ) + yo(r —y) and Mmax(z,y) =zo(x—y) +yo(y—=z), ()
where o () is differentiable. In addition to its differentiability, a sigmoid function o(x), i.e., a s-
shaped function, satisfies the following properties that (i) o(z) is non-decreasing, (i) o(z) = 1if
x — oo, (i) o(x) = 0if + — —oo, and (iv) o(0) = 0.5. Moreover, as discussed in the refer-
ence (Petersen et al.,[2022)), the choice of ¢ affects the performance of neural network-based sorting

network in theory as well as in practice. For example, an optimal monotonic sigmoid function,
which is visualized in Figure[d] is defined as

—%(Bz)™t if Bz < —0.25,
oo(z) =<1 —:(Bx)~t if Bz > 0.25, (6)
Bx+0.5 otherwise,
where (3 is steepness; see the work (Petersen et al., [2022) for the details of these numerical and
theoretical analyses. Here, we would like to emphasize that the important point of such monotonic
sigmoid functions, raised in the reference by |Petersen et al.|(2022), is the strict monotonicity of sig-

moid functions. However, as will be discussed in the next section, it induces an error accumulation
problem, which degrades the performance of the sorting network.

By either @) or (§), the permutation matrix P (henceforth, denoted as Pp,pq or Pyog for (@) or (3)),
respectively) is computed by the procedure of sorting network:

(i) Building a pre-defined sorting network with a fixed number of wires — a wire is a component
for comparing and swapping two elements;

(i1) Feeding an unordered sequence s into the pre-defined sorting network and computing a wire-
wise permutation matrix P; for each wire i iteratively;

(iii) Computing the permutation matrix P by multiplying all the wire-wise permutation matrices.
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Figure 1: Accuracy, i.e., accey, Figure 2: Comparisons to diverse DSFs in terms of how many
(solid) and accey (dashed), ver- times a swap function is conducted. Our error-free DSF does
sus sequence lengths. Each ele- not change the original x and y, compared to other DSFs. We
ment is uniformly sampled from  set (left) x = 4,y = 0 or (right) x = 8,y = 0 initially. We
[-10,10], and we repeat each conduct a swap functions k times where k = #Swaps. Legends
experiment set 10,000 times. are the same as the legend presented in Figure

As shown in Figure [3| a set of wires is operated simultane-
ously, so that each set produces an intermediate permutation
matrix P; at ith step. Consequently, PT = P[P --- P,;'— =
(P ---PyP1) " where k is the number of wire sets, e.g., in
Figure[3] k = 5.

The doubly-stochastic matrix property of P is shown by the
following proposition:

Proposition 1 (Modification of Lemma 3 in (Petersen et al.,
2022)). A permutation matrix P € R™*"™ is doubly-stochastic,
which implies that 3", [P);; = 1and 37| [Pli; = 1. In par-
ticular, regardless of defining a swap function with min, max,
min, and max, hard and soft permutation matrices, i.e., Pparq
and P, are doubly-stochastic.

P P, P, P, P, =P’

Figure 3: A sorting network

Proof. The proof of this proposition is presented in Section[A]to satisfy a page limit. O

In Sections[3|and[d] we present an error-free DSF and a neural sorting network with error-free DSFs.

3 ERROR-FREE DIFFERENTIABLE SWAP FUNCTIONS

Before introducing our error-free DSF, we start by describing the motivation of the error-free DSF.

Due to the nature of min and max, described in (), the monotonic DSF changes original input
values. For example, if + < y, then z < min(z,y) and max(z,y) < y after applying the swap
function. It is a serious problem because a change by the DSF is accumulated as the DSF applies
iteratively, which is called an error accumulation problem in this paper. As shown in Figure 2] the
sigmoid functions such as logistic, logistic with ART, reciprocal, Cauchy, and optimal monotonic
functions suffer from this error accumulation problem; see (Petersen et al., |2022) for the details of
the respective sigmoid functions. For the case of the Cauchy function, two values are close enough
at 9th step in the left panel of Figure 2] and 15th step in the right panel of Figure [2} we present the
corresponding step where the difference between two values becomes smaller than 0.001. Here we
formally define a softening error, which has been mentioned in this paragraph:

Definition 1. Suppose that we are given x and y where x < y. By (3), these values x and y are
softened by a monotonic DSF and they satisfy the following inequalities:

r <2’ = min(z,y) <y =max(z,y) < y. (7
Therefore, we define the difference between the original and the softened values, ¥’ — x ory — v/':
y—y =y—max(z,y) =2 — 2z =min(z,y) —z > 0, (8)

which is called a softening error in this paper. Without loss of generality, the softening error is
min(x,y) — min(x, y) or max(x,y) — max(x, y) for any x,y.
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Note that (§) is satisfied by y — max(z,y) = y(1 — o(y — ) — 2o (z —y) = yo(zr —y) —z(1 -
o(y — x)) = min(z,y) — z, using @) and o(z —y) =1 — oy — x).
With Definition [T} we are able to specify the seriousness of the error accumulation problem:

Proposition 2. Suppose that x© and y are given and a DSF is applied k times. If k — oo, error
accumulation is (max(x,y) — min(x, y))/2, under the assumption that V o (z) > 0.

Proof. Let mink(ac7 y) and min" (x,y) be minimum and maximum values that swap with min and
max is applied k times. By Definition [I] the following inequality is satisfied:

min(z,y) < min (z,y) < -+ < min’ (z,y) < max"(z,y) < -+ < max!(z,y) < max(z,y),
©))
under the assumption that Vo (xz) > 0. If & — oo, mk(x,y) = max”*(z,y). Therefore, a
softening error is (max(z, ) —min(z, y))/2 since max* (x, y) = (min(z, y)+max(x,y))/2 by ).
Note that the assumption Vo (x) > 0 implies that o(+) is a strictly monotonic sigmoid function. [J

As mentioned in the proof of Proposition [2]and also empirically shown in Figure[2] a swap function
with monotonic functions that Vo (z) is relatively large in general changes the original values z, y
significantly compared to one with monotonic functions that Vo () is relatively small — eventually,
they become identical quickly in the case of large Vo (z).

In addition to the error accumulation problem, as presented
in Figure 4] such a DSF depends on the scale of z — y. If
x < y but z and y are close enough, o(y — x) is between 0.5
to 1, which implies that the error can be induced by the scale of |,
x —y (ory — x) as well.

L0

To tackle the aforementioned problem of error accumulation,
we propose an error-free DSF, (2, ¥') = SWaDq,ror-free (T5 ¥):

/

xr = (min(aj, y) — ﬁ(ﬂ:, y)>sg —+ ﬁ(l‘, y)’ (10) ~15 ~10 5 0 5 10 15

y' = (max(z,y) — max(z, y))sg +max(z, y), an Figure 4: An optimal monotonic
where sg indicates that gradients are stopped amid backward sigmoid function

propagation, inspired by a straight-through estimator (Bengio

et al.| 2013). At a step for forward propagation, the error-free DSF produces 2’ = min(z, y) and
y’ = max(z,y). On the contrary, at a step for backward propagation, the gradients of min and
max are used to update learnable parameters. Consequently, our error-free DSF does not smooth
the original elements as shown in Figure@] and ours shows the 100% accuracy for accey, and accey,
(see Section [3] for their definitions) as shown in Figure [I] Compared to our DSF, existing DSFs do
not correspond the original elements to the elements that have been compared and fail to achieve
reasonable performance as a sequence length increases, in the cases of Figures[T)and [2]

By @), (), (10, and (TI), we obtain the following equations:
o' = ((zloly—2)] +ylo(e—y)]) — (zo(y—2) + yo(r—y)))s + (zo(y—2) + yo(z—y))
=z ((loly—2)] = o(y—2))sg +o(y—2)) +y ((lo(z—y)| —o(z=y))sx + o(z—y)), (12)
v =z((lo@—y)] —o(@—y))s +o@—y) +y(lo(y—2)] = 0(y—2))sg + o(y—2)), (13)

which can be used to define a permutation matrix with the error-free DSF. For example, if n = 2, a
permutation matrix P over [z, y] is

p_ [ (o=a)] = oly=a)e + oly—2) (lo(e=9)] —ole—p)+0-) | 10
(lo(x—9)] ~ 0(z—1))es + olz—1) (lo(y—2)] ~ oly—2))es + o(y—2)

To sum up, we can describe the following proposition on our error-free DSF, swap,,.o;-free (*s )

Proposition 3. By (I0) (or (T1)), the softening error ' — min(x,y) (or max(z,y) — y’) for an
error-free DSF is zero.

Proof. The proof of this proposition can be found in Section [
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Figure 5: Illustration of our neural sorting network with error-free DSFs. Given high-dimensional
inputs X, a permutation-equivariant network produces a vector of ordinal variables s, which is used
to be swapped using soft or hard sorting network.

4 NEURAL SORTING NETWORKS WITH ERROR-FREE DIFFERENTIABLE
SWAP FUNCTIONS

We build our neural network-based sorting network with the error-free DSF and a permutation-
equivariant neural network, considering the properties covered in Section [3]

First, we describe a procedure for transforming a high-dimensional input to an ordinal score. Such a
mapping g : R? — R, which consists of a set of learnable parameters, has to satisfy a permutation-
equivariant property:

[9(¢r1)5 -5 9(%m, )] = 7([g(x1)s - -5 g (%)) (15)

where m; = [7([1,...,n])]; Vi € [n], for any permutation function 7. Typically, an instance-
wise neural network, which is applied to each element in a sequence given, is permutation-
equivariant (Zaheer et all 2017). Based on this consequence, instance-wise CNNs are employed
in differentiable sorting algorithms (Grover et al.| [2019} |Cuturi et al.l 2019; [Petersen et al., 2021}
2022). However, such an instance-wise architecture is limited since it is ineffective for captur-
ing essential features from a sequence. Some types of neural networks such as long short-term
memory (Hochreiter & Schmidhuber, [1997) and the standard Transformer architecture (Vaswani
et al.,|2017) are capable of modeling a data sequence, utilizing recurrent connections, scaled dot-
product attention, or parameter sharing across elements. While they are powerful for modeling a
sequence, they are not obviously permutation-equivariant. Unlike such permutation-variant models,
we propose a robust Transformer-based network that satisfies the permutation-equivariant property,
inspired by (Lee et al.,[2019).

To present our network, we briefly introduce a scaled dot-product attention and multi-head attention:

T

att(Q, K, V) = softmax (?/2{71

where head; =att(QW), KW VW), Q, K, VeRmhdn W) W W)  Rhdmxdn
and W, € Rdm>hdm - Similar to the Transformer network, a series of mha blocks is stacked with
layer normalization (Ba et al., |2016) and residual connections (He et al., 2016)), and in this paper
X is processed by mha(Z,Z,Z) where Z = ¢'(X) or Z is the output of previous layer; see the
appendix for the details of the architecture. Note that ¢’(-) is an instance-wise embedding layer,
e.g., a simple fully-connected network or a simple CNN. Importantly, compared to the standard
Transformer model, our network does not include a positional embedding, in order to satisfy the
permutation-equivariant property; mha(Z, Z, Z) satisfies (13) for the permutation of z1, ..., z,
where Z = [z1,...,2,] . The output of our network is s, followed by the last instance-wise fully-
connected layer. Finally, as shown in Figure[5] our sorting network is able to produce differentiable
permutation matrices over s, Ppa.q and Py, by (T0)/(TT) and (3)), respectively.

> V and mha(Q,K,V) = [heady, ..., head,]W,, (16)
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To learn the permutation-equivariant network g, we define both objectives for Pg,p and Py apq:

£soft = - Z Z[Pgt 10g Psoft + (]- - Pgt) lOg(]. - Psoft)]ija (17)
i=1j=1
‘Chard = HP]Td.I‘dX - P;XH%‘? (18)

where Py is a ground-truth permutation matrix. Note that all the operations in L. are entry-wise.
Similar to (T7), the objective (I8 for Pp,yq might be designed as the form of binary cross-entropy,
which tends to be generally robust in training deep neural networks. However, we struggle to apply
the binary cross-entropy for Py,,q into our problem formulation, due to discretized loss values. In
particular, the form of cross-entropy for Py .4 can be used to train the sorting network, but degrades
its performance in our preliminary experiments. Therefore, we design the objective for Py,.q as
Lhard = |[P},.qX — P} X||3,, which helps us to train the network more robustly.

In addition, using Proposition El], the objective (I8)) for Pparq can be modified by splitting Payd,
P, and X, which is able to reduce the number of possible permutations; please see the associated
section for the details of this split strategy. Eventually, our network g is trained by the combined loss
L = Lot + AMharq Where A is a balancing hyperparameter; the analysis on A can be found in the
appendix. As mentioned above, a landscape of Ly,;4 is not smooth due to the property of straight-
through estimator, even though we use Ly,,q. Thus, we combine both objectives to the form of a
single loss, which is widely adopted in a deep learning community.

5 EXPERIMENTAL RESULTS

We demonstrate the experimental results to show the validity of our method. Our neural network-
based sorting network aims to sort two benchmarks: sorting (i) multi-digit images and (ii) image
fragments. Unless otherwise specified, an odd-even sorting network is used in the experiments. We
measure the performance of each method in accey, and accey:

PR N 1( [argsort (Pé?—rs(i))] = [argsort (P(i)Ts(i))]j)

aCCom = A ) (19)
vazl Z?:l 1( [argsort (Pgt)Ts(i)ﬂ = [argsort (P(m—s(i))}j )
ACCow = T ;o)

where argsort returns the indices to sort a given vector and 1(+) is an indicator function.

We attempt to match the capacities of the Transformer-based models to the conventional CNNs. As
described in Tables [I] 2| and [3] the capacities of the small Transformer-based models are smaller
than or similar to the capacities of the CNNs in terms of FLOPs and the number of parameters.

5.1 SORTING MULTI-DIGIT IMAGES

Datasets. We leverage two benchmark datasets to demonstrate the capability of our proposed
method. The MNIST dataset (LeCun et al.| [1998)) is a pertinent dataset for evaluating sorting al-
gorithms. As steadily utilized in the previous work (Grover et al., 2019; |Cuturi et al.,|2019] [Blondel
et al.}2020; |Petersen et al.|, 2021} 2022)), we create a four-digit dataset by concatenating four images
from the MNIST dataset; see Figure [5|for some examples of the dataset. The SVHN dataset (Net-
zer et al.| |2011) also encompasses multi-digit numbers extracted from street view images and is
therefore suitable for the sorting task.

Experimental Details. We conduct the experiments 5 times by varying random seeds to report
the average of accey and acceyw, and use an optimal monotonic sigmoid function as DSFs. The
performance of each model is measured by a test dataset, by testing the best model determined by a
validation dataset. We use the AdamW optimizer (Loshchilov & Hutter,2018)), and train each model
for 200,000 steps on the four-digit MNIST dataset and 300,000 steps on the SVHN dataset. Unless
otherwise noted, we follow the same value of hyperparameters, e.g., a batch size, from (Petersen
et al.| 2022) for fair comparisons. The missing details are described in the appendix.
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Table 1: Results on sorting four-digit MNIST datasets. The results are measured in acCep, and acCey
(in parentheses). FLOPs is on the basis of a sequence length 3, and Log. and E-F stand for Logistic
and Error-Free, respectively. All the values are averaged over 5 runs with different seeds.

Method s s S“;‘“e"“ Le“g‘h s » Model  FLOPs #Param.
NeuralSort 919 (94.5) 77.7 (90.1) 61.0(862) 43.4 (82.4) 9.7(71.6) 0.0 (38.8)
Sinkhorn Sort 92.8(95.0) 81.1(917) 65.6(88.2) 497 (847) 12.6 (74.2) 0.0 (41.2)
Fast Sort & Rank 90.6 (93.5) 715 (87.2) 49.7 (813) 29.0 (75.2) 2.8 (60.9) -

Log. 92.0(94.5) 772 (89.8) 54.8 (83.6) 372 (79.4) 4.7(62.3) 0.0(56.3)

Log. w/ ART 943 (96.1) 83.4 (92.6) 71.6 (90.0) 56.3 (86.7) 23.5(79.4) 05(649)  Conv.  130M 855K
Diffsort Reciprocal ~ 94.4 (96.1) 85.0 (93.3) 73.4 (90.7) 60.8 (88.1) 302 (81.9) 1.0 (66.8)

Cauchy 942 (96.0) 849 (93.2) 73.3(90.5) 63.8(89.1) 31.1(822) 0.8 (63.3)

Optimal 94.6 (96.3) 85.0(93.3) 73.6 (90.7) 62.2(88.5) 31.8 (82.3) 1.4(67.9)
SortNet with E-F DSFs 94.8 (96.4) 86.9 (94.1) 74.2 (90.9) 62.6 (88.6) 34.7 (83.3) 2.1(69.2)

Diffsort Optimal 95.9 (97.1) 90.2 (95.4) 83.9(94.2) 77.2(92.9) 57.3(89.7) 16.3 (81.7)
SortNet with E-F DSFs 95.9 (97.1) 94.8 (97.5) 90.8 (96.5) 86.9 (95.7) 74.3 (93.6) 37.8 (87.7)

Diffsort Optimal 96.5 (97.5) 92.6(96.4) 87.6 (95.3) 82.6 (94.3) 67.8 (92.0) 32.1 (85.7)
SortNet with E-F DSFs 96.5 (97.5) 95.4 (97.7) 92.9 (97.2) 90.1 (96.5) 82.5(95.0) 46.2 (88.9)

Transformer-S 130M 665K

Transformer-L  137M  3.104M

Table 2: Results on sorting SVHN datasets. FLOPs is computed on the basis of a sequence length
3. All the values are averaged over 5 runs with different seeds.

Sequence Length

Method 3 5 7 9 15 Model FLOPs #Param.
Log. 763(832) 460(727) 218(639) 135(61.7) 0.3 (45.9)
Log. w/ ART 832(88.1) 64.1(82.1) 43.8(76.5) 24.2(69.6) 2.4(56.8)

Diffsort Reciprocal 857 (89.8) 68.8 (842) 53.3(80.0) 40.0(76.3) 13.2(66.0)
Cauchy 85.5(89.6) 68.5(84.1) 52.9(79.8) 39.9(75.8) 13.7(66.0) Conv. 326M - 1.226M
Optimal 86.0(90.0) 67.5(83.5) S53.1(80.0) 39.1(76.0) 132 (663)

SortNet with E-F DSFs  86.8 (90.6) 68.9 (84.5) 53.4 (80.4) 40.0(77.0) 12.0(65.3)

Diffsort  Optimal 86.5(90.2) 71.9(854) 60.4(825) 480(79.2) 19.5(70.5)

SortNet with E-FDSFs 86,6 (90.2) 72.6 (85.7) 62.5(83.5) 48.6(79.3) 193 (69.6) \ransformer-S —210M  1223M

Diffsort  Optimal 87.8(91.1) 752(87.0) 63.8(839) 51.6(804) 232(72.3)

SortNet with E-FDSFs ~ 88.0 (912) 74.0 (86.3) 63.9(83.8) 502(80.1) 21.7(712) ransformer-L 332M  3475M

Results. Tables T] and 2] show the results of the previous work such as NeuralSort (Grover et al.|
2019), Sinkhorn Sort (Cuturi et al.,2019), Fast Sort & Rank (Blondel et al., 2020}, and Diffsort (Pe-
tersen et al., [2021; [2022), and our method on the MNIST and SVHN datasets, respectively. When
we use the conventional CNN as a permutation-equivariant network, our method shows better than
or comparable to the previous methods. As we exploit more robust models, e.g., small and large
Transformer-based permutation-equivariant models, both the baseline and ours show better results.
It is worth noting that the performance gap between the baseline and ours with the error-free DSFs
is getting larger when we utilize the Transformer-based modelsﬂ

5.2 SORTING IMAGE FRAGMENTS

Datasets. When inputs are fragments, we use two datasets: the MNIST dataset and the CIFAR-10
dataset (Krizhevsky & Hinton, 2009). Similar to the reference (Mena et al.| 2018), we create multiple
fragments (or patches) from a single-digit image of the MNIST dataset to utilize themselves as inputs
— for example, 4 fragments of size 14 x 14 or 9 fragments of size 9 x 9 are created from a single
image. Similarly, the CIFAR-10 dataset, which contains various objects (e.g., birds and cats), is split
to multiple patches, and then is used to the experiments on sorting image fragments. See Table 3] for
the details of fragments we use.

"Thanks to many open-source projects, we can easily run the baseline methods. However, it is difficult to
reproduce some results due to unknown random seeds. For this reason, we bring the results from the refer-
ence (Petersen et al.,[2022)), and use fixed random seeds, i.e., 42, 84, 126, 168, 210, for our methods.
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Table 3: Results on sorting image fragments of MNIST and CIFAR-10. 2 x 2 and 3 x 3 indicate
the number of fragments, and 14 x 14,9 x 9, 16 x 16, and 10 x 10 (in parentheses) indicate the
size of image fragments. FLOPs is computed on the basis of the MNIST 2 x 2 (14 x 14) case and
the CIFAR-102 x 2 (16 x 16) case. All the values are averaged over 5 runs with different seeds.

MNIST CIFAR-10
Method 2x2 3x3 2x2 3x3 Model
(4% 14) (9 x9) FLOPs #Param. (16 % 16) (10 x 10) FLOPs #Param.
Log. 98.5(99.0) 5.3 (42.9) 569 (73.6) 08 (27.7)
Log. w/ ART 984 (99.1) 5.4 (42.9) 567 (73.4) 0.7(27.7)
Diffsort Reciprocal ~ 984 (99.2) 53 (42.9) 567 (73.4) 0.7(27.8)
Cauchy 08.4(992) 53 (42.9) ABM  BK - 5l0 736) 09 (279) 106M 8K Conv.
Optimal 98.4(99.1) 5.3 (43.0) 56.6 (73.4) 0.7(27.7)
SortNet with E-F DSFs  98.4 (99.2) 5.2 (42.6) 569 (73.6) 0.8 (28.0)
Diffsort Optimal 987 (99.3) 5.5(43.0) 58.0(74.2) 1.0 (28.4)
SortNet with E-F DSFs 98.6 (99.2) 5.6 43.7) 0K 87K 5S¢’ 742) 09283 1M 87K Transformer

Experimental Details. Similar to the experiments on sorting multi-digit images, an optimal mono-
tonic sigmoid function is used as DSFs. Since the size of inputs is much smaller than the experiments
on sorting multi-digit images, which are shown in Section 5.1} we modify the architectures of the
CNNs and the Transformer-based models. We reduce the kernel size of convolution layers from five
to three and make strides two. Max-pooling operations are removed. Similar to the experiments
in Section @ we use the AdamW optimizer (Loshchilov & Hutter, 2018)). Moreover, each model
is trained for 50,000 steps when the number of fragments is 2 x 2, i.e., when a sequence length is
4, and 100,000 steps for 3 x 3 fragments, i.e., when a sequence length is 9. Additional information
including the details of neural architectures can be found in the appendix.

Results. Table [3] represents the experimental results on both datasets of image fragments, which
are created from the MNIST and CIFAR-10 datasets. Similar to the experiments on sorting multi-
digit images in Section [5.1] the more robust model improves the performance of both the baseline
and our method, especially in the CIFAR-10 2 X 2 experiments.

According to the experimental results, we achieve satisfactory performance by applying error-free
DSFs, combined loss, and Transformer-based models with multi-head attention. We provide detailed
discussion on how they contribute to the performance gain in Section [/, and ablation studies on
steepness, learning rate, and a balancing hyperparameter in the appendix.

6 RELATED WORK
We cover the work related to our neural sorting network with error-free DSFs in this section.

Differentiable Sorting Algorithms. To allow us to differentiate a sorting algorithm, |Grover et al.
(2019) have proposed the continuous relaxation of argsort operator, which is named NeuralSort.
In this work the output of NeuralSort only satisfies the row-stochastic matrix property, although
Grover et al.| (2019) attempt to employ a gradient-based optimization strategy in learning a neural
sorting algorithm. |Cuturi et al|(2019) propose the smoothed ranking and sorting operators using
optimal transport, which is the natural relaxation for assignments. To reduce the cost of the optimal
transport, the Sinkhorn algorithm (Cuturi, 2013)) is used. Then, Blondel et al.[(2020) have proposed
the first differentiable sorting and ranking operators with O(n log n) time and O(n) space complex-
ities, which is named Fast Rank & Sort, by constructing differentiable operators as projections on
permutahedron. Petersen et al.|(2021) have suggested a differentiable sorting network with relaxed
conditional swap functions. Recently, the same authors analyze the characteristics of the relax-
ation of monotonic conditional swap functions, and propose several monotonic swap functions, e.g.,
Cauchy and optimal monotonic functions (Petersen et al., [ 2022).

Permutation-Equivariant Networks. A seminal architecture, long short-term memory (Hochre-
iter & Schmidhuber, [1997)) can be used in modeling a sequence without any difficulty, and a
sequence-to-sequence model (Sutskever et al., 2014) can be employed to cope with a sequence.
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However, as discussed in the work (Vinyals et al.| 2016), an unordered sequence can have good
orderings, by analyzing the effects of permutation thoroughly. |[Zaheer et al.|(2017) have proposed a
permutation-invariant or permutation-equivariant network, named Deep Sets, and proved the permu-
tation invariance and permutation equivariance of the proposed models. By utilizing a Transformer
network (Vaswani et al.,[2017),|Lee et al.|(2019) propose a permutation-equivariant network.

7 DISCUSSION & CONCLUSION

In this section we discuss potential applications, comprehensive analyses of our sorting network,
limitations, and future directions, and then conclude our work.

Utilization of Hard Permutation Matrices. While a soft permutation matrix Py is limited to
be utilized itself directly, a hard permutation matrix Ppa,q is capable of being applied in a case that
requires Py ,.q; each element of PSTOfts is a linear combination of some column of P, and s, but
one of P} ;s is an exact element in s. The experiments demonstrated in Sectionare one of such
cases, and it exhibits our strength, not only the performance in accey, and accey -

Effects of Multi-Head Attention in the Problem (2). We follow the model architecture, which
is used in the previous work (Grover et al., 2019; |Cuturi et al.| [2019; [Petersen et al., 2021} |2022),
for the CNNs. However, as shown in Tables [I} [2| and [3] the model is not enough to show the best
performance. In particular, whereas the model capacity, i.e., FLOPs and the number of parameters,
of the small Transformer models is almost matched to or less than the capacity of the CNNs, the
results by the small Transformer models outperform the results by the CNNs. We presume that these
performance gains are derived from a multi-head attention’s ability to capture long-term dependency
and reduce an inductive bias, as widely stated in many recent studies in diverse fields such as natural
language processing (Vaswani et al.| [2017; |Devlin et al.| [2018; [Brown et al.| |2020), computer vi-
sion (Dosovitskiy et al.,[2021} |Liu et al., 2021), and 3D vision (Nash et al., |2020; Zhao et al.,|2021)).
Especially, unlike the instance-wise CNNSs, our permutation-equivariant Transformer model utilizes
multi-head attentions between instances, so that our model can productively compare instances in a
sequence and effectively learn the relative relationship between them.

Analysis on Performance Gains. According to the results in Section |5 we can argue that error-
free DSFs, combined loss, and Transformer-based models contribute to better performance ap-
propriately compared to the baseline methods. As shown in Table [I] the performance gains by
Transformer-based models are more substantial than the gains by error-free DSFs and combined
loss, since multi-head attention is effective in capturing long-term dependency (or dependency be-
tween multiple instances in our case) and reducing inductive biases. However, as in the discussion
on the utilization of hard permutation matrices, the hard permutation matrices can be used in the
case that does not allow us to mix instances in X, e.g., sorting image fragments in Section 5.2}

Limitations. Since our method is based on a sorting network, the ideas in this work are limited to
sorting algorithms, which implies that it is not easy to devise a neural network-based approach to
solving general problems in computer science, e.g., combinatorial optimization, with our ideas.

Further Study of Differentiable Sorting Algorithms. Differentiable sorting algorithms are em-
powered by encouraging us to train a mapping from an abstract input to an ordinal score using
supervision on permutation matrices. However, this line of studies is limited to a problem of sorting
high-dimensional data that contains clear information of orderings, e.g., multi-digit numbers. As
the further study of differentiable sorting, we can expand this framework to sorting more ambiguous
data, which contains implicitly ordinal information.

In this paper, we define a softening error, which is induced by a monotonic DSF, and show several
evidences of the error accumulation problem. To resolve the error accumulation problem, we pro-
pose an error-free DSF, inspired by a straight-through estimator. Moreover, we provide the simple
theoretical and empirical analyses that our error-free DSF successfully achieves a zero error and also
holds non-decreasing and differentiability conditions. By combining all the components, we pro-
pose our neural sorting network with the error-free DSF. Finally we demonstrate that our methods
are better than or comparable to other baseline algorithms in diverse sorting benchmarks.
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REPRODUCIBILITY STATEMENT

We describe the details of experiments and implementation in Sections [5] [D] and [E] Moreover, the
supplementary material includes our implementation and an installation guide. The final configura-
tions, i.e., neural architectures and hyperparameters, of the experiments conducted in this work are
presented in the scripts included in the supplementary material.
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APPENDICES

From now, we describe the contents missing in the main article.

A PROOF OF PROPOSITIONI]

Proof. If two elements at indices ¢ and j are swapped by a single swap function, [P]x, = 1 for
k€ [n\{i.j}, [Plu = Ofor k # L k.1 € [n]\{é, j}. [P]:s = [P],; = p.and [P];; = [P];; = 1-p,
where p is the output of sigmoid function, i.e., p = o(y — x) or p = |o(y — x)]. Since the
multiplication of doubly-stochastic matrices is still doubly-stochastic, Proposition|l|is true. O

11
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B PROOF OF PROPOSITION 3]

Proof. According to Definition[1] given z and y, the softening error 2’ — min(z, y) is expressed as
2’ — min(z,y) = (min(z, y) — min(z, y))sg + min(z,y) — min(x, y)
= min(z,y) — min(z,y) + min(z,y) — min(z,y) = 0, (21)

while a forward pass is applied. The proof for max(x,y) — y’ is omitted because it is obvious. [

C SPLIT STRATEGY TO REDUCE THE NUMBER OF POSSIBLE PERMUTATIONS

As presented in (T4) and Proposition[I] the permutation matrix 1 AT e

for the error-free DSF is a discretized doubly-stochastic matrix,

which can be denoted as Py,,q, in a forward pass, and is dif- 3

ferentiable in a backward pass. Here, we show an interesting 4| =

proposition of Py,.q4: [7J lO
9

Proposition 4. Let s € R™ and Ppaq € R™™ ™ be an un-

ordered sequence and its corresponding permutation matrix to e

transform to s,, respectively. We are able to split s to two sub-

sequences s; € R™ and so € R™ where s; = [s]1.n, and 0

So = [8|1.n,- Then, Pracq is also split to Py € R™*™ and 7 10 0] L1}

Py € R™*"2 50 that P, and Py are (discretized) doubly- {3] [0 1]T {9'
10 3

stochastic. 9

Proof. Since a split does not change the relative order of ele-  Fjgure 6: A split process of P
ments in the same split and entries in the permutation matrix is

zero or one, a permutation matrix can be split as shown in Figure[6] Moreover, multiple splits are
straightforwardly available. O

= oo © ©
o oo ©
o oo = O
oS RO © ©

=)
o

IS
Il
o

._.
— =

In contrast to Py,,q, it is impossible to split P to sub-block matrices since such sub-block ma-
trices cannot satisfy the property of doubly-stochastic matrix, which is discussed in Proposition [I]
Importantly, Proposition ff] does not show a possibility of the recoverable decomposition of the per-
mutation matrix, which implies that we cannot guarantee the recovery of decomposed matrices to
the original matrix. Regardless of the existence of recoverable decomposition, we intend to reduce
the number of possible permutations with sub-block matrices, rather than holding the large number
of possible permutations with the original permutation matrix. Therefore, by Proposition ] relative
relationships between instances with a smaller number of possible permutations are more distinc-
tively learnable than the relationships with a larger number of possible permutations, preventing a
sparse correct permutation among a large number of possible permutations.

D DETAILS OF ARCHITECTURES

We describe the details of the neural architectures used in our paper, as shown in Tables [} [5] [6] [7}
[81 O1 [T01 [TT} [T2] and|[T3] For the experiments of image fragments, we omit some of the architectures
with particular fragmentation, since they follow the same architectures presented in Tables [T0] [T1]
[12] and[T3] Only differences are the size of inputs, and therefore the respective sizes of the first
fully-connected layers are changed.

12
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Table 4: Architecture of the convolutional neural networks for the four-digit MNIST dataset

Layer Input & Output (Channel) Dimensions  Kernel Size Details
Convolutional 1 x 32 5x5 strides 1, padding 2
ReLU - - -
Max-pooling - - pooling 2, strides 2
Convolutional 32 X 64 5x5 strides 1, padding 2
ReLU - - -
Max-pooling - - pooling 2, strides 2
Fully-connected 12544 x 64 - -
ReLU - - -
Fully-connected 64 x 1 - -

Table 5: Architecture of the Transformer-Small models for the four-digit MNIST dataset

Layer Input & Output (Channel) Dimensions  Kernel Size Details
Convolutional 1x 32 5X%X5 strides 1, padding 2
ReLU - - -
Max-pooling - pooling 2, strides 2
Convolutional 32 X 64 5X5 strides 1, padding 2
ReLU - - -
Max-pooling - pooling 2, strides 2
Fully-connected 12544 x 16 - -
Transformer Encoder 16 x 16 #layers 6, #heads 8
ReLU - _
Fully-connected 16 x 1 - -

Table 6: Architecture of the Transformer-Large models for the four-digit MNIST dataset

Layer Input & Output (Channel) Dimensions  Kernel Size Details
Convolutional 1x32 5x5 strides 1, padding 2
ReLU - - -
Max-pooling - pooling 2, strides 2
Convolutional 32 X 64 5% 5 strides 1, padding 2
ReLU - - -
Max-pooling - - pooling 2, strides 2
Fully-connected 12544 x 64 -
Transformer Encoder 64 x 64 #layers 8, #heads 8
ReLU - - -
Fully-connected 64 x 1 - -

Table 7: Architecture of the convolutional neural networks for the SVHN dataset

Layer Input & Output (Channel) Dimensions  Kernel Size Details
Convolutional 3 x 32 5x5 strides 1, padding 2
ReLU - - -
Max-pooling - - pooling 2, strides 2
Convolutional 32 X 64 5x5 strides 1, padding 2
ReLU - - -
Max-pooling - - pooling 2, strides 2
Convolutional 64 x 128 5x%x5 strides 1, padding 2
ReLU - - -
Max-pooling - - pooling 2, strides 2
Convolutional 128 x 256 5X5 strides 1, padding 2
ReLU - - -
Max-pooling - - pooling 2, strides 2
Fully-connected 2304 x 64 - -
ReLU - - -
Fully-connected 64 x 1 - -
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Table 8: Architecture of the Transformer-Small models for the SVHN dataset

Layer Input & Output (Channel) Dimensions  Kernel Size Details
Convolutional 3 x 32 5x%X5 strides 1, padding 2
ReLU - - -
Max-pooling - - pooling 2, strides 2
Convolutional 32 X 64 5X%X5 strides 1, padding 2
ReLU - - -
Max-pooling - - pooling 2, strides 2
Convolutional 64 x 64 5 X5 strides 1, padding 2
ReLU - - -
Max-pooling - - pooling 2, strides 2
Convolutional 64 x 128 5x5 strides 1, padding 2
ReLU - - -
Max-pooling - - pooling 2, strides 2
Fully-connected 1152 x 32 - -
Transformer Encoder 32 x 32 #layers 6, #heads 8
ReLU - - -
Fully-connected 32x1 - -

Table 9: Architecture of the Transformer-Large models for the SVHN dataset

Layer Input & Output (Channel) Dimensions  Kernel Size Details
Convolutional 3 x 32 5X%X5 strides 1, padding 2
ReLU - - -
Max-pooling - - pooling 2, strides 2
Convolutional 32 x 64 5X%X5 strides 1, padding 2
ReLU - - -
Max-pooling - - pooling 2, strides 2
Convolutional 64 x 128 5 x5 strides 1, padding 2
ReLU - - -
Max-pooling - - pooling 2, strides 2
Convolutional 128 x 256 5X%X5 strides 1, padding 2
ReLU - - -
Max-pooling - - pooling 2, strides 2
Fully-connected 2304 x 64 - -
Transformer Encoder 64 x 64 #layers 8, #heads 8
ReLU - - -
Fully-connected 64 x 1 - -

Table 10: Architecture of the convolutional neural networks for the MNIST dataset of 4 image
fragments of size 14 x 14

Layer Input & Output (Channel) Dimensions  Kernel Size Details
Convolutional 1 x 32 3x3 strides 2, padding 1

ReLU - - -
Convolutional 32 x 64 3x3 strides 2, padding 1

ReLU - - -
Fully-connected 1024 x 64 - -

ReLU - - -
Fully-connected 64 x 1 - -

Table 11: Architecture of the Transformer models for the MNIST dataset of 4 image fragments of
size 14 x 14

Layer Input & Output (Channel) Dimensions  Kernel Size Details
Convolutional 1x 32 3 x3 strides 2, padding 1
ReLU - - -
Convolutional 32 x 32 3x3 strides 2, padding 1
ReLU - - -
Fully-connected 512 x 16 - -
Transformer Encoder 16 x 16 #layers 1, #heads 8
ReLU - - -
Fully-connected 16 x 1 - -
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Table 12: Architecture of the convolutional neural networks for the CIFAR-10 dataset of 4 image
fragments of size 16 x 16

Layer Input & Output (Channel) Dimensions  Kernel Size Details
Convolutional 3 x 32 3x3 strides 2, padding 1

ReLU - - -
Convolutional 32 X 64 3x3 strides 2, padding 1

ReLU - - -
Fully-connected 1024 x 64 - -

ReLU - - -
Fully-connected 64 x 1 - -

Table 13: Architecture of the Transformer models for the CIFAR-10 dataset of 4 image fragments
of size 16 x 16

Layer Input & Output (Channel) Dimensions  Kernel Size Details
Convolutional 3 x 32 3 X3 strides 2, padding 1

ReLU - - -
Convolutional 32 x 32 3 x3 strides 2, padding 1

ReLU - - -
Fully-connected 512 x 16 - -

Transformer Encoder 16 x 16 #layers 1, #heads 8

ReLU - - -

Fully-connected 16 x 1

E DETAILS OF EXPERIMENTS

As described in the main article, we use three public datasets: MNIST (LeCun et al. |1998),
SVHN (Netzer et al.,|2011), and CIFAR-10 (Krizhevsky & Hinton, 2009). Unless otherwise speci-
fied, the learning rate 10~ is used for the CNN architectures and the learning rate 10~ is used for
the Transformer-based architectures; see the scripts for the exact learning rates we use in the exper-
iments. Learning rate decay is applied to multiply 0.5 in every 50,000 steps for the experiments on
sorting multi-digit images and every 20,000 steps for the experiments on sorting image fragments.
Moreover, we balance two objectives for Py,q and Py by multiplying 1, 0.1, 0.01, or 0.001;
see the scripts included in our implementation for the respective values for all the experiments. For
random seeds, we pick five random seeds for all the experiments: 42, 84, 126, 168, and 210; these
values are picked without any trials. Other missing details can be found in our implementation,
which is included in the supplementary material.

F ABLATION STUDY ON STEEPNESS AND LEARNING RATE

We present ablation studies on steepness and learning rate for the experiments on sorting the multi-
digit MNIST dataset, as shown in Tables[T4] [T5] [T6] [I7] [I8] and[I9] For these experiments, a random
seed 42 is only used due to numerous experimental settings. Also, we use balancing hyperparameters
Aas 1.0, 1.0, 0.1, 0.1, 0.1, and 0.1 for sequence lengths 3, 5, 7, 9, 15, and 32, respectively. Since
there are many configurations of steepness, learning rate, and a balancing hyperparameter, we cannot
include all the configurations here. The final configurations we use in the experiments are described
in the supplementary material.
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Table 14: Ablation study on steepness and learning rate for a sequence length 3. Ir stands for learning

rate.
Steepness
logyo Ir 2 4 6 8 10 12 14
4.0 89.2(92.6)  91.5(942)  92.1(94.6)  923(947)  927(95.0)  92.1(94.6)  92.7(95.0)
35 93.6(95.5)  93.4(955)  945(962)  93.9(959)  944(96.1)  945(962)  94.6(96.3)
3.0 953(96.8)  95.1(96.6)  95.0(96.5)  94.4(962)  943(96.1)  947(96.4)  94.8(96.5)
25 945(96.2)  943(9.1)  937(956)  93.8(957)  93.7(95.7)  93.7(956)  94.1(95.9)

Table 15: Ablation study on steepness and learning rate for a sequence length 5. Ir stands for learning

rate.
log. Ir Steepness
E10 14 16 18 20 22 24 26
-4.0 78.3(90.2) 76.3 (89.3) 79.5 (90.9) 78.7 (90.4) 78.4 (90.4) 77.3 (89.8) 79.0 (90.6)
-3.5 85.1(93.3) 83.6 (92.7) 84.8 (93.1) 85.5(93.5) 83.4(92.5) 85.6 (93.6) 84.1(92.8)
-3.0 86.9 (94.1) 85.2(93.3) 86.2 (93.8) 85.7 (93.6) 85.4(93.5) 85.0(93.2) 85.0(93.3)
2.5 83.1(92.3) 83.2(92.4) 83.1(92.4) 81.7 (91.8) 83.3(92.5) 82.4 (92.1) 82.5(92.1)

Table 16: Ablation study on steepness and learning rate for a sequence length 7. Ir stands for learning

rate.
log. Ir Steepness
Z10 23 25 27 29 31 33 35
4.0 53.5(82.9)  57.3(84.6)  61.0(86.0)  58.3(85.1)  66.1(88.0)  57.3(84.6)  61.6(86.4)
35 71.6(90.0)  73.5(90.8)  68.1(88.6)  72.9(90.5)  72.2(902)  71.4(89.9)  74.2(91.0)
3.0 744(90.9)  72.8(904)  742(90.8)  69.2(89.0)  69.9(89.3)  73.0(904)  73.0(90.5)
25 63.0(88.6)  67.2(88.1)  68.1(88.6)  64.5(869)  66.8(88.0)  704(89.3)  66.2(87.9)

Table 17: Ablation study on steepness and learning rate for a sequence length 9. Ir stands for learning

rate.
log.. Ir Steepness
E10 26 28 30 32 34 36 38
-4.0 34.0 (77.7) 37.8 (79.7) 37.3(79.4) 45.9 (83.0) 46.4 (83.1) 36.2 (78.9) 45.3 (82.5)
-3.5 51.8 (84.8) 59.7 (87.5) 58.3(87.5) 61.0 (88.2) 60.2 (88.1) 54.6 (85.8) 56.3 (86.6)
-3.0 62.5 (88.8) 60.5 (88.0) 61.8 (88.4) 63.2 (88.9) 61.5(88.2) 62.2 (88.6) 65.0 (89.5)
2.5 57.4 (86.8) 58.7 (87.2) 56.5 (86.4) 55.3(86.1) 52.8 (85.0) 46.9 (82.1) 52.1(84.6)

Table 18: Ablation study on steepness and learning rate for a sequence length 15.

learning rate.

Ir stands for

log;y Ir Steepness

10 19 21 23 25 27 29 31
-4.0 3.6 (62.7) 7.2 (67.6) 4.9 (64.8) 2.6 (60.9) 2.9 (61.5) 2.5 (60.2) 6.8 (68.3)
-3.5 10.3 (71.5) 11.9 (73.0) 7.6 (68.6) 22.3(78.7) 7.1 (68.7) 8.2 (69.6) 10.6 (71.8)
-3.0 24.2(79.8) 24.1 (80.1) 29.7 (81.9) 32.1(82.7) 23.9(79.9) 31.6 (82.1) 31.0 (82.0)
-2.5 30.5 (81.4) 28.2 (80.0) 18.9 (76.8) 29.8 (80.9) 19.8 (77.8) 15.4 (75.4) 24.6 (79.6)

Table 19: Ablation study on steepness and learning rate for a sequence length 32. Ir stands for

learning rate.

log,, Ir Steepness

10 118 120 122 124 126 128 130
-4.0 0.0 (46.4) 0.0 (45.8) 0.0 (46.4) 0.0 (43.1) 0.0 (42.9) 0.0 (49.4) 0.0 (48.9)
-3.5 0.2 (60.5) 0.3 (61.8) 0.7 (64.8) 0.3 (62.7) 0.0 (56.0) 0.3 (62.7) 0.2 (59.8)
-3.0 0.6 (63.1) 0.5 (63.6) 0.4 (59.8) 0.8 (65.8) 0.2 (58.1) 0.1 (56.0) 0.1 (57.1)
-25 0.5 (62.8) 0.5 (62.3) 0.5 (62.5) 0.1(58.3) 0.3 (61.2) 0.1 (59.5) 0.2 (58.1)
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Table 20: Ablation study on a balancing hyperparameter \

A Sequence Length

3 5 7 9 15 32
1.000 94.9 (96.5) 86.1(93.8) 73.7 (90.6) 60.8 (87.9) 10.8 (67.8) 0.0 (31.8)
0.100 94.8 (96.4) 86.4 (93.8) 753 (91.2) 65.6 (89.6) 33.7 (83.0) 1.2 (63.0)
0.010 94.9 (96.5) 87.2(94.2) 76.3 (91.6) 65.6 (89.5) 329 (82.8) 0.8 (62.6)
0.001 95.2(96.7) 86.6 (94.0) 75.3(91.2) 64.6 (89.1) 34.4(83.2) 1.4 (66.4)
0.000 94.8 (96.4) 86.6 (93.9) 76.4 (91.7) 64.0 (89.0) 33.0 (82.6) 1.3 (66.0)

We conduct an ablation study on a balancing hyperparameter in the experiments on sorting the four-
digit MNIST dataset, as shown in Table 20} For these experiments, we use steepness 6, 20, 29, 32,
25, and 124 for sequence lengths 3, 5, 7, 9, 15, and 32, respectively; these values are obtained from
the reference (Petersen et al.,2022)). Also, we use a learning rate 1073 and five random seeds 42, 84,
126, 168, and 210, for the experiments in Table As mentioned in Section [E we cannot include
all configurations in the appendix, but we present our final settings in the supplementary material.
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