
Wav2SQL: Direct Generalizable Speech-To-SQL Parsing

Anonymous ACL submission

Abstract

Speech-to-SQL (S2SQL) aims to convert spo-001
ken questions into SQL queries given relational002
databases, which has been traditionally imple-003
mented in a cascaded manner while facing004
the following challenges: 1) model training005
is faced with the major issue of data scarcity,006
where limited parallel data is available; and 2)007
the systems should be robust enough to han-008
dle diverse out-of-domain speech samples that009
differ from the source data. In this work, we010
propose the first direct speech-to-SQL pars-011
ing model Wav2SQL which avoids error com-012
pounding across cascaded systems. Specifi-013
cally, 1) to accelerate speech-driven SQL pars-014
ing research in the community, we release a015
large-scale and multi-accent dataset MASpider;016
2) leveraging the recent progress in the large-017
scale pre-training, we show that it alleviates the018
data scarcity issue and allow for direct speech-019
to-SQL parsing; and 3) we include the speech020
re-programming and gradient reversal classi-021
fier techniques to reduce acoustic variance and022
learned style-agnostic representation, improv-023
ing generalization to unseen out-of-domain cus-024
tom data. Experimental results demonstrate025
that Wav2SQL avoids error compounding and026
achieves state-of-the-art results by up to 4.1%027
accuracy improvement over the baseline.028

1 Introduction029

Speech-to-SQL parsing (S2SQL) aims to generate030

the SQL query from a spoken question based on031

relational databases. This technology is highly ben-032

eficial as it breaks down barriers among those who033

lack proficiency in SQL queries and are unable to034

perform screen inputs while driving or exercising.035

Furthermore, S2SQL provides flexible and conve-036

nient ways of interaction, which opens up a host of037

practical applications in fields such as vehicle termi-038

nals, smart watches, smart speakers, and the medi-039

cal industry. Conventional S2SQL systems (Kumar040

et al., 2013; Song et al., 2022) are often composed041

of a cascade of two components: automatic speech042

recognition (ASR) (Yu and Deng, 2016; Schneider 043

et al., 2019; Hsu et al., 2021) and text-to-SQL pars- 044

ing (Bogin et al., 2019b,a; Chen et al., 2020; Guo 045

et al., 2019). Compared to cascaded systems, work 046

on direct S2ST is very limited, with the potential 047

benefits of 1) working on languages without written 048

form (Campbell, 2008), where an estimated half of 049

the 7,000 languages in the world actually do not 050

have written forms; 2) avoiding error compound- 051

ing across sub-systems (Nakamura et al., 2006; Jia 052

et al., 2019). 053

The recent development of direct S2SQL parsing 054

still faces several challenges: 1) despite the benefits 055

of direct approaches, model training is faced with 056

the major issue of data scarcity. Human-labeled 057

speech data is expensive to create, there are very 058

few data resources providing parallel speech, and 059

the data amount is quite limited, 2) increasing de- 060

mand for SQL parsing from personalized speech 061

challenges models especially in unseen scenarios. 062

When the distributions of custom voice (speaker 063

and accent) differ from training data, the system 064

performance deteriorates due to distribution gaps, 065

and 3) the modality gap between the spoken ques- 066

tion and text schema hinders the ability of the ques- 067

tion schema, making it difficult to align question 068

speech to the intended tables. 069

To accelerate S2SQL research, we assemble 070

an open-source, multi-speaker, and multi-accent 071

S2SQL corpus MASpider. To the best of our knowl- 072

edge, MASpider is the first open-source speech- 073

to-SQL parsing dataset. We have attached part 074

of MASpider to the supplementary materials, and 075

we will release the entire dataset after the paper 076

publication. To overcome the aforementioned chal- 077

lenges in this paper, we propose Wav2SQL for 078

direct speech-to-SQL parsing, which is generaliz- 079

able to unseen acoustic conditions (speaker and 080

accent) in custom data. To be more specific, 1) 081

leveraging self-supervised learning (SSL) (Baevski 082

et al., 2020; Hsu et al., 2021), it alleviates the data 083
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scarcity issue and benefits S2SQL model training,084

2) we introduce speech re-programming and gra-085

dient reverse technique to effectively eliminate the086

style attributes in representation, which promote087

the model generalization to unseen speakers and088

accents in custom data.089

Experimental results on the MASpider dataset090

demonstrate that our Wav2SQL model surpasses091

the cascaded system in the exact match accuracy092

and achieves competitive performance with our093

model trained on the TTS dataset. The main contri-094

butions of This work are summarized as follows:095

• We introduce the first cross-domain speech-to-096

SQL parsing benchmark dataset MASpider1.097

• Leveraging self-supervised learning, we pro-098

pose the first direct speech-to-SQL parsing099

and show that the large-scale pre-training alle-100

viates the data scarcity issue.101

• Through introducing speech reprogramming102

and gradient reversal technique, we effectively103

eliminate the style attributes in speech repre-104

sentation and predict the style-agnostic varia-105

tion, which significantly improves the model106

generalization to unseen speakers and accents107

in custom data.108

• Experimental results on the MASpider dataset109

demonstrate that our model outperforms the110

cascaded systems and achieves state-of-the-art111

performances.112

2 Related Works113

2.1 Text-to-SQL Parsing114

Semantic parsing of natural language to SQL query115

recently surged in popularity because of the release116

of two cross-domain datasets-WikiSQL (Zhong117

et al., 2017) and Spider (Yu et al., 2018). IR-118

Net (Guo et al., 2019) encodes the question and119

schema via bi-LSTM and proposes the string match120

strategy for schema linking. RATSQL (Wang121

et al., 2019) presents a unified framework with122

a relation-aware transformer(RAT) to encode rela-123

tional databases and NL questions. SADGA (Cai124

et al., 2021) adopts the graph structure to provide125

a unified encoding model for both the NL ques-126

tion and databases. In recent years, speech-to-SQL127

systems usually adopt cascaded automatic speech128

1Audio samples are available at https://Wav2SQL.
github.io/

recognition with text-based SQL parsing. However, 129

the error propagation hurts model performance, not 130

to mention that numerous languages do not have 131

written forms. In this work, we present the first 132

direct speech-to-SQL parsing model without us- 133

ing text, which demonstrates the generalization to 134

different accents and speakers. 135

2.2 Self-Supervised Learning in Speech 136

Self-supervised speech representation learning en- 137

codes the speech feature into context representa- 138

tions. TERA (Liu et al., 2021) learns speech repre- 139

sentation by reconstructing acoustic frames from 140

their altered counterparts. Vq-wav2vec (Baevski 141

et al., 2019) learns discrete representations via 142

a context prediction task using contrastive loss. 143

Similarly, wav2vec 2.0 (Baevski et al., 2020) is 144

an end-to-end version of vq-wav2vec, while Hu- 145

BERT (Hsu et al., 2021) predicts masked frames 146

pre-quantized using k-means. In this work, we 147

leverage the recent success of self-supervised learn- 148

ing in speech and show that large-scale pre-training 149

alleviates the data scarcity issue and benefits model 150

training. 151

2.3 Domain Generalization 152

Domain generalization aims to learn domain- 153

invariant knowledge which can be generalized to 154

the target distribution, which attracts attention from 155

researchers (Zhou et al., 2020; Shi et al., 2021; Tian 156

et al., 2022; Huang et al., 2022c). (Li et al., 2018b) 157

propose a conditional invariant adversarial network 158

to learn class-wise adversarial networks and (Zhao 159

et al., 2020) learns domain-invariant features by in- 160

troducing additional entropy regularization to min- 161

imize the KL divergence between the conditional 162

distributions of different source domains. For spo- 163

ken language understanding, unseen speakers and 164

accents in custom data significantly hurt model per- 165

formance due to the distribution gaps. In this work, 166

we introduce speech reprogramming and gradient 167

reverse to disentangle semantically irrelevant in- 168

formation, leading to the significant promotion of 169

model generalization to custom scenarios. 170

3 Dataset Construction 171

We build MASpider upon the Spider (Yu et al., 172

2018), which has 8659/1034 train/evaluation splits 173

and an unreleased test set. MASpider consists of 174

9693 spoken utterances recorded by eleven speak- 175

ers from six different countries. MASpider consists 176

of 15 hours of speech samples recorded in a profes- 177
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(a) Train/Test Split (b) Gender Statistics (c) Visualization of different country distributions

Figure 1: The statistics for MASpider.

sional recording studio, including 8.1 hours from178

6 females and 6.9 hours from 5 males apart from179

the person-of-interest (POI). Figures 1 summarize180

the distribution of dataset split, gender, and coun-181

try. More details on MASpider are available in182

the appendix D. The major features of MASpider183

include:184

• Open source. A lack of data could hinder the185

construction of speech-to-SQL systems, so we186

release our corpus to accelerate research in the187

community.188

• Diversity. Since the distribution of custom189

voice could be different from training data,190

we construct a dataset with different gender,191

accent, and language background to improve192

model generalization.193

• High quality. High-quality audios without ex-194

cessive noise or error annotation are essential195

for S2SQL training. A strict verification en-196

sures high-quality utterances in MASpider.197

3.1 Data Collection and Verification198

Collection Procedure For all 9693 utterance-SQL199

pairs in MASpider, we ensure that each speaker200

is assigned no more than 1500 sentences to avoid201

excessive data distribution bias. Next, we collect202

the audio sample of the given text utterances in a203

professional recording studio. Finally, the spoken204

utterances are saved in wav format, sampled at205

16kHz, and quantized by 16 bits.206

Data Labeling For further study, we tag addi-207

tional statistics such as the native language and age208

of the speakers, and the year of their English study.209

Following this, the dataset is split into 12-hour spo-210

ken questions for training, additional 3-hour utter-211

ances with unseen accents, speakers, and databases212

for testing, which enable the evaluation of model213

generalization to custom data. Figure 1(a) illus- 214

trates the distribution of the training and test sets 215

on MASpider. 216

Data Verification Firstly, we check that the ac- 217

cent in the recording matches the speaker’s country. 218

Then, We listen to every recording to check for 219

mispronounced errors and re-record the recording 220

with more than two mispronunciations. Finally, we 221

run the preliminary qualified recordings through an 222

ASR system to control the recorded audio quality. 223

In our case, we used the fine-tuned wav2vec 2.0 224

ASR model to filter out recordings with their char- 225

acter error rates higher than 25%. For audio with 226

these error rates above the threshold, it is discarded 227

and recollected again until passed. 228

3.2 Dataset Statistics 229

After the data collection and processing procedure, 230

we check for audio quality and conduct the statisti- 231

cal evaluation. 232

Gender The visualization of gender statistics is 233

displayed as Figure 1(b). As we can see, the ratio 234

of male to female speakers is relatively average. 235

Country The recorders mainly include 4 English 236

native speakers and 7 non-native speakers from 237

Japan, China, Thailand, and Korea. We count the 238

proportion of utterances recorded by these speakers 239

and visualize it as shown in Figure 1(c) 240

Group By Difficulty Following the common 241

practice (Yu et al., 2018) to better demonstrate the 242

model performance on different SQL queries, we 243

group the difficulty of each spoken question into 244

4 levels according to the number of SQL compo- 245

nents, selections, and conditions. Specifically, SQL 246

queries that contain more keywords (e.g., GROUP 247

BY, ORDER BY, INTERSECT, etc.) will be con- 248

sidered harder. In the end, The test set of MASpi- 249

der consists of 25.5% easy, 37.9% medium, 20.9% 250

hard, and 15.7% extra hard SQL queries. 251

We build MASpider upon the Spider whose 252
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Figure 2: The information flow with dotted lines is included during training. Subfigure(a) denotes the implementation
process of Speech Re-programming RR: random resampling; RPS: a chain function for random pitch shifting of
the raw waveform. Subfigure(b) is the overall architecture of our Wav2SQL. RAT : relation-aware transformer.

train/evaluation division is 8569/1034 and the test253

is not released. For this reason, MASpider consists254

of 9693 spoken utterances recorded by 11 speakers255

from six different countries. MASpider consists of256

15 hours of speech samples recorded in a profes-257

sional recording studio, including 8.1 hours from 6258

females and 6.9 hours from 5 males apart from the259

person-of-interest (POI). Figures summarize the260

distribution of dataset split, gender, and country.261

More details about MASpider can be found in the262

appendix.263

4 Proposed Method264

4.1 Overview265

The overall architecture has been presented in Fig-266

ure 2b. To alleviate the data scarcity issue (Huang267

et al., 2022a,b), we leverage the large-scale self-268

supervised models including Hubert (Hsu et al.,269

2021) for the spoken question and language model270

for the textual schema to derive discriminative rep-271

resentation, enabling direct speech to SQL parsing.272

For generalizable speech to SQL parsing, we pro-273

pose several techniques to promote model robust-274

ness for unseen (speaker and accent) custom data:275

1) we re-program acoustic attributes and perturb the276

style information in speech, selectively extracting277

only the linguistic-related information for domain-278

agnostic modeling; 2) we include gradient reversal279

classifier to eliminate speaker information with an280

auxiliary gradient reversal classifier.281

In the end, the tree-structure decoder produces282

results with an abstract syntax tree (AST) in depth-283

first traversal order. The training procedures are 284

included in Section 4.5, and more information has 285

been attached in Appendix C. 286

4.2 Enhanced Speech Encoder 287

4.2.1 Self-Supervised Pre-training 288

To alleviate the data scarcity issue (Huang et al., 289

2023a,b) and learn linguistic content from raw 290

waveform (Huang et al., 2022e,d; Lam et al., 2021), 291

we leverage recent progress in large-scale self- 292

supervised learning with Hubert (Hsu et al., 2021), 293

with a multi-layer convolution waveform encoder 294

to generate the feature sequence followed by a 295

Transformer (Vaswani et al., 2017) context encoder 296

to build the contextualized representations. 297

We adopt the Hubert-Base model as speech rep- 298

resentation, which is pre-trained on 960 hours Lib- 299

riSpeech (Panayotov et al., 2015). Notably, speech 300

representations (Choi et al., 2021) are found to 301

merge not only rich acoustic information but also 302

acoustic attributes related to accents and speakers. 303

To reduce domain-specific variations for better gen- 304

eralization, we investigate a novel technique in the 305

following parts, which effectively eliminates accent 306

and speaker information in speech representations 307

while preserving linguistic content. 308

4.2.2 Analysis: Speech Quality Across Layers 309

Before introducing our techniques for removing ac- 310

cent and speaker information, we first discuss the 311

impact of the selection of different layers of Hu- 312

bert on the model performance. Similar to natural 313
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language understanding, exploring the transformer314

layers of the BERT model shows that the under-315

lying blocks encode syntactic information, while316

high-level semantic information appears in higher317

blocks. To make a more intuitive sense of this,318

we separately extract frozen representations of Hu-319

bert’s 12 layers as audio features. We then input320

these audio features into the S2SQL model and321

evaluate their performance by exact match accu-322

racy. Figure 3 demonstrates that the first 7 layers323

as well as the last two layers have poor perfor-324

mance compared to layers 8 to 10 whose accuracy325

is higher than 39.0 %. Layer 9 achieves the best326

accuracy of 41.5 %.

1 2 3 4 5 6 7 8 9 10 11 12
Hubert Layer

26

28

30

32

34

36

38

40

42
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Figure 3: Speech-to-SQL generation using representa-
tions from different Hubert layers pre-trained on Lib-
riSpeech. EM Acc: Exact match accuracy.327

4.2.3 Re-program on Acoustic Condition328

An intuitive way (Li et al., 2018a; Bui et al., 2021)329

to achieve better generalization is to decompose330

a model into the domain-agnostic and domain-331

specific parts via disentangled representation learn-332

ing and eliminate the domain-specific variations.333

In contrast, the representation derived from self-334

supervised models contains not only rich linguis-335

tic content but also information related to pitch336

and speaker, which are style-specific attributes that337

may decrease model generalization. As such, we338

conduct re-programming on speech attributes and339

perturb the rhythm, pitch, and energy information,340

which disentangle acoustic variation and selectively341

extract only the linguistic-related information, ex-342

hibiting better generalization to unseen custom343

data. As shown in Figure 2a, we apply bottlenecks344

on acoustic conditions and create re-programmed345

speech samples. Additional details have been at-346

tached in Appendix B.347

Rhythm Rhythm characterizes how fast the 348

speaker utters each syllable. To perturb rhythm 349

information, we adopt random resampling RR to 350

divide the input into segments of random lengths, 351

and we randomly stretch or squeeze each piece 352

along the time dimension. 353

Pitch Pitch is an indispensable component of in- 354

tonation. First, We normalize the pitch contour to 355

a common mean and standard deviation, removing 356

the timbre variations in speech. Secondly, a chain 357

function is adopted to randomly shift the pitch con- 358

tour. 359

Energy Energy represents the magnitude of the 360

raw waveforms and visually reflects the volume of 361

the speech. We re-program energy attributes and 362

create samples with different energy distributions. 363

4.3 Gradient Reversal Classifier 364

To eliminate the speaker identity in speech repre- 365

sentation, we introduce a gradient reversal layer 366

(GRL) in speaker classifier (Ganin et al., 2016), 367

which regards speaker variations as a classifica- 368

tion problem and directly maximizes the loss of 369

the domain classifier by reversing its gradients. In 370

backpropagation, GRL takes the gradient from the 371

subsequent layer and changes its sign by multiply- 372

ing with -1 before passing it to the preceding layer: 373

R(x) = x,
dR

dx
= −I, (1) 374

where I denotes an identity matrix. 375

It ensures that the feature distributions between 376

different speakers are similar (i.e. as distinguish- 377

able as possible), resulting in speaker-agnostic fea- 378

tures. Therefore, we can further obtain audio fea- 379

tures that preserve semantics regardless of accent 380

and speaker, demonstrating better generalization to 381

custom data in SQL decoding. 382

4.4 SQL Decoder 383

The SQL decoder follows the grammar-based archi- 384

tecture of Yin and Neubig (2017), which generates 385

the SQL as an abstract syntax tree(AST) in depth- 386

first traversal order. The generation process of SQL 387

AST is factorized into sequential actions, which 388

are divided into two cases: (1) APPLYRULE which 389

expands the last generated node according to the 390

grammar rules or completes a leaf node, (2) SE- 391

LECTCOLUMN and SELECTTABLE represent that 392

selects a column or table item from the schema 393

respectively. 394
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Firstly, the probability of generating a SQL y is
defined as:

p(y|x) =
∏
t

p(at|x, a<t)

where x is the encoded memory of questions,395

columns, and tables, at is the action token at time396

step t, and a<t is the sequential actions before time397

step t. Then in the tree-structured LSTM decoder,398

the hidden states at each time step t are updated399

as mt, ht = LSTM([at−1; pt; ct; nt],mt−1,ht−1),400

where mt is the cell state of time step t, ht is the401

hidden state, at−1 is the previous action embedding,402

pt is the parent information of the current node, ct403

is the context vector, and nt is the embedding of the404

current node type. Finally, how action probabilities405

p(at|x, a<t are computed are explained as follows:406

For APPLYRULE action,407

p(at = AR[r]|x, a<t) = softmaxR(g(ht)) (2)408

where AR is the APPLYRULE action and g(·) is409

the feed-forward network that is composed of two410

linear layers and a tanh activation function.411

For SELECTTABLE action,412

γj = softmaxj(
(htWQ)(xjWK +Rij)

T )√
d

),

(3)413414

p(at = ST[i]|x, a<t) =
∑
j

γj (4)415

where ST denotes SELECTTABLE action. The cal-416

culation of SELECTCOLUMN action is similar.417

4.5 Training and Inference418

We formulate speech-to-SQL parsing as a sequence-419

to-tree generation problem. The input is the ques-420

tion (audio) and schema (text), which belong to two421

different modalities, while the output is the SQL422

query. We adopt the pre-trained self-supervised423

speech representation model Hubert (Hsu et al.,424

2021) and language model GloVe (Pennington425

et al., 2014) as the backbone of our model.426

Training. The final loss terms in training are427

composed of the two parts:1) domain classification428

loss LCE : cross-entropy loss between the predicted429

speaker ID and the ground-truth; 2) SQL gener-430

ation loss LMLE : maximum likelihood estima-431

tion(MLE) based on the given SQL query to maxi-432

mize the predicted probability p(y|x, a<t) based on433

a given SQL query. Note that, the domain classifi-434

cation loss LCE is trained to remove speaker infor-435

mation but preserve semantic information, which436

is helpful for the final objective LMLE to generate 437

more accurate SQL query and the loss weight of 438

LCE is set to be 0.01. 439

Inference. After training, for each pair of the spo- 440

ken question and database schema, we generate the 441

target SQL query according to grammar rules with 442

heuristics decode. We replace the special tokens in 443

the target sequences with the SQL keywords. 444

5 Experiments 445

5.1 Experimental Setup 446

Evaluation Metrics Following the common prac- 447

tice (Yu et al., 2018), we evaluate the performance 448

by exact match accuracy and component matching 449

accuracy provided by (Yu et al., 2018), where exact 450

match accuracy measures whether the predicted 451

query is equivalent to the gold query as a whole 452

while component matching measures the average 453

exact match between the prediction and ground 454

truth on different SQL components. 455

Training and Inference We train our model on 456

a single 82G NVIDIA A100 GPU with a batch size 457

of 20 for 100 epochs using the AdamW optimizer. 458

The learning rate is 5e − 4 and the weight decay 459

coefficient is 1e− 4. We preprocess column names 460

and table names for tokenization and lemmatization 461

using Stanza toolkit (Qi et al., 2020). In inference, 462

we adopt beam search decoding with beam size 5. 463

Model Configurations In the encoder, the hid- 464

den size is 256 and the number of RAT layers is 465

8. In the SQL decoder, we set the rule embedding 466

size as 128 and the node type embedding size as 467

128. Following (Huang et al., 2022e; Lee et al., 468

2021), the ASR model in our work is Wav2vec 2.0 469

Large(LV-60) + Self Training / 960 hours / Libri- 470

Light + LibriSpeech 2. A comprehensive table of 471

hyperparameters is available in Appendix C in the 472

supplementary materials. 473

Baseline models We compare generated SQL 474

queries of our Wav2SQL with other systems, 475

including: (1) Cascaded: the cascaded model 476

composed of automatic speech recognition(ASR) 477

and text-to-SQL parsing model, which adopts 478

the wav2vec 2.0 (Baevski et al., 2020) and RAT- 479

SQL (Wang et al., 2019). (2) S2SQL-TTS: the 480

S2SQL model trained on the dataset synthesized as 481

our upper bound, where S2SQL means the model 482

2https://github.com/facebookresearch/fairseq/
tree/main/examples/wav2vec
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Method SELECT WHERE GROUP ORDER AND/OR KEYWORD Exact Match

Model Performance

S2SQL-TTS 71.2 55.0 67.1 66.1 95.4 77.2 44.8

WhisperSQL 65.2 46.3 58.0 62.7 94.8 77.2 24.6
Cascaded 66.3 49.3 62.6 62.6 94.7 72.5 38.2
Wav2SQL 69.7 51.9 63.6 69.3 95.0 77.4 42.3

Generalization to Custom Data

S2SQL-TTS 70.9 54.9 56.5 69.8 94.7 75.3 40.8

WhisperSQL 66.2 41.4 52.0 65.7 94.5 73.2 20.9
Cascaded 64.0 42.3 55.2 66.6 95.9 72.2 32.3
Wav2SQL 68.8 47.1 57.7 59.0 94.2 67.7 35.3

Ablation Study

w/o Speech reprogramming 65.3 45.2 56.9 58.3 94.4 67.7 33.9
w/o Gradient reversal classifier 66.1 43.8 48.8 58.8 94.3 67.5 33.2
w Hubert Only 65.3 44.8 56.1 53.9 93.7 66.9 31.8

Table 1: partial matching accuracy and exact match accuracy on the MASpider test set comparison with baseline
systems. We adopt Hubert as the speech feature extractor and GloVe as the language model.

after removing the speech reprogramming, and ad-483

versarial learning in our Wav2SQL. The TTS model484

we adopt here is FastSpeech 2 (Ren et al., 2020).485

(3) WhisperSQL: This baseline employs Whisper-486

Base (Radford et al., 2022), the state-of-the-art487

model of ASR, as the speech encoder instead of488

Hubert.489

5.2 Model Performance490

For in-domain evaluation, we prepare spoken ques-491

tions with seen accents and speakers according492

to different SQL components, including SELECT,493

WHERE, GROUP, ORDER, AND/OR, and KEY-494

WORD following (Yu et al., 2018). The results are495

compiled and presented in Table 1, and we have496

the following observations: Wav2SQL surpasses497

the cascaded system across all SQL component498

matching and exact match accuracy on all SQL499

queries. Specifically, the SELECT and ORDER500

component has increased significantly by 3.4% and501

6.7% respectively, and exact match accuracy has502

increased by 4.1%, demonstrating the effective-503

ness of our direct speech-to-SQL parsing model.504

It indicates that our direct S2SQL model avoids505

error compounding across subsystems. Besides,506

Wav2SQL greatly surpasses WhisperSQL which507

proves the superiority of Hubert. Compare to the508

upper bound less variance dataset constructed by a509

single-speaker single-accent TTS system, we still510

achieve competitive performance, indicating the511

efficiency of our proposed techniques for reducing512

acoustic attributes and promoting generalization.513

To further verify the effectiveness of our meth-514

ods, we compare our model with the cascaded sys-515

tem and WhisperSQL model. We group the parsing516

difficulty into easy, medium, hard, and extra ac- 517

cording to the number of component selections and 518

conditions of the target SQL queries. As illustrated 519

in Table 2, we have the following observations: 520

1) As the parsing difficulty increases, a dis- 521

tinct degradation could be witnessed in genera- 522

tion accuracy; and 2) our direct speech-to-SQL 523

parsing model outperforms the cascade baseline 524

since it avoids error compounding across subsys- 525

tems, demonstrating a large margin improvement 526

by 10.2% in the extra hard part; and 3) Our model 527

is far superior to WhisperSQL at all levels, indicat- 528

ing that the self-supervised Hubert model is more 529

suitable for our task than the ASR Encoder.

Dataset Easy Medium Hard Extra

WhisperSQL 44.8 22.4 17.8 7.2
Cascaded 64.5 33.9 29.9 19.3
Wav2SQL 63.9 38.1 34.5 29.5

Table 2: A comparison to the cascaded model and Whis-
perSQL model in-domain setting according to the level
of difficulty.

530

5.3 Generalization To Custom Data 531

For out-of-domain testing, we prepare spoken ques- 532

tions with databases, accents, and speakers that are 533

unseen in custom data. The results are summarized 534

in Table 1, and we have the following observa- 535

tions: 1) As shown in the table, we see that our 536

proposed Wav2SQL outperforms WhisperSQL by 537

a large margin of 14.4% on exact match accuracy. 538

In addition, the component matching of our model 539

on all SQL components outperforms WhisperSQL, 540

especially in WHERE and GROUP components 541

by both 5.7%; 2) Under the challenge of invisible 542
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Medium: Show name, country, age for all singers ordered by age from the oldest to the youngest.
Cascaded: SELECT singer.Country, singer.Age FROM singer ORDER BY singer.Age Desc
Wav2SQL: SELECT singer.Name, singer.Country, singer.Age FROM singer ORDER BY singer.Age Desc
Gold SQL: SELECT Name, Country, Age FROM singer ORDER BY Age Desc

Hard: List all song names by singers above the average age.
Cascaded: SELECT singer.Song_Name FROM singer WHERE singer.Age < ’terminal’ ORDER BY singer.Song_Name Asc
Wav2SQL: SELECT singer.Song_Name FROM singer WHERE singer.Age > (SELECT Avg(singer.Age) FROM singer
Gold SQL: SELECT Song_Name FROM singer WHERE Age > (SELECT avg(Age) FROM singer)

Extra: Find the average age of students who do not have any pet.
Cascaded: SELECT Student.Fname FROM Student WHERE Student.StuID NOT IN (SELECT Has_Pet.StuID FROM Has_Pet)
Wav2SQL: SELECT Avg(Student.Age) FROM Student WHERE Student.StuID NOT IN (SELECT Has_Pet.StuID FROM Has_Pet)
Gold SQL: SELECT avg(Age) from Student where stuid not in (select stuid from has_pet)

Table 3: Three examples compared with the cascaded system. We mark the wrong part of the cascaded model in
red while the corresponding correct part in Wav2SQL is in blue. The input question is represented by SQL query
difficulty. Cell values in the SQL queries are replaced with placeholder "terminal".

accents, Wav2SQL can still achieve better perfor-543

mance with a 3.0% exact match accuracy increase544

compared with the cascaded system, which vali-545

dates the superiority of our model by exploiting546

speech re-program and adversarial training to get547

deterministic representations invariant to accents548

and speakers; 3) Although we are pleasantly sur-549

prised to find that Wav2SQL maintains comparative550

results with S2SQL-TTS in SELECT, GROUP BY551

and AND/OR component accuracy, there is still a552

certain gap with it in exact match accuracy due to553

the limited acoustic information in the TTS dataset.554

555

5.4 Ablation Studies556

As shown in Table 1, we conduct ablation studies to557

demonstrate the effectiveness of several designs in558

our model, including speech re-programming and559

gradient reversal classifier technique. The results560

have been presented in Table 1, and we have the561

following discovering: 1) the removal of the speech562

re-programming method shows an improvement in563

exact match accuracy by 1.4% and a significant564

increase of 3.5% in SELECT component matching,565

indicating its efficiency in reducing acoustic vari-566

ance and learning deterministic representations; 2)567

Removing the gradient reversal classifier has wit-568

nessed a distinct degradation in model performance569

by 2.1% accuracy especially in GROUP compo-570

nent matching (8.9%), showing its superiority in571

learning speaker-agnostic speech representation;572

3) Keeping only the Hubert module(i.e. remov-573

ing both the speech re-programming and gradient574

reversal classifier) results in a significant perfor-575

mance decrease compared to adding each of them.576

This once again proves that both of the methods577

we propose are able to effectively preserve only578

semantic information in audio to improve model579

performance. 580

5.5 Case Study 581

We compare the SQL query generated by 582

Wav2SQL with the cascaded system in Table 3. 583

The results demonstrate that Wav2SQL outper- 584

forms the baseline system. For example, in the 585

first and third cases, the cascaded fails to fill the 586

values into the correct slots, thus, it stupidly for- 587

gets the ’Name’ of table ’Singer’ and is unable to 588

select the correct column name ’Age’. In addition, 589

Wav2SQL successfully completes the averaging op- 590

eration on "Age" in the third case. Unfortunately, 591

in the second example, the cascaded system incor- 592

rectly constructs the WHERE clause so that it fails 593

to pick singers who are older than the average age. 594

6 Conclusion 595

We released MASpider, the first large-scale, multi- 596

speaker, and multi-accent S2SQL parsing dataset, 597

which we hope would accelerate S2SQL research 598

in the community. In this work, we presented the 599

first direct speech-to-SQL model Wav2SQL which 600

avoided error compounding across cascaded sys- 601

tems. To tackle the data scarcity issue, we lever- 602

aged recent progress in large-scale pre-training and 603

utilized self-supervised models to derive discrimi- 604

nate representation. To promote model generaliza- 605

tion and robustness to custom out-of-distribution 606

data, we further introduced speech re-programming 607

and gradient-reversal classifier techniques which re- 608

duced acoustic variance and learned style-agnostic 609

representations. Experimental results demonstrated 610

that our approach achieved new state-of-the-art re- 611

sults by up to 4.1% accuracy improvement over 612

baseline. In the future, we will investigate tech- 613

niques to further enhance the model generalization 614

in direct Speech-to-SQL parsing. 615
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7 Limitation and Potential Risks616

As mentioned in the model performance, there is617

still a certain gap between Wav2SQL and S2SQL-618

TTS. One of our future directions is to further re-619

move accent and speaker information to improve620

generation performance. In addition, our experi-621

ments find that the schema linking we adopt is still622

rough compared to text schema linking, which se-623

riously affects the performance of our model. In624

future work, we will study how to obtain accurate625

and fine-grained schema linking.626

Wav2SQL lowers the requirements for speech-627

to-SQL generation, which may cause unemploy-628

ment for people with related occupations database629

developers, and SQL programmers. Furthermore,630

there is the potential for leading to the misuse of631

databases than they expect.632
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A Domain Classifier842

Domain classifier effectively captures the audio’s843

long-term speaker identity and predicts the speaker844

ID for the spoken question. After training on aug-845

mented data, the domain classifier could attain ro-846

bust representations that capture an ample speaker847

identity space. Combined with gradient reversal,848

we can get deterministic representation agnostic to849

speaker discrepancy, significantly reducing intro-850

speaker variance and making it possible for tree-851

structured depth-first decoding.852

B Acoustic Perturbation853

To obtain speech samples with acoustic informa-854

tion enhancement, we adopt the following func-855

tions (Qian et al., 2020; Choi et al., 2021) to perturb856

the acoustic features, that is 1) random resampling857

RR, and 2) formant shifting fs, and 3)pitch ran-858

domization pr, 4) random frequency shaping using859

a parametric equalizer peq. Next, we feed aug-860

mented audios into the model along with original861

audios.862

• For RR, a random resampling is adopted to mod-863

ify the rhythm. The raw waveform is divided into864

segments, whose length is randomly uniformly865

drawn from 19 frames to 32 frames (Polyak and866

Wolf, 2019). Each segment is resampled using867

linear interpolation with a resampling factor ran-868

domly drawn from 0.5 to 1.5.869

• For fs, a formant shifting ratio is sampled uni-870

formly from Uniform(1, 1.4). After sampling871

the ratio, we again randomly decided whether to872

take the reciprocal of the sampled ratio or not.873

• For pr, a pitch shift ratio, and a pitch range ra-874

tio are sampled uniformly from Uniform(1, 2)875

and Uniform(1, 1.5), respectively. Again, we876

randomly decide whether to take the recipro-877

cal of the sampled ratios or not. For more de-878

tails on formant shifting and pitch randomization,879

please refer to Parselmouth https://github.880

com/YannickJadoul/Parselmouth.881

• Lastly, peq denotes a serial composition of low-882

shelving, peaking, and high-shelving filters. We883

use one low-shelving HLS, one high-shelving884

HHS, and eight peaking filters HPeak.885

C Model Architectures886

We list the model hyperparameters of Wav2SQL887

in Table 4 and illustrate the architecture for the888

relational-aware transformer(RAT), SQL decoder, 889

and domain classifier in Figure 4. The schema link- 890

ing used by RAT in the train set is borrowed from 891

RATSQL(Wang et al., 2019) while the schema link- 892

ing of the test set comes from string matching be- 893

tween the ASR text and the schema. The ASR 894

text is obtained through Whisper. The reason why 895

wav2vec2.0 is not selected here is that the num- 896

bers generated by it are in English and cannot be 897

matched correctly. 898

Hyperparameter Wav2SQL

Speech Encoder Hubert Hidden 768
Linear Size 256

Text Encoder
GloVe Embedding 300

LSTM Hidden 256
LSTM Layers 1

Domain Classifier
Scale Factor 0.1

Clipping Bounds 10
Output Dimension 11

Transformer

Transformer Block 8
Hidden Size 256

Attention Heads 8
FFN Size 1024
Dropout 0.2

SQL Decoder

Action Embedding 128
Node Embedding 128

LSTM Size 512
Dropout 0.2

Table 4: Hyperparameters of Wav2SQL.

Hubert The Hubert feature extractor consists of 899

seven blocks and the temporal convolutions in each 900

block have 512 channels with strides (5,2,2,2,2,2,2) 901

and kernel widths (10,3,3,3,3,2,2), and 12 trans- 902

former blocks, model dimension 768, inner dimen- 903

sion (FFN) 3,072 and 8 attention heads. 904

Relation-Aware Transformer The relation- 905

aware encoder consists of 8 transformer layers. 906

Each layer contains a relation-aware self-attention 907

module, the final output passes through a feed- 908

forward layer. 909

D Dataset Annotation 910

We outsource the hiring of annotators and han- 911

dle the data verification process internally. For 912

the verification of the ASR model, we also utilize 913

Wav2vec 2.0 Large(LV-60) + Self Training / 960 914

hours / Libri-Light + LibriSpeech. Each sentence is 915

recorded by a single speaker, with a minimum, max- 916

imum, and average number of recorded utterances 917

per speaker at 747, 1232, and 881 respectively. 918
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Figure 4: Architecture for relation-aware transformer, SQL decoder, and domain classifier. The self-attention hear is
relation-aware. Q: spoken question; S: schema; Rij: relations from any question item or schema item; SelectT/C:
SELECTTABLE/SELECTCOLUMN.

In-domain and Out-of-domain Test Set The919

division of in-domain is based on the Spider, re-920

sulting in 8659/1034 train/test sets, where speakers921

and accents are seen during training. Conversely, in922

the custom out-of-domain split, neither the speaker923

nor the accent is visible during training, and the924

train/test split is 8001/1692. It is worth noting that925

the databases used in these two divisions are invisi-926

ble.927

E Ethical Considerations928

Our MASpider benchmark presented in this work929

is a free and open source for the community to930

study speech-to-SQL parsing. We collect and anno-931

tate recordings from the mainstream text-to-SQL932

dataset, Spider (Yu et al., 2018), which is also a free933

and open dataset for research use. For audio record-934

ing, we hire annotators from different countries to935

record audio in a quiet environment. We pay the936

annotators an average of 80 dollars per hour.937
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