
The Dual Nature of Plasticity Loss in Deep Continual
Learning: Dissection and Mitigation

Haoyu Albert Wang1,2,†
haoyuwang18@fudan.edu.cn

Wei P. Dai1,4,†,‡
weidai@fudan.edu.cn

Jiawei Zhang1,3

Zhangjw22@m.fudan.edu.cn

Jialun Ma1
21307130025@m.fudan.edu.cn

Mingyi Huang1,2
myhuang20@fudan.edu.cn

Yuguo Yu1,2,3,4,‡

yuyuguo@fudan.edu.cn

1. Research Institute of Intelligent Complex Systems, Fudan University.
2. Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University.

3. State Key Laboratory of Brain Function and Disorders and MOE Frontiers Center for Brain
Science, Institutes of Brain Science, Fudan University.

4. Shanghai Artificial Intelligence Laboratory.
† These authors contributed equally to this work.

‡ Corresponding author.

Abstract

Loss of plasticity (LoP) is the primary cause of cognitive decline in normal aging
brains next to cell loss. Recent works show that similar LoP also plagues neural net-
works during deep continual learning (DCL). While it has been shown that random
perturbations of learned weights can alleviate LoP, its underlying mechanisms re-
main insufficiently understood. Here we offer a unique view of LoP and dissect its
mechanisms through the lenses of an innovative framework combining the theory
of neural collapse and finite-time Lyapunov exponents (FTLE) analysis. We show
that LoP actually consists of two contrasting types: (i) type-1 LoP is characterized
by highly negative FTLEs, where the network is prevented from learning due to
the collapse of representations; (ii) while type-2 LoP is characterized by exces-
sively positive FTLEs, where the network can train well but the growingly chaotic
behaviors reduce its test accuracy. Based on these understandings, we introduce
Generalized Mixup, designed to relax the representation space for prolonged DCL
and demonstrate its superior efficacy vs. existing methods.

1 Introduction

Loss of neural plasticity has been identified as the main reason for the progressive cognitive decline
in normal aging brains without neurodegenerative diseases (i.e., not due to loss of neurons) [4]. Deep
learning systems, despite their success across various domains, also struggle with a similar loss of
plasticity (LoP) with widespread effects in deep reinforcement learning (DRL) [23, 1, 28, 20] and
deep continual learning (DCL, e.g., Fig. 1a) [7]. Unlike catastrophic forgetting, which describes a
neural network’s poor performance on previous tasks after learning new tasks, LoP is characterized
by the deteriorating performance on new tasks which eventually prevents the system from learning
continually. Moreover, given the size of datasets and high energy demand of modern AI training [30],
the cost of time and resource required to re-train the existing networks from scratch to adopt new
tasks is increasing prohibitive [31]. Therefore, it is crucial that we understand and tame LoP as the
need is higher than ever for adaptive AI that can efficiently learn new tasks continually .

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

Related Work The study of the declining test performance of a continually trained deep neural
networks (DNN) began with the efforts to understand different phases of training [2] and incremental
learning [5]. Later LoP gained its name, i.e. loss of plasticity, and the most attention within the
community of DRL, as DRL networks are constantly facing shifting objectives and changing input
distribution with the evolving policies [14, 16, 24, 23, 20, 21, 22, 12, 28, 7, 6, 1, 10]. Recent works
also show that supervised DCL suffers from the same pathology [6, 7, 8, 17, 18, 22, 10].

Plenty of studies have attempted to explain LoP. One commonly cited cause is the accumulation of
dormant or saturated neurons [28, 8, 7]. Activations such as ReLU and tanh are known to suffer
from such effects where their outputs becomes permanently zero or constant, leading to vanishing
gradients which reduce the network’s expressivity. Another line of work attributes LoP to a decrease
in feature rank [16, 7, 20], which characterize the drop in the diversity of internal representations
as training progresses, weakening the network’s ability to adapt to new tasks. Other hypotheses
include the growth of weight norms [22], which may destabilize training, and the loss of gradient
curvature[18], where training dynamics restrict gradient directions to a subspace, thereby constraining
the exploration of alternatives. These studies provide valuable insights toward the understanding
of LoP. However, some argue that LoP can still occur in absence of the aforementioned conditions
[21, 12]. Therefore, a more comprehensive understanding of LoP is in need.

Various methods have also been proposed to mitigate LoP. They can be roughly categorized into
reset-based, regularization-based, and architectural or optimizer-based approaches. Based on the
observation that DNN exhibit the highest plasticity at initialization, an earlier work suggested
retraining newly initialized networks on a replay buffer[14]. While effective, this strategy incurs
significant computational cost. To reduce overhead, later works only apply resets on specific neurons
instead, e.g., on the less "utilized" neurons [6, 7], on neurons with "zero firing rate" [10] or whose
activation are relatively low within each layer[28]. Regularization-based methods are also motivated
by the network’s plasticity at initialization but take a softer approach, i.e., they encourage the network
to retain some properties of its initial state. For instance, by applying an L2 regularization between
the current weights and the initial weights (L2-init)[17], or with the Wasserstein-2 distance [18] for
more proximity to the initialization. Similarly, distillation of initial features[20], as well as a "shrink
and perturb" of the weights before each optimization[3] are proposed to maintain feature diversity
throughout learning. Architectural and optimizer-based approaches are more intricate, including
concatenating two ReLU activations to mitigate dormancy [1] (at the cost of increased model size)
and applying layer normalization [21, 22]. Additionally, Lyle et al. [21] demonstrated that adjusting
the decay rate of momentum or resetting the optimizer can help restore plasticity.

C
on

tin
ua

l
Le

ar
ni

ng

vs.

vs.

vs.

....
....

Task 1

Task 2

Task N

....

FTLE UFM

In
pu

t

O
ut

pu
t

Type-1 LoP

Type-2 LoP

A
cc

ur
ac

y

Tasks

train

test

A
cc

ur
ac

y

Tasks

train

test

Collapse within class

Chaos near boundary

(a)

(b)

(c)

(d)

repr.
space

FTLE

repr.
space

repr.
space

FTLE

FTLE

repr.
space

input
space

input
space

FTLE
within-class input

near-boundary input

Figure 1: Illustration of LoP, (a) Setup of "Continual ImageNet", adapted from [7]. (b) The
effective framework to analyze LoP using FTLE and UFM. (c) and (d) Illustrations of the difference
between type-1 and type-2 LoP on the level of task performance and their contrasting underlying
causes, characterized by FTLE.

Contribution As mentioned above, despite various approaches to understand and mitigate LoP,
we are still not sure what drives LoP fundamentally. In this work, we comprehensively dissect and
address LoP from a new perspective to provide deeper understandings along with a better treatment
and less computational cost.

2

Specifically, (i) We offer an innovative framework combining finite-time Lyapunov exponent (FTLE)
analysis [29] with the Unconstrained Feature Model (UFM) used in the theory of NC[36] (Fig 1b),
where FTLE quantifies how representation space transforms during training and UFM provides the
analytical tractability for optimization in representation space despite DNN’s non-convexity. Using
this framework, (ii) we identified the two types of LoP during DCL. On the level of task performance,
they differ only in training accuracy, however, (iii) we further unveil that their underlying causes are
exactly opposite: the collapsing of representation space within class (corresponding to increasingly
negative FTLEs) is the direct cause of type-1 LoP, while chaotic behavior near the boundaries
(corresponding to increasingly positive FTLEs) is the direct cause of type-2 LoP, (Fig 1c, d). (iv)
Based on these understandings, we proposed and tested a generalized version of Mixup [35] as the
better prescription for LoP.

2 Preliminaries

Here, we briefly list the preliminaries of our work, i.e., finite-time Lyapunov exponent (FTLE), the
theory of Neural Collapse (NC) with unconstrained feature model (UFM), and set up the problem of
LoP based on existing studies. Readers familiar with the subjects can safely skip this section.

FTLE of DNN A DNN with L hidden layers apply a composition of multiple nonlinear mappings,
ϕ(ℓ), on input x to its hidden layer representations h(ℓ),∀ℓ ∈ {1 . . . L} (Fig. 1b), and the penultimate
layer representation reads:

h(L) = ϕ(L) ◦ ϕ(L−1) ◦ · · · ◦ ϕ(1)(x), (1)

The propagation of a local change in input, δx, is characterized by the network’s Jacobian composed
of derivatives of the activation D(ℓ) and weight matrices W(ℓ):

δh(ℓ) = D(ℓ)W(ℓ) · · ·D(1)W(1)δx(0), (2)

This layer-by-layer mapping from the input space to its deep representation space can be interpreted
as the evolution of a dynamical system, with layers as discrete time steps [29], therefore the network’s
sensitivity to local changes in input can be analogously described by the maximal Lyapunov exponent
used for states y(t) in dynamical systems, but with finite time, i.e., FTLE:

λ(y) = lim
t→∞

1

t
log

|δy(t)|
|δy(0)|

=⇒ λ(L)(x) =
1

L
log

|δh(L)|
|δx(0)|

. (3)

By definition, a positive FTLE indicates significant local divergence in the representation, often
corresponding to a classification boundary; and a negative FTLE suggests a convergence in the
representation space for local inputs, usually belonging to the same class. Note that, we use the
unnormalized form of FTLE, λ ≡ Lλ(L) in this paper.

Neural Collapse and the Unconstrained Feature Model Neural collapse (NC) describes a
remarkable phenomenon observed during the terminal phase of training [25], where the network’s
last-layer features converge to the means within their class, and align with the classifier vectors
optimally to form a simplex equiangular tight frame that enhance test performance even when the
training error approaches zero.

Theoretical analysis of NC adopts the Unconstrained Feature Model (UFM), where the last-layer
representations, hk

i for i ∈ {1 . . . n}, in each class k are treated as free optimization variables just
as the classifier weights W (Fig 1b), to circumvent the non-convexity of DNN, enabling analytical
tractability[36, 34, 9]. Omitting the bias term in the last-layer output, the optimization of UFM is
simply the sum of loss L over K different classes against their labels, ytarget

k :

min
W,Hk

1

K

K∑
k=1

L(WHk, ytarget
k), (4)

where matrix Hk ≡ [hk
1 , . . . , h

k
n]. Prior studies on single classification tasks have demonstrated that

the solution to this optimization inherently satisfies the properties of NC [36, 9, 27].

3

Problem setup of LoP The training paradigm in DCL can be formally defined by considering
a sequence of T tasks {T1, T2, . . . TT }, where each task Tt is associated with its own training set,
D(t)

train, and test set, D(t)
test. The goal of DCL is to train a DNN that continually adapts to new tasks,

updating the parameters of the network θt after each task Tt such that θt = argminθ L(D(t)
(test); θt−1),

where L denotes the loss function [33, 11]. LoP then formally refers to the phenomena that the test
performance of a network with continually updating parameters, θt, becomes increasingly worse
than that of a network trained from scratch with initialized parameters, θ0. In terms of loss, given a
large enough number of trained tasks, T ′, LoP occurs in the network when L(D(t)

test, θ
∗
0) < L(D(t)

test, θt)
for all tasks Tt,∀t > T ′, where θ∗0 denotes the parameters of a reinitialized network after training
on task Tt. Recently, Dohare et al. [7] has demonstrated the ubiquitous existence of LoP in DCL,
particularly in the binary classification tasks where the network continually learns with consistent
difficulty. Without loss of generality, this study focuses mostly on binary classification as well for
ease of comparison, but we also tested our method on class-incremental tasks (Sec. 4).

3 Main Results

Although the theory of NC has successfully described the optimal representational structure trained on
classification tasks, whether the theory fits the context of continual learning remains an open question.
Moreover, the theory utilized UFM for analytical tractability, which ignores the mapping from input
space to representation space altogether (Sec. 2). Thus, to dissect the underlying mechanisms of
LoP, we develop a framework in Sec. 3.1 that combines the analysis of FTLE (which quantifies the
geometric mapping between the input space and the representation space, see Sec. 2) with NC to
provide the whole picture of training dynamics (Fig. 1b). Extending this framework to DCL, we
identify two distinct types of LoP and their causes, which are verified with toy models in Sec 3.2 and
3.3. In Sec 3.4, we check the existence of two types of LoP for networks trained on ImageNet. Finally,
in Sec 3.5, we introduce a generalized version of Mixup to address both types of LoP, grounded in
our theoretical understanding of their underlying mechanisms.

3.1 Stretching and compressing Representation Space by Training

The gradient of cross-entropy (CE) loss with respect to the classifier weights and representations
consists of a "push" term and a "pull" term [34]. This argument also holds for the mean squared error
(MSE) loss.

Consider a binary classification task. Let hk
i ∈ Rd be the penultimate layer d-dimensional rep-

resentation of the i-th sample in class k, and let wk ∈ Rd denote the classifier weight vector of
class k, where k = A or B. The network output for paired samples can take the matrix form,
Yi = [w⊤

Ah
A
i ,w

⊤
Bh

A
i ; w

⊤
Ah

B
i ,w

⊤
Bh

B
i]. Then, the corresponding one-hot labels of class A and B

can be written in the corresponding matrix form, Ytarget
i ≡ [1, 0; 0, 1]. Thus, the MSE loss reads

LMSE = 1
2∥Y −Ytarget∥2. Taking its gradient over wk for k = A,B, we have:

−∂LMSE

∂wk
=
∑
i

hk
i

(
1−w⊤

k h
k
i

)
+
∑
i

hk′

i

(
0−w⊤

k h
k′

i

)
, (5)

where the first term pulls the weight vector wk closer to the same-class representations hk
i . The

second term pushes it away from the representations hk′

i of class k′ ̸= k. Similarly, the gradient over
hk
i shows two other "pull" and "push" terms acting on the representations:

−∂LMSE

∂hk
i

=
(
1−w⊤

k h
k
i

)
wk +

(
0−w⊤

k′hk
i

)
wk′ , (6)

Altogether, they induce maximal class separability, from which we have the following theorem:

Theorem 3.1.1 (Optimal Solution for Binary Classification) Under UFM and the assumption
that both classes contain n samples, |A| = |B| = n, consider the following optimization prob-
lem:

min
W,H

f(W, H) :=
1

2
∥WH − Y ∥2MSE +

λW

2
∥W∥2 + λH

2n
∥H −H⊥

0 ∥2, (7)

4

where λW and λH are the coefficients of the two regularization terms that control the magnitude of the
classifier weights, W, and deviation of the learned representations H from the initial representations
H⊥

0 orthogonal to W. The optimal solution obeys:

w∗
A = −w∗

B , hk,∗
i =

√
λW/λH wk + hk,⊥

i,0 , (8)

where k = A or B, and hk,⊥
i,0 is the k-component of H⊥

0 . (For proof, see Supplementary B.)

Assumption 3.1.1 Distribution of the real-world data satisfies the measure of concentration and the
empty space phenomenon, two critical characteristics of high-dimensional data[32].

We empirically verified that the datasets used in our experiments satisfy Assumption 3.1.1, (see
Supplementary C for details). This validation allows us to directly employ FTLE analysis on local
pairs of samples to quantify the transformation of the representational space, as the within-class
regions and areas near classification boundaries are affected by local sample points only.

Theorem 3.1.2 (FTLE in Representation Learning) The distance between two samples i and j

from classes k and k′ in representation space, ∆hk,k′

ij ≡ hk
i − hk′

j . can be quantified by FTLE, λ0

and λtrained , each denotes its values before and after training, respectively.

(1) For samples from different classes (k ̸= k′), training produces a positive FTLE ridge, stretching
the space in-between, and the magnitude of stretch is captured by a stretching factor, α:

logα = λk,k′

trained − λk,k′

0 > 0, (9)

(2) For samples of the same class (k = k′), training carves out a valley of negative FTLE, compressing
the space in-between, and the degree of compression is given by a compressing factor, β:

log β = λk,k
trained − λk,k

0 < 0. (10)

(For proof, see Supplementary D.)

3.2 Type-1 LoP Induced by the Collapse of Representation Space

According to Theorem 3.1.2, within-class regions are compressed with a factor of βt < 1 during
the training of the same class samples. In the DCL setting, after learning T tasks, the FTLE
evolves as: λk,k

trained,T = λk,k
0 + log

∏T
t=1 βt. When the representational space is high-dimensional, the

compression factor βt is close to 1; and βt decreases with lower effective dimensionality (for details,
see Supplementary D). Over many tasks, the compressing effect accumulates:

λk,k
trained,T → −∞ as

∏T
t=1 βt → 0, (11)

resulting in the collapse of representation space, where different samples (of the same class) become
indistinguishable. This severely impairs the network’s ability to learn new representations near the
collapsed area for new tasks.

Definition 3.2.1 (Type-1 LoP) In the settings of DCL, after trained by T tasks, Type-1 LoP is
resulted when the representations from different class, hk

i and hk′

j of a new task TT+1 come near the
collapsed area, quantified by a highly negative FTLE λk,k

trained,T (resulted from previous training). On
the level of task performance, both training and test accuracy drop significantly, indicating a loss of
capacity in learning.

(a)

Group Index (every 50 tasks)

M
ea

n
FT

LE

Group Index (every 50 tasks)

A
cc

ur
ac

y

(c) (d)(b)
train
test

FTLEB:A:
0 5 10 15 20

0.4

1.0

0.0

0.1

P
ro

ba
bi

lit
y

-15 -10 -5 0 5

-4

-8

-12

-16

-20

Task

Task

Task
Task

Task

0 5 10 15 20

Figure 2: Type-1 LoP in a low-dimensional minimalistic toy model. (a) Illustration of the continual
XOR classification task. (b) Training and test accuracy rapidly degrade over tasks. (c) Sampled
distribution of FTLE shifts to lower values. (d) Mean FTLE are negative and decrease over tasks.

5

To intuitively understand Type-1 LoP, we construct a minimalistic DCL task based on XOR classifi-
cation (Figure 2a). The inputs lie in a 2-D plane partitioned into four regions by two orthogonally
crossing boundaries (diagonally opposite regions belong to the same class). After each task, the
boundaries are rotated randomly by θ, and the classification head is reinitialized. The random rotation
simulates the lack of alignment between task boundaries typically observed in real-world scenarios,
where consecutive tasks often exhibit a wide range of correlation. The network is a 12-layer MLP
with 10 neurons per hidden layer, using tanh activation and MSE loss. As suggested by our theory,
low-dimensional representational spaces are more susceptible to Type-1 LoP, making this architecture
an ideal testbed.

The experimental results strongly support our analysis. As the number of tasks increases, both
training and test accuracy degrade sharply and eventually to chance level (Fig. 2b). The sampled
FTLE distribution (Fig. 2c) shifts toward highly negative values as the number of tasks increases,
indicating a growing proportion of indistinguishable representations of inputs. The trend in mean
FTLE (Figure 2d) further reveals the progressive compression of the representational space, driving
the network to a state where it can no longer accommodate new task representations.

1.0

A
cc

ur
ac

y 0.9

0.8

0.7

0.6

Task ID FTLE
0 50 100 150 200

Task ID

M
ea

n
FT

LE

(a) (d)(c)(b)

0 1 2 3 4 5 6 70 50 100 150 200

train
test

Task Task

2.0
2.5

3.5
4.0

3.0

Task

Task

Task

0.14

0.00
P
ro

ba
bi

lit
y

Figure 3: Type-2 LoP in a high dimensional minimalistic toy model. (a) Illustration of a 3-D
projected 30-D toy model, where the hyperplanes are classification boundaries. (b) Training accuracy
sustains near perfect while test accuracy degrades over time. (c) Sampled FTLE distribution quickly
shifts toward larger values. (d) Mean FTLE are positive and increase over tasks.

3.3 Type-2 LoP Induced by the Over-stretched Boundaries and Chaotic Behaviors

According to Theorem 3.1.2, training a network with samples near the regions that cross the bound-
aries stretches the representation space with a factor of αt > 1. In the DCL setting, after learning
T tasks, the FTLE evolves as: λk,k′

trained,T = λk,k′

0 + log
∏T

t=1 αt. This becomes more pronounced in
high-dimensional representation spaces. Over many tasks, the accumulated effect yields:

λk,k′

trained,T → ∞ as
∏T

t=1 αt → ∞. (12)

From the perspective of dynamical mean field theory in DNNs [26], large FTLE values signal the
onset of chaotic dynamics. This manifests as extreme sensitivity to small input perturbations, where
similar inputs are mapped to highly divergent representations. Despite the chaos, "uncollapsed"
representation space support the network with enough expressive power to fit the training sets
of the new tasks well. However, if the test samples come near the chaotic regions, the resulting
representation becomes disordered and the network fails to generalize.

Definition 3.3.1 (Type-2 LoP) In the setting of DCL, after trained by T tasks, Type-2 LoP is resulted
when the representation of a sample, hk

i , from a new task TT+1 comes near a overly stretched area
(resulted from previous training) quantified by a highly positive FTLE λk,k′

trained,T . On the level of task
performance, training accuracy is guaranteed by the highly expressive chaotic representation space
while test accuracy degrades, indicating a loss of capacity in generalization.

To empirically validate the emergence of Type-2 LoP, we designed a minimalistic toy model with
a 30-D input space (a projection of which is illustrated in Fig. 3a) since Type-2 LoP is rooted in
chaotic dynamics, as mentioned above. Data points are sampled uniformly from [−1, 1]30. Three
parallel hyperplanes partition the space into four regions with equal size, the same class assigned
to every other region. For each task, the orientation of the hyperplane is chosen randomly and the
classification head is reinitialized. The network is a 12-layer MLP with 300 neurons per hidden layer,
using tanh activations and MSE loss. As predicted by our theory, representation spaces with higher
dimensions are more susceptible to stretching, making this architecture an ideal testbed for Type-2
LoP.

6

The results clearly demonstrate Type-2 LoP. The mean of FTLE increases steadily with each task as
well as its sampled distribution, indicating progressive expansion throughout the representation space
(Fig. 3c and d). On the level of task performance, training accuracy sustains, while test accuracy
quickly declines (Fig. 3b), revealing a growing generalization gap – the hallmark of Type-2 LoP.

3.4 Verifying LoP in Real Datasets

In Sec. 3.2 and 3.3, we constructed minimal synthetic toy models to illustrate two distinct types of
LoP and validated our theoretical predictions. From the proof of theorem 3.1.2 we know that the
dimensionality of representation space affects the rate of compression and expansion (see Supplemen-
tary D) but it does not necessarily prevent either one. In DCL, the prolonged training can gradually
activate both mechanisms, leading to Type-1 LoP, Type-2 LoP, or both. The specific form depends on
whether the representation space where the new data points reside, collapses or expands.

To validate our theory in a real-world setting, we evaluate LoP behaviors on the "Continual ImageNet"
benchmark [7], a sequence of binary classification tasks designed for DCL (see details in Sec. 4). We
use the same CNN setup from [7] for the high-dimensional case, and a narrowed version to model the
low-dimensional case (see Supplementary E for details).

0.75

1.00

A
cc

ur
ac

y

-15 200 5 10 15-5-10
FTLE

0P
ro

ba
bi

lit
y

0.60

1.00

A
cc

ur
ac

y

0 5000
Task ID

Type 1+Type 2

0

0.3

P
ro

ba
bi

lit
y

Collapse

Type 1+Type 2

0.65

1.00

0

0.3

P
ro

ba
bi

lit
y

Collapse

1.0

0.60

1.00

Type 1

A
cc

ur
ac

y

A
cc

ur
ac

y

-15 200 5 10 15-5-10
FTLE

0

0.25

P
ro

ba
bi

lit
y

Type 2

5000
Task ID

(a) (b)

(d)(c)

0 5000
Task ID

-15 200 5 10 15-5-10
FTLE

-15 200 5 10 15-5-10
FTLE

0 5000
Task ID

Low Dim Space

Chaos
Chaos

Chaos

Collapse

High Dim Space

train
test

train
test
train
test

train

test

train
test
train
test

0.08

0

Task
Task
Task

Task
Task
Task

Task
Task
Task

Task
Task

Task

Figure 4: Representative LoP scenarios in a real dataset. (a), (c): Low-dimensional representation
space—(a) Type-1 LoP only; (c) Co-occurrence of Type-1 and Type-2 LoP. (b), (d): High-dimensional
representation space—(b) Type-2 LoP only; (d) Co-occurrence of both types.
Fig. 4 presents four representative cases that capture typical LoP behaviors with representation space
of different dimensionality (D): In the low-D case of Fig. 4a, Type-1 LoP dominates, as indicated
by a sharp drop in both training and test accuracy and a shift in FTLE distribution toward strongly
negative values. In another low-D case (Fig. 4c), both types of LoP emerge. The FTLE distribution
broadens significantly, with negative values reflecting collapse (Type-1) and large positive values
reflecting chaotic expansion (Type-2). In the high-D case of Fig. 4b, only Type-2 LoP is observed.
The FTLE distribution shifts toward positive values as network generalization degrades despite full
training accuracy. In another high-D case (Fig. 4d), two types of LoP co-occur. Initially, Type-2 LoP
dominates due to rapid stretching near boundaries. As more tasks are learned, within-class regions
begin to collapse, confirmed by the bimodal expansion of the FTLE distribution.

3.5 Mitigating LoP with Generalized Mixup

Since we have shown that there are two types of LoP, an effective mitigation strategy must alleviate
intra-class collapse and inter-class boundary expansion at the same time. Here, we draw inspiration
from the classical Mixup [35]. It generates synthetic data by interpolating pairs of samples and their
labels:

xm = mxK + (1−m)xK′
, ym = myK + (1−m)yK

′
, (13)

where m follows a Beta distribution. This formulation linearizes the decision boundaries and is
effective against the excessive boundary stretching in Type-2 LoP. Specifically,chaotic behavior in
high FTLE conditions, |δh(L)| = eλ

(L)(x)|δx(0)|, let small input perturbations to be exponentially

7

amplified in the representation, often in the direction along the classifier wK . Classical Mixup
encourages approximately linear transitions:

Wh(mxK + (1−m)xK′
) ≈ mWh(xK) + (1−m)Wh(xK′

), (14)

thereby suppressing such instabilities and regularizing the representation near the decision boundary.

However, classical Mixup does not address Type-1 LoP, which is caused by representational collapse
within a class. To mitigate this, we introduce Generalized Mixup (G-mixup), which modifies the label
assignment during intra-class interpolation. For two samples xK

i and xK
j from the same class, we

define:

xm = mxK
i +(1−m)xK

j , ymK = yK +
M

2
−M |0.5−m|, ymK′ = yK

′
−M

2
+M |0.5−m|, (15)

in the case of binary classification, where M is a confidence amplification factor. This encourages
the network to expand the intra-class representation, countering collapse and maintaining variability
within the class (Figure 5a). For example, if the original labels for dog and cat are [0.8, 0.2] and
[0.2, 0.8], inter-class Mixup uses the standard convex interpolation (Fig 5 b): ym = m[0.8, 0.2] +
(1 − m)[0.2, 0.8], while intra-class G-Mixup (e.g., dog-dog mix) adjusts to (Fig 5 a): ym = [1 −
0.4|0.5−m|, 0.4|0.5−m|].
We provide PyTorch-like pseudo-code for implementing G-Mixup with both MSE and NLL losses in
Supplementary F.

4 Experiments

We evaluate the effectiveness of G-Mixup on two continual learning benchmarks [7]: Continual
ImageNet and Class-Incremental CIFAR-100. Continual ImageNet is a binary task-incremental
setting with 5000 tasks in total, where the network is trained with MSE loss and a CNN backbone.
This setup enables long-lifetime plasticity analysis. In contrast, Class-Incremental CIFAR-100
uses CE loss and a ResNet-18[13] backbone under 20-task class-incremental learning, offering
complementary insights into different continual learning scenarios.

In both benchmarks, we consider two baselines: (1) Reinit, which trains each task from scratch by
leveraging the inherent plasticity of randomly re-initialized parameters, and (2) No Intervention
(No Intv.), a continual learning model trained without any LoP mitigation trick. Additionally,
we compare G-Mixup with three representative LoP prevention methods across different strategies:
regularization-based (L2 Init [17]), architecture-based (LayerNorm [21]), and reset-based (Continual
Backpropagation, CBP [7]).

Continual ImageNet In this benchmark, the model sequentially learns to distinguish between 5000
binary classification tasks randomly sampled from the ImageNet dataset. Each class contains 600
training and 100 test images. Networks are trained for 250 epochs per task using SGD (batch size 100).
Only classification head is reinitialized at the beginning of each task to simulate task-incremental
learning.

We use a consistent architecture with three convolutional layers followed by three fully connected
layers. We compare a wide network (matching [7]) representing high-dimensional space, with a nar-
rower version for the low-dimensional case. Implementation details are provided in Supplementary G.

Intra-Class Mixup

Streching space Linearizing the boundary spaceStreching space

(a) (b)

Mixed

Original

mcat=0.7
mdog=0.3

mcat=0.5mdog=0.5m do
g,1
=0.5

m
dog,2 =0.5

mcat,1=0.25

mcat,2=0.75

[0.2,0.8]

[1,0]

[0.2,0.8]

[0.2,0.8]

[0.8,0.2]

[0.8,0.2]

[0.2,0.8]

[0.8,0.2]

[0.8,0.2]

[0.08,0.92]

[0.5,0.5]

[0.38,0.62]

Inter-Class Mixup

Figure 5: Schematic of Generalized Mixup mitigating both type of LoP. (a) Preventing intra-class
representation collapse (Type-1). (b) Avoiding excessive inter-class boundary stretching (Type-2).

8

All models use ELU activation, except for CBP, which employs ReLU as originally proposed and
achieves better performance with ReLU under the same setting. All results are averaged over five
random seeds. Standard deviations are reported in Supplementary H.
Table 1: SmallConv Acc. on Continual ImageNet

Task (×1000) 0-1 1-2 2-3 3-4 4-5

No Intv. 0.817 0.805 0.562 0.500 0.500
Retrained 0.853 0.845 0.845 0.840 0.840
L2 init 0.804 0.796 0.786 0.785 0.788
Layernorm 0.753 0.760 0.759 0.751 0.751
CBP 0.834 0.847 0.846 0.847 0.857
G-mixup[ours] 0.866 0.881 0.885 0.880 0.879

Table 2: ConvNet Acc. on Continual ImageNet

Task (×1000) 0-1 1-2 2-3 3-4 4-5

No Intv. 0.794 0.778 0.604 0.537 0.500
Retrained 0.857 0.851 0.850 0.849 0.846
L2 init 0.814 0.805 0.800 0.803 0.807
Layernorm 0.782 0.768 0.752 0.749 0.755
CBP 0.848 0.867 0.864 0.863 0.878
G-mixup[ours] 0.875 0.896 0.899 0.894 0.896

Our findings show that while all methods mitigate LoP to some extent, G-Mixup consistently
outperforms other methods across tasks and settings, demonstrating superior capacity to preserve
plasticity over long task sequences.

We further analyze the FTLE distributions throughout training (see supplementary I). G-Mixup
stabilizes FTLE within a moderate range, preventing both overly negative values (Type-1 LoP) and
overly positive values (Type-2 LoP), confirming its role in controlling representation dynamics.
Ablation studies (Supplementary J) validate that the benefits arise from G-Mixup itself, which
effectively mitigates LoP, whereas classical Mixup severely suffers from representation collapse.

Class-Incremental CIFAR-100 In this setting, the network sequentially learns 5 new classes at
each task, totaling 20 tasks to cover all 100 classes. Performance is evaluated on the full set of learned
classes. Each task is trained for 200 epochs using SGD (batch size 100, weight decay 0.0005). The
classification head remains fixed, with new heads added when new classes arrive, thereby simulating
task-agnostic continual learning.

We adopt ResNet-18 as the backbone. We compare the standard ResNet-18 (high-dim) with a 0.25×
scaled version (low-dim), where all channels and fully connected layers are reduced proportionally.
We consider the setting of G-Mixup under a standard CE loss, which implicitly uses soft labels and
may potentially improve model performance. To ensure fairness, all other methods are also trained
with the same level of soft-label strength. All methods show noticeable performance gains after
incorporating soft labels. Full configuration details are included in Supplementary K.

Table 3: 0.25x Resnet-18 Acc. on CIFAR100

Task (×4) 0-1 1-2 2-3 3-4 4-5

No Intv. 0.927 0.812 0.754 0.708 0.661
Retrained 0.926 0.800 0.745 0.702 0.666
L2 init 0.925 0.788 0.724 0.682 0.649
Layernorm 0.851 0.755 0.723 0.674 0.641
CBP 0.923 0.812 0.760 0.713 0.678
G-mixup[ours] 0.932 0.825 0.772 0.732 0.697

Table 4: Resnet-18 Acc. on CIFAR100

Task (×4) 0-1 1-2 2-3 3-4 4-5

No Intv. 0.907 0.847 0.812 0.778 0.743
Retrained 0.901 0.842 0.815 0.788 0.767
L2 init 0.922 0.829 0.785 0.752 0.723
Layernorm 0.847 0.782 0.763 0.728 0.697
CBP 0.907 0.847 0.816 0.788 0.768
G-mixup[ours] 0.928 0.864 0.832 0.800 0.768

As CIFAR-100 involves more complex multi-class predictions, task difficulty increases gradually and
may exceed the capacity of narrower networks. Methods relying on random initialization or randomly
sampled features require longer adaptation times in such settings. In contrast, G-Mixup facilitates
more efficient learning and achieves higher accuracy across all tasks, even under low-capacity network
configurations.

5 Conclusions

In this work, we present a unified theoretical framework that integrates FTLE analysis [29] with
the UFM from the theory of Neural Collapse [36], offering a new perspective on the dynamics
of representation space during continual learning. Through this framework, we reveal that LoP
is composed of two contrasting types which arises from two distinct mechanisms: Type-1 LoP
results from intra-class collapse of the representation space, marked by increasingly negative FTLEs,
whereas Type-2 LoP stems from chaotic behavior near decision boundaries, indicated by increasingly
positive FTLEs. Although both types can lead to test accuracy degradation, they differ in their
geometric origins. Building on this insight, we propose Generalized Mixup, a method that explicitly

9

regularizes the geometry of the representation space to counteract both collapse and chaos. By jointly
addressing the two types of LoP, Generalized Mixup consistently outperforms existing plasticity-
preserving strategies while maintaining the computational efficiency. This work not only advances
our understanding of plasticity loss through the lens of dynamical systems theory but also introduces
a simple and effective approach for sustaining stable and adaptive continual learning.

Relationship to Catastrophic Forgetting(CF) CF and LoP represent two complementary facets of
the stability–plasticity dilemma in continual learning. CF reflects excessive plasticity, where new
knowledge overwrites existing representations, whereas LoP denotes the opposite failure mode—a
gradual loss of the ability to acquire new knowledge, even without explicit stability constraints.
While CF has been extensively studied as a stability problem, our findings reveal that LoP emerges
intrinsically from cumulative optimization and geometry distortion in the representation space. In
contrast, stability-driven regularization methods such as EWC [15] or LwF[19] induce a different,
externally imposed reduction in plasticity by design. Recognizing these dual failure modes provides
a more complete picture of continual learning: sustaining long-term performance requires balancing
memory retention against continual adaptability.

Limitations While our proposed Generalized Mixup effectively mitigates both types of LoP in
image classification tasks, it has several limitations. First, the method is specifically designed
for supervised classification problems and may not generalize easily to other learning paradigms
such as reinforcement learning, where the notion of label interpolation is less meaningful. Second,
Generalized Mixup leverages the inherent label tolerance of image classification–namely, that the
relative magnitudes of the output neurons are what determine the prediction, while the absolute values
are largely irrelevant. This allows flexible interpolation of targets without significantly affecting
performance. However, this assumption breaks down in tasks such as regression or structured
prediction, where the output must precisely match the ground truth. Interpolating inputs and targets
in such settings may introduce noise or bias, leading to degraded performance.

Future Directions Directly regulating FTLE is a principled way to prevent LoP. However, esti-
mating FTLE on real datasets is computationally expensive, so our direct-control experiments were
verified only in toy settings. In this work, we mitigate LoP indirectly by constraining FTLE magni-
tudes via Generalized Mixup, which regularizes intra-class compression and inter-class boundary
stretching without explicit Jacobian computation. A promising direction is to develop numerically
efficient FTLE estimators and practical surrogates to enable online FTLE-aware training at scale.

Acknowledgment We thank the support from the Science and Technology Innovation 2030 -
Brain Science and Brain-Inspired Intelligence Project (2021ZD0201301), the National Natural
Science Foundation of China (12201125,9257020), Shanghai Municipal Science and Technology
(24JS2810400 and 21XD1400400). We thank Shanghai Institute for Mathematics and Interdisci-
plinary Sciences (SIMIS) for their financial support (SIMISID-2025-NC). The computations in this
research were performed using the CFFF platform of Fudan University. Finally, we appreciate the
discussions with Prof. Dongrui Wu at HUST.

References
[1] Z. Abbas, R. Zhao, J. Modayil, A. White, and M. C. Machado. Loss of plasticity in continual

deep reinforcement learning. In Conference on Lifelong Learning Agents, pages 620–636.
PMLR, 2023.

[2] A. Achille, M. Rovere, and S. Soatto. Critical learning periods in deep networks. In International
Conference on Learning Representations, 2018.

[3] J. T. Ash and R. P. Adams. On Warm-Starting Neural Network Training, Dec. 2020. URL
http://arxiv.org/abs/1910.08475. arXiv:1910.08475 [cs].

[4] S. N. Burke and C. A. Barnes. Neural plasticity in the ageing brain. Nature reviews neuroscience,
7(1):30–40, 2006.

[5] A. Chaudhry, P. K. Dokania, T. Ajanthan, and P. H. Torr. Riemannian walk for incremental learn-
ing: Understanding forgetting and intransigence. In Proceedings of the European conference on
computer vision (ECCV), pages 532–547, 2018.

10

http://arxiv.org/abs/1910.08475

[6] S. Dohare, R. S. Sutton, and A. R. Mahmood. Continual Backprop: Stochastic Gradient De-
scent with Persistent Randomness, May 2022. URL http://arxiv.org/abs/2108.06325.
arXiv:2108.06325 [cs].

[7] S. Dohare, J. F. Hernandez-Garcia, Q. Lan, P. Rahman, A. R. Mahmood, and R. S. Sutton.
Loss of plasticity in deep continual learning. Nature, 632(8026):768–774, Aug. 2024. ISSN
0028-0836, 1476-4687. doi: 10.1038/s41586-024-07711-7. URL https://www.nature.
com/articles/s41586-024-07711-7.

[8] S. Dohare, J. F. Hernandez-Garcia, P. Rahman, A. R. Mahmood, and R. S. Sutton. Maintaining
Plasticity in Deep Continual Learning, Apr. 2024. URL http://arxiv.org/abs/2306.
13812. arXiv:2306.13812 [cs].

[9] C. Fang, H. He, Q. Long, and W. J. Su. Exploring Deep Neural Networks via Layer-Peeled
Model: Minority Collapse in Imbalanced Training. Proceedings of the National Academy of
Sciences, 118(43):e2103091118, Oct. 2021. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.
2103091118. URL http://arxiv.org/abs/2101.12699. arXiv:2101.12699 [cs].

[10] V. F. Farias and A. D. Jozefiak. Self-normalized resets for plasticity in continual learning. arXiv
preprint arXiv:2410.20098, 2024.

[11] H. M. Fayek, L. Cavedon, and H. R. Wu. Progressive learning: A deep learning framework for
continual learning. Neural Networks, 128:345–357, 2020.

[12] C. Gulcehre, S. Srinivasan, J. Sygnowski, G. Ostrovski, M. Farajtabar, M. Hoffman, R. Pascanu,
and A. Doucet. An Empirical Study of Implicit Regularization in Deep Offline RL, July 2022.
URL http://arxiv.org/abs/2207.02099. arXiv:2207.02099 [cs].

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages 770–
778, 2016.

[14] M. Igl, G. Farquhar, J. Luketina, W. Boehmer, and S. Whiteson. Transient Non-Stationarity and
Generalisation in Deep Reinforcement Learning, Sept. 2021. URL http://arxiv.org/abs/
2006.05826. arXiv:2006.05826 [cs].

[15] J. Kirkpatrick, R. Pascanu, N. Rabinowitz, J. Veness, G. Desjardins, A. A. Rusu, K. Milan,
J. Quan, T. Ramalho, A. Grabska-Barwinska, D. Hassabis, C. Clopath, D. Kumaran, and
R. Hadsell. Overcoming catastrophic forgetting in neural networks. Proceedings of the National
Academy of Sciences, 114(13):3521–3526, Mar. 2017. ISSN 0027-8424, 1091-6490. doi:
10.1073/pnas.1611835114. URL http://arxiv.org/abs/1612.00796. arXiv:1612.00796
[cs].

[16] A. Kumar, R. Agarwal, D. Ghosh, and S. Levine. Implicit under-parameterization inhibits
data-efficient deep reinforcement learning. arXiv preprint arXiv:2010.14498, 2020.

[17] S. Kumar, H. Marklund, and B. Van Roy. Maintaining plasticity in continual learning via
regenerative regularization. In Conference on Lifelong Learning Agents. PMLR, 2024.

[18] A. Lewandowski, H. Tanaka, D. Schuurmans, and M. C. Machado. Directions of Curvature as
an Explanation for Loss of Plasticity, Oct. 2024. URL http://arxiv.org/abs/2312.00246.
arXiv:2312.00246 [cs].

[19] Z. Li and D. Hoiem. Learning without forgetting. IEEE transactions on pattern analysis and
machine intelligence, 40(12):2935–2947, 2017.

[20] C. Lyle, M. Rowland, and W. Dabney. Understanding and preventing capacity loss in rein-
forcement learning. In International Conference on Learning Representations, 2022. URL
https://openreview.net/forum?id=ZkC8wKoLbQ7.

[21] C. Lyle, Z. Zheng, E. Nikishin, B. A. Pires, R. Pascanu, and W. Dabney. Understanding plasticity
in neural networks. In International Conference on Machine Learning, pages 23190–23211.
PMLR, 2023.

11

http://arxiv.org/abs/2108.06325
https://www.nature.com/articles/s41586-024-07711-7
https://www.nature.com/articles/s41586-024-07711-7
http://arxiv.org/abs/2306.13812
http://arxiv.org/abs/2306.13812
http://arxiv.org/abs/2101.12699
http://arxiv.org/abs/2207.02099
http://arxiv.org/abs/2006.05826
http://arxiv.org/abs/2006.05826
http://arxiv.org/abs/1612.00796
http://arxiv.org/abs/2312.00246
https://openreview.net/forum?id=ZkC8wKoLbQ7

[22] C. Lyle, Z. Zheng, K. Khetarpal, H. v. Hasselt, R. Pascanu, J. Martens, and W. Dabney.
Disentangling the Causes of Plasticity Loss in Neural Networks, Feb. 2024. URL http:
//arxiv.org/abs/2402.18762. arXiv:2402.18762 [cs].

[23] E. Nikishin, M. Schwarzer, P. D’Oro, P.-L. Bacon, and A. Courville. The Primacy Bias
in Deep Reinforcement Learning, May 2022. URL http://arxiv.org/abs/2205.07802.
arXiv:2205.07802 [cs].

[24] E. Nikishin, J. Oh, G. Ostrovski, C. Lyle, R. Pascanu, W. Dabney, and A. Barreto. Deep
Reinforcement Learning with Plasticity Injection, Oct. 2023. URL http://arxiv.org/abs/
2305.15555. arXiv:2305.15555 [cs].

[25] V. Papyan, X. Y. Han, and D. L. Donoho. Prevalence of neural collapse during the terminal
phase of deep learning training. Proceedings of the National Academy of Sciences, 117(40):
24652–24663, Oct. 2020. ISSN 0027-8424, 1091-6490. doi: 10.1073/pnas.2015509117. URL
https://pnas.org/doi/full/10.1073/pnas.2015509117.

[26] B. Poole, S. Lahiri, M. Raghu, J. Sohl-Dickstein, and S. Ganguli. Exponential expressivity
in deep neural networks through transient chaos, June 2016. URL http://arxiv.org/abs/
1606.05340. arXiv:1606.05340 [stat].

[27] M. Seleznova, D. Weitzner, R. Giryes, G. Kutyniok, and H.-H. Chou. Neural (Tangent Kernel)
Collapse, Oct. 2023. URL http://arxiv.org/abs/2305.16427. arXiv:2305.16427 [cs].

[28] G. Sokar, R. Agarwal, P. S. Castro, and U. Evci. The dormant neuron phenomenon in deep
reinforcement learning. In International Conference on Machine Learning, pages 32145–32168.
PMLR, 2023.

[29] L. Storm, H. Linander, J. Bec, K. Gustavsson, and B. Mehlig. Finite-Time Lyapunov Exponents
of Deep Neural Networks. Physical Review Letters, 132(5):057301, Feb. 2024. ISSN 0031-9007,
1079-7114. doi: 10.1103/PhysRevLett.132.057301. URL https://link.aps.org/doi/10.
1103/PhysRevLett.132.057301.

[30] C. E. Tripp, J. Perr-Sauer, J. Gafur, A. Nag, A. Purkayastha, S. Zisman, and E. A. Bensen.
Measuring the energy consumption and efficiency of deep neural networks: An empirical
analysis and design recommendations. arXiv preprint arXiv:2403.08151, 2024.

[31] E. Verwimp, M. De Lange, and T. Tuytelaars. Rehearsal revealed: The limits and merits
of revisiting samples in continual learning. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 9385–9394, 2021.

[32] M. J. Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48.
Cambridge university press, 2019.

[33] Z. Wang, E. Yang, L. Shen, and H. Huang. A comprehensive survey of forgetting in deep
learning beyond continual learning. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 2024.

[34] Y. Yang, S. Chen, X. Li, L. Xie, Z. Lin, and D. Tao. Inducing Neural Collapse in Imbalanced
Learning: Do We Really Need a Learnable Classifier at the End of Deep Neural Network?, Oct.
2022. URL http://arxiv.org/abs/2203.09081. arXiv:2203.09081 [cs].

[35] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk mini-
mization. In International conference on learning representations, 2018.

[36] Z. Zhu, T. Ding, J. Zhou, X. Li, C. You, J. Sulam, and Q. Qu. A geometric analysis of neural
collapse with unconstrained features. Advances in Neural Information Processing Systems, 34:
29820–29834, 2021.

12

http://arxiv.org/abs/2402.18762
http://arxiv.org/abs/2402.18762
http://arxiv.org/abs/2205.07802
http://arxiv.org/abs/2305.15555
http://arxiv.org/abs/2305.15555
https://pnas.org/doi/full/10.1073/pnas.2015509117
http://arxiv.org/abs/1606.05340
http://arxiv.org/abs/1606.05340
http://arxiv.org/abs/2305.16427
https://link.aps.org/doi/10.1103/PhysRevLett.132.057301
https://link.aps.org/doi/10.1103/PhysRevLett.132.057301
http://arxiv.org/abs/2203.09081

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction sections state the claims made.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations of the work are discussed at the end of the paper.

13

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The assumption and proof are provided in section 3.1 to 3.3.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The information for reproducing the experiments are provided in the supple-
mentary document.

Guidelines:

• The answer NA means that the paper does not include experiments.

14

• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data and codes are available on request from the authors.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

15

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The training and test details are provided in Methods section 3.5 and supple-
mentary document.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper does not contain experiments that requires statistical significance
test.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The compute resource information is provided in the supplementary document.

Guidelines:

• The answer NA means that the paper does not include experiments.

16

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This work focuses on the loss-of-plasticity phenomenon in deep neural net-
works and is not intended to address any direct societal impact.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [Yes]

17

https://neurips.cc/public/EthicsGuidelines

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The used open-access data and code are explained and cited in the main text
and supplementary document accordingly.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: The details of the code and model are included in the submission and supple-
mentary document.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects

18

paperswithcode.com/datasets

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM in this work does not impact the core methodology, scientific rigorous-
ness, or originality of the research.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

19

https://neurips.cc/Conferences/2025/LLM

A List of Symbols Used in This Paper

Symbol Description

h(ℓ) Representation at layer ℓ of the network
ϕ(ℓ) Nonlinear transformation at layer ℓ
W(ℓ) Weight matrix at layer ℓ
h(L) Penultimate-layer representation
δx(0) Small perturbation in input
δh(ℓ) Perturbation at layer ℓ
λ(L)(x) Finite-time Lyapunov exponent (FTLE) of input x
λ Unnormalized FTLE, i.e., λ = Lλ(L)

hk
i Representation of sample i in class k

wk Classifier weight vector for class k
Hk Matrix of representations for class k
W Classifier weight matrix
Y Label matrix for all samples
L Loss function (typically MSE)
λW Regularization coefficient for W
λH Regularization coefficient for H
H⊥

0 Initial representation orthogonal to W
α Stretching factor (inter-class expansion)
β Compression factor (intra-class collapse)
λk,k′

trained FTLE between class k and k′ after training
λk,k′

0 FTLE between class k and k′ at initialization
Tt t-th task in continual learning
θt Network parameters after task t

D(t)
train Training set of task t

D(t)
test Test set of task t

m Mixup interpolation coefficient
xm, ym Interpolated input and target in mixup
M Confidence amplification factor in Generalized Mixup

B Proof of Theorem 3.1.1

We prove Theorem 3.1.1 in main text that we restate as follows.

Theorem B.1 (Optimal Solution for Binary Classification) Under UFM and the assumption that
both classes contain n samples, |A| = |B| = n, consider the following optimization problem:

min
W,H

f(W, H) :=
1

2
∥WH + b1⊤ − Y ∥2MSE +

λW

2
∥W∥2 + λH

2n
∥H −H⊥

0 ∥2, (16)

where λW and λH are the coefficients of the two regularization terms that control the magnitude of the
classifier weights, W, and deviation of the learned representations H from the initial representations
H⊥

0 orthogonal to W. The optimal solution obeys:

w∗
A = −w∗

B , hk,∗
i =

√
λW/λH wk + hk,⊥

i,0 , (17)

where k = A or B, and hk,⊥
i,0 is the k-component of H⊥

0 .

We begin by computing the gradients of the loss function with respect to W and H , and setting them
to zero to obtain the optimality conditions.

The gradient of L with respect to W is given by

∇WL = (WH + b1⊤ − Y)H⊤ + λWW = 0. (18)

20

The gradient with respect to H is

∇HL = W⊤(WH + b1⊤ − Y) +
λH

n
(H −H⊥

0) = 0. (19)

To connect the two optimality conditions, we multiply both sides of Equation (18) on the left by W⊤,
yielding

W⊤(WH + b1⊤ − Y)H⊤ + λWW⊤W = 0. (20)

Substituting Equation (19) into the first term of Equation (20) gives

−λH

n
(H −H⊥

0)H⊤ + λWW⊤W = 0. (21)

Rearranging terms, we obtain the following relationship between the optimal weight matrix W and
the learned representation matrix H:

λWW⊤W =
λH

n
(H −H⊥

0)H⊤. (22)

Based on prior results from Neural Collapse theory [36], the optimal classification weight matrix
converges to a Simplex Equiangular Tight Frame structure. In the binary classification case, this
reduces to a simple antipodal configuration:

wA = −wB . (23)

Assuming the classification weights have reached their optimal configuration, the training dynamics
of the representation hk

i under the MSE loss yield the following gradient:

−∂LMSE

∂hk
i

=
(
1−w⊤

k h
k
i

)
wk +

(
0−w⊤

k′hk
i

)
wk′ , (24)

where k is the correct class and k′ is the incorrect class index.

This gradient lies entirely in the subspace spanned by wk and wk′ , implying that the updates to hk
i

only occur in the plane defined by the classification weight vectors. Consequently, the component of
hk
i orthogonal to this plane remains unchanged during training.

Thus, the representation hk
i can be decomposed as:

hk
i = h

∥
i + h⊥

0,i,

where h∥
i ∈ span{wk,wk′} and h⊥

0,i ⊥ span{wk,wk′}. The term h⊥
0,i denotes the component of the

initial representation that is orthogonal to the subspace spanned by the classification vectors wk and
wk′ .

Then Equation 22 becomes:

λW W⊤W =
λH

n
H∥H∥,⊤,

where H∥
0 denotes the component of the initial representations that is parallel to the subspace spanned

by the classification weight vectors.

This constraint provides a closed-form relationship between the classifier weights and the representa-
tion geometry at optimality.

For simplicity, we will denote ||W||2F = E and thus ||H∥||2F = nλW

λH
E.

We now continue the proof by deriving a lower bound of the MSE loss. Our goal is to express the
lower bound in terms of the Frobenius norm E = ∥W∥2F .

Recall the MSE loss:

LMSE =
1

2

∑
i

∥∥Whi + b1⊤ − yi
∥∥2 .

21

Since the orthogonal component h⊥
0,i remains unchanged with Wh⊥

0,i = 0, we can express the MSE
loss as:

LMSE =
1

2

∑
i

∥∥∥Wh
∥
i + b− yi

∥∥∥2 .
To enable a tight application of the reverse triangle inequality, we re-center the target labels by
defining:

b :=
1

2
(yA + yB),

and rewrite the labels as:
ỹi := yi − b ∈ {± (yA − b)} .

Now, the MSE loss becomes:

LMSE =
1

2

∑
i

∥∥∥Wh
∥
i − ỹi

∥∥∥2 .
We now apply the reverse triangle inequality:∥∥∥Wh

∥
i − ỹi

∥∥∥ ≥
∣∣∣∥ỹi∥ − ∥Wh

∥
i ∥
∣∣∣ ,

which becomes tight when Wh
∥
i ∥ ỹi, and squaring both sides yields:∥∥∥Wh

∥
i − ỹi

∥∥∥2 ≥
(
∥ỹi∥ − ∥Wh

∥
i ∥
)2

.

Next, since h
∥
i is aligned with the classification direction wk, we can write (see a breif proof in

Section B.1):
∥Wh

∥
i ∥ = ∥W∥F · ∥h∥

i ∥.
Therefore, we obtain: ∥∥∥Wh

∥
i − ỹi

∥∥∥2 ≥
(
∥ỹi∥ − ∥W∥F · ∥h∥

i ∥
)2

.

Substituting into the MSE loss gives:

LMSE ≥ 1

2

∑
i

(
∥ỹi∥ − ∥W∥F · ∥h∥

i ∥
)2

.

From earlier, we have ∥H∥∥2F =
∑

i ∥h
∥
i ∥2 = nλW

λH
E, where E = ∥W∥2F . Let n denote the total

number of samples. Define the average squared norm:

1

n

∑
i

∥h∥
i ∥

2 =
1

n
· nλW

λH
E.

Now apply Jensen’s inequality to the convex function f(x) = (b− a
√
x)2 for a > 0, to get:

1

n

∑
i

(
∥ỹi∥ − ∥W∥F · ∥h∥

i ∥
)2

≥

(
∥ỹi∥ − ∥W∥F ·

√
1

n

∑
i

∥h∥
i ∥2
)2

.

Substitute the average squared norm:

1

n

∑
i

(
∥ỹi∥ − ∥W∥F · ∥h∥

i ∥
)2

≥

(
∥ỹi∥ − ∥W∥F ·

√
λW

λH
E

)2

.

Recall ∥W∥F =
√
E, so we obtain:

LMSE ≥ n

2

(
∥ỹi∥ −

√
λW

λH
E

)2

.

22

Thus, the original optimization objective becomes:

L = LMSE +
λW

2
∥W∥2F +

λH

2n
∥H −H⊥

0 ∥2F (25)

≥ n

2

(
∥ỹi∥ −

√
λW

λH
· E

)2

+
λW

2
E +

λH

2n
· nλW

λH
E (26)

=
n

2

(
∥ỹi∥ −

√
λW

λH
· E

)2

+ λWE. (27)

This gives a clean lower bound entirely expressed as a function of E = ∥W∥2F . Since the loss
function is continuous and coercive in E, the minimum is achieved at some finite E∗.

The conditions for the inequality to hold require representations h∥
i have equal norm (which can also

be intuitively obtained from the symmetry conditions) :

∥h∥
i ∥ = const, ∀i.

Also we have the following constrain equation 22:

λW∥W∥2F =
λH

n
∥H∥∥2F ⇒ 1

n

∑
i

∥h∥
i ∥

2 =
λW

λH
∥W∥2F .

Therefore, we have:

∥h∥
i ∥ =

√
λW

λH
· ∥wk∥, for all i in class k.

Thus the representation becomes:

hk,∗
i =

√
λW

λH
wk + hk,⊥

i,0 ,

where hk,⊥
i,0 ∈ span(W)⊥ is the fixed orthogonal component inherited from the initial representation.

B.1 A brief proof of ∥Wh
∥
i ∥ = ∥W∥F · ∥h∥

i ∥.

Under the neural collapse assumption 23 that the classification weight matrix is structured as

W =

[
w⊤

A

−w⊤
A

]
,

and we define
h
∥
i := τiwA, for some τi ∈ R,

to emphasize that the representation lies along the direction of wA, and τi is arbitrary.

We have:

Wh
∥
i = τi

[
w⊤

AwA

−w⊤
AwA

]
= τi∥wA∥2

[
1
−1

]
.

Thus, the squared norm becomes:

∥Wh
∥
i ∥

2 = 2τ2i ∥wA∥4.

On the other hand:
∥h∥

i ∥ = |τi| · ∥wA∥, ⇒ ∥W∥2F = ∥wA∥2 + ∥ −wA∥2 = 2∥wA∥2.

Therefore,

∥Wh
∥
i ∥ =

√
2 · |τi| · ∥wA∥2 =

√
2 · ∥wA∥ · |τi| · ∥wA∥ = ∥W∥F · ∥h∥

i ∥.

This confirms that the equality
∥Wh

∥
i ∥ = ∥W∥F · ∥h∥

i ∥
holds exactly under this structural assumption.

23

C Verification of High-Dimensional Data Properties in ImageNet

In the main text, we assume that real-world data distributions exhibit two critical characteristics of
high-dimensional spaces: the measure of concentration and the empty space phenomenon. To verify
these assumptions, we conducted the following experiments on the ImageNet dataset:

1. Measure of Concentration: We calculated the average pairwise distance between samples in the
representation space, along with the variance of these distances. This analysis helps to verify whether
the distances concentrate around their mean, as expected in high-dimensional spaces.

2. Empty Space Phenomenon: To assess this property, we randomly sampled 1000 points in the
representation space and computed the minimum distance between each sample point and these
randomly generated points. This test evaluates the relative sparsity of data in high-dimensional
spaces.

The results, shown in figure 6, confirm that the ImageNet dataset adheres to both the measure of
concentration and the empty space phenomenon. These findings validate our assumption about the
high-dimensional nature of real-world data distributions.

0 200 400 600 800
Task ID

14

16

18

20

22

24

26

28

Pa
irw

ise
 D

ist
an

ce
 (M

ea
n

±
St

d)

Concentration Measure Across Tasks

0 200 400 600 800
Task ID

13

14

15

16

17

18

Di
st

an
ce

 to
 N

ea
re

st
 P

oi
nt

 (M
ea

n
±

St
d)

Empty Space Phenomenon Across Tasks

Figure 6: Verification of High-Dimensional Data Properties in ImageNet.

D Proof of Theorem 3.1.2

We prove Theorem 3.1.2 from the main text that we restate as follows.

Theorem D.1 (FTLE in Representation Learning) The distance between two samples i and j from
classes k and k′ in representation space, ∆hk,k′

ij ≡ hk
i − hk′

j . can be quantified by FTLE, λ0 and
λtrained , each denotes its values before and after training, respectively.

(1) For samples from different classes (k ̸= k′), training produces a positive FTLE ridge, stretching
the space in-between, and the magnitude of stretch is captured by a stretching factor, α:

logα = λk,k′

trained − λk,k′

0 > 0, (28)

(2) For samples of the same class (k = k′), training carves out a valley of negative FTLE, compressing
the space in-between, and the degree of compression is given by a compressing factor, β:

log β = λk,k
trained − λk,k

0 < 0. (29)

According to Theorem 3.1.1, the optimal representations satisfy:

hk,∗
i =

√
λW

λH
wk + hk,⊥

i,0 ,

where the trainable component lies entirely in the classification plane spanned by {wA,wB}, and the
orthogonal component hk,⊥

i,0 remains unchanged from initialization.

24

The trained representations become:

hA,∗
i =

√
λW

λH
wA + hA,⊥

i,0 , hB,∗
j =

√
λW

λH
wB + hB,⊥

j,0 .

Hence, the inter-class representational difference after training becomes:

∆trainedh
A,B
ij = hA,∗

i − hB,∗
j =

(
hA,⊥
i,0 − hB,⊥

j,0

)
+

√
λW

λH
(wA −wB) .

In contrast, the inter-class representational difference before training is given by:

∆0h
A,B
ij = hA,⊥

i,0 − hB,⊥
j,0 +

〈
hA
i,0,

wA

∥wA∥

〉
wA

∥wA∥
−
〈
hB
j,0,

wA

∥wA∥

〉
wA

∥wA∥
,

where the initial representations are projected onto the direction of wA.

The change in inter-class representational distance due to training satisfies:∥∥∥∆trainedh
A,B
ij

∥∥∥2 − ∥∥∥∆0h
A,B
ij

∥∥∥2 (30)

=
λW

λH
· ∥wA −wB∥2 −

∥∥∥∥〈hA
i,0,

wA

∥wA∥

〉
wA

∥wA∥
−
〈
hB
j,0,

wA

∥wA∥

〉
wA

∥wA∥

∥∥∥∥2 (31)

=

4
λW

λH
−

∣∣∣∣∣
〈
hA
i,0 − hB

j,0,wA

〉
∥wA∥2

∣∣∣∣∣
2
 · ∥wA∥2 (32)

=

(
4
λW

λH
∥wA∥2 −

∣∣∣∣〈hA
i,0 − hB

j,0,
wA

∥wA∥

〉∣∣∣∣2
)

· ∥ wA

∥wA∥
∥2. (33)

Similarly, the change in intra-class representational distance due to training is given by:

∥∥∥∆trainedh
A,A
i,j

∥∥∥2 − ∥∥∥∆0h
A,A
i,j

∥∥∥2 (34)

=
∥∥∥hA,∗

i − hA,∗
j

∥∥∥2 − ∥∥hA
i,0 − hA

j,0

∥∥2 (35)

=

∥∥∥∥∥(hA,⊥
i,0 − hA,⊥

j,0

)
+

√
λW

λH
(wA −wA)

∥∥∥∥∥
2

(36)

−
∥∥∥∥(hA,⊥

i,0 − hA,⊥
j,0

)
+

(〈
hA
i,0,

wA

∥wA∥

〉
−
〈
hA
j,0,

wA

∥wA∥

〉)
wA

∥wA∥

∥∥∥∥2 (37)

= −
∥∥∥∥(〈hA

i,0 − hA
j,0,

wA

∥wA∥

〉)
wA

∥wA∥

∥∥∥∥2 (38)

= −

∥∥∥∥∥
(〈

hA
i,0 − hA

j,0,wA

〉
∥wA∥2

)
wA

∥∥∥∥∥
2

(39)

= −
∥∥∥∥〈hA

i,0 − hA
j,0,

wA

∥wA∥

〉
wA

∥wA∥

∥∥∥∥2 (40)

(41)

Thus, the key is to evaluate the following projection term:∣∣∣∣〈hK
i,0 − hK

j,0,
wA

∥wA∥

〉∣∣∣∣2 .
25

This can be decomposed as: ∣∣∣∣〈hK
i,0,

wA

∥wA∥

〉
−
〈
hK
j,0,

wA

∥wA∥

〉∣∣∣∣2 .
Note that this expression captures the difference in the initial projections of the representations hK

i,0

and hK
j,0 onto the normalized classification direction wA/∥wA∥. .

Under this assumption, the original expression reduces to a geometric comparison between three ran-
dom unit vectors in high-dimensional space: two initial representations z1, z2, and one classification
direction w. Let us define:

cos θ1 = cos (∠(z1, w)) , cos θ2 = cos (∠(z2, w)) .

We are interested in the expected deviation:

z = |cos θ1 − cos θ2|2 .

According to Lemma D.1, the distribution of cos θ between two independent unit vectors in d-
dimensional Euclidean space follows the density:

p(cos θ) =
Γ
(
d
2

)
Γ
(
d−1
2

)√
π
(1− cos2 θ)(d−3)/2.

Let cos θ1 ∼ p(x), cos θ2 ∼ p(y). The distribution of their absolute difference z = |x− y|2 can be
written as:

pz(z) =

∫ 1

−1

∫ 1

−1

p(x)p(y) δ(z − |x− y|2) dx dy.

By symmetry, this simplifies to:

pz(z) =
C2

√
z

∫ 1−
√
z

−1

(1− x2)(d−3)/2 ·
(
1− (x+

√
z)2
)(d−3)/2

dx,

where C is the normalization constant ensuring
∫ 1

−1
p(x) dx = 1.

Although the exact form of pz(z) is analytically intractable, it can be efficiently evaluated numerically.
In the following figure, we plot the cumulative distribution function (CDF) of z. Here, the dimension
d refers to the width of the representation space, i.e., the dimensionality of the representation h ∈ Rd.
As d increases, the distribution becomes increasingly concentrated near zero. Conversely, when the
dimension d is small, the distribution of z becomes more dispersed and exhibits heavier mass at larger
nonzero values.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
z

0.0

0.2

0.4

0.6

0.8

1.0

Cu
m

ul
at

iv
e

Pr
ob

ab
ilit

y

CDF: (Z z) for different dimension of representation space

d=20
d=50
d=100
d=500
d=1000
z= 2

Figure 7: Numerical solution of the CDF of z.

26

Within-Class Representation Collapse. For the within-class region, in Eq 40, we have already
shown that training changes the pairwise distance between representations as:∥∥∥∆trainedh

K,K
ij

∥∥∥2 − ∥∥∥∆0h
K,K
ij

∥∥∥2 = −
∥∥∥∥〈hA

i,0 − hA
j,0,

wA

∥wA∥

〉
wA

∥wA∥

∥∥∥∥2 .
As we have analyzed earlier, the scalar projection term

z =

〈
hA
i,0 − hA

j,0,
wA

∥wA∥

〉
follows a distribution that becomes increasingly concentrated near zero as the representation dimen-
sionality d grows, and conversely, spreads more widely when d is small.

Define the within-class shrinkage factor as:

∥∆trainedh
K,K
ij ∥ = β · ∥∆0h

K,K
ij ∥, with β < 1.

Then the FTLE after training is given by:

λK,K
trained(x) = λK,K

0 (x) + log β(x).

This implies that the FTLE will slightly decrease or remain nearly unchanged β ≲ 1,when d is large,
but may shrink significantly when d is small, due to larger projection fluctuations.

Importantly, while this within-task shrinkage effect may appear mild for a single task, in the continual
learning setting it can accumulate over time, especially when repeated over multiple tasks. This
accumulated shrinkage can lead to a significant compression of the local representation space,
i.e., representation space collapse. This analysis is consistent with our empirical observations: in
low-dimensional settings, collapse occurs reliably even for a small number of tasks, while in higher-
dimensional spaces, collapse may or may not occur depending on the specific training setup and
number of tasks.

Boundary Space Over-Stretched. For the inter-class region, Eq. 40 shows that training modifies
the pairwise distance between representations of different classes as:∥∥∥∆trainedh

A,B
ij

∥∥∥2 − ∥∥∥∆0h
A,B
ij

∥∥∥2 =

(
4 · λW

λH
∥wA∥2 −

∣∣∣∣〈hA
i,0 − hB

j,0,
wA

∥wA∥

〉∣∣∣∣2
)
.

To estimate the first term, we recall from the optimization analysis of Equation 27 in Section D that
the total loss satisfies:

L(E) ≥ n

2

(
∥ỹi∥ −

√
λW

λH
· E

)2

+ λWE,

where the minimum occurs approximately at

E∗ =

√
λH

λW
· ∥ỹi∥ −

λH

n
≈
√

λH

λW
· ∥ỹi∥.

This is because n is typically large compared to λH , and λW ∼ λH in magnitude. Hence,

∥wA∥2 ≈ 1

2
·
√

λH

λW
· ∥ỹi∥ ⇒ 4 · λW

λH
∥wA∥2 ≈

√
2.

In Figure 7, we overlay this estimate (red dashed line) on the empirical CDF of the squared projection
term

z =

∣∣∣∣〈hA
i,0 − hB

j,0,
wA

∥wA∥

〉∣∣∣∣2 ,
we observe that in both low- and high-dimensional spaces, most values of z fall below this estimated
threshold. This indicates a net expansion of the representation space between classes during training.

27

Moreover, the distribution of the projection term z becomes more concentrated around zero as the
representation dimensionality d increases, while it spreads more widely when d is small. Therefore,
although expansion dominates across dimensions, it is more significant in high-dimensional spaces,
where the lower baseline projection leads to faster growth.

We formalize this expansion using a stretch factor:

∥∆trainedh
A,B
ij ∥ = α · ∥∆0h

A,B
ij ∥, α > 1.

The resulting FTLE becomes:

λK,K′

trained(x) = λK,K′

0 (x) + logα(x),

indicating a positive FTLE ridge across inter-class boundaries, and reflecting a local "stretching
effect" that enhances class separability.

While the effect of class boundary expansion is immediately pronounced in high-dimensional settings,
its manifestation in low-dimensional networks can be subtle within a single task. However, under
continual learning, where multiple tasks accumulate over time, the expansion effect may progressively
intensify and eventually give rise to chaotic behavior. Consequently, we consistently observe clear
boundary stretching in high-dimensional models, whereas in low-dimensional models, such dynamics
may emerge only after sufficient task accumulation. This observation aligns with our findings reported
in the main text.

Lemma D.1 In high-dimensional spaces, the angle θ between two randomly sampled vectors x, y ∈
Rd follows the distribution:

pd(θ) =
Γ
(
d
2

)
Γ
(
d−1
2

)√
π
sind−2 θ,

where Γ(·) is the gamma function[32].

E Experimental Setup for Verifying LoP in Real-World Datasets

To validate our discovery of two different types of LoP across realistic datasets, we use the exper-
imental setup described in Supplementary H, using identical architectures, training protocols, and
hyperparameters. Across all settings, we consistently observe the two types of LoP as well as hybrid
cases where both types coexist, differing only in their onset speed and severity.

In the main text Fig. 4, we visualize model performance under four representative single-run configu-
rations :

(a) ReLU + CE with the architecture in Table 5
(b) Tanh + MSE with the architecture in Table 6
(c) Tanh + MSE with the architecture in Table 5
(d) ReLU + CE with the architecture in Table 6

All other experimental conditions remain identical across these runs.

F Generalized Mixup Pseudo Code

Generalized Mixup (G-Mixup) is designed as a simple, plug-and-play module that can be seamlessly
integrated into existing training pipelines. It minimally modifies the classical Mixup [35] by adapting
the label interpolation rule depending on whether the two samples belong to the same class (intra-
class) or different classes (inter-class). It supports both Mean Squared Error (MSE) and Negative
Log-Likelihood (NLL) loss.

Key idea:

• For inter-class mixup, standard Mixup applies: convex interpolation of both input and
label.

28

• For intra-class mixup, only the dominant class label is amplified by a factor depending on
|0.5−m| to encourage intra-class diversity while conserving class identity.

In this work, we set the intra-class amplification factor to M = 0.2. To prevent label probabilities
from exceeding 1, we pre-process all labels by assigning the dominant class a value of 1−M , and
the remaining M is equally distributed across the other C − 1 classes.

Algorithm 1 Generalized Mixup (G-Mixup) for a Mini-Batch
Require: Mini-batch {(xi, y

raw
i)}Ni=1, mixup parameter α, amplification factor M , number of classes

C
1: Preprocess labels: for each yraw

i , construct yi as:
• yi[k] = 1−M , where k = argmax(yraw

i)
• yi[others] = M

C−1

2: Sample m ∼ Beta(α, α)
3: Shuffle mini-batch to get (x′

i, y
′
i)

4: Compute mixed inputs: xm
i = mxi + (1−m)x′

i
5: if argmax(yi) == argmax(y′i) (intra-class) then
6: ymi [k] = yi[k] +

M
2 −M · |0.5−m|

7: ymi [others] = 1−ym
i [k]

C−1
8: else
9: ymi = myi + (1−m)y′i {Use M -adjusted labels}

10: end if
11: Compute prediction ŷi = f(xm

i)
12: if loss is MSE then
13: L = 1

N

∑
i ∥ŷi − ymi ∥2

14: else if loss is NLL then
15: L = 1

N

∑
i CrossEntropy(ŷi, ymi)

16: end if
17: Backpropagate L

G Experimental Setup for Continual ImageNet

We evaluate G-Mixup on the Continual ImageNet benchmark, following a widely adopted binary task
formulation. The full dataset used in this task consists of 1,000 classes, each with 700 images. For
each class, 600 samples are used for training and 100 for testing. A continual learning sequence is
constructed by randomly pairing classes to create binary classification tasks. Each task comprises
1,200 training samples and 200 test samples, drawn from two classes. Models are trained for 250
epochs using mini-batches of size 100. All images are downsampled to 32× 32 resolution to reduce
computational cost.

For all experiments, we adopt a convolutional neural network consisting of three convolutional layers
with max-pooling, followed by three fully connected layers. To study the impact of representation
dimensionality, we employ two variants: a wide network with larger hidden dimensions, identical to
the one used in [7] (see Table 6), representing the high-dimensional regime; and a narrow network
with reduced layer widths (see Table 5), corresponding to the low-dimensional case. The final output
layer has two units representing the current task’s classes. At the start of each task, the output heads
are reset to zero—a common practice in continual learning benchmarks—although we note that
this introduces privileged information about task boundaries. All methods are trained using SGD
with momentum (set to 0.9), and models are initialized once at the beginning of the entire continual
learning sequence. Learning rates are set as 0.01; results reported are averaged over 5 independent
runs.

We compare G-Mixup with multiple baselines and LoP mitigation strategies. Two reference points are
included: (1) Reinit, which re-initializes the model for every new task, and (2) No Intervention (No
Intv.), which applies naive continual training without any LoP countermeasures. For fair comparison,

29

We also include representative methods from three major strategies for mitigating LoP: L2 Init [17] (a
regularization-based method, with the weight decay coefficient fixed at 5× 10−4), LayerNorm [21]
(an architecture-based approach, where LayerNorm is applied before the activation function at every
layer—including both convolutional and fully connected layers—except for the final output layer),
and CBP [7] (a reset-based method).

Unless otherwise specified, all methods use the ELU activation function and MSE loss. The only
exception is CBP, which uses ReLU as in its original implementation [7]. This choice is motivated
by the fact that CBP relies on tracking the utility of individual neurons, and ELU—due to its non-zero
minimum—can distort utility estimation by introducing persistent low-level activation. We further
confirmed that CBP performs better with ReLU than with ELU under our experimental settings.
All other hyperparameters and training schedules are kept consistent across methods to ensure fair
comparison.

Table 5: SmallConvNet Architecture Details.

Layer 1: Convolutional + Max-Pooling
Number of Filters 16 Activation ELU/Tanh/ReLU
Convolutional Filter Shape (5,5) Convolutional Filter Stride (1,1)
Max-Pooling Filter Shape (2,2) Max-Pooling Filter Stride (2,2)

Layer 2: Convolutional + Max-Pooling
Number of Filters 32 Activation ELU/Tanh/ReLU
Convolutional Filter Shape (3,3) Convolutional Filter Stride (1,1)
Max-Pooling Filter Shape (2,2) Max-Pooling Filter Stride (2,2)

Layer 3: Convolutional + Max-Pooling
Number of Filters 64 Activation ELU/Tanh/ReLU
Convolutional Filter Shape (3,3) Convolutional Filter Stride (1,1)
Max-Pooling Filter Shape (2,2) Max-Pooling Filter Stride (2,2)

Layer 4: Fully Connected
Output Size 16 Activation ELU/Tanh/ReLU

Layer 5: Fully Connected
Output Size 16 Activation ELU/Tanh/ReLU

Layer 6: Fully Connected
Output Size 2 Activation None (Linear)

Table 6: ConvNet Architecture Details.

Layer 1: Convolutional + Max-Pooling
Number of Filters 32 Activation ELU/Tanh/ReLU
Conv. Filter Shape (5,5) Conv. Filter Stride (1,1)
Max-Pool Filter Shape (2,2) Max-Pool Filter Stride (2,2)

Layer 2: Convolutional + Max-Pooling
Number of Filters 64 Activation ELU/Tanh/ReLU
Conv. Filter Shape (3,3) Conv. Filter Stride (1,1)
Max-Pool Filter Shape (2,2) Max-Pool Filter Stride (2,2)

Layer 3: Convolutional + Max-Pooling
Number of Filters 128 Activation ELU/Tanh/ReLU
Conv. Filter Shape (3,3) Conv. Filter Stride (1,1)
Max-Pool Filter Shape (2,2) Max-Pool Filter Stride (2,2)

Layer 4: Fully Connected
Output Size 128 Activation ELU/Tanh/ReLU

Layer 5: Fully Connected
Output Size 128 Activation ELU/Tanh/ReLU

Layer 6: Fully Connected
Output Size 2 Activation None (Linear)

30

H Continual ImageNet Results

The performance of wide and narrow networks on Continual ImageNet is summarized in Table 7 and
Table 8.

Table 7: SmallConv Test Accuracy Results on Continual ImageNet

Task (×1000) 0-1 1-2 2-3 3-4 4-5

No Intv. 0.817 (±0.070) 0.805 (±0.085) 0.562 (±0.089) 0.500 (±0.000) 0.500 (±0.000)
Retrained 0.853 (±0.065) 0.845 (±0.066) 0.845 (±0.068) 0.840 (±0.067) 0.840 (±0.072)
L2 init 0.804 (±0.055) 0.796 (±0.059) 0.786 (±0.054) 0.785 (±0.052) 0.788 (±0.055)
Layernorm 0.753 (±0.056) 0.760 (±0.052) 0.759 (±0.051) 0.751 (±0.049) 0.751 (±0.056)
CBP 0.834 (±0.052) 0.847 (±0.052) 0.846 (±0.050) 0.847 (±0.050) 0.857 (±0.052)
G-mixup 0.866 (±0.052) 0.881 (±0.048) 0.885 (±0.048) 0.880 (±0.050) 0.879 (±0.054)

Table 8: ConvNet Test Accuracy Results on Continual ImageNet

Task (×1000) 0-1 1-2 2-3 3-4 4-5

No Intv. 0.794 (±0.063) 0.778 (±0.073) 0.604 (±0.135) 0.537 (±0.074) 0.500 (±0.000)
Retrained 0.857 (±0.060) 0.851 (±0.060) 0.850 (±0.060) 0.849 (±0.060) 0.846 (±0.064)
L2 init 0.814 (±0.047) 0.805 (±0.050) 0.800 (±0.052) 0.803 (±0.052) 0.807 (±0.054)
Layernorm 0.782 (±0.052) 0.768 (±0.056) 0.752 (±0.049) 0.749 (±0.050) 0.755 (±0.055)
CBP 0.848 (±0.053) 0.867 (±0.049) 0.864 (±0.046) 0.863 (±0.048) 0.878 (±0.047)
G-mixup 0.875 (±0.049) 0.896 (±0.043) 0.899 (±0.042) 0.894 (±0.045) 0.896 (±0.047)

I FTLE Analysis of G-Mixup

We analyze the evolution of the FTLE distribution under Generalized Mixup at different stages of
continual training. Our results reveal that G-Mixup consistently maintains the FTLE within a stable
and moderate range throughout training. This controlled trajectory of representational dynamics
effectively prevents both representation collapse and boundary chaotic behavior—two different types
of LoP. The robustness of G-Mixup in sculpting the representation space is thus supported by its
capacity to regulate FTLE evolution. The corresponding results are presented in Fig. 8.

0.00

0.35

0.0

0.6

-10 20 20

Task
Task
Task

Task
Task
Task

0 0-10 1010

Figure 8: Analysis of FTLE distributions at different training stages of Generalized-mixup.

J Ablation Study

As discussed in the main text, Mixup encourages smoother transitions in the representation space
by interpolating inter-class samples and labels, which helps mitigate Type-2 LoP (over-stretch).
However, it leaves intra-class labels unchanged (fixed one-hot targets), limiting its ability to prevent

31

Type-1 LoP (collapse). In contrast, G-Mixup introduces controlled intra-class label variation , thereby
regularizing both inter- and intra-class geometry.

To isolate and highlight this intra-class effect, we perform an ablation study in which both Mixup and
G-Mixup are restricted to intra-class sample pairs only, removing inter-class interpolation entirely.
This setup ensures that both methods generate the same level of sample diversity while differing only
in their treatment of intra-class label variation. To accelerate the onset of collapse and better expose
representational instability, we slightly increase the learning rate to 0.02.

As shown in Table 9, standard Mixup rapidly leads to collapsed representations, while G-Mixup
continues to support progressive adaptation across tasks.

Table 9: Test Accuracy Results for Ablation Study

Task (×500) 0-1 1-2 2-3 3-4
G-Mixup (SmallConv) 0.864 0.871 0.879 0.878
Mixup (SmallConv) 0.864 0.581 0.500 0.500

K Class-Incremental CIFAR-100

We evaluate all methods under the class-incremental setting of CIFAR-100, where the model pro-
gressively learns 100 classes over 20 tasks, with 5 new classes introduced at each task. The model
is trained on all accumulated classes at every stage and evaluated on the full set of seen classes,
simulating task-agnostic continual learning. Each class contains 600 images, partitioned into 450 for
training, 50 for validation, and 100 for testing.

For each increment, the model is trained for 200 epochs using SGD with a momentum of 0.9, weight
decay of 0.0005, and a mini-batch size of 100. The learning rate is reset at the beginning of each
increment and follows a decaying schedule: 0.1 for the first 60 epochs, 0.02 for the next 60, 0.004 for
the following 40, and 0.0008 for the final 40 epochs. For G-Mixup, as the number of classes increases,
inter-class interpolations become increasingly dense, making the representation space more entangled
and the optimization landscape more complex. To stabilize training under this challenging regime,
all learning rates are further reduced by a factor of 0.2 once the number of classes exceeds 10. The
same learning-rate schedule is applied to all other baseline methods for fairness. However, under this
schedule, their performance deteriorates markedly. Therefore, we present the results obtained under
their best-performing configurations. During training, the best-performing model on the validation set
is saved at each increment, and training for the next increment starts from this checkpoint, effectively
applying early stopping across increments.

We adopt ResNet-18 as the backbone architecture and evaluate two variants: a standard high-
dimensional version (ResNet-18) and a compressed low-dimensional variant (0.25× ResNet-18),
where all channel widths and the final fully connected layer are reduced proportionally. Additionally, a
fully connected layer with a width of 16 is appended as the representation layer in the low-dimensional
variant. The output layer grows dynamically by adding 5 new units at each increment, with newly
added weights initialized via Kaiming initialization and biases set to zero. Convolutional and linear
layers follow Kaiming initialization, while batch normalization weights are set to 1.

All input images are normalized to [0, 1], channel-wise standardized using dataset statistics, and
augmented during training with random horizontal flips, 4-pixel padding followed by random crops,
and random rotations between [−15◦, 15◦]. These augmentations are applied only to the training set.

We compare G-Mixup against multiple baselines and LoP mitigation strategies under the class-
incremental CIFAR-100 setting. Two primary baselines are considered: (1) No Intervention (No
Intv.), which performs standard continual training without any mechanisms to counteract LoP, and
(2) Reinit, which re-initializes the model from scratch at each task.

To ensure a comprehensive evaluation, we further include representative methods from three major
categories of LoP mitigation: L2 Init [17], a regularization-based method with a fixed weight decay of
5× 10−4 and no additional L2 regularization on the weight; LayerNorm [21], an architecture-based
approach where BatchNorm is replaced with LayerNorm in all layers; and CBP [7], a reset-based
approach targeting underutilized neurons. For fair comparison, and to rule out the possibility that

32

G-Mixup’s improvement originates from label softening rather than its geometric regularization
effect, all baseline methods are trained with the same soft-label smoothing coefficient of 0.1.

All methods are evaluated under identical training protocols as described above. The comparative
results are presented below.

Table 10: 0.25x Resnet-18 Acc. on CIFAR100

Task (×4) 0-1 1-2 2-3 3-4 4-5

No Intv. 0.927 (±0.027) 0.812 (±0.018) 0.754 (±0.015) 0.708 (±0.014) 0.661 (±0.008)
Retrained 0.926 (±0.035) 0.800 (±0.020) 0.745 (±0.013) 0.702 (±0.012) 0.666 (±0.007)
L2 init 0.925 (±0.032) 0.788 (±0.020) 0.724 (±0.013) 0.682 (±0.014) 0.649 (±0.007)
Layernorm 0.851 (±0.051) 0.755 (±0.028) 0.723 (±0.016) 0.674 (±0.015) 0.641 (±0.008)
CBP 0.923 (±0.038) 0.812 (±0.020) 0.760 (±0.017) 0.713 (±0.011) 0.678 (±0.006)
G-mixup[ours] 0.932 (±0.030) 0.825 (±0.019) 0.772 (±0.014) 0.732 (±0.014) 0.697 (±0.007)

Table 11: Resnet-18 Acc. on CIFAR100

Task (×4) 0-1 1-2 2-3 3-4 4-5

No Intv. 0.907 (±0.029) 0.847 (±0.014) 0.812 (±0.013) 0.778 (±0.013) 0.743 (±0.008)
Retrained 0.901 (±0.037) 0.842 (±0.017) 0.815 (±0.012) 0.788 (±0.013) 0.767 (±0.005)
L2 init 0.922 (±0.027) 0.829 (±0.016) 0.785 (±0.013) 0.752 (±0.012) 0.723 (±0.006)
Layernorm 0.847 (±0.065) 0.782 (±0.035) 0.763 (±0.019) 0.728 (±0.019) 0.697 (±0.019)
CBP 0.907 (±0.027) 0.847 (±0.015) 0.816 (±0.013) 0.788 (±0.011) 0.768 (±0.008)
G-mixup[ours] 0.928 (±0.025) 0.864 (±0.016) 0.832 (±0.012) 0.800 (±0.009) 0.768 (±0.006)

L Computing Infrastructure

Table 12: Computing infrastructure of the primary server

CPU AMD EPYC 9654 96-Core Processor, 2 sockets (384 threads total)
GPU NVIDIA RTX 4090
Memory 512 GB
Operating system Ubuntu 20.04.6 LTS
Simulation platform Python 3.11 with PyTorch 2.1.1

Table 13: Computing infrastructure of the secondary server

CPU AMD EPYC 9354
GPU NVIDIA RTX 4090
Memory 512 GB
Operating system Ubuntu 20.04.6 LTS
Simulation platform Python 3.11 with PyTorch 2.1.1

The simulations and analyses in this study are conducted on two high-performance computing servers
equipped with AMD EPYC processors and NVIDIA RTX 4090 GPUs. The primary server features
dual AMD EPYC 9654 CPUs (each with 96 cores), totaling 384 threads, and supports simultaneous
multithreading. The secondary server is equipped with an AMD EPYC 9354 CPU and identical GPU
and software configuration. Both systems are configured with 512 GB of memory, enabling efficient
execution of memory-intensive simulations and deep learning workloads. Experiments were run
under Ubuntu 20.04.6 LTS using Python 3.11 and PyTorch 2.1.1, providing a robust and up-to-date
scientific computing environment.

33

	Introduction
	Preliminaries
	Main Results
	Stretching and compressing Representation Space by Training
	Type-1 LoP Induced by the Collapse of Representation Space
	Type-2 LoP Induced by the Over-stretched Boundaries and Chaotic Behaviors
	Verifying LoP in Real Datasets
	Mitigating LoP with Generalized Mixup

	Experiments
	Conclusions
	List of Symbols Used in This Paper
	Proof of Theorem 3.1.1
	A brief proof of W hi = W F hi .

	Verification of High-Dimensional Data Properties in ImageNet
	Proof of Theorem 3.1.2
	Experimental Setup for Verifying LoP in Real-World Datasets
	Generalized Mixup Pseudo Code
	Experimental Setup for Continual ImageNet
	Continual ImageNet Results
	FTLE Analysis of G-Mixup
	Ablation Study
	Class-Incremental CIFAR-100
	Computing Infrastructure

