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ABSTRACT

The goal of video summarization is to extract the most important parts from the
original video. Most existing methods are based on supervised learning and they
have demonstrated superior performance. However, the scarcity of annotated data
is a major obstacle in the video summarization task. To reduce the impact of the
scarcity, some weakly-supervised and unsupervised methods were proposed. Al-
though they manifested positive results, existing methods ignore the intrinsic as-
sociation between video clips. To address it, we introduce a new self-supervised
learning method called TCL-VS. Our main insight is that a excellent summary re-
quires not only maintaining the original video content but also eliminating redun-
dant information. Inspired by the observation, this work consists of two separate
modules that respectively conduct temporal consistency and diversity assessment
of video clips. Each module predicts a sequence score by clip, and then we com-
bine them using a weighted method. Extensive experiments demonstrate that our
method achieves state-of-the-art performance on two video summarization bench-
marks: SumMe and TVSum.

1 INTRODUCTION

Video summarization has great values in widespread applications, such as video compression, video
editing and video retrieval. With the rapid development of video-sharing platforms and the explosive
growth of internet video content, the importance of video summarization has become increasingly
prominent. Video summarization is the process of extracting meaningful clips/frames from the
original video by analyzing the structure and spatiotemporal redundancy of the video in an automatic
manner, which attracted increasing attention from both academia and industry.

The early video summarization work mostly used manual heuristic algorithms to obtain certain
attributes of frames Chu et al. (2015); Khosla et al. (2013). With the development of deep learning,
video summarization tasks have used RNN models Zhang et al. (2016) and attention mechanisms
Fajtl et al. (2019); Jung et al. (2020), which advance superior performance.

Most of existed methods employ supervised learning for training. Some general video summary
datasets, such as TVSum Song et al. (2015) and SumMe Gygli et al. (2014), provide ground-truth
annotations in the form of frame or shot level importance scores. Although supervised approach
has achieved excellent results Zhu et al. (2021); He et al. (2023), there are some obstacles to the
method, which require extensive resources to construct annotated video summaries. Some weakly-
supervised Panda et al. (2017b); Cai et al. (2018); Chen et al. (2019) and unsupervised Mahasseni
et al. (2017); Zhou et al. (2018); Zhang et al. (2018) methods have been proposed to address these
limitations.

Previous unsupervised video summarization methods Zhou et al. (2018); Zhao et al. (2020) learn the
summary by combining the principles of reinforcement learning with hand-crafted reward function
for the specific required attributes of the summary. Some existed weakly-supervised video summa-
rization methods Cai et al. (2018); Panda et al. (2017a) use weak label (such as video-level metadata)
learning video summarization models that are cheaper than ground-truth data. However, the above
methods do not utilize the intrinsic association of the video.

To address this limitation, we first convert the video from fine-grained frames to fine-grained clips
by using KTS Potapov et al. (2014), which splits the video into non-overlapping video clips. In-
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spired by existed video representation work Dave et al. (2022; 2023), we then introduce temporal
contrastive learning into these video clips and two models are trained in this work to capture different
aspects of video clips: temporal consistency and diversity. The video clip consistency model aims
to identify key clips, while the video clip diversity model focuses on identifying and filtering out re-
dundant clips. The prediction results of these two models are then combined through weighting and
summation to derive an importance score for each clip. Finally, the knapsack algorithm, commonly
used in previous method Zhu et al. (2021), is employed to generate the final video summary based
on the obtained clip scores.

The main contributions of our work are as follows:

• To our best knowledge, this is the first work that applies temporal contrastive self-
supervised learning to video summarization. It overcomes the challenge of limited an-
notated video summaries without the requirement of additional annotations.

• To take full advantage of the intrinsic association between video clips, we devise two mod-
els which realize consistency and diversity prediction of video clips.

• To better unit models, we improved the method of weight calculation from the previous
work Dave et al. (2023), using all the video clips to calculate the weights of the two models
to achieve predictions more efficiently.

Extensive experiments on video summarization benchmark datasets manifest that our self-
supervised method significantly outperforms the state-of-the-art unsupervised methods and most
supervised methods.

2 RELATED WORK

The existing video summarization methods could be cast into two main categories: supervised ap-
proaches and unsupervised approaches. This section briefly overviews these categories and con-
trastive self-supervised learning.

2.1 SUPERVISED VIDEO SUMMARIZATION

The recent supervision work has been based on manually annotated datasets. Early deep learning-
based methods attempted to estimate the importance of frames by modeling their temporal depen-
dencies. dppLSTM Zhang et al. (2016) used Long short-term memory (LSTM) units to model the
variable range time dependence between video frames. H-RNN Zhao et al. (2017) then proposed
a two-layer LSTM structure. After the emergence of RNN and transformer, HSA-RNN Zhao et al.
(2018) integrated shot segmentation and video summarization into a layered RNN and VASNet Fajtl
et al. (2019) applied the attention mechanism to the summarization model. Recently, iPTNet Jiang &
Mu (2022) jointly trained video summarization tasks and related moment localization tasks, utilizing
additional moment localization data samples to improve the performance of video summarization.
A2SummHe et al. (2023), on the other hand, used multimodal enhancement of summarization gen-
eration.

2.2 UNSUPERVISED VIDEO SUMMARIZATION

The earliest work in the utilization of GANs for learning how to generate a video digest for the
accurate reconstruction of the original video was SUM-GAN Mahasseni et al. (2017) in the field of
unsupervised deep learning. Afterwards, DR-DSN Zhou et al. (2018) approached video summary
generation by formulating it as a sequential decision-making process and designing reward functions
to generate diverse and representative video summaries. UnpairedVSN Rochan & Wang (2019)
introduced a new method to learning video summaries from unpaired data. Lastly, SUM-GDA Li
et al. (2020) implemented globally diverse attention for video summarization.

2.3 CONTRASTIVE SELF-SUPERVISED LEARNING

There have been many extensions of contrastive learning in the video domain, following the success
of contrastive learning approaches of self-supervised image representation learning such as SimCLR
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Figure 1: The overview of TCL-VS framework. The input {clipi}Mi=1 is given to the models to get
their predictions. Afterwards, we calculate the predictive weights of the two models and output the
important scores of each clip. Finally, to generate a summary, we employ the 0/1 knapsack algorithm
to select 15% of the initial video content.

Chen et al. (2020). VTHCL Yang et al. (2020), which employs the SlowFast architecture Feicht-
enhofer et al. (2019), uses contrastive loss with the slow and fast pathway representations as the
positive pair. VIE Zhuang et al. (2020) is proposed as a deep neural embedding-based method to
learn video representation in an unsupervised manner.

TCLR Dave et al. (2022) introduces temporal contrastive losses for both temporally pooled and
unpooled features to learn the temporal distinctiveness. TimeBalance Dave et al. (2023), follow-
ing TCLR, proposed a new way to learn temporal consistency. We employed the contrastive loss
function of above methods to learn both the temporal consistency model and the temporal diversity
model in our approach and the structure of models is like Transformer Encoder.

3 PROPOSED APPROACH

To begin with we will provide a brief task definition. Let V = {framei}Ni=1 represent an unpro-
cessed video, where N is the number of frames. The method seeks for a set of key frames as a video
summary. We represent the set of key frames of the video summary with S = {sj}Mj=1, where M

is the number of frames in the subset S. Usually, M is less than a predetermined proportion (such
as 15%) of N . Recent methods have treated the video summarization task as a sequence prediction
task, by designing some objective functions to represent the characteristics of superior video sum-
mary, and then optimizing these objective functions to obtain more reasonable prediction results.
The importance score for each frame is predicted, and each clip (divided by KTS) score is calcu-
lated using the mean of the frame scores within the clip. Finally, key clips are selected to form S.
Our algorithm is the same as the mainstream.

In this section, we elaborate a self-supervised video summarization method as shown in the Figure
1. The overall architecture can be divided into four parts: Input Embedding, Temporal Contrastive
Models, Model Reweighting and Fine-Tuning.

3.1 INPUT EMBEDDING

Similar to previous work Zhou et al. (2018); Zhu et al. (2021); He et al. (2023), we adopted a uni-
versal method to extract features, specifically using pre-trained GoogleNet to extract C-dimensional
feature vectors for each frame. In order to better utilize the time correspondence information be-
tween video frames, we added a learnable position embedding. Meanwhile, we observed that previ-
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ous work mostly inputted the model in frames, while the output was in the form of clips. Therefore,
we incorporated clip embedding into the input embedding by applying kernel temporal segmenta-
tion (KTS) Potapov et al. (2014). In this way, the video is transformed from N frames to M clips.
After adding these embeddings, we denote the generated video features as V ∈ RM×C .

3.2 TEMPORAL CONTRASTIVE MODELS

A promising video summary generation framework should not only extract the most representative
fragments but also remove redundant information fragments. Therefore, we used two models to
address these two requirements systematically. The first model, the temporal consistent model,
focuses on learning common information in videos and assigns a score to each clip, reflecting its
representativeness in the video. The second model, the temporal diverse model, is designed to learn
the diversity of each clip and assigns a score to measure its diversity in the video. The specific design
and training of the models is as follows.

3.2.1 NETWORK ARCHITECTURE

Inspired by the excellent performance of transformer Vaswani et al. (2017) in various sequential
tasks, we adopt the transformer architecture for our network.

3.2.2 TEMPORALLY CONSISTENT MODEL

We adopt the TimeBalance Dave et al. (2023) method as a basis, utilizing distinct clip pairs from
the same video as positive samples, and clip pairs from different videos as negative samples. To
facilitate the processing of videos, denoted as Vi = {x(i)

t }nt=1, we align the number of video clips
within a batch. The video clips are represented by the vector projections from the model, recorded
as {c(i)t |t ∈ 1 · · ·n}. The contrastive loss function can be expressed by the following equation:
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This loss is illustrated in Figure 2. The similarity between vectors c1 and c2 is computed using
the function h(c1, c2) = exp(cT1 · c2/(∥c1∥ · ∥c2∥τ)), which includes an adjustable temperature
parameter τ .

3.2.3 TEMPORALLY DIVERSE MODEL

We adopt the TCLR Dave et al. (2022) global-local method as a basis, comparing the entire video
output result with the video clip output result for loss. Positive sample pairs indicate identical clips,
while negative sample pairs indicate different clips. This loss is illustrated in Figure 3 and the
contrastive loss function can be expressed by the following equation:

L
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Where N is numbers of video clips in video(i) and similarity function h(c1, c2) is consistent with
the previous text.

3.3 MODEL REWEIGHTING

To effectively combine the consistent and diverse information of video clips, an efficient weighting
method is required, as depicted in Figure 4. just like TimeBalance Dave et al. (2023) For video
instance v(i), we first calculate the cosine similarity for each pair of video clips generated by the
model, resulting in two M×M matrices as CC and CD. CC(ct1 , ct2) represent the cosine similarity
between the projections of the c

(i)
t1 and c

(i)
t2 . Afterward, we combine the two matrices and replace
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Figure 2: Temporally Consistent Contrastive Loss The videos (v(1), v(2), v(3), v(4)) are in one
batch. First, align the number of clips in the videos by some methods, such as repeating zero clip
or the last clip of the video. Then, perform a contrastive loss on each clip of all videos within
a batch. Positive samples are adjacent clips, while negative samples are corresponding clips of
different videos. As shown in equation 1, the bidirectional green arrows in the figure represent
positive sample pairs, while the bidirectional red arrows represent negative sample pairs .

the diagonal with zeros, yielding a new matrix C. Next, we follow the formula below to obtain S to
derive the value s(i).

s(i) =
1

2M(M − 1)

M∑
t1,t2=1
t2 ̸=t1

(C
(i)
C + C

(i)
D ) (3)

Finally, we obtain the final weighted equation as follows:

p(i) = s(i) · p(i)C + (1− s(i)) · p(i)D (4)

Where p(i)C , p
(i)
D represent the prediction vectors of the consistent and diverse models and p(i) repre-

sents the final prediction vector of the framework.

3.4 FINE-TUNING

In order to compare fairly with previous SOTA work from ranked-based metrics (Kendall’s τ and
Spearman’s ρ), we fine-tuned the trained model in a supervised manner using ground truth data from
standard datasets. We calculated the Kullback-Leibler Divergence between the ground truth scores
and the predicted scores as the loss function to optimize the network.

DKL(sgt|s) =
N∑
i=1

s
(i)
gt log

s
(i)
gt

s(i)
(5)

Where N is the number of video frames and sgt/s are ground truth scores and predicted scores.
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Figure 3: Temporally Diverse Contrastive Loss For each video, we input the model from two
fine-grained perspectives. The first perspective involves obtaining {Ci}Mi=1 as a whole based on the
video instance. The second perspective involves obtaining {C ′

i}Mi=1 as a segmented input based on
the video clip. We perform a contrastive loss for each clip, as shown in equation 2. Positive sample
pairs represent two outputs of the same clip, while negative sample pairs represent two outputs of
different clips.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

The experimental setup section will be divided into three parts. Firstly, we will introduce the dataset
used. Then, we will discuss the evaluation metrics used in comparison to other works. Lastly, we
will explain some experimental implementation details.

4.1.1 DATASETS.

We train two temporal models on two datasets: QVHighlights Lei et al. (2021) and Breakfast Kuehne
et al. (2014). QVHighlights comprises 10,148 videos, each lasting for 150 seconds. It also includes
18,367 moments and 10,310 queries. Breakfast consists of 1712 third-person view videos, with 48
action classes specifically focused on preparing breakfasts. The average length of the videos is two
minutes, but there is a significant variation in their duration. On average, each video contains seven
instances of actions. For the two training datasets mentioned, we solely relied on the original video
data and did not make use of any annotation information.

We evaluate our framework on two benchmarks: SumMe Gygli et al. (2014) and TVSum Song et al.
(2015). SumMe comprises 25 user videos, encompassing a wide array of topics like cooking and
sports. The duration of these videos ranges from 1 to 6 minutes, and each video is annotated by 15
to 18 individuals, resulting in multiple ground truth summaries for each video. In contrast, TVSum
is composed of 50 YouTube videos, covering topics such as news and documentaries. The duration
of these videos varies from 2 to 10 minutes.

4.1.2 EVALUATION METRIC.

Following previous work Zhou et al. (2018); Zhu et al. (2021), the F1-score was used to assess the
agreement between the generated summaries and the ground-truth summaries. Precision (P ) and
recall (R) were computed for both the generated summary (Vgs) and its corresponding annotated
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Figure 4: Temporal Models Reweighting Firstly, two models were used to obtain M 128-
dimensional projections by inputting 1024-dimensional video features v(i). Afterwards, the cosine
similarity between the M projections was calculated to obtain two matrices of M ×M , with a diag-
onal value of 1 assigned to 0. Finally, the corresponding position elements of the two matrices were
added and summed to obtain an average. As shown in equation 4, the resulting s(i) was used as the
weight of Consistent Model, while 1− s(i) was used as the weight of Diverse Model.

summary (Vgt). The calculation formula is:

P =
Vgs ∩ Vgt

Vgt
, R =

Vgs ∩ Vgt

Vgs
(6)

The F-score (F ) was then calculated by:

F =
2× P ×R

P +R
(7)

In addition, previous work Otani et al. (2019) has indicated that the use of random strategies to gen-
erate video summaries may yield a relatively high score. This study also employed the correlation
coefficient-based evaluation index proposed in this work to validate our method. The evaluation
metrics used were Kendall’s τ and Spearman’s ρ, which compare the ranking of frames based on
their ground truth and predicted scores.

4.1.3 IMPLEMENTATION DETAILS.

Following the previous work Zhang et al. (2016); Mahasseni et al. (2017), we extract 1024-
dimensional visual features from the pool5 layer of GoogLeNet Szegedy et al. (2015) pre-trained
on ImageNet for datasets. To reduce alignment operations in the later training phase, KTS Potapov
et al. (2014) is applied to each video in the dataset, and the data is presorted based on the clip count.
The number of heads in the multi-head attention layer is set to 8. The hidden size of the video sum-
marization models is set to 128. We set the learning rates of Consistent Model and Diverse Model to
0.0002. We adopt the Adam optimizer to update our models and we maintain weight decay of 1e-5.

The training for QVHighlights and Breakfast lasts 100 epochs, while SumMe or TVSum training
lasts for the same number of epochs. In the case of contrastive losses, a default temperature of 0.1
is set.

To ensure fair comparison using ranked-based metrics (Kendall’s τ and Spearman’s ρ), we employ
five different data splits for training and evaluating of standard datasets (SumMe and TVSum) and
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utilize the five splits provided in prior work Zhu et al. (2021) along with the fine-tuning method
discussed in the previous section.

4.2 EVALUATION RESULT.

We compare the proposed method TCL-VS with previous state-of-the-art (SOTA) unsupervised
methods on SumMe Gygli et al. (2014) and TVSum Song et al. (2015) datasets in Table 1 and
TCL-VS achieves the best results on both datasets. We observe that F1 score in SumMe dataset of
our TCL-VS is consistent with CLIP-It Narasimhan et al. (2021), which also utilizes a transformer
structure but integrates multimodal information. However, we achieve the same effect by utilizing
only a single modality.

Table 1: Overall performance (measured in terms of F-score %) on SumMe and TVSum datasets.
The first row presents the results of unsupervised methods, while the second row presents the result
of our method.

Methods SumMe TVSum
SGAN (2017) 38.7 50.8

SUM-FCN (2018) 41.5 52.7
DR-DSN (2018) 42.1 58.1

Sum-Graph (2020) 49.8 59.3
CLIP-Ituns (2021) 50.0 59.9
RSGNuns (2021) 42.3 58.0

Ours 50.2 61.9

Table 2: The results on SumMe and TVSum, using Kendall’s τ and Spearman’s ρ, are presented in
the following table. The first row contains the results computed using random scores, human scores,
and ground truth scores respectively. The methods in the second row are unsupervised methods,
while those in the third row are supervised methods. The best results of unsupervised methods and
supervised methods are highlighted in bold and underline.

Methods SumMe TVSum
τ ρ τ ρ

Random (2019) 0.000 0.000 0.000 0.000
Human (2019) 0.205 0.213 0.177 0.204
Ground Truth 1.000 1.000 0.364 0.456
SGAN (2017) - - 0.024 0.032

DR-DSN (2018) 0.047 0.048 0.020 0.026
RSGNuns (2021) 0.071 0.073 0.048 0.052

DSNet (2021) 0.051 0.059 0.108 0.129
RSGN (2021) 0.083 0.085 0.083 0.090
CLIP-It (2021) - - 0.108 0.147

Sum-Graph (2020) - - 0.094 0.138
iPTNet (2022) 0.101 0.119 0.134 0.163

A2Summ (2023) 0.108 0.129 0.137 0.165
TCL-VS 0.076 0.103 0.054 0.079

TCL-VS + fine-tuning 0.097 0.132 0.118 0.171

4.3 ABLATION STUDIES.

4.3.1 CONTRIBUTION OF DIFFERENT COMPONENTS

In this study, as shown in Table 3, the impact of each model (MI ,MD) and reweighting scheme on
the SumMe and TVSum dataset is analyzed. Initially, the performance of the MI and MD models
individually is demonstrated (Row 1-2). Subsequently, the framework performs optimally when
the predictions of both models are averaged (Row 3). Finally, the effectiveness of the reweighting
scheme using temporal similarity is illustrated (Row 4). We can observe that the weighted mean
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method (Row 3) is slightly superior in terms of rank correlation coefficient but shows a significant
difference in F-score.

Table 3: Ablation study of different components of our framework in standard datasets.
’MC’,’MD’,’Re’ represent temporally consistent model, temporally diverse modal and model
reweighting.

ID MC MD Re
SumMe TVSum

F1 τ ρ F1 τ ρ
1 48.2 0.030 0.039 58.0 0.035 0.050
2 41.8 0.060 0.081 59.3 0.056 0.082
3 46.3 0.080 0.108 61.2 0.058 0.084
4 50.2 0.076 0.103 61.9 0.054 0.079

4.3.2 DIFFERENT CLIP ALIGNMENT AND TRAINING METHODS

As shown in Figure 2, when training the Consistent model, it is necessary to align the clips first. We
have adopted three alignment methods for videos within a batch. The first method is to fill the end
of videos with a small number of clips with the clip projection of all zeros. This ensures that the
number of each video clip is consistent with the maximum number in the batch. The second method
involves repeatedly filling in the projection of the last video clip at the end. The third method is
to mirror and repeat the video clips in reverse until the number of clips is consistent. We have
abbreviated these three strategies as zero, copy, and reflection. During specific training, we applied
these three strategies to both the large video datasets (QVHighlights and Breakfast) and the standard
datasets (SumMe and TVSum). Additionally, we trained 100 epochs on a larger dataset to learn two
video clip processing abilities before conducting the training and validation on a standard dataset.
Ablation studies were also performed on the training methods, and the detailed results can be found
in Table 4.

Table 4: The effect of different clip alignment and training methods on the dataset. ’Pretrain’ indi-
cates training only on the QVHighlights and Breakfast datasets, while ’Standard’ indicates training
only on the SumMe dataset. ’zero’, ’copy’, and ’reflection’ represent the three clip alignment meth-
ods.

Train Data Clip Fusion F1 τ ρ

Pretrain
zero 46.6 0.036 0.048
copy 49.1 0.032 0.044

reflection 45.9 0.031 0.044

Standard
zero 49.0 0.072 0.095
copy 48.7 0.061 0.099

reflection 47.6 0.063 0.079

Pretrain + Standard
zero + zero 49.3 0.053 0.072
zero + copy 49.6 0.058 0.077

zero + reflection 49.6 0.046 0.062
copy + zero 49.7 0.072 0.099
copy + copy 48.1 0.054 0.074

copy + reflection 50.2 0.076 0.103
reflection + zero 49.2 0.060 0.083
reflection + copy 48.4 0.055 0.074

reflection + reflection 49.0 0.043 0.059

5 CONCLUSION

In this work, we address a new self-supervised video summarization method by training a video
summarization framework using two types of temporal contrastive losses. Through extensive ex-
periments on two benchmark datasets, we have demonstrated that our method outperforms other
state-of-the-art unsupervised alternatives. Moreover, the results obtained are comparable to or better
than most supervised methods.
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