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Abstract

Distributed training often suffers from high communication overhead due to large-
scale gradient synchronization. Although gradient compression—particularly at
4-bit or even lower precision—significantly reduces transfer volume, it typically
results in sacrifice in precision and degradation of the final model accuracy.

In this work, we introduce DUO (Double Update Overlap), a distributed train-
ing framework designed to mitigate accuracy degradation caused by gradient
compression without introducing additional overhead. DUO achieves this by in-
serting an additional high-precision gradient synchronization step into a previously
computation-only phase, so that its communication is fully hidden by computation.
We provide a comprehensive theoretical proof of convergence for DUO and validate
its effectiveness through extensive pre-training experiments on GPT models. Our
results indicate that DUO effectively restores accuracy when using 4-bit gradi-
ent compression, achieving performance comparable to uncompressed training.
Remarkably, DUO maintains minimal accuracy degradation even under extreme
compression scenarios, including 1-bit gradients or complete omission of the
low-precision gradient communication step (0-bit transmission).

1 Introduction

In recent years, transformer-based language models [3| [10} 25, 26]] have demonstrated superior
capabilities in learning and predicting sequence tokens based on contextual information. Thanks
to the attention mechanism, traditional NLP tasks such as question answering, language translation
and sentiment analysis have achieved remarkable improvements. Moreover, leveraging the attention
mechanism inherent to transformers, researchers have extended their applications to multimodal
domains, including image interpretation and video generation. Empirical evidence indicates that
larger transformer-based models can provide more powerful generative capability and consequently
improve output accuracy.

As model sizes continue to grow, distributed training has become essential for scaling deep learning,
enabling the use of many GPUs to handle large datasets and complex architectures. However, it also
introduces frequent GPU-to-GPU communication for synchronizing gradients and model parameters.
These communications must complete before the next training step can begin, creating dependencies
that stall GPU computation, thereby reducing overall throughput. As a result, the efficiency gains
from multi-GPU parallelism are often undermined by communication overhead.

Recent work has also explored optimizer-level strategies to improve stability and reduce communica-
tion [} 16l [7]]; however, these approaches are orthogonal to ours, as they modify the optimizer and
require retraining or retuning, while DUO preserves the existing training configuration and can be
plugged in without modification.
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However, despite its efficiency, aggressive quantization often harms model accuracy—particularly
during pre-training. Prior empirical studies [18} 16} 14, 28] show that gradients are highly sensitive
to precision loss, making gradient compression especially challenging. While methods such as error
feedback [15} 13} 21]] aim to mitigate quantization error and recover lost accuracy, they perform
poorly when applied to large language models (LLMs) pre-training under aggressive compression
(e.g., 1-bit precision). As shown in Figure[I] the variant SDP4Bit-G1-EF—which uses 1-bit gradient
compression with error feedback enabled—exhibits a significant accuracy gap relative to the baseline
and fails to converge. In contrast, DUO achieves accuracy comparable to the baseline.

These observations reveal a fundamental trade-off between communication efficiency and model
accuracy, which raises an important question: can we compress gradients without sacrificing
accuracy or throughput? In this work, we answer this question affirmatively by proposing DUO, a
high-accuracy communication-efficient training framework.

Our contributions are as follows:

* We introduce the Fast-Slow Reduction algorithm, designed to mitigate accuracy degradation due to
gradient compression.

* We propose DUO, a communication-efficient training framework that integrates the Fast-Slow
algorithm with system-level design to achieve high accuracy with negligible overhead.

* We establish a theoretical guarantee for the convergence of SGD with Fast-Slow algorithm, demon-
strating that it maintains the same convergence rate as standard SGD.

* We integrate DUO into Megatron-LM and conduct extensive experiments to evaluate both its
accuracy and efficiency. Results show that DUO achieves accuracy comparable to the uncompressed
baseline, even under extreme communication compression settings (1-bit and 0-bit).

2 Background and Motivation

Megatron-LM [22] is a widely used framework for training large language models (LLMs). It employs
three key strategies—Sharded Data Parallelism [36], gradient accumulation, and communication
overlapping—all of which are closely related to the design of our proposed DUO framework. To
provide context, we briefly introduce these strategies in the following sections.

2.1 Sharded Data Parallelism

Training LLMs such as GPT [I]] and LLaMA [25] necessitates distributed training strategies to
handle their extensive parameter sizes. Unlike naive Data Parallelism, Sharded Data Parallelism
(ShardedDP) partitions high-precision optimizer states across all GPUs, which reduces the memory
usage of the optimizer states by a factor of n, where n represents the number of GPUs. As a
result, ShardedDP changes the Naive Data Parallel communication pattern from AllReduce to a
ReduceScatter plus an AllGather, as we summarized in the following equations:

w = AllGather(w(1], ..., w[n]) (1
9p = VwLl(0; Dp) 2)
glp] = ReduceScatter(gy, .. ., gn) 3)
w(p] + OptimizerStep (w/[p], G[p]) 4)

At the beginning of each training iteration, each worker p holds its respective partition of the
parameters w(p| and the corresponding optimizer states. The training iteration proceeds as follows:



(I) An AllGather [8] operation synchronizes the model parameters across all workers. After this
synchronization, each worker holds a full replica of the model parameters w.

Each worker computes gradients g, based on its subset of data D).

(3) Gradients are synchronized using a ReduceScatter [9] operation. This results in each worker p
receiving a partition g[p] of the averaged gradients. In this paper, our main contribution is to optimize
this ReduceScatter operation for speed without sacrificing accuracy.

Each worker performs an optimizer step to update its local parameter partition w(p] using the
received gradient partition g[p], as well as the corresponding optimizer states.

Table 1: Notations of Sharded Data Parallelism.

D index of worker or the corresponding t index of iteration
shard/partition
w parameter weights wy weights in iteration ¢
wlp] pth shard of weights g gradients
gt,p | gradient produced by worker p in iteration ¢ g averaged gradients
g compressed gradients glp] | pth shard of averaged gradients

2.2 Gradient Accumulation

Gradient accumulation is widely used for training LLMs with large batch sizes. Pre-training of
LLMs typically requires massive batch sizes to improve training stability and efficiency. However,
computing on the full batch at once leads to excessive GPU memory consumption.

To address this, gradient accumulation divides a large batch into multiple micro-batches. Each
micro-batch is processed sequentially, with gradients locally accumulated in memory. Gradient
synchronization and weight updates occur only after all micro-batches within a batch have been
processed, reducing the frequency of communication-intensive synchronization.

As shown in Figure 2] gradient accumulation reduces communication frequency but introduces
communication-idle gaps between synchronization steps. In this paper, DUO exploits these idle
periods to overlap high-precision gradients communication that improve parameter and optimizer

state accuracy.

2.3 Communication Overhead Optimization Strategy

As illustrated in the first diagram of Figure [2] and discussed in Section [2.1] Naive Sharded Data
Parallelism requires two communication operations per iteration: an AllGather of weights and
a ReduceScatter of gradients. During these communication phases, the GPU must wait for the
communication to complete, remaining mostly idle and leading to significant computational waste
during training.

Overlapping and compression [30} 133} [17, 120} 31} 4] are two commonly used methods for reducing
communication overhead. We introduce these strategies in a progressive manner.

Computation-Communication Overlapping. To alleviate communication overhead, previous
works [[19} 136/ 14, 122] have explored overlapping strategies to better utilize computation-heavy phases.
The key idea is that gradient and weight communications need not be performed all at once; instead,
they can be partitioned into multiple steps and overlapped with nearby computations.

As shown in second diagram of Figure 2] overlapping strategies divide computation into buckets.
During the forward pass, the system performs computation on the current bucket while concurrently
gathering weights for the next one. Similarly, during the backward pass, gradient computation for the
current bucket overlaps with the gradient reduction of previous buckets.

However, modern GPUs offer significantly higher compute throughput than network bandwidth,
making communication the dominant bottleneck. Moreover, communication can only overlap with the
computation of the final micro-batch, leaving the remaining (n — 1)/n fraction of computation time
underutilized. As a result, even with overlapping techniques, a substantial portion of communication
remains non-overlapped.

Communication Compression. To further reduce the communication overhead, compression
is often applied as an additional step in communication-efficient training. Before transmission,
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Figure 2: An overview of distributed training with step-by-step integration of communication
reduction strategies.

data is first compressed into smaller size, significantly reducing communication volume. Prior
works [16, 28, [14]] have demonstrated that quantization is an effective method for LLM training,
where high-precision weights/gradients are scaled and cast into lower-precision formats. However,
achieving a high compression ratio without degrading model accuracy remains a major challenge.

2.4 Motivation

By leveraging grouped quantization and a weight-difference communication pattern, communication
compression method such as SDP4Bit [[14] successfully reduces communication to 4-bit precision
and is regarded as a state-of-the-art communication-efficient training framework for Sharded
Data Parallelism. However, it still suffers from accuracy degradation when gradients are compressed
to low precision (e.g., 4-bit), despite attempts such as Hadamard transforms to mitigate quantization
error. We attribute this performance drop to the high sensitivity of gradients to quantization errors.

Motivated by this limitation, we propose DUO — a communication-efficient training framework
designed to preserve both high accuracy and throughput. DUO achieves accuracy comparable to
full-precision baselines, even under ultra-low-bit (1-bit) gradient compression or 0-bit gradient
transmission. Additionally, it supports a broader class of compressors such as sparsification, low-rank
projection, sign-based compression — offering greater flexibility for future gradient compression
techniques. A formal definition of supported compressors is provided in Definition 4.2}

3 The DUO Framework

DUO is a system—algorithm co-design framework composed of three components: the base Fast-Slow
algorithm (Section , communication overlapping strategy (Section[3.2), and memory optimization
strategy (Section @ Together, these components enable DUO to achieve both high training
efficiency and high accuracy. We introduce these three components in the following sections.

3.1 Fast-Slow Reduction Algorithm

To improve training accuracy, we leverage the high-precision gradient information that is typically dis-
carded in naive gradient-compression strategies. As highlighted in the red part of Algorithm [If DUO
caches the full-precision gradient g” before gradient compression (Line 10). This gradient replica
will be used for performing high-precision ReduceScatter (Line 5), producing a non-compressed
averaged “slow” gradient that compensates for compression error in a later stage (Line 13-15), as
explained below.



Algorithm 1 Distributed training with DUO  Algorithm 2 SGD + Fast-Slow Update

Require: parameter weight (main copy): w, weight 1: Initialize main parameter weights
for forward-backward: w, weight for commu- wy = Wp, gs—o = 0fort =1
nication: w’, weight difference: d, gradient: g, 2. for all iteration ¢ € [T] do
worker: p, pth shard of weight or gpradlentf [P, 3. Update main weights with full-precision gra-
gradient produced by worker p: ¢”, gradients dient from previous iteration (slow update):
with compression g, averaged gradient: g, cur- Wi 4 We_1 — NGs—2

rent iteration: ¢ . -
4:  Compute gradient: g;—1 = V f(Ws—1;C—1)

1: function ForwardPass - t

20 di[p] = wilp] — wi-1]p] 5:  Compress gradient: ge-1 = Cy(ge—1)

3:  dy[p] + QuantizeWeightsDiff(d;[p]) 6: U?date temporary wei ghts (fast update):
4 dy + AllGather(d; [p]) Wy <= W = NGt—1

5:  Start AsyncReduceScatter(g? ;) 7. Compress w/elghf difference:

6: Wt 4— Wi—1 +dt At :C’U’(Q‘.Ut _wtfl)

7: output® < ForwardPass(;, input®) 8:  Update weights for forward-backward:
8: function BackwardPass Wy — Wi—1 + D¢

9:  g? < Gradient(w;, output?) 9: end for

10:  SaveReplica(g?)

11:  g? < CompressGradient(g?)

12:  gi[p] + ReduceScatter(g})

13:  gi—1[p] « Wait AsyncReduceScatter Finish
14:  Recover w;_1[p]

15:  w[p] < Optimizer(g;—1[p], w¢—1[p])

16:  wlsy[p] « Optimizer(G[p], wi[p])

To correct the compression error in the “fast” gradients, DUO introduces an optimizer rollback and
reset mechanism (Line 14). At each iteration, DUO rolls back the optimizer to restore the main
parameters and optimizer states to the state where the compressed gradients are not applied. After
that, an additional optimizer step is conducted with the non-compressed averaged gradients (Line 15).
By doing so, the optimizer update calculated based on compressed gradients in the last iteration is
dropped from the main parameters and the optimizer states, and replaced by the optimizer update
based on the non-compressed gradients, resulting in more accurate parameters and states.

The remaining steps of Algorithm 1| (non-red part) follow those of SDP4Bit. The difference between
the latest main parameters and the previous model parameters of the local shards on each worker are
calculated and compressed (Line 2-3), which is then gathered (Line 4) and used for updating the
unsharded model parameters (Line 6) for forward-backward computation (Line 7 and 9). The “fast”
gradients are compressed, synchronized, and used for producing a temporary version of the main
parameters on the local shard (Line 11, 12, and 16).

3.2 Overlapping ReduceScatter with Computation

Although Fast-Slow Reduction improves model training accuracy by incorporating high-precision
gradients, it also introduces an additional ReduceScatter communication step. Fortunately, this
ReduceScatter operation can be executed asynchronously alongside the computation.

As illustrated in Algorithm the "slow" gradients g7 are cached after they are generated during
backpropagation. These full-precision gradients are then averaged via a ReduceScatter and used in
an additional optimizer step in the next iteration (Line 15). Because the averaged "slow" gradients
are not immediately required, the ReduceScatter can be executed asynchronously and overlapped
with the computation during the interval between SaveReplica (Line 10 of iteration ¢) and optimizer
step (Line 15 of iteration ¢ + 1).

Because the original AllGather and ReduceScatter operations must complete before the next iteration
begins, they take precedence in scheduling. To avoid interference, DUO defers the execution of the
high-precision ReduceScatter until after the AllGather completes (Line 5).

As discussed in Section [2.3] existing overlapping strategies only utilize the computation of the
final micro-batch, leaving the rest of the computation time non-overlapped. Thanks to the Fast-



Slow algorithm, the involved ReduceScatter can overlap with the computation of all micro-batches,
providing significantly greater opportunities for communication overlap.

3.3 Memory Footprint Optimization

Implementing the Fast—Slow Reduction algorithm requires a high-precision gradient replica for
reduction. This replica is continuously used during the reduction phase. Moreover, during high-
precision gradient reduction, the GPU continues performing computations. To integrate Fast-Slow
Reduction efficiently without interfering with computation or memory usage, DUO employs a
gradient-offloading strategy. Gradients are first copied from device to host memory, where the
high-precision reduction is later performed. The averaged gradients are then copied back to the device
before executing the optimizer step.

Since CPU memory typically has low bandwidth,

a naive device-to-host (D2H) copy before gradi-
ent compression would be inefficient, leading to
long computation idle times. To achieve near-

zero-overhead offloading, DUO employs three 1) p2H offload of a Bucket  2) Finer Overlapping with Reduction
complementary techniques:

Bucket-Wise Offloading. As illustrated in Sec- | | | |
tion 23] modern LLM training commonly em-
ploys an overlapping strategy to reduce communi-

cation overhead. The core idea is to partition com- 3) GPU Memory Bridge
putation tasks into buckets, where each bucket S ] s
contains a set of parameters. Gradient reduction Backward Compressed  D2D Copy D2H Copy

: : : Ci tati Reducti
begins as soon as the computation for a bucketis ~ “°™Paton eduction

completed. Building on this overlapping strategy,
we align our gradient offloading granularity with
the computation task, introducing Bucket-Wise
Offloading. In this approach, the gradients for
each bucket are offloaded immediately after the
corresponding computation finishes, ensuring an
early start of D2H transmission.

Figure 3: Step-by-step optimization strategy for
device to host copy of gradients. First is a naive
D2H copy after computation, after adapting with
finer reduction and GPU bridge, the D2H can be
fully overlapped.

To accommodate the bucket-wise offloading strategy, we also reorganized the optimizer step to
operate at the bucket level. Additionally, we reuse the global gradient norm obtained from the
low-precision optimizer step in the previous iteration to ensure consistency of gradient clipping
between the two optimizer steps.

Finer Overlapping with Compressed Gradient Reduction. A compressed gradient reduction (fast
reduction) is performed to execute the first-stage optimizer step. As illustrated in the blue region of
the second diagram in Figure 3] a typical gradient reduction consists of four phases: (1) compression,
(2) point-to-point (P2P) communication, (3) decompression, and (4) local reduction. We observe that
only the final phase overwrites the previous gradient values. Therefore, the device-to-host (D2H)
transfer can be overlapped with the subsequent compressed gradient reduction at a finer granularity.
Therefore, the device-to-host (D2H) transfer can be overlapped with the first three phases of the next
compressed gradient reduction—compression, P2P communication, and decompression—thereby
reducing transfer overhead. A synchronization barrier is inserted before the local reduction phase to
ensure that the D2H transfer has completed.

GPU Memory Bridge. Even though we successfully exploit a larger overlapping space to reduce
overhead, we observe that the D2H transfer remains too slow to be fully overlapped without blocking
the reduction operation. As a result, this bottleneck affects overall training speed.

To address this issue, DUO introduces a GPU Memory Bridge, which temporarily caches gradients in
a small GPU memory buffer before transferring them to the host memory on the CPU. This strategy
acts as an intermediate buffer, effectively serving as a bridge between the GPU and CPU to mitigate
its impact on the subsequent reduction.

As illustrated in Figure 3] GPU Memory Bridge extends the available overlapping space with the
next bucket’s computation, further improving training efficiency. Notably, we set the memory bridge
buffer size equal to the bucket size and restrict its usage to a single buffer at any given time to achieve



minimal additional footprint increase. As shown in Table@ because the bucket sizes are small, this
memory increase is negligible.

4 Theoretical Analysis

In this section, we establish the theoretical guarantees of convergence for DUO. To simplify the
results, we prove the convergence of Algorithm[2] which is equivalent to Algorithm [T| with stochastic
gradient descent (SGD) as the optimizer, and hiding the details of sharded DP.

4.1 Recursive Error Correction

To make it easier to understand the intuition of the Fast-Slow Reduction algorithm, we present the
following equations to show how the compression errors from the weight difference compression and
gradient compression are recursively corrected in Algorithm 2]

Theorem 4.1 (Recursive Error Correction). The uncompressed weight difference can be recursively
expanded as: Ay = w, —Wi—1 = —NGi—1— (NGt—2 —NGi—2) + (A1 — A1), where (gi—2 — Gi—2)
corrects the error caused by gradient compression, and (Ay_1) — Ay_1) corrects the error caused
by weight difference compression.

Theorem 41| provides an important intuition for the convergence proof of Algorithm 2} It is indicated
that the error of fast-slow update on the parameter weights is composed of two parts: the recursively
corrected error of gradient compression, and the recursively corrected error of the weight difference.
With the help of this recursive error correction, we can unroll the compression error from the last step
back to the first step, and establish the corresponding upper bound.

4.2 Convergence Analysis

In our algorithm, we use SGD with gradient and parameter compression to solve the following
optimization problem: f* = min,, f(w), where f(w) is the objective function, w € R is the model
parameter.

Note that we use arbitrary (potentially biased) compressors for both gradient reduction and parameter
weight collection, while SDP4Bit [[14] only supports unbiased compressors for the gradients. We
formally define the compressors as follows.

Definition 4.2. [0-approximate compressor [15]] An operator C : R? — R? is a §-approximate
compressor for § € (0, 1] if |C(v) — v||? < (1 —§)||v||?, Vv € R4

We establish our analysis under the following assumptions.

Assumption 4.3. For distributed training with n workers, we define the compressed gradient as
9e = Cg(9e) = 5 2 pep) Co(9t.p), Where gy = - 37 11 gi.p, and g is the stochastic gradient
from the pth worker in ¢ iteration. We assume that C, is a d4-approximate compressor of the average
gradient g;, and C,, is a d,,-approximate compressor for weight difference compression.
Assumption 4.4. (Smoothness) We assume that f(x) is L-smooth: ||V f(x) — Vf(y)|| < L|lz —
yll, Yo,y € R, which implies f(y) — f(z) < (Vf(x),y — z) + 5lly — z|*.

Assumption 4.5. For any stochastic gradient V f(w; (), where ( is an independent random sam-
ple, we assume unbiasedness ELV f(w; Q)lw] = Vf(w), and bounded variance E[V f(w; () —
Vf(w)|?lw] < p|V f(w)|* + o (123], Assumption 3).

We derive the following error bounds on the convergence of Algorithm [2]as follows. All proofs can
be found in Appendix

Theorem 4.6 (Convergence error bound). For arbitrary non-convex function under Assump-
tion and with the §4-approximate compressor C4 for gradient compression and
the 0.,-approximate compressor C,, for weight difference compression, taking learning rate n <

Su . .. . . . X
\/ S6atz (o712 Algorlthmconverges to a critical point with the following error bound.:
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1

Theorem 4.6/ shows that our proposed algorithm has the same O (ﬁ) convergence rate as ordinary

SGD for general non-convex functions.

S Experiments

Our experiments are organized into two parts: accuracy and performance. Together, these evaluations
show that DUO improves training accuracy while maintaining nearly identical training speed in
Sharded Data Parallelism with gradient compression—and can even increase throughput by enabling
more aggressive compression.

5.1 Environment Setup

Model and Dataset. To validate the accuracy improvements of the proposed DUO method, we
conduct pre-training experiments on GPT models with sizes ranging from 125M to 6.7B. The
hyperparameter settings follow those of the OPT model [35]], ensuring that models of the same size
use identical configurations. For reproducibility, we provide the detailed configurations in Table[6]

(Appendix B).
We use The Pile [12]] as our training dataset due to its open-source availability and general applicability.

All pre-training tasks are run for 80 000 iterations, processing 80 billion tokens in total. Accuracy is
evaluated via validation-loss comparison across all settings.

To effectively evaluate the proposed method, we integrate DUO into Megatron-LM, one of the most
commonly used open-source LLM training frameworks.

Baseline and notation. We use SDP4Bit—the state-of-the-art low-bit compression strategy combined
with Sharded Data Parallelism (ShardedDP) for LLM pre-training—as our baseline. SDP4Bit applies
4-bit randomized symmetric linear quantization to both weight differences and gradients. In our
experiments, we retain the same 4-bit weight compression mechanism as in SDP4Bit but vary the
gradient quantization across different bit widths. DUO uses 4-bit gradient compression by default.
Suffixes such as G1 denote gradient bit-widths (e.g., DUO-G1 for 1-bit gradients).

Hardware environment. The experiments are conducted on three environments:

4-node setup with A100 GPUs: Each node is equipped with 4 NVIDIA A100-SXM4-40GB GPUs
connected via NVLink. Nodes are connected by 100 Gbps Slingshot links.

8-node setup with H20 GPUs: Each node is equipped with 8 NVIDIA H20 GPUs connected via
NVLink. Nodes are connected by 400 Gbps InfiniBand links.

4-node setup with single A100 GPU: Each node has a single NVIDIA A100-SXM4-40GB GPU.
Nodes are connected by 100 Gbps Ethernet links.

Table 2: Final validation loss | for various compression settings.
Grad Bits Strategy 125M  350M 1.3B 6.7B

32 Full Precision  2.2716  2.0582  1.8854  1.7527
4 SDP4Bit 22757 2.0629 1.8944 1.7570
DUO 22727 2.0592 1.8907 1.7535

1 SDP4Bit 24204 21843 2.0489 1.8434

DUO 22712 2.0686 1.8943 1.7572

0 DUO 22761 2.0628 1.8941 1.7550

5.2 E2E Accuracy Evaluation

We evaluate the accuracy of DUO with pre-training tasks. To demonstrate that DUO can achieve high
end-to-end training accuracy, we train GPT models of various sizes from scratch.

As shown in Table [2] we assess DUO’s performance under different gradient compression ratios.
The results indicate a noticeable accuracy gap between SDP4Bit and full-precision training. This



gap becomes more significant as using a more aggressive way for gradient compression or model
being larger. In contrast, DUO preserves accuracy even for larger models and ultra low gradient
communication bits, maintaining a final loss comparable to the full-precision training.

To further assess DUO under high-compression scenarios, we extend the SDP4Bit setting by reducing
the gradient bit-width to 1 or even 0. Note that “0-bit” does not mean that DUO completely removes
gradient communication. Instead, the low-precision gradient communication of the “fast” update is
removed, but DUO still performs a high-precision (slow) ReduceScatter.

As shown in Table[2] these extreme compressions results in a substantial accuracy drop for SDP4Bit
compared to full-precision training. In contrast, DUO maintains high end-to-end accuracy, demon-
strating robustness under severe communication constraints.

5.3 E2E Performance Test

We evaluate DUO in practical training tasks, focusing on its end-to-end (E2E) speed and memory
consumption. We use TFLOPS as the primary metric to measure E2E speed.

High-bandwidth environment. For fair comparison, both DUO and SDP4Bit use 4-bit gradient
quantization; detailed configuration are in Table[7] (Appendix [C). As shown in Table[3] despite intro-
ducing an additional high-precision reduction step, DUO achieves training throughput comparable to
SDP4Bit. We attribute this to DUQ’s carefully designed overlapping strategy, which effectively hides
communication latency behind computation.

DUO’s memory footprint closely matches that of SDP4Bit.. This demonstrating the effectiveness of
DUO’s high-precision gradient-offloading strategy. The slight increase in memory usage is due to
the GPU memory bridge used to mitigate device-to-host transfer overhead. Since the bridge buffer
size matches the bucket size and is manually configurable, this overhead does not negatively impact
overall performance.

Table 3: E2E performance comparison between DUO and SDP4Bit on two hardware environments:
8x8 H20 nodes and 8x4 A100 nodes. Throughput (TFLOPS =+ std) and GPU memory peak (MB).

odel | Method | H20 (88 H20 Nodes) | A100 (8x4 A100 Nodes)
| | Throughput (TFLOPS) Mem (MB) | Throughput (TFLOPS) Mem (MB)
13B DUO 70.82 + 0.63 15880 117.53 £0.49 21270
’ SDP4Bit 71.02 £ 0.63 15832 117.61 £2.35 20934
2B DUO 78.71 +£0.92 25600 125.31 £ 0.37 35298
’ SDP4Bit 79.15 4+ 0.80 25640 126.42 £+ 0.82 34422
6.7B DUO 84.09 &+ 2.04 16162 122.67 £ 3.76 26480
’ SDP4Bit 85.61 + 1.57 15692 121.05 £ 1.89 25684
13B DUO 93.02 &+ 1.08 27596 132.88 £0.95 27332
SDP4Bit 94.68 = 0.77 27220 136.73 £ 1.35 27142
18B DUO 100.85 £ 1.29 36540 116.37 £ 1.28 27378
SDP4Bit 102.93 +£1.04 35478 122.91 £1.16 27088

Low-bandwidth environment. We also evaluate DUO in a low-bandwidth cloud environment under
various network settings (10 Gbps and 5 Gbps) and gradient compression levels (from 4 bits to 0).
As shown in Table 4} DUO consistently achieves end-to-end throughput comparable to SDP4Bit
and outperforms the uncompressed baseline. Moreover, DUO-G1 and DUO-GO achieve higher
throughput than SDP4Bit, thanks to reduced gradient communication overhead.

Table 4: End-to-end throughput (TFLOPS) of different methods under constrained network band-
widths using the GPT-350M model with a gradient accumulation step of 32.

Bandwidth \ DUO-G4 DUO-G1 DUO-GO SDP4Bit Baseline
10 Gbps 130.81 £3.56 132.67+£2.94 133.10+4.29 130.52+2.50 108.89 4+ 2.25
5 Gbps 129.354+£2.96 131.25+3.16 131.97+3.06 129.84+2.97 98.26+1.32




5.4 Ablation Study

Overlapping capability of DUO’s reduction. DUO strategically overlaps it’s newly involved
communication with subsequent computations. To hide communication overhead, each iteration’s
computation time must exceed DUO’s high-precision gradient communication time.

The computation-to-communication ratio depends on network bandwidth, gradient-accumulation
steps and sequence length. As detailed in Section 2.2 and further elaborated in Section 3.2,
increasing gradient accumulation steps significantly enhances computation time per iteration:

ComputationTimePerlter = AccumulationSteps x MicrobatchComputationTime &)

Longer sequence lengths likewise increase computation intensity. Modern LLMs typically use long
sequences lengths (e.g., LLaMA 3: 128K, Qwen2: 32K), which substantially increase computation
intensity.

We evaluate various combinations of bandwidth, sequence length, and accumulation steps to further
demonstrate DUO’s overlap effectiveness. As shown in Table[5] both larger accumulation steps and
longer sequence lengths contribute to a higher computation-to-communication ratio, resulting in
better overlap even under low bandwidth conditions.

Table 5: Computation vs. Communication Overlapping Performance. Breakdown results across
bandwidths (10/5/2 Gbps), sequence lengths (2048/4096), and accumulation steps (8/16/32).

Bandwidth Seq. Len Acc. Step | Method | E2E Throughput (TFLOPs) | Grad Comm / Iter (ms) | Comp /Iter (ms) | Full Overlap

32 DUO 122.6 2135 6042 v
32 SDP4Bit 123.0 — 6042
4096 16 DUO' 122.6 1959 3030 v
16 SDP4Bit 123.1 — 3030
8 DUO 86.7 2029 1533 X
10 8 SDP4Bit 117.5 — 1533
32 DUO 83.5 2215 3024 v
32 SDP4Bit 84.4 — 3024
2048 16 DUOA 71.2 2125 1545 X
16 SDP4Bit 78.8 — 1545
8 DUO 39.0 2136 771 X
8 SDP4Bit 71.1 — 771
32 DUO 128.9 3033 6041 v
32 SDP4Bit 129.1 — 6041
4096 16 DUO‘ 119.6 3137 3040 X
16 SDP4Bit 123.4 — 3040
8 DUO 59.5 3287 1564 X
5 8 SDP4Bit 112.7 — 1564
32 DUO 80.54 2964 3012 v
32 SDP4Bit 83.4 — 3012
2048 16 DUOA 50.2 3364 1520 X
16 SDP4Bit 713 — 1520
8 DUO 22.7 3378 791 X
8 SDP4Bit 65.4 — 791
32 DUO 101.6 7973 6038 X
32 SDP4Bit 119.4 — 6038
4096 16 DUOA 49.8 8198 3045 X
16 SDP4Bit 105.0 — 3045
8 DUO 24.7 8273 1558 X
2 8 SDP4Bit 84.8 — 1558
32 DUO 41.1 7967 3048 X
32 SDP4Bit 72.7 — 3048
2048 16 DUO_ 20.1 8179 1566 X
16 SDP4Bit 59.9 — 1566
8 DUO 10.0 8126 839 X
8 SDP4Bit 43.8 — 839

6 Conclusion

In this paper, we introduce DUO, a high-precision, communication-efficient training framework.
DUO incorporates Fast-Slow, a gradient compression error reduction algorithm, along with a carefully
designed optimization strategy. By integrating these components, DUO improves training accuracy
to a level comparable to uncompressed training, even at an extreme compression ratio of 0 or 1 bit.
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A  Proofs

We use the following lemma (simplified from [23], Lemma 14) without proof.

Lemma A.1. For every non-negative sequence {r,};>o and any parameters a > 0, ¢ > 0, T > 0,
there exists a constant n < % such that

T

1 T — Ti+1 1 ro—rrp aro 2./crg
- 7 -7 < .
T+1§( ten) =T TSt

Theorem 4.1 (Recursive Error Correction). The uncompressed weight difference can be recursively
expanded as: Ay = wy — W1 = —nGs—1— (Ngt—2 = NGe—2) + (Ds—1 — A1), where (gr—2 — Gi—2)
corrects the error caused by gradient compression, and (Ay_1) — Ay_1) corrects the error caused
by weight difference compression.

Proof. For the uncompressed weight difference A; = w} — w;_1, we can expand it as follows.

Ay
= ’LU; — ’LZJt_l
= ws —NGg—1 — Wp—1
=Wy — Wy—1 — NGt—1-
We further expand the term w; — w;_1 as follows.
Wy — Wi—1
= Wt—1 — NGt—2 — ( o+ A 1)
= W¢—1 —NGt—2 — ( Wi—g + Ay 1+(At 1— A 1))
= W1 — NGt—2 — (wt L (A — Ay 1))
= W1 —NGt—2 — (wtfl —NGi—2 + (Atfl - At71)> .
Combining the above equations together, we have
Ay
=Wy — Wi—1 — NGt—1
= W1 — NGt—2 — (wt—l — G2 + (Ap_q — At—l)) —Ngi—1
= —ngi_2 — (—ﬁgt—z + (Ao — Atfl)) —NGi—1

= —NGi—1 — (NGi—2 — NGi—2) + (Dy—1 — Ay_1).
O

Theorem 4.6 (Convergence error bound). For arbitrary non-convex function under Assump-
tion and with the §4-approximate compressor C, for gradient compression and
the 0.,-approximate compressor C,, for weight difference compression, taking learning rate n <

5u . . . . . . X
\/ etz (o2 Algorzthmconverges to a critical point with the following error bound.:

N

- T\/TU

N V/384Lo? (danL + d,,) (f(wo) — f*)
Tdw ’

1 iE IV o) 7] < (f(wo) — f*) /6144aL%(p + 1)
t=1

10(1—684)+8

where o = 3
w
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Proof. Using smoothness (Assumption .4), we have
n*L 2
Flwer) < fwe) =0 (VF(we), ge—1) + = llge—1 "

Conditional on w, taking expectation on the random sample (;_; (denoted by E.), we have
Eclf (wit1)]

n*L
< fwe) =0 (Vf(we), Vf(we-1)) + T]ECHQFH\Q
2
= Jw) = 0 (VS (), 9 f(@ ) + LB gy = 9 f(a) + VS ()P

= f(we) =0 (Vf(w), Vf(@i-1)) + E]Ec [lge-1 = Vf(@e-1)|* + [V f (@e-1)]?]

< flwn) = (V1. V() + D 9 2+ T
= flwe) =0V fwe), V(i) — Vf(wt)+Vf(wt)>
+MIIW( )—Vf(wt)+Vf(wt)||2+@
< f(wn) =0 (V£ (w0), VI (i-1) — VFwr) —llV (w)]?
+ 1P L(p+ DIV (@) — VF(we)|* + Lo + D[V £ (o) + g
= f(w) =0 (1= Lo+ D) [V ()] + L

— 1 {Vf (we), VF (e-1) = V. (we)) + 1 Llp + DIV (@11) = Vf (wy)|]
< flwn) =0 (1 =L+ 1) [V FCwp) + T2
+ 2NV Fwe) 2+ FIVF (@em1) = VF (wo)] > (a,b) < 3lall? + 311p]
+ 1 L(p + 1)V (ie-1) = VF (wr)|

= flw) =7 (1 —nLip+ 1)) IVF@ol? + (5 +0*Llo+1)) IV F (1) = V Fwe)]|?

2
2702
+ U 5
Again using smoothness, and taking n < LT +1) which leads to —n (7 —nL(p+ 1)) % and
Z4+n2L(p+1) < 2, we have
E¢[f(wit1)]
< flw) = IV S0 + LIV 1) - )+ T2

7 3nL? N
< flwy) — ZHVf(wt)H2 + THwt — | + 5

Now we establish the upper bound of ||w; — ;_1]|? as follows.
First, using wy = wi—1 — Nge—o and wy_1 = Wy_o + At_l, we have the following equations:
Wy — Wi—1
= w1 —NGr_a — W2 — Ay
= W1 — NGi—2 — We—2 — Cop(Wi_q — Wy—2)
= w1 —NGt—2 — Wi—2 — Cop(We—1 — NGt—2 — Wy—_2)
= w1 — NGt—2 — Wi—2 — Co(Wi—1 — NGt—2 — Wi—2) + NGt—2 — NYGi—2-
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For Va,b > 0, we have

[w; — @1 )?
= lwi—1 = NGi—2 — Wi—2 — Co(Wi—1 — NGr—2 — We—2) + NGr—2 — NGe—2||?
< [lwi—1 = ndi—2 — Wi—2 — Cu(wi—1 — ndi—z — Wi—2)| + [nGi—2 — ngi—2|]?
< (14 a)||wi—y — nGr—2 — Wi—2 — Cop(Wi—1 — NGt—2 — Wr—2)|*
+ (1+1/a)[nge—2 — nge—2|? >y = arl < a? o
(14 a)(1 = 6u)llwe—1 = nGe—2 — De|” + (1 + 1/a)|[ngi—2 — ngi—2|?
(14 a)(1 = 6,) (1 + b)[lws—1 — @ —o?
+ (1 +a)(1=6,)(1+1/b)|Inge—2l” + (1 4+ 1/a)[ngi—2 — nge—2|?
< (T+a)(1 = 6y) (1 +b)[Jws—1 — ol
+2(1+a)(1 = 8u)(1+ 1/0)7°[|ge—2|* + 2(1 + a)(1 = 6u) (L + 1/0)n?(|Ge—2 — ge—2]I”

+ (1 +1/a)n?||Gi—2 — g2l

VI, y

w‘@
)

<
<

Also, taking §-approximation w.r.t. the gradient compressor C,, we have

[[wy — 1 ?
< (1 4a)(1 = 6u)(1+b)|lwi—1 — Wyl

+2(1+a)(1 = 6u) (1 + 1/0)7%||gs—2|?

+[(1+1/a) +2(1 4 a)(1 = 6,) (1 + 1/0)] n*||ge—2 — gr—ol|®
< (T+a)(1 = 6,) (1 +b)|Jws—1 — w2

+2(1+a)(1 = 8u)(1 + 1/0)7°]| ge—2]|?

+ (1 +1/a) +2(1 + a)(1 = 8,) (1 + 1/0)] 7*(1 = 8g)l|gs—|?
= (1+a)(1 = 6u)(1 +b)|Jwi_1 — W2

+ 201+ a)(1 = 8u) (1 +1/b) + (1 + 1/a) (1 = 8)] n?[|gs—2|?

+ 201+ a)(1 = 6u) (1 + 1/0)(1 = 6,)] [l g1—21?

Further, taking expectation w.r.t. the random sample (;_o (denoted by E.), and denoting o =
214+ a)(1 —0,)(1+1/b) + (1+1/a)(1 —64) +2(1 + a)(1 — 6,)(1 + 1/b)(1 — d,), we have
E¢ [[|lwe — @1 ]]

< (T+a)(1 = 6u) (1 +b)|Jwi 1 — W al® + an? [V f (@) [|* + B [lg—2 — Vf(@r—2)[*]]
< (1+a)(1 = 60) (1 +b)|[w 1 — Wil + an?(p + VIV f (@ -2)|* + an’o®.

Then, taking a = 2(15_1“5“)) b= 2(2‘5_‘“51“), we have

Ec [[lwe — wi—1]?]
(1= u/Dllwimr — @il + ar(p+ D[V F(@e—a)|> + ano”
(1= bu/Allwir — 2> + 2002(p + 1)V (wi—1) ]
+ 200 (p + DIV f (1) — Vf (i) + o
< (1= G /D1 — @eall? + 2002 (p+ 1)V F(we—1)|12 + 2082(p + 1) L1 — s
+ an?o? > smoothness
< (1= 0u/8)[[we—1 — we—a|® + 201 (p + |V f (we—1)|* + an’o?,
> using n < ,/wa(gw, ie. 2am*(p+1)L? < 2w

oY

[VARVAN
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where « could be simplified as

=21+ a)(1— 4, )(1+1/b)+(1+1/a)(1—5 )+ 201+ a)(1 — 8,)(1+ 1/b)(1 — 6,)
R L R R B

- 3w 3w

1o -6,)+8

S P

We simplify the notation by denoting E[-] = E¢ [-], and unroll the sequence back to ¢t = 2, which
yields:

E [[|wy — we-1]]
¢
< Z(l —6u/8)" 7 [20m*(p + 1)V f(wr—1)|* + an®c?]  pw; — g =w; —wo =0
T=2
t ¢

<2an*(p+1) Y (1= 6/8) " [IVf(wr—)|*] + an?o® Y (1~ 6,/8)""

T=2 7=0
2 ‘ t—7 21, Som’o®
<20 (p+1) Y _(1= 00 /8)" " [IV flwr )] + —5—
T=2 w

t —
>3 oo(1= %) < e

Then, staking E [||w; — w;—1]|?] and taking total expectation, we have

d : t—7 2 8T0”7202
<200 (p+1) Y0 D (1= 6u/8) 7 [IVF (wr)[P] + =5
t=2 7=2 w
T [+oo 2 2
- 8Tan“c
<2013 (570000 | st 4 L5
t=2 =0 w
16an®(p+1) d ,  8Tan?c?
< TZHVf(wt—l)H R —

—
-1

16047] (p+1) Z 2 8Ta770
= IVfw)|® + ———

16an?(p +1) 5  8Tan?c?
000 ) 5 1 a2+ ST

IN

t=1
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Putting all the ingredients together and taking total expectation, we have

éE[f(th)]

: tET:lE[f(wt)] . ZiE [ £ (w)?] + 3"L2 tTl E [Jlw; — i1 ])?] + TngzLUQ

) iw(wt” ) ZéE[”Vﬂ oI + 22 | 16er o+ ) ;IIW wo) + L
+ T”22L”

6Tan®L?c? Tn*Lo?
w2

; / 5 . 3nL® 16an?(p+1) _ g
>using n < %LQO‘%H), Le. =7 5 <3

T T
<Y Elfw)] - £ Y E[IVFw)]?] +

Re-arranging the terms, we have

6T an?L20? + Tn?Lo?
Ow 2
> note that w; = wy

T
"Z [V £ (wa)l|?] < E[f(wo)] — E[f(wr)] +

o |

T
8E[f(wo) — f(wr)] | 48an*L?0? 2

= T; [IV £ (we)|?] < T . ke’

Finally, using Lemma[A-T] we have
T
7 Z [19f (wn)]
_ 272 2
S SE[f(wo)  Flwr) | Wl
T77 Ow
< (f(wo) — f*) /6144 L2(p + 1)2 \/384L02 (4damL + by) (f(wo) — f*)
- Ty VT, '

- O : 1 O I
> taking 1) <\ / gaarzfprnz < Min <4L(p+1)’ \/16a(p+1)L27 \/96L2a(p+1))

O

B Training Configuration for the E2E Accuracy Test

Table 6: E2E accuracy task training parameters.
Model Size  Learning Rate Betas Epsilon ~ Weight Decay  Batch Size

125M 6e-4  0.9,0.95 le-8 0.1 512
350M 3e-4  0.9,0.95 le-8 0.1 512
1.3B 2e-4  0.9,0.95 le-8 0.1 512
6.7B 1.2e-4 0.9,0.95 le-8 0.1 512
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C Training Configuration for the Throughput Test

Table 7: Training configuration for the throughput test on A100 and H20 systems.

System Parameter 1.3B 27B 6.7B 13B 18B
TP Size 4 4 4 4 4
PP Size 1 1 1 2 2
DP Size 8 8 8 4 4

ALY Grd AccumSeep 32 32 32 32 32
Microbatch Size 4 4 1 1 1
Seq. Length 4096 4096 4096 4096 2048
TP Size 8 8 8 8 8
PP Size 1 1 1 1 1
DP Size 8 8 8 8 8

H20(®®)  Grad AccumStep 32 32 32 32 3R
Microbatch Size 4 4 1 1 1
Seq. Length 4096 4096 4096 4096 4096
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to " ", itis perfectly acceptable to answer " " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
" "or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist",
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction accurately shows the contribution
in the paper.

Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]
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Justification: In Sections 2.3 and 3.2, we discuss that the proposed method is only efficient
when the newly introduced communication can be effectively overlapped with computation.
Additionally, in Section 5.1, we clearly specify the dataset used in our experiments.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

 The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The full set of assumptions could be found in Section 4.2, and complet proof
are given in Appendix A.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
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Justification: We list the models and datasets used in our experiments in Section 5.1, and
provide detailed training hyperparameters in Appendices B and C.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The dataset used in our experiments is open-sourced and publicly available
on Hugging Face. We also provide our source code along with detailed instructions to
reproduce the main training results.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.
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* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The experiments hyperparameters for both accuracy and performance test can
be found in Appendices B and C.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report standard deviations for all performance tests to indicate variability
and ensure statistical transparency.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
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11.

Justification: The detailed experiment environments can be found in Section 5.1.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the code of ethics of NeruIPS and don’t think this work
have any negative social impact or potential harmful consequences.

Guidelines:

* The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: The goal of this work is to provide a higher training accuracy when compression
is being used, we don’t publish new datasets or new models.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

e If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards
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Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper does not release any new dataset or new model.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the original paper that produced the code package or dataset,
and included the license in the source code package.

Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We have included the license in the source code package, which is aligned
with the code packages that our work is based on.

Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.
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* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: This research does not involve LLMs as any important components.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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