

000 001 002 003 004 005 ABPT: AMENDED BACKPROPAGATION THROUGH 006 TIME WITH PARTIALLY DIFFERENTIABLE REWARDS 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019
020
021
022
023
024
025

ABSTRACT

026 Quadrotor control policies can be trained with high performance using the ex-
027 act gradients of the differentiable rewards to optimize policy parameters via
028 backpropagation-through-time (BPTT). However, designing a fully differentiable
029 reward architecture is often challenging in real-world high-level tasks rather than
030 control in simulation. Partially differentiable rewards will result in biased gradient
031 propagation that severely degrades training performance. To overcome this lim-
032 itation, we propose Amended Backpropagation-through-Time (ABPT), a novel
033 approach that mitigates gradient bias while preserving the training efficiency of
034 BPTT. ABPT combines learned 0-step returns and analytical cumulative rewards,
035 effectively reducing the bias by leveraging value gradients from the learned Q-
036 value function. Additionally, it adopts entropy regularization and state initializa-
037 tion mechanisms to improve training efficiency. We evaluate ABPT on four rep-
038 resentative quadrotor flight tasks in both real world and simulation. Experimental
039 results demonstrate that ABPT converges significantly faster and achieves higher
040 ultimate rewards than existing representative learning algorithms, particularly in
041 tasks involving partially differentiable rewards.
042

1 INTRODUCTION

043 Quadrotors have demonstrated significant potential in various real-world applications including wild
044 rescue, dangerous high-altitude work, and delivery. Recent work (Loquercio et al. (2021; 2019);
045 Kaufmann et al. (2018)) has shown end-to-end policies can be learned through imitation learning
046 for controlling quadrotors from raw sensory data. However, the performance is largely restricted by
047 expert’s capability. Though reinforcement learning (RL) can address this limitation through self-
048 exploration, its policy updates rely on gradient approximations (Sutton & Barto (2018)), which
049 require extensive sampling or replay mechanisms and often result in slow convergence and sub-
050 optimal training outcomes. Compared with imitation learning and traditional RL algorithms, recent
051 studies (Zhang et al. (2024); Wiedemann et al. (2023); Lv et al. (2023); Song et al. (2024); Hu et al.
052 (2025)) have demonstrated that directly leveraging first-order gradients for policy learning leads to
053 faster convergence and superior performance, particularly in quadrotor tasks (Zhang et al. (2024);
Wiedemann et al. (2023)).

054 Using first-order gradients for training requires not only the dynamics but also the reward func-
055 tion to be differentiable. However, designing fully differentiable rewards is often impractical for
056 complex quadrotor tasks. Reward functions in such scenarios often include non-differentiable com-
057 ponents, such as conditional constants or binary scores (e.g., granting points upon gate crossing in
058 a racing task or upon object detection in a search task), which violate differentiability requirements.
059 These non-differentiable elements disrupt the computation graph during backpropagation-through-
060 time (BPTT), leading to biased first-order gradients—a phenomenon we term **Biased Gradient**.
061 This bias misguides training, causing optimization to stall in local minima and deviate from the
062 intended direction of improvement.
063

064 To address this issue in quadrotor tasks, we propose an on-policy actor-critic approach - **Amended**
065 **Backpropagation-through-Time (ABPT)**, which mitigates the bias gradient introduced by the non-
066 differentiable rewards while keeping high policy learning performance in terms of training speed
067 and converged rewards. Our approach combines 0-step returns with N-step returns (Sutton & Barto
068 (2018)), leveraging value gradients generated by the 0-step returns to balance first-order gradient
069

Figure 1: Our trained policies were deployed in the real world with zero-shot sim-to-real transfer. Additional results are provided in the supplementary video, which showcases four tasks : hovering, landing, racing, and tracking, from left to right.

accuracy and exploitation. Additionally, ABPT incorporates entropy to suppress negative impact by the instability of critic learning. It also employs a replay buffer to store state experiences, initializing episodes with these states to enhance sampling efficiency. We evaluate our method on four representative quadrotor tasks, comparing it against classic policy gradient and first-order gradient methods. These tasks are designed to progressively increase the reward non-differentiability, testing the adaptability of each approach. Experimental results demonstrate that ABPT achieves the fastest convergence and highest final rewards across all baselines. This superiority is attributed to ABPT’s ability to compensate for biased gradients and enhance exploration via entropy regularization and state replay. Furthermore, ABPT exhibits robustness across varying learning rates and reward structures. Our technical contributions are summarized as follows:

- We propose ABPT, a novel approach to address the challenges in first-order gradient learning, including biased gradients caused by non-differentiable rewards and susceptibility to local minima.
- We provide a comprehensive analysis of ABPT’s effectiveness, offering insights to advance differentiable physics-based learning methods.
- We validate ABPT-trained policies of four representative quadrotor tasks in the real world through zero-shot sim-to-real transfer.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING

Traditional reinforcement learning can be divided into two classes: model-free RL and model-based RL. Model-free RL includes value-based and policy-gradient methods. Value-based methods learn value functions to estimate long-term rewards. DQN (Mnih (2013)) introduced neural networks for discrete actions, while DDPG (Lillicrap (2015)) extended this to continuous action spaces. TD3 (Fujimoto et al. (2018)) reduced overestimation bias with multiple value networks, and SAC (Haarnoja et al. (2018)) used a maximum entropy framework for robust high-dimensional learning. Policy-gradient methods directly optimize policies using gradients. TRPO (Schulman (2015)) stabilized updates via trust regions, and PPO (Schulman et al. (2017)) simplified optimization with a clipped surrogate objective.

In contrast to model-free RL which treats the environment as a black box, model-based RL (Mollerup et al. (2023)) introduces an additional process to learn the environment’s dynamics. For example, PILCO (Deisenroth & Rasmussen (2011)) and Dyna-Q (Sutton (1990)) leveraged learned environment models to generate simulated experiences to accelerate training. Methods like (Chua et al. (2018); Watter et al. (2015)) employ trajectory sampling to plan over learned environment models. Dreamer (Hafner et al. (2019)) embedded entire functions into a latent space, enabling end-to-end policy updates via backpropagation-through-time (BPTT). Despite their advantages, existing RL methods do not explicitly utilize the dynamics of robotics that can be precisely described by physical laws.

108
109

2.2 DIFFERENTIABLE SIMULATORS

110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

Policy learning via differentiable physics is an approach that integrates the physical simulations with differentiable dynamics to enable policy learning directly by using gradient-based optimization. Making the dynamics differentiable in the simulator is the key to this approach. DiffTaichi (Hu et al. (2020)) is a comprehensive differentiable physics engine that includes simulations of fluid, gas, rigid body movement, and more. In the field of robotics, Brax (Freeman et al. (2021)) offers differentiable versions of common RL benchmarks, built on four physics engines, including JAX and MuJoCo (Todorov et al. (2012)). Another line of research focuses on addressing challenges in contact-rich environments. For example, Heiden et al. (Heiden et al. (2021)) tackle the contact-rich discontinuity problem in quadruped robots by employing a neural network to approximate the residuals. Dojo (Howell et al. (2023)) enhances contact solvers and integrates various integrators to accelerate computations while maintaining fidelity. VisFly (Li et al. (2024)) introduces a versatile drone simulator with fast rendering, based on Habitat-Sim (Savva et al. (2019)), providing a platform for high-level applications. To enhance the efficiency, many simulators leverage GPU-accelerated frameworks like JAX (Schoenholz & Cubuk (2020)) and PyTorch (Paszke et al. (2017)) for faster computations.

125
126

2.3 FIRST-ORDER GRADIENT TRAINING

127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

With the differentiable simulators, the policy can be trained through BPTT by using the first-order gradients. Though first-order gradients enable faster and more accurate gradient computation, they suffer from gradient explosion/vanishing or instability caused by smooth dynamics. Many attempts have tried to address these issues and strengthen robustness. PODS (Mora et al. (2021)) leverages both first- and second-order gradients with respect to cumulative rewards. SHAC (Xu et al. (2022)) employs an actor-critic framework, truncates the learning window to avoid vanishing/exploding gradients, and smooths the gradient updates. AOBG (Suh et al. (2022)) combines ZOG (policy gradient) with FOG, using an adaptive ratio based on gradient variance in the minibatch to avoid the high variance typical of pure FOG in discontinuous dynamics. AGPO (Gao et al. (2024)) replaces ZOG in mixture with critic predictions, as Q-values offer lower empirical variance during policy rollouts. While both AGPO and AOBG converge to asymptotic rewards in significantly fewer timesteps, the mixture ratio requires excessive computational resources, leading to longer wall-time. AHAC (Georgiev et al. (2024)) makes the horizon adaptive to reduce sampling error in scenarios involving stiff dynamics. SAPO (Xing et al. (2024)) introduces entropy to strengthen the training stability especially in soft-body simulation. All these variants are designed to improve training efficiency and have been validated on controlled simulation benchmarks. However, although SHAC, SAPO, and AHAC incorporate critics for learning, their value functions are positioned only at the end of the horizon, which prevents them from addressing the gradient bias introduced by non-differentiable rewards within the horizon (as explained in Section 4).

146
147

3 PRELIMINARIES

148
149
150
151
152
153

The goal of reinforcement learning is to find a stochastic policy π that maximizes the expected cumulative reward, or the expected return, over a trajectory τ . In a common actor-critic pipeline, both the actor π_θ and the critic – either the action-value function $Q_\phi(s, a)$ or the state-value function $V_\phi(s) = \mathbb{E}_{a \sim \pi_\theta}[Q_\phi(s, a)]$ – are approximated by neural networks with parameters θ and ϕ . The key problem is how to estimate the gradients to optimize the expected return. The methods could be divided into two following categories:

154
155
156

Policy Gradient. Policy gradient methods estimate the gradient of the expected return using the log-probability of sample trajectories, conditioned on the policy’s action distribution. Given a batch of experience, the policy gradient is computed as:

157
158
159
160

$$\nabla_\theta^{[0]} \mathcal{J}_\theta = \frac{1}{|\mathcal{B}|} \left[\sum_{\tau \in \mathcal{B}} \sum_{t=0}^T \nabla_\theta \log \pi_\theta(a_t | s_t) A^{\pi_\theta}(s_t, a_t) \right], \quad (1)$$

161

where $A^{\pi_\theta}(\cdot)$ represents the advantage derived from the value functions using current policy, \mathcal{B} denotes the minibatch of sampled trajectories, τ represents a trajectory within the minibatch. Because

162 this formulation does not require differentiating through the environment dynamics, it is also named
 163 zeroth-order gradient (ZOG).

164 **Value Gradient.** Value gradient methods compute the policy gradient by differentiating through the
 165 action-value function:

$$167 \nabla_{\theta}^{[q]} \mathcal{J}_{\theta} = \frac{1}{|\mathcal{B}|} \left[\sum_{i=1}^{|\mathcal{B}|} \nabla_{\theta} Q_{\phi}(s^i, \pi_{\theta}(s^i)) \right] \quad (2)$$

169 (Gao et al. (2024)) named this gradient estimator as Q gradient (QG). Compared with ZOG, the
 170 accuracy of value-function approximation is particularly critical for actor training, since QG relies
 171 directly on backpropagation through the action-value function. In contrast, ZOG estimates advan-
 172 tages with respect to the current policy, which makes actor training more robust to imperfections in
 173 critic learning.

175 4 FIRST-ORDER GRADIENT APPROACH WITH NON-DIFFERENTIABLE 176 REWARDS

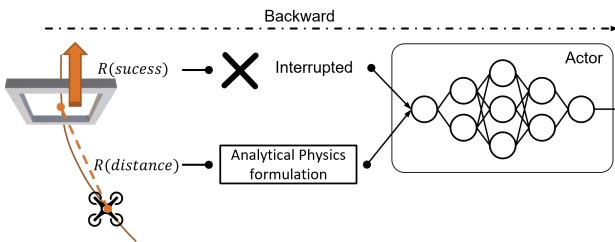
178 **First-order Gradient.** Given the state dynamics T and reward function R being differentiable,
 179 one can compute the exact gradients of the expected return for policy learning via backpropagation
 180 through time. This exact gradient estimate is called first-order gradient (FOG):

$$182 \nabla_{\theta} \mathcal{J}_{\theta} = \left(\sum_{k=0}^{N-1} \gamma^k \frac{\partial R(s_{t+k})}{\partial \theta} \right), \quad (3)$$

185 where N represents the horizon length, i denotes the i -th trajectory within the minibatch, and R
 186 represents the reward function. To consider infinite return while avoiding gradient explosion, an
 187 approximated N-step return (Sutton & Barto (2018)) has been introduced in (Xu et al. (2022)):

$$188 \nabla_{\theta} \mathcal{J}_{\theta} = \left(\sum_{k=0}^{N-1} \gamma^k \frac{\partial R(s_{t+k})}{\partial \theta} \right) + \gamma^N \nabla_{\theta} V_{\phi}(s_{t+N}). \quad (4)$$

191 Here, V_{ϕ} is the state-value function reparameterized by ϕ . As shown in (Xu et al. (2022)), using
 192 this approximated N-step return can introduce smooth landscape for optimization and mitigate the
 193 gradient explosion issues. However, it cannot address non-differentiable rewards as we will discuss
 194 later. Compared to Equation (2) and Equation (1), Equation (4) incorporates component that could
 195 be optimized by precise gradient descent.



205 Figure 2: An illustration for explaining biased gradient. In a racing task introduced in Section 6.1,
 206 the reward for passing the gate is a conditional constant, unable to automatically compute gradients.

207 **Biased Gradient.** When the rewards are partially differentiable, the gradients of non-differentiable
 208 part of the rewards will be absent from backpropagation. For example, as shown in Figure 2, a racing
 209 task’s reward function consists of two components. The first one R_{dist} depends on the distance from
 210 the drone to the gate to encourage the drone to move toward the gate, which is differentiable w.r.t.
 211 the state. The second one R_{succ} is a conditional constant score given for successfully passing the
 212 gate, which does not involve gradient computation w.r.t. policy parameters. Therefore, although the
 213 desired objective involves both rewards

$$215 \mathcal{J}_{\theta} = \left(\sum_{k=0}^{N-1} \gamma^k (R_{dist}(s_{t+k}) + R_{succ}(s_{t+k})) \right) + \gamma^N V_{\phi}(s_{t+N}), \quad (5)$$

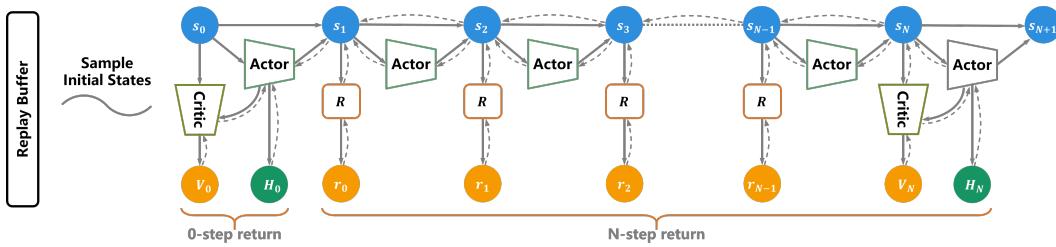
216 backpropagation-through-time can effectively optimize only the differentiable components:
 217

$$218 \quad 219 \quad 220 \quad \mathcal{J}_\theta = \left(\sum_{k=0}^{N-1} \gamma^k R_{dist}(s_{t+k}) \right) + \gamma^N V_\phi(s_{t+N}), \quad (6)$$

221 As a result, the gate crossing reward R_{succ} , despite being crucial for learning the expected behavior
 222 (e.g. crossing the gate), is ignored during training. This ignorance can hinder the learned policy's
 223 ability to perform the desired actions.

225 5 THE PROPOSED METHOD

227 As previously discussed, explicit use of first-order gradients for policy learning requires addressing
 228 gradient bias caused by non-differentiable rewards. Motivated by the value gradient method,
 229 we propose to combine the 0-step return with N-step return for policy learning. This combination
 230 mitigates the gradient bias while leveraging the strength of both gradient types. Our method,
 231 Amended Backpropagation-through-Time (ABPT), is an on-policy actor-critic learning approach.
 232 An overview is presented in Figure 3.



234
 235
 236
 237
 238
 239
 240
 241
 242 Figure 3: An overview of ABPT. ABPT combines 0-step return and N-step return together, to
 243 compensate the biased gradient resulting from partially non-differentiable reward. The red dash lines
 244 indicate the direction of backpropagation. The replay buffer stores only visited states for episode
 245 initialization to improve sampling efficiency, irrelevant to training.

246 During each training episode, we collect $|\mathcal{B}|$ trajectories with a horizon length N and optimize the
 247 following objective function to update the actor network parameters θ :

$$248 \quad 249 \quad 250 \quad 251 \quad 252 \quad 253 \quad \mathcal{J}_\theta = \frac{1}{2|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \left(\mathcal{J}_\theta^N + \mathcal{J}_\theta^0 \right) \quad (7)$$

254 where $\mathcal{J}_\theta^N, \mathcal{J}_\theta^0$ are N-step return and 0-step return, defined as

$$255 \quad 256 \quad 257 \quad 258 \quad 259 \quad \mathcal{J}_\theta^N = \underbrace{\left(\sum_{k=0}^{N-1} \gamma^k R(s_{t+k}^i) \right)}_{\mathcal{G}_\theta^{t:i+N}} + (1-d)\gamma^N \underbrace{V_\phi(s_{t+N}^i)}_{\mathcal{V}_{\theta|\phi}^{t+N+1}}, \quad \mathcal{J}_\theta^0 = \underbrace{V_\phi(s_t^i)}_{\mathcal{V}_{\theta|\phi}^t} \quad (8)$$

260 Here, d is a boolean variable indicating whether the current episode has ended, and i denotes the
 261 trajectory index. Because each trajectory is generated by π_θ , all terms are differentiable with respect
 262 to θ . $\mathcal{G}_\theta^{t:i+N}$ represents the accumulated reward within the horizon and $\mathcal{V}_{\theta|\phi}^{t+N+1}$ is the value obtained
 263 by fixed critic. Both 0-step return and N-step return are expected values computed from the same
 264 action-value function Q_ϕ . Ideally, if the critic Q_ϕ is learned perfectly, we have $J_\theta = J_\theta^N = J_\theta^0$. We
 265 prove using the objective function (7) for gradient computation is equivalent to combining both the
 266 value gradient and the first-order gradient for backpropagation in Appendix A.

267 We use a Gaussian policy $\pi_\theta(a|s) = \mathcal{N}(\mu_\theta(s), \sigma_\theta(s))$ for the actor network and apply the repara-
 268 meterization trick (Kingma (2013)) to gradient computation. We also normalize the actions using \tanh
 269 function to stabilize the training process: $a_t = \tanh(\mu_\theta(s_t) + \sigma_\theta(s_t)\epsilon)$, where $\epsilon \sim \mathcal{N}(0, I)$. After

270 **Algorithm 1** The proposed ABPT algorithm
271

```

272 1: Initialize parameters  $\phi, \phi^-, \theta$  randomly, initialize state buffer  $\mathcal{D} = \{\}$ .
273 2: while num time-steps < total time-steps do
274 3:   # Evaluate and collect states
275 4:   for collecting steps = 1 ...  $i$  do
276 5:     Add states  $\mathcal{D} \leftarrow \mathcal{D} \cup \{(s_i)_{i=1}^N\}$ 
277 6:   end for
278 7:
279 8:   # Train actor net
280 9:   Sample minibatch  $\{(s_i)\}_{\mathcal{B}} \sim \mathcal{D}$  as initial states
281 10:  Compute the gradient of  $\mathcal{J}_\theta$  and update the actor by gradient ascent  $\theta \leftarrow \theta + \alpha \nabla_\theta \mathcal{J}_\theta$ 
282 11:
283 12:   # Train critic net
284 13:   Compute the estimated value  $\tilde{V}_\phi$  using (10)
285 14:   for critic update step  $c = 1..C$  do
286 15:     Compute the gradient of  $\mathcal{L}_\phi$  and update weights by gradient descent  $\phi \leftarrow \phi - \alpha \nabla_\phi \mathcal{L}_\phi$ 
287 16:     Softly update target critic  $\phi^- \leftarrow (1 - \tau)\phi^- + \tau\phi$ 
288 17:   end for
289 18: end while

```

288
289 updating the critic, target returns are estimated over time and used to further refine the critic network
290 parameters ϕ by minimizing the MSE loss function:

$$291 \quad 292 \quad \mathcal{L}_\phi = \mathbb{E}_{s \in \{\tau_i\}} \left\| V_\phi(s) - \tilde{V}_\phi(s) \right\|^2. \quad (9)$$

293 We employ $\text{TD}(\lambda)$ formulation (Sutton & Barto (2018)) to estimate the expected return using expo-
294 nentially averaging k -step returns:
295

$$296 \quad 297 \quad \tilde{V}_\phi(s_t) = (1 - \lambda) \left(\sum_{k=1}^{N-t-1} \lambda^{k-1} G_t^k \right) + \lambda^{N-t-1} G_t^{N-t} \quad (10)$$

298 where G_t^k denotes k -step return from t :

$$301 \quad 302 \quad G_t^k = \left(\sum_{l=0}^{k-1} \gamma^l r_{t+l} \right) + (1 - d) \gamma^k V_\phi(s_{t+k}). \quad (11)$$

303 where $d \in \{0, 1\}$ indicates task termination. The state-value function is derived from the action-
304 value function:
305

$$306 \quad V_\phi(s) = \mathbb{E}_{a \sim \pi} [Q_\phi(s, a)] + \kappa H(\pi_\theta(\cdot | s)), \quad (12)$$

307 where we adopt an extra policy entropy term $H(\pi_\theta(\cdot | s))$ to encourage exploration as in SAC
308 (Haarnoja et al. (2018)). κ is an adaptive ratio whose computation follows (Haarnoja et al. (2018)).
309 To stabilize the critic training, we follow (Mnih et al. (2015)) to use a target critic ϕ^- to estimate the
310 expected return (see Equation (10)).

311 Existing methods (Xu et al. (2022)) start each new horizon at the end of the previous horizon,
312 which prevents certain regions of the state space from serving as initial states, resulting in inefficient
313 sampling (see Appendix D). To further encourage broader exploration during policy learning, we
314 adopt a replay buffer to store all visited states throughout training. This buffer enables random
315 sampling of dynamically feasible states for episode initialization. While conceptually similar to the
316 replay buffer used in off-policy learning algorithms, our approach differs in that we store only visited
317 states rather than transitions, and use these states solely for initialization, preserving the on-policy
318 nature of training. The pseudo code of the proposed method is shown in Algorithm 1.

319 **6 EXPERIMENTS**
320

322 We address the following questions in this section: 1) How does ABPT improve performance on
323 typical quadrotor tasks compared to baseline methods? 2) What distinctive advantages does ABPT
324 exhibit in behavior? 3) What is the contribution of each individual component?

324
325

6.1 EXPERIMENT SETUP

326
327
328
329
330
331
332

We conduct the evaluation on four quadrotor tasks, hovering, tracking, landing, racing, which involve different levels of complexity. The hovering and tracking employ purely differentiable rewards. In contrast, both the landing and racing tasks incorporate binary rewards. However, there is a key difference between them. In landing, the continuous reward teaches the quadrotor to gradually slow down and descend, while the binary reward serves only to confirm successful touchdown. In racing, however, the binary reward plays a decisive role by preventing the quadrotor from hovering near the gates without actually passing through them.

333
334
335
336
337
338
339
340

In our experiments, we evaluate the proposed ABPT against three widely used baseline methods: PPO (Schulman et al. (2017)), BPTT (Freeman et al. (2021)), and SHAC (Xu et al. (2022)). PPO and SAC (Haarnoja et al. (2018)) remain among the most popular model-free algorithms for policy training, due to their stability and robustness to hyperparameters. However, SAC is not included in our comparisons because, in high-dimensional observation spaces, the critic requires substantially longer training time, making it less competitive (see Appendix C.4). Among first-order-gradient-based methods, SHAC is considered the most suitable baseline, as other approaches either exhibit slower wall-time training or share similar features with SHAC.

341
342

6.2 BENCHMARK TASKS

343
344
345

Hovering. Starting from a random position, the quadrotor needs to hover stably at a target location. Fully differentiable rewards are used in this task.

346
347

Tracking. Starting from a random position, the quadrotor tracks a circular trajectory with a fixed linear velocity. Fully differentiable rewards are used in this task.

348
349
350

Landing. Starting from a random position, the quadrotor gradually descends, and eventually lands at the required position on the ground. This task involves using non-differentiable rewards during training.

351
352
353

Racing. The quadrotor flies through four static gates as quickly as possible in a given order repeatedly. This task involves more rewards with some of them non-differentiable.

354
355
356

We use the quadrotor simulator VisFly (Li et al. (2024)) as our training environment, where the dynamics are well implemented with automatic FOG computation achieved via (Paszke et al. (2017)). A comprehensive description of observation and reward structure is presented in Table 1.

357

358

Table 1: Observations and rewards used in benchmark quadrotor tasks

Environments	Observation	Reward Function
Hovering	state & \hat{p}	$c - k_1 \ p - \hat{p}\ - k_2 \ q - \hat{q}\ - k_3 \ v\ - k_4 \ \omega\ $ (fully DIFF)
Tracking	state & next 10 $\hat{p}_{i=1 \sim 10}$	$c - k_1 \ p - \hat{p}_0\ - k_2 \ q - \hat{q}\ - k_3 \ v\ - k_4 \ \omega\ $ (fully DIFF)
Landing	state & \hat{p}	$-k_1 f^+(\ p_{xy} - \hat{p}_{xy}\) + k_2 f^+(\ v_z - \hat{v}_z\) + k_3 s$ (partially DIFF)
Racing	state & next 2 $\hat{p}_{i=1,2}$ of gates	$c - k_1 \ p - \hat{p}_0\ - k_2 \ q - \hat{q}\ - k_3 \ v\ - k_4 \ \omega\ + k_5 s$ (partially DIFF)

360
361
362
363
364
365
366
367
368

c represents a small constant used to ensure the agent remains alive. k_i denotes constant weights for different reward contributions, with these weights being distinctly defined for each task. s is a boolean variable that indicates whether the task is successfully completed, to award once at termination if it succeeds. The state comprises position (p), orientation (q), linear velocity (v), and angular velocity (ω). $f^+(\cdot)$ denotes an increasing mapping function used to normalize the reward and (\cdot) denotes target status. DIFF is abbreviation for differentiable. All the action types are individual rotor thrusts.

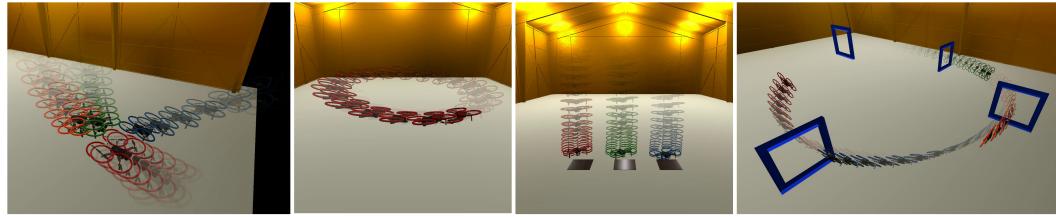
369
370
371
372
373
374
375

Figure 4: Quadrotor tasks (left to right): hovering, tracking, landing, and racing. We illustrate multiple drones (in different colors) simultaneously to indicate episodes from different initial states.

378 It is worth noting that the boolean success reward given at termination is necessary. This huge
 379 reward encourages agents to complete the mission, not wander near the target to keep obtaining the
 380 highest accumulative reward.
 381

382 6.3 RESULTS 383

384 **Comparison with Baseline Methods.** To ensure fair comparison, we implemented SHAC and
 385 BPTT by ourselves based on available source code, and adopt PPO from stable-baselines3 (Raffin
 386 et al. (2021)) in VisFly simulator. All algorithms used parallel differentiable simulations to ac-
 387 celerate training. We tuned all hyperparameters to achieve optimal performance, and kept the settings
 388 consistent across all experiments as much as possible. All experiments were conducted on the same
 389 laptop with an RTX 4090 GPU and a 32-core 13th Gen Intel(R) Core(TM) i9-13900K processor,
 390 with 5 random seeds for validation of robustness. Given the different time-step metrics across the
 391 algorithms, we compare their performance in terms of wall-time as well. Figure 5 provides reward
 392 curves of all methods during training.
 393

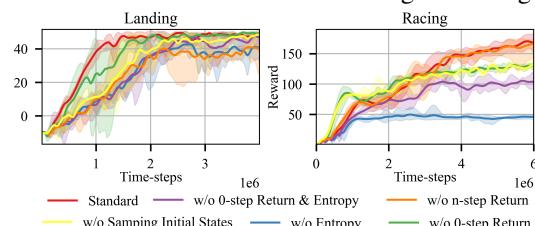
394 **PPO:** PPO demonstrates moderate performance across the four tasks. However, due to the lack of an
 395 analytical gradient, PPO requires more sample collections to estimate the policy gradient, making
 396 it slower in terms of time-steps. In tasks that involve fully differentiable rewards such as hovering
 397 and tracking, it achieves the lowest asymptotic reward compared to FOG-based algorithms. As
 398 expected, PPO produces smooth and acceptable learning curves, since non-differentiable rewards
 399 do not impact the ZOG used by PPO.

400 **BPTT:** BPTT exhibits similar performance to SHAC and ABPT in the first two tasks. In the Landing
 401 task, despite the reward function incorporating non-differentiable discrete scores upon success, this
 402 component has only a minor impact on the FOG computation. This is because the reward function
 403 excluding this constant, has correctly determined the gradient via backpropagation. In the Racing
 404 task, we apply learning rate decay to BPTT, SHAC, and ABPT. BPTT shows the worst performance
 405 among all algorithms, demonstrating that the iteration quickly converges to a local minimum, caused
 406 by the bias introduced by the non-differentiable part in rewards.
 407

408 **SHAC:** Even though FOG is minimally biased in the Landing task, the curves from the five ran-
 409 dom seeds show significant fluctuations. The terminal success reward leads to high variance in the
 410 TD(λ) formulation used to estimate N-step returns, complicating critic training. As a result, SHAC
 411 performs worse than BPTT in the Landing task. In the Racing task, the terminal value partially
 412 addresses the non-differentiable components but still performs much worse than PPO and ABPT.
 413

414 **Our ABPT:** In all tests, our ABPT method converges to the highest rewards. It achieves the fastest
 415 convergence speeds in the first three tasks and similar convergence speed to PPO in the racing tasks.
 416 By replaying visited states as initial states, ABPT enhances sampling efficiency by exploiting corner
 417 cases. Introducing the entropy helps suppress the high variance of the discrete reward space in the
 418 landing task, contributing to greater training stability. In the racing task, ABPT also outperforms
 419 PPO with a higher converged reward. This is largely due to that the value gradient introduced by
 420 0-step returns is unaffected by non-differentiable rewards, making ABPT an effective method to
 421 compensate for biased gradient.
 422

423 **Ablation.** As shown in Figure 6, we evaluate the effectiveness of key components of our approach
 424 by removing each during training. The results show that: 1) Incorporating 0-step return clearly im-
 425 proves the training performance in tasks with non-differentiable rewards such as landing and racing.
 426 2) Initializing episodes from previously visited states stored in the buffer enhances sampling ef-
 427 ficiency, accelerating convergence. 3) In racing, the performance gain appears to stem more from
 428 entropy than from 0-step return. Actually, it is underfitting critic that deteriorates the
 429 actor training, and entropy loss helps stabilize critic training, especially when multiple critics
 430 are used. Similar to other value-based RL algo-
 431 rithms, convergence critically depends on the
 432 quality of critic training. 4) Removing the N-
 433 step return significantly reduce landing perfor-



434 Figure 6: Ablation study: the key components of
 435 ABPT are sequentially removed in turn to evaluate
 436 each one’s contribution.
 437

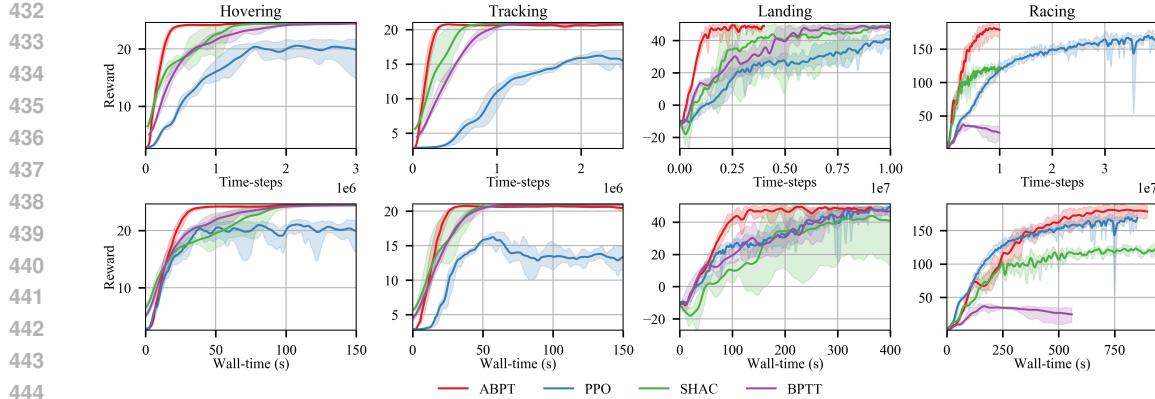


Figure 5: Training curves of PPO, SHAC, BPTT, and our ABPT in both time-step (**Top**) and wall-time (**Bottom**). Each curve is averaged over results from five random seeds, and the shaded area denotes the range of best and worst reward.

449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
10010
10011
10012
10013
10014
10015
10016
10017
10018
10019
10020
10021
10022
10023
10024
10025
10026
10027
10028
10029
10030
10031
10032
10033
10034
10035
10036
10037
10038
10039
10040
10041
10042
10043
10044
10045
10046
10047
10048
10049
10050
10051
10052
10053
10054
10055
10056
10057
10058
10059
10060
10061
10062
10063
10064
10065
10066
10067
10068
10069
10070
10071
10072
10073
10074
10075
10076
10077
10078
10079
10080
10081
10082
10083
10084
10085
10086
10087
10088
10089
10090
10091
10092
10093
10094
10095
10096
10097
10098
10099
100100
100101
100102
100103
100104
100105
100106
100107
100108
100109
100110
100111
100112
100113
100114
100115
100116
100117
100118
100119
100120
100121
100122
100123
100124
100125
100126
100127
100128
100129
100130
100131
100132
100133
100134
100135
100136
100137
100138
100139
100140
100141
100142
100143
100144
100145
100146
100147
100148
100149
100150
100151
100152
100153
100154
100155
100156
100157
100158
100159
100160
100161
100162
100163
100164
100165
100166
100167
100168
100169
100170
100171
100172
100173
100174
100175
100176
100177
100178
100179
100180
100181
100182
100183
100184
100185
100186
100187
100188
100189
100190
100191
100192
100193
100194
100195
100196
100197
100198
100199
100200
100201
100202
100203
100204
100205
100206
100207
100208
100209
100210
100211
100212
100213
100214
100215
100216
100217
100218
100219
100220
100221
100222
100223
100224
100225
100226
100227
100228
100229
100230
100231
100232
100233
100234
100235
100236
100237
100238
100239
100240
100241
100242
100243
100244
100245
100246
100247
100248
100249
100250
100251
100252
100253
100254
100255
100256
100257
100258
100259
100260
100261
100262
100263
100264
100265
100266
100267
100268
100269
100270
100271
100272
100273
100274
100275
100276
100277
100278
100279
100280
100281
100282
100283
100284
100285
100286
100287
100288
100289
100290
100291
100292
100293
100294
100295
100296
100297
100298
100299
100300
100301
100302
100303
100304
100305
100306
100307
100308
100309
100310
100311
100312
100313
100314
100315
100316
100317
100318
100319
100320
100321
100322
100323
100324
100325
100326
100327
100328
100329
100330
100331
100332
100333
100334
100335
100336
100337
100338
100339
100340
100341
100342
100343
100344
100345
100346
100347
100348
100349
100350
100351
100352
100353
100354
100355
100356
100357
100358
100359
100360
100361
100362
100363
100364
100365
100366
100367
100368
100369
100370
100371
100372
100373
100374
100375
100376
100377
100378
100379
100380
100381
100382
100383
100384
100385
100386
100387
100388
100389
100390
100391
100392
100393
100394
100395
100396
100397
100398
100399
100400
100401
100402
100403
100404
100405
100406
100407
100408
100409
100410
100411
100412
100413
100414
100415
100416
100417
100418
100419
100420
100421
100422
100423
100424
100425
100426
100427
100428
100429
100430
100431
100432
100433
100434
100435
100436
100437
100438
100439
100440
100441
100442
100443
100444
100445
100446
100447
100448
100449
100450
100451
100452
100453
100454
100455
100456
100457
100458
100459
100460
100461
100462
100463
100464
100465
100466
100467
100468
100469
100470
100471
100472
100473
100474
100475
100476
100477
100478
100479
100480
100481
100482
100483
100484
100485
100486
100487
100488
100489
100490
100491
100492
100493
100494
100495
100496
100497
100498
100499
100500
100501
100502
100503
100504
100505
100506
100507
100508
100509
100510
100511
100512
100513
100514
100515
100516
100517
100518
100519
100520
100521
100522
100523
100524
100525
100526
100527
100528
100529
100530
100531
100532
100533
100534
100535
100536
100537
100538
100539
100540
100541
100542
100543
100544
100545
100546
100547
100548
100549
100550
100551
100552
100553
100554
100555
100556
100557
100558
100559
100560
100561
100562
100563
100564
100565
100566
100567
100568
100569
100570
100571
100572
100573
100574
100575
100576
100577
100578
100579
100580
100581
100582
100583
100584
100585
100586
100587
100588
100589
100590
100591
100592
100593
100594
100595
100596
100597
100598
100599
100600
100601
100602
100603
100604
100605
100606
100607
100608
100609
100610
100611
100612
100613
100614
100615
100616
100617
100618
100619
100620
100621
100622
100623
100624
100625
100626
100627
100628
100629
100630
100631
100632
100633
100634
100635
100636
100637
100638
100639
100640
100641
100642
100643
100644
100645
100646
100647
100648
100649
100650
100651
100652
100653
100654
100655
100656
100657
100658
100659
100660
100661
100662
100663
100664
100665
100666
100667
100668
100669
100670
100671
100672
100673
100674
100675
100676
100677
100678
100679
100680
100681
100682
100683
100684
100685
100686
100687
100688
100689
100690
100691
100692
100693
100694
100695
100696
100697
100698
100699
100700
100701
100702
100703
100704
100705
100706
100707
100708
100709
100710
100711
100712
100713
100714
100715
100716
100717
100718
100719
100720
100721
100722
100723
100724
100725
100726
100727
100728
100729
100730
100731
100732
100733
100734
100735
100736
100737
100738
100739
100740
100741
100742
100743
100744
100745
100746
100747
100748
100749
100750
100751
100752
100753
100754
100755
100756
100757
100758
100759
100760
100761
100762
100763
100764
100765
100766
100767
100768
100769
100770
100771
100772
100773
100774
100775
100776
100777
100778
100779
100780
100781
100782
100783
100784
100785
100786
100787
100788
100789
100790
100791
100792
100793
100794
100795
100796
100797
100798
100799
100800
100801
100802
100803
100804
100805
100806
100807
100808
100809
100810
100811
100812
100813
100814
100815
100816
100817
100818
100819
100820
100821
100822
100823
100824
100825
100826
100827
100828
100829
100830
100831
100832
100833
100834
100835
100836
100837
100838
100839
100840
100841
100842
100843
100844
100845
100846
100847
100848
100849
100850
100851
100852
100853
100854
100855
100856
100857
100858
100859
100860
100861
100862
100863
100864
100865
100866
100867
100868
100869
100870
100871
100872
100873
100874
100875
100876
100877
100878
100879
100880
100881
100882
100883
100884
100885
100886
100887
100888
100889
100890
100891
100892
100893
100894
100895
100896
100897
100898
100899
100900
100901
100902
100903
100904
100905
100906
100907
100908
100909
100910
100911
100912
100913
100914
100915
100916
100917
100918
100919
100920
100921
100922
100923
100924
100925
100926
100927
100928
100929
100930
100931
100932
100933
100934
100935
100936
100937
100938
100939
100940
100941
100942
100943
100944
100945
100946
100947
100948
100949
100950
100951
100952
100953
100954
100955
100956
100957
100958
100959
100960
100961
100962
100963
100964
100965
100966
100967
100968
100969
100970
100971
100972
100973
100974
100975
100976
100977
100978
100979
100980
100981
100982
100983
100984
100985
100986
100987
100988
100989
100990
100991
100992
100993
100994
100995
100996
100997
100998
100999
1001000
1001001
1001002
1001003
1001004
1001005
1001006
1001007
1001008
1001009
1001010
1001011
1001012
1001013
1001014
1001015
1001016
1001017
1001018
1001019
1001020
1001021
1001022
1001023
1001024
1001025
1001026
1001027
1001028
1001029
1001030
1001031
1001032
1001033
1001034
1001035<br

486 REPRODUCIBILITY STATEMENT
487488 The code is released at <https://anonymous.4open.science/r/APG-E73E>. The de-
489 tailed hyperparameters of all the experiments are introduced in Appendix G. Our trained policies
490 are also deployed onboard on real-world quadrotors, please refer to the supplementary video.
491492 REFERENCES
493

494 Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
495 ing in a handful of trials using probabilistic dynamics models. *Advances in neural information*
496 *processing systems*, 31, 2018.

497 Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
498 search. In *Proceedings of the 28th International Conference on machine learning (ICML-11)*, pp.
499 465–472, 2011.

500 C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
501 Brax – A Differentiable Physics Engine for Large Scale Rigid Body Simulation, June 2021. URL
502 <http://arxiv.org/abs/2106.13281>. arXiv:2106.13281.

503 Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
504 critic methods. In *International conference on machine learning*, pp. 1587–1596. PMLR, 2018.

505 Feng Gao, Liangzhi Shi, Shenao Zhang, Zhaoran Wang, and Yi Wu. Adaptive-Gradient Policy Opti-
506 mization: Enhancing Policy Learning in Non-Smooth Differentiable Simulations. In *Proceedings*
507 *of the 41st International Conference on Machine Learning*, pp. 14844–14858. PMLR, July 2024.
508 URL <https://proceedings.mlr.press/v235/gao24m.html>. ISSN: 2640-3498.

509 Ignat Georgiev, Krishnan Srinivasan, Jie Xu, Eric Heiden, and Animesh Garg. Adaptive horizon
510 actor-critic for policy learning in contact-rich differentiable simulation, 2024. URL <https://arxiv.org/abs/2405.17784>.

511 Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
512 maximum entropy deep reinforcement learning with a stochastic actor. In *International confer-
513 ence on machine learning*, pp. 1861–1870. PMLR, 2018.

514 Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
515 behaviors by latent imagination. *arXiv preprint arXiv:1912.01603*, 2019.

516 Eric Heiden, David Millard, Erwin Coumans, Yizhou Sheng, and Gaurav S. Sukhatme. Neural-
517 Sim: Augmenting Differentiable Simulators with Neural Networks. In *2021 IEEE Interna-
518 tional Conference on Robotics and Automation (ICRA)*, pp. 9474–9481, May 2021. doi: 10.
519 1109/ICRA48506.2021.9560935. URL [https://ieeexplore.ieee.org/abstract/](https://ieeexplore.ieee.org/abstract/document/9560935)
520 document/9560935. ISSN: 2577-087X.

521 Taylor A. Howell, Simon Le Cleac'h, Jan Brüdigam, J. Zico Kolter, Mac Schwager, and Zachary
522 Manchester. Dojo: A Differentiable Physics Engine for Robotics, March 2023. URL <http://arxiv.org/abs/2203.00806>. arXiv:2203.00806.

523 Yu Hu, Yuang Zhang, Yunlong Song, Yang Deng, Feng Yu, Linzuo Zhang, Weiyao Lin, Danping
524 Zou, and Wenxian Yu. Seeing through pixel motion: Learning obstacle avoidance from optical
525 flow with one camera. *IEEE Robotics and Automation Letters*, pp. 1–8, 2025. doi: 10.1109/LRA.
526 2025.3560842.

527 Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and
528 Frédéric Durand. DiffTaichi: Differentiable Programming for Physical Simulation, February 2020.
529 URL <http://arxiv.org/abs/1910.00935>. arXiv:1910.00935.

530 Elia Kaufmann, Antonio Loquercio, Rene Ranftl, Alexey Dosovitskiy, Vladlen Koltun, and Davide
531 Scaramuzza. Deep drone racing: Learning agile flight in dynamic environments. pp. 133–145.
532 PMLR, 2018. ISBN 2640-3498.

533 Diederik P Kingma. Auto-encoding variational bayes. 2013.

540 Fanxing Li, Fangyu Sun, Tianbao Zhang, and Danping Zou. VisFly: An Efficient and Versatile
 541 Simulator for Training Vision-based Flight, September 2024. URL <http://arxiv.org/abs/2407.14783>. arXiv:2407.14783.

542

543 TP Lillicrap. Continuous control with deep reinforcement learning. *arXiv preprint arXiv:1509.02971*, 2015.

544

545 Antonio Loquercio, Elia Kaufmann, René Ranftl, Alexey Dosovitskiy, Vladlen Koltun, and Davide
 546 Scaramuzza. Deep drone racing: From simulation to reality with domain randomization. *IEEE
 547 Transactions on Robotics*, 36(1):1–14, 2019. ISSN 1552-3098.

548

549 Antonio Loquercio, Elia Kaufmann, René Ranftl, Matthias Müller, Vladlen Koltun, and Davide
 550 Scaramuzza. Learning high-speed flight in the wild. *Science Robotics*, 6(59):eabg5810, 2021.
 551 ISSN 2470-9476.

552

553 Jun Lv, Yunhai Feng, Cheng Zhang, Shuang Zhao, Lin Shao, and Cewu Lu. Sam-rl: Sensing-aware
 554 model-based reinforcement learning via differentiable physics-based simulation and rendering.
 555 *The International Journal of Robotics Research*, pp. 02783649241284653, 2023.

556

557 Volodymyr Mnih. Playing atari with deep reinforcement learning. *arXiv preprint arXiv:1312.5602*,
 558 2013.

559

560 Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare,
 561 Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep reinforcement learning. *nature*, 518(7540):529–533, 2015.

562

563 Thomas M. Moerland, Joost Broekens, Aske Plaat, and Catholijn M. Jonker. Model-based reinforcement learning: A survey. *Foundations and Trends® in Machine Learning*, 16(1):1–118,
 564 2023. ISSN 1935-8237.

565

566 Miguel Angel Zamora Mora, Momchil Peychev, Sehoon Ha, Martin Vechev, and Stelian Coros.
 567 PODS: Policy Optimization via Differentiable Simulation. In *Proceedings of the 38th International Conference on Machine Learning*, pp. 7805–7817. PMLR, July 2021. URL <https://proceedings.mlr.press/v139/mora21a.html>. ISSN: 2640-3498.

568

569 Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
 570 Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
 571 pytorch. 2017.

572

573 Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
 574 man. Stable-baselines3: Reliable reinforcement learning implementations. *Journal of Machine
 575 Learning Research*, 22(268):1–8, 2021.

576

577 Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
 578 Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied
 579 ai research. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 9339–9347, 2019.

580

581 Samuel Schoenholz and Ekin Dogus Cubuk. JAX MD: A Framework for Differentiable Physics. In
 582 *Advances in Neural Information Processing Systems*, volume 33, pp. 11428–11441. Curran As-
 583 sociates, Inc., 2020. URL <https://proceedings.neurips.cc/paper/2020/hash/83d3d4b6c9579515e1679aca8cbc8033-Abstract.html>.

584

585 John Schulman. Trust region policy optimization. *arXiv preprint arXiv:1502.05477*, 2015.

586

587 John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
 588 optimization algorithms. *arXiv preprint arXiv:1707.06347*, 2017.

589

590 Yunlong Song, Sangbae Kim, and Davide Scaramuzza. Learning quadruped locomotion using dif-
 591 ferentiable simulation. *arXiv preprint arXiv:2403.14864*, 2024.

592

593 Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. Do Differentiable Simulators
 594 Give Better Policy Gradients? In *Proceedings of the 39th International Conference on Ma-
 595 chine Learning*, pp. 20668–20696. PMLR, June 2022. URL <https://proceedings.mlr.press/v162/suh22b.html>. ISSN: 2640-3498.

594 Richard S Sutton. Integrated architectures for learning, planning, and reacting based on approxi-
 595 mating dynamic programming. In *Machine learning proceedings 1990*, pp. 216–224. Elsevier,
 596 1990.

597

598 Richard S. Sutton and Andrew G. Barto. *Reinforcement Learning, second edition: An Introduction*.
 599 MIT Press, November 2018. ISBN 978-0-262-35270-3. Google-Books-ID: uWV0DwAAQBAJ.

600 Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
 601 In *2012 IEEE/RSJ International Conference on Intelligent Robots and Systems*, pp. 5026–5033,
 602 October 2012. doi: 10.1109/IROS.2012.6386109. URL <https://ieeexplore.ieee.org/abstract/document/6386109>. ISSN: 2153-0866.

603

604 Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A
 605 locally linear latent dynamics model for control from raw images. *Advances in neural information
 606 processing systems*, 28, 2015.

607

608 N. Wiedemann, V. Wüest, A. Loquercio, M. Müller, D. Floreano, and D. Scaramuzza. Training
 609 Efficient Controllers via Analytic Policy Gradient. pp. 1349–1356, June 2023. doi: 10.1109/
 610 ICRA48891.2023.10160581.

611

612 Eliot Xing, Vernon Luk, and Jean Oh. Stabilizing reinforcement learning in differentiable multi-
 613 physics simulation. *arXiv preprint arXiv:2412.12089*, 2024.

614

615 Jie Xu, Viktor Makoviychuk, Yashraj Narang, Fabio Ramos, Wojciech Matusik, Animesh Garg, and
 616 Miles Macklin. Accelerated Policy Learning with Parallel Differentiable Simulation, April 2022.
 617 URL <http://arxiv.org/abs/2204.07137>. arXiv:2204.07137.

618

619 Yuang Zhang, Yu Hu, Yunlong Song, Danping Zou, and Weiyao Lin. Back to newton’s laws:
 620 Learning vision-based agile flight via differentiable physics. *arXiv preprint arXiv:2407.10648*,
 621 2024.

622

A PROOF

624 Suppose the value function Q_ϕ is well trained, the accumulated reward within the horizon can be
 625 approximated as:

$$\mathcal{G}_\theta^{t:t+N} \approx \mathcal{V}_{\theta|\phi}^t - (1-d)\gamma^N \mathcal{V}_{\theta|\phi}^{t+N+1}. \quad (13)$$

626 Its value gradient is then given by

$$\nabla_\theta^{[q]} \mathcal{G}_\theta^{t:t+N} = \nabla_\theta \mathcal{V}_{\theta|\phi}^t - (1-d)\gamma^N \nabla_\theta \mathcal{V}_{\theta|\phi}^{t+N+1} \quad (14)$$

627 regardless of the differentiability of the rewards. Noting that, unlike (Xu et al. (2022)), we speci-
 628 cally use action-value function Q_ϕ to compute the value to ensure $\mathcal{G}_\theta^{t:t+N}$ is differentiable with
 629 respect to θ , which makes this derivative expression meaningful, otherwise the derivative would
 630 be zero if using V_ϕ solely with state input. Let $\nabla_\theta \mathcal{G}_\theta^{t:t+N}$ denote the first-order gradient of the
 631 accumulated reward. The average of the two gradients can be expressed as:

$$\bar{\nabla}_\theta \mathcal{G}_\theta^{t:t+N} = \frac{1}{2} \left(\nabla_\theta^{[q]} \mathcal{G}_\theta^{t:t+N} + \nabla_\theta \mathcal{G}_\theta^{t:t+N} \right). \quad (15)$$

632 It is straightforward to verify that taking the derivative of (7) yields the following gradient for back-
 633 propagation:

$$\begin{aligned} \nabla_\theta \mathcal{J}_\theta &= \frac{1}{|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \left[\bar{\nabla}_\theta \mathcal{G}_\theta^{t:t+N} + (1-d)\gamma^N \nabla_\theta \mathcal{V}_{\theta|\phi}^{t+N+1} \right] \\ &= \frac{1}{2|\mathcal{B}|} \sum_{i=1}^{|\mathcal{B}|} \left[\underbrace{\nabla_\theta^{[q]} \mathcal{G}_\theta^{t:t+N}}_{\nabla \mathcal{J}_\theta^0} + \underbrace{\nabla_\theta \mathcal{G}_\theta^{t:t+N}}_{\nabla \mathcal{J}_\theta^N} + (1-d)\gamma^N \nabla_\theta \mathcal{V}_{\theta|\phi}^{t+N+1} \right]. \end{aligned} \quad (16)$$

648 Therefore, the difference between this gradient and the gradient (4) used in (Xu et al. (2022)) is that
 649 the first-order gradients in (4) are combined with the value gradients. By leveraging this combi-
 650 nation, our method remains effective in guiding the parameter updates toward the correct direction,
 651 when the first-order gradient is biased due to the non-differentiable rewards.

652 We conduct a simple experiment to assess the effectiveness of incorporating the 0-step return in ad-
 653 dressing gradient bias. We deliberately detach parts of rewards in the hovering task (see Section 6.1)
 654 to mimic non-differentiable rewards, then backpropagate to compute gradient of network parameter.
 655 As shown in Figure 8, combining the 0-step return with the N-step return in the objective function
 656 (7) for training significantly reduces the model parameter residuals.
 657

658 B BENCHMARK DYNAMICS

660 Quadrotor dynamics aligned with real-world conditions are considerably more complex than those
 661 typically assumed in simulation. The dynamics are modeled in full 6-DoF to capture the complex
 662 interactions between translational motion, rotational dynamics, aerodynamic drag, and actuator dy-
 663 namics. Specifically, the state evolution is governed by:

$$665 \dot{\mathbf{x}}_W = \mathbf{v}_W, \quad \dot{\mathbf{v}}_W = \frac{1}{m} \mathbf{R}_{WB}(\mathbf{f} + \mathbf{d}) + \mathbf{g}, \\ 666 \dot{\mathbf{q}} = \frac{1}{2} \mathbf{q} \otimes \boldsymbol{\Omega}, \quad \dot{\boldsymbol{\Omega}} = \mathbf{J}^{-1}(\boldsymbol{\eta} - \boldsymbol{\Omega} \times \mathbf{J}\boldsymbol{\Omega}), \quad (17)$$

667 where the translational states $(\mathbf{x}_W, \mathbf{v}_W)$, orientation quaternion \mathbf{q} , and angular velocity $\boldsymbol{\Omega}$ evolve
 668 under the influence of gravity \mathbf{g} , collective thrust vector \mathbf{f} , and drag force \mathbf{d} . The quaternion product
 669 is denoted by \otimes , and \mathbf{R}_{WB} is the rotation matrix from body to world frame. m and \mathbf{J} respectively
 670 denote mass and inertial matrix.

671 The aerodynamic drag \mathbf{d} is modeled as quadratic in body-frame velocity:

$$673 \mathbf{d} = \frac{1}{2} \rho \mathbf{v}_B \odot \mathbf{v}_B \mathbf{C}_d \odot \mathbf{s}, \quad (18)$$

674 where ρ is the air density, \mathbf{C}_d the drag coefficients, \mathbf{s} the effective cross-sectional areas, and \mathbf{v}_B the
 675 velocity in the body frame. The operator \odot denotes element-wise multiplication.

676 Under CTBR control, the action \mathbf{a} consists of the collective thrust along z -axis f and the desired
 677 bodyrates $(\omega_x, \omega_y, \omega_z)$. Such commands are distributed onto the four individual motors through a
 678 control allocation process:

$$679 \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{bmatrix} = \mathbf{M}^{-1} \begin{bmatrix} f \\ \tau_x \\ \tau_y \\ \tau_z \end{bmatrix}, \quad (19)$$

680 where (τ_x, τ_y, τ_z) are the body torques η computed from the commanded bodyrates using a cascaded
 681 attitude controller. The matrix \mathbf{M} denotes the allocation matrix that maps individual rotor thrusts to
 682 total thrust and body torques:

$$683 \begin{bmatrix} f \\ \tau_x \\ \tau_y \\ \tau_z \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & l & 0 & -l \\ -l & 0 & l & 0 \\ c_\tau & -c_\tau & c_\tau & -c_\tau \end{bmatrix} \begin{bmatrix} f_1 \\ f_2 \\ f_3 \\ f_4 \end{bmatrix}, \quad (20)$$

684 where l is the arm length and c_τ is the rotor torque coefficient.

685 This formulation ensures that the collective thrust and commanded bodyrates are consistently
 686 mapped to the individual motor thrusts, enabling low-level execution on real quadrotors.

687 To account for actuator dynamics, a first-order exponential model with time constant c is introduced
 688 to describe the delay between commanded and actual rotor speeds:

$$689 f_i = k_2 \omega_i^2 + k_1 \omega_i + k_0, \quad \omega_i = \omega_i^{des} + (\omega'_i - \omega_i^{des}) e^{-ct}, \quad (21)$$

690 where ω_i is the rotor speed, ω'_i and ω_i^{des} are the current and desired speeds, and k_2, k_1, k_0 are thrust
 691 coefficients. f_i denotes the thrust along the z -axis of rotor i .

692 The device communication process is modeled with a one-step delay:

$$693 \mathbf{a}_t = \mathbf{a}_{t-1}, \quad (22)$$

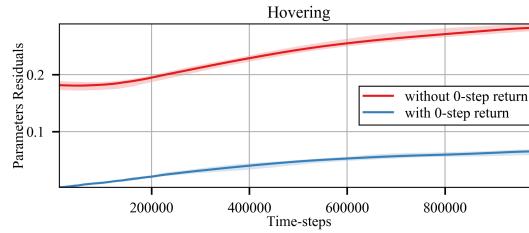
702 where a_t denotes the control command applied at time t . This formulation captures the fact that
 703 actuators cannot instantly follow rapid changes in control inputs.
 704

705 Besides, it couples a PD controller for stable bodyrate response. The actual bodyrate command is
 706 computed through:

$$\tau = K_p^\Omega (\Omega^{des} - \Omega) + K_d^\Omega (\dot{\Omega}^{des} - \dot{\Omega}), \quad (23)$$

710 Then, to reduce simulation-to-reality gap, we made parameter recognition to finetune the parameters
 711 in simulation, aligning the control response as similar as possible. Such complexity makes first-order
 712 gradient computation in backpropagation particularly challenging.

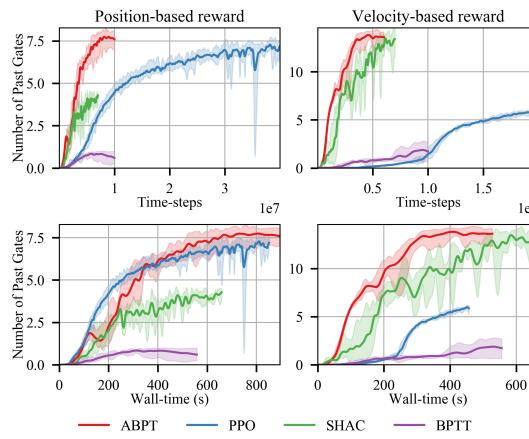
C ADDITIONAL EXPERIMENT



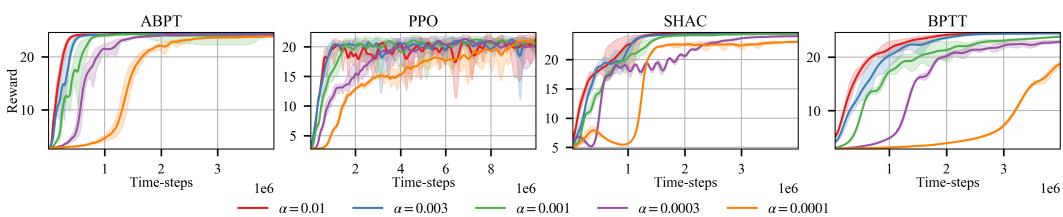
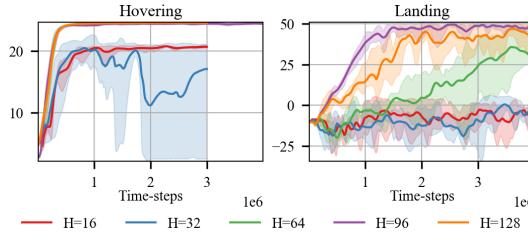
724 Figure 8: The curve shows the difference between the parameters trained with fully differentiable
 725 and partially differentiable rewards. We deliberately detach parts of the rewards to interrupt gradient
 726 backpropagation and retrain the policy with or without combining the 0-step return.
 727

C.1 REWARD ROBUSTNESS

731 Designing an appropriate reward function is highly challenging for real-world applications, particu-
 732 larly when dealing with specific requirements. Ensuring robustness to reward architecture is crucial
 733 for the training algorithms. In the racing task, we redefined the reward function by replacing Eu-
 734 clidean distance with approaching velocity in the reward. As shown in Figure 9, ABPT outperforms
 735 other methods with both position-based and velocity-based rewards. With fewer non-differentiable
 736 components, velocity-based rewards allow ABPT and SHAC to pass more gates per episode, while
 737 BPTT fails due to gradient issues.



753 Figure 9: Training curves with different rewards: position-based rewards (**Left column**) and
 754 velocity-based rewards (**Right column**). The number of passed gates is visualized as the perfor-
 755 mance metric because of different rewards used for training.

756 C.2 LEARNING RATE ROBUSTNESS
757766 Figure 10: Training curves with different learning rates 0.01, 0.003, 0.001, 0.0003, 0.00001. The
767 proposed ABPT exhibits stable and fast training performance in all learning rates.
768769 We evaluated the training performance using different learning rates. The fully differentiable hovering
770 task is used for evaluation. As shown in Figure 10, the proposed ABPT exhibits stable and fast
771 training performance in all learning rates. PPO has the highest variance compared to other FOG-
772 based algorithms, as expected demonstrating that FOG is much more precise than ZOG. Increasing
773 the learning rate yields a slight improvement on acceleration once it surpasses 0.001 for PPO and
774 SHAC, while ABPT’s convergence speed stably grows with increasing learning rate.
775776 C.3 HORIZON LENGTH ANALYSIS
777779 The optimal horizon length in SHAC is typically reported as 32, but the results obtained in this
780 work reveal a different trend. As shown in Figure 11, for the hovering task the algorithm achieves
781 comparable final returns with horizons of 64, 96, and 128. This discrepancy can be attributed to
782 the increased complexity of the quadrotor dynamics discussed in Appendix B. In contrast, for
783 the landing task the set of effective horizons narrows to a single value, 96, suggesting that not
784 only the underlying dynamics but also the task context play a crucial role in determining suitable
785 hyperparameters.795 Figure 11: Training curves for hovering and landing tasks with different horizon lengths. Perform-
796 mance is evaluated with horizons of 16, 32, 64, 96, and 128.
797798 C.4 SAC COMPARISON
799801 SAC is typically used as a baseline for value-iteration model-free algorithms and has shown strong
802 performance across various simulation benchmarks. However, in real-world scenarios—particularly
803 for planning six-dimensional motions in free space—the size and variance of the observation space
804 are much greater than in simulation. This increased complexity makes it significantly more difficult
805 to train the critic. Since the degree of critic undertraining is critical for value-iteration methods like
806 SAC but less so for policy-iteration methods, PPO has become the most widely used algorithm for
807 training policies deployed in practice.808 To validate SAC’s performance, we include it only in the hovering task (Figure 12). The results show
809 that, in real-world applications, SAC performs much worse than PPO. Therefore, in the experiments
presented in this paper, we focus our comparisons on PPO.

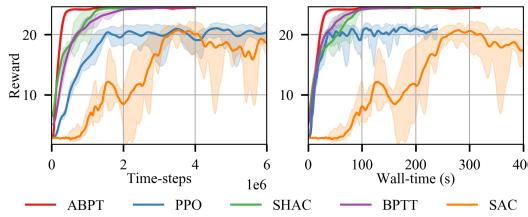


Figure 12: Training curves of hovering for baselines including SAC.

D INEFFICIENT SAMPLING

For convenience, the current implementation of backpropagation-through-time (BPTT) in differentiable simulation always initializes the next computation horizon from the terminal state of the previous horizon. However, this design prevents certain states from ever being sampled as initial conditions (see Figure 13), which leads to inefficient exploration of the observation space. In particular, states that are not reachable within a single horizon length cannot serve as starting points for training. This issue could be addressed by introducing an external replay buffer that records states at each step and resamples them as initial conditions, thereby improving coverage of the state space and enhancing sample efficiency. Noting that, in control task, the randomization domain could be enlarged enough to tackle such issue, but in planning task, it is usually constrained around the point of departure. Besides, regardless of randomization, the actual starting point distribution in observation space is still non-uniform, downgrading the training efficiency.

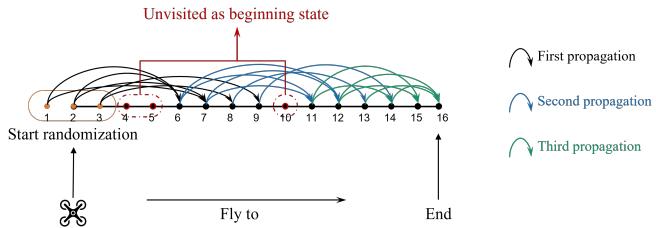


Figure 13: Illustration of the limited state coverage in the current BPTT implementation. Assuming the agent’s minimal horizon length is five, it cannot end at points 4 and 5 after executing a horizon even with randomization. As a result, part of the observation space never serves as beginning of horizons, reducing sampling efficiency.

E DISCUSSION

We also explored incorporating k -step value functions ($k = 0, \dots, N - 1$) at each step within a finite horizon, following a similar approach to AOBG (Suh et al. (2022)). However, this led to significant fluctuations in the learning curves, because introducing undertrained critic results in much higher variance in training. The mixture ratio in AOBG (Suh et al. (2022)) and AGPO (Gao et al. (2024)) may be effective to handle such unstable factor. However, if for accelerating training purpose, it is impossible to directly use such method in these works because mixture ratio computation is time costly. It is worthwhile finding a much faster and simpler method for this optimization problem, similar to how PPO simplified the ideas behind TRPO.

F LIMITATION AND FUTURE WORK

ABPT enhances the efficiency and robustness of training processes utilizing analytical gradients, even in scenarios involving partially differentiable reward structures. However, while it significantly mitigates the gradient bias caused by non-differentiable reward components, it may still fail to fully eliminate extreme bias if the biased gradient is excessively large. Therefore, when designing reward functions, priority should be given to incorporating smooth and differentiable variables to the

864 greatest extent possible. In the following work, we will further explore how to adaptively mix the
865 gradient while avoiding incurring excessive computation for mixture-ratio estimation.
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

918 **G TRAINING HYPERPARAMETERS**
919920 Tables 2~5 contain the parameters for the baseline experiments, Tables 6~8 for the ablation experiments,
921 and Table 9 for the reward robustness experiments. Noting that, Simulators like dm_control
922 often ignore the complexity of real-world dynamics. In our case, we conducted detailed system
923 identification and matched our simulation to actual quadrotor behavior, including communication
924 delay, motor dynamics, aerodynamic drag, PID control, thrust modeling, and time synchronization.
925 (see VisFly). This complexity makes optimal hyperparameters differ from original baselines.
926927 **Table 2: Hyperparameters of SHAC**
928

	Hovering	Tracking	Landing	Racing
learning rate α	0.01	0.01	0.01	0.002
number of parallel environments n	100	100	100	100
discount factor γ	0.99	0.99	0.99	0.99
training critic steps per minibatch	10	10	10	10
weight decay	0.00001	0.00001	0.00001	0.00001
target critic update factor τ	0.005	0.005	0.005	0.005
decay learning rate	False	False	False	True
value estimation factor λ	0.95	0.95	0.95	0.95
horizon length H	96	96	96	96
Optimizer	Adam	Adam	Adam	Adam

937 **Table 3: Hyperparameters of PPO**
938

	Hovering	Tracking	Landing	Racing
learning rate α	0.001	0.0002	0.0005	0.001
number of parallel environments n	100	100	100	100
discount factor γ	0.99	0.99	0.99	0.99
minibatch size	25600	25600	25600	51200
training critic steps per minibatch	5	5	5	5
weight decay	0.00001	0.00001	0.00001	0.00001
GAE λ	1	1	1	1
Optimizer	Adam	Adam	Adam	Adam

947 **Table 4: Hyperparameters of BPTT**
948

	Hovering	Tracking	Landing	Racing
learning rate α	0.01	0.01	0.005	0.002
number of parallel environments n	100	100	100	100
discount factor γ	0.99	0.99	0.99	0.99
weight decay	0.00001	0.00001	0.00001	0.00001
decay learning rate	False	False	False	True
horizon length H	256	256	256	512
Optimizer	Adam	Adam	Adam	Adam

956 **Table 5: Hyperparameters of ABPT**
957

	Hovering	Tracking	Landing	Racing
learning rate α	0.01	0.01	0.01	0.01
number of parallel environments n	100	100	100	100
discount factor γ	0.99	0.99	0.99	0.99
training critic steps per minibatch	10	10	10	10
weight decay	0.00001	0.00001	0.00001	0.00001
target critic update factor τ	0.005	0.005	0.005	0.005
decay learning rate	False	True	False	True
value estimation factor λ	0.95	0.95	0.95	0.95
horizon length H	96	96	96	96
replay buffer size	1000000	1000000	1000000	50000
Optimizer	Adam	Adam	Adam	Adam

972
973974 **Table 6: Hyperparameters of ABPT no 0-step Value**

	Hovering	Tracking	Landing	Racing
learning rate α	0.01	0.01	0.01	0.01
number of parallel environments n	100	100	100	100
discount factor γ	0.99	0.99	0.99	0.99
training critic steps per minibatch	10	10	10	10
weight decay	0.00001	0.00001	0.00001	0.00001
target critic update factor τ	0.005	0.005	0.005	0.005
decay learning rate	False	True	False	True
value estimation factor λ	0.95	0.95	0.95	0.95
horizon length H	96	96	96	96
replay buffer size	1000000	1000000	1000000	50000
Optimizer	Adam	Adam	Adam	Adam

984
985
986987 **Table 7: Hyperparameters of ABPT no Entropy**

	Hovering	Tracking	Landing	Racing
learning rate α	0.01	0.01	0.002	0.002
number of parallel environments n	100	100	100	100
discount factor γ	0.99	0.99	0.99	0.99
training critic steps per minibatch	10	10	10	10
weight decay	0.00001	0.00001	0.00001	0.00001
target critic update factor τ	0.005	0.005	0.005	0.005
decay learning rate	False	True	False	True
value estimation factor λ	0.95	0.95	0.95	0.95
horizon length H	96	96	96	96
replay buffer size	1000000	1000000	1000000	50000
Optimizer	Adam	Adam	Adam	Adam

997
998
9991000 **Table 8: Hyperparameters of ABPT no 0-step Value no Entropy**

	Hovering	Tracking	Landing	Racing
learning rate α	0.01	0.01	0.002	0.002
number of parallel environments n	100	100	100	100
discount factor γ	0.99	0.99	0.99	0.99
training critic steps per minibatch	10	10	10	10
weight decay	0.00001	0.00001	0.00001	0.00001
target critic update factor τ	0.005	0.005	0.005	0.005
decay learning rate	False	True	False	True
value estimation factor λ	0.95	0.95	0.95	0.95
horizon length H	96	96	96	96
replay buffer size	1000000	1000000	1000000	50000
Optimizer	Adam	Adam	Adam	Adam

1011
1012
10131014 **Table 9: Hyperparameters of ABPT upon Velocity-based Reward in Racing**

	ABPT	SHAC	BPTT	PPO
learning rate α	0.02	0.02	0.002	0.0002
number of parallel environments n	100	100	100	100
discount factor γ	0.99	0.99	0.99	0.99
training critic steps per minibatch	10	10	10	5
weight decay	0.00001	0.00001	0.00001	0.00001
target critic update factor τ	0.005	0.005	-	-
decay learning rate	True	True	True	-
value estimation factor λ	0.95	0.95	-	-
horizon length H	96	96	512	-
replay buffer size	50000	-	-	-
minibatch size	-	-	-	51200
GAE	-	-	-	1
Optimizer	Adam	Adam	Adam	Adam

1024
1025