
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ABPT: AMENDED BACKPROPAGATION THROUGH
TIME WITH PARTIALLY DIFFERENTIABLE REWARDS

Anonymous authors
Paper under double-blind review

ABSTRACT

Quadrotor control policies can be trained with high performance using the ex-
act gradients of the differentiable rewards to optimize policy parameters via
backpropagation-through-time (BPTT). However, designing a fully differentiable
reward architecture is often challenging in real-world high-level tasks rather than
control in simulation. Partially differentiable rewards will result in biased gradient
propagation that severely degrades training performance. To overcome this lim-
itation, we propose Amended Backpropagation-through-Time (ABPT), a novel
approach that mitigates gradient bias while preserving the training efficiency of
BPTT. ABPT combines learned 0-step returns and analytical cumulative rewards,
effectively reducing the bias by leveraging value gradients from the learned Q-
value function. Additionally, it adopts entropy regularization and state initializa-
tion mechanisms to improve training efficiency. We evaluate ABPT on four rep-
resentative quadrotor flight tasks in both real world and simulation. Experimental
results demonstrate that ABPT converges significantly faster and achieves higher
ultimate rewards than existing representative learning algorithms, particularly in
tasks involving partially differentiable rewards.

1 INTRODUCTION

Quadrotors have demonstrated significant potential in various real-world applications including wild
rescue, dangerous high-altitude work, and delivery. Recent work (Loquercio et al. (2021; 2019);
Kaufmann et al. (2018)) has shown end-to-end policies can be learned through imitation learning
for controlling quadrotors from raw sensory data. However, the performance is largely restricted by
expert’s capability. Though reinforcement learning (RL) can address this limitation through self-
exploration, its policy updates rely on gradient approximations (Sutton & Barto (2018)), which
require extensive sampling or replay mechanisms and often result in slow convergence and sub-
optimal training outcomes. Compared with imitation learning and traditional RL algorithms, recent
studies (Zhang et al. (2024); Wiedemann et al. (2023); Lv et al. (2023); Song et al. (2024); Hu et al.
(2025)) have demonstrated that directly leveraging first-order gradients for policy learning leads to
faster convergence and superior performance, particularly in quadrotor tasks (Zhang et al. (2024);
Wiedemann et al. (2023)).

Using first-order gradients for training requires not only the dynamics but also the reward func-
tion to be differentiable. However, designing fully differentiable rewards is often impractical for
complex quadrotor tasks. Reward functions in such scenarios often include non-differentiable com-
ponents, such as conditional constants or binary scores (e.g., granting points upon gate crossing in
a racing task or upon object detection in a search task), which violate differentiability requirements.
These non-differentiable elements disrupt the computation graph during backpropagation-through-
time (BPTT), leading to biased first-order gradients—a phenomenon we term Biased Gradient.
This bias misguides training, causing optimization to stall in local minima and deviate from the
intended direction of improvement.

To address this issue in quadrotor tasks, we propose an on-policy actor-critic approach - Amended
Backpropagation-through-Time (ABPT), which mitigates the bias gradient introduced by the non-
differentiable rewards while keeping high policy learning performance in terms of training speed
and converged rewards. Our approach combines 0-step returns with N-step returns (Sutton & Barto
(2018)), leveraging value gradients generated by the 0-step returns to balance first-order gradient

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Our trained policies were deployed in the real world with zero-shot sim-to-real transfer.
Additional results are provided in the supplementary video, which showcases four tasks : hovering,
landing, racing, and tracking, from left to right.

accuracy and exploitation. Additionally, ABPT incorporates entropy to suppress negative impact by
the instability of critic learning. It also employs a replay buffer to store state experiences, initial-
izing episodes with these states to enhance sampling efficiency. We evaluate our method on four
representative quadrotor tasks, comparing it against classic policy gradient and first-order gradient
methods. These tasks are designed to progressively increase the reward non-differentiability, testing
the adaptability of each approach. Experimental results demonstrate that ABPT achieves the fastest
convergence and highest final rewards across all baselines. This superiority is attributed to ABPT’s
ability to compensate for biased gradients and enhance exploration via entropy regularization and
state replay. Furthermore, ABPT exhibits robustness across varying learning rates and reward struc-
tures. Our technical contributions are summarized as follows:

• We propose ABPT, a novel approach to address the challenges in first-order gradient learn-
ing, including biased gradients caused by non-differentiable rewards and susceptibility to
local minima.

• We provide a comprehensive analysis of ABPT’s effectiveness, offering insights to advance
differentiable physics-based learning methods.

• We validate ABPT-trained policies of four representative quadrotor tasks in the real world
through zero-shot sim-to-real transfer.

2 RELATED WORK

2.1 REINFORCEMENT LEARNING

Traditional reinforcement learning can be divided into two classes: model-free RL and model-based
RL. Model-free RL includes value-based and policy-gradient methods. Value-based methods learn
value functions to estimate long-term rewards. DQN (Mnih (2013)) introduced neural networks for
discrete actions, while DDPG (Lillicrap (2015)) extended this to continuous action spaces. TD3 (Fu-
jimoto et al. (2018)) reduced overestimation bias with multiple value networks, and SAC (Haarnoja
et al. (2018)) used a maximum entropy framework for robust high-dimensional learning. Policy-
gradient methods directly optimize policies using gradients. TRPO (Schulman (2015)) stabilized
updates via trust regions, and PPO (Schulman et al. (2017)) simplified optimization with a clipped
surrogate objective.

In contrast to model-free RL which treats the environment as a black box, model-based RL (Mo-
erland et al. (2023)) introduces an additional process to learn the environment’s dynamics. For
example, PILCO (Deisenroth & Rasmussen (2011)) and Dyna-Q (Sutton (1990)) leveraged learned
environment models to generate simulated experiences to accelerate training. Methods like (Chua
et al. (2018); Watter et al. (2015)) employ trajectory sampling to plan over learned environment
models. Dreamer (Hafner et al. (2019)) embedded entire functions into a latent space, enabling end-
to-end policy updates via backpropagation-through-time (BPTT). Despite their advantages, existing
RL methods do not explicitly utilize the dynamics of robotics that can be precisely described by
physical laws.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

2.2 DIFFERENTIABLE SIMULATORS

Policy learning via differentiable physics is an approach that integrates the physical simulations with
differentiable dynamics to enable policy learning directly by using gradient-based optimization.
Making the dynamics differentiable in the simulator is the key to this approach. DiffTaichi (Hu
et al. (2020)) is a comprehensive differentiable physics engine that includes simulations of fluid,
gas, rigid body movement, and more. In the field of robotics, Brax (Freeman et al. (2021)) offers
differentiable versions of common RL benchmarks, built on four physics engines, including JAX
and MuJoCo (Todorov et al. (2012)). Another line of research focuses on addressing challenges in
contact-rich environments. For example, Heiden et al. (Heiden et al. (2021)) tackle the contact-
rich discontinuity problem in quadruped robots by employing a neural network to approximate the
residuals. Dojo (Howell et al. (2023)) enhances contact solvers and integrates various integrators to
accelerate computations while maintaining fidelity. VisFly (Li et al. (2024)) introduces a versatile
drone simulator with fast rendering, based on Habitat-Sim (Savva et al. (2019)), providing a platform
for high-level applications. To enhance the efficiency, many simulators leverage GPU-accelerated
frameworks like JAX (Schoenholz & Cubuk (2020)) and PyTorch (Paszke et al. (2017)) for faster
computations.

2.3 FIRST-ORDER GRADIENT TRAINING

With the differentiable simulators, the policy can be trained through BPTT by using the first-order
gradients. Though first-order gradients enable faster and more accurate gradient computation, they
suffer from gradient explosion/vanishing or instability caused by smooth dynamics. Many attempts
have tried to address these issues and strengthen robustness. PODS (Mora et al. (2021)) leverages
both first- and second-order gradients with respect to cumulative rewards. SHAC (Xu et al. (2022))
employs an actor-critic framework, truncates the learning window to avoid vanishing/exploding gra-
dients, and smooths the gradient updates. AOBG (Suh et al. (2022)) combines ZOG (policy gradient)
with FOG, using an adaptive ratio based on gradient variance in the minibatch to avoid the high vari-
ance typical of pure FOG in discontinuous dynamics. AGPO (Gao et al. (2024)) replaces ZOG in
mixture with critic predictions, as Q-values offer lower empirical variance during policy rollouts.
While both AGPO and AOBG converge to asymptotic rewards in significantly fewer timesteps,
the mixture ratio requires excessive computational resources, leading to longer wall-time. AHAC
(Georgiev et al. (2024)) makes the horizon adaptive to reduce sampling error in scenarios involving
stiff dynamics. SAPO (Xing et al. (2024)) introduces entropy to strengthen the training stability
especially in soft-body simulation. All these variants are designed to improve training efficiency
and have been validated on controlled simulation benchmarks. However, although SHAC, SAPO,
and AHAC incorporate critics for learning, their value functions are positioned only at the end of
the horizon, which prevents them from addressing the gradient bias introduced by non-differentiable
rewards within the horizon (as explained in Section 4).

3 PRELIMINARIES

The goal of reinforcement learning is to find a stochastic policy π that maximizes the expected
cumulative reward, or the expected return, over a trajectory τ . In a common actor-critic pipeline,
both the actor πθ and the critic – either the action-value function Qϕ(s, a) or the state-value function
Vϕ(s) = Ea∼πθ

[Qϕ(s, a)] – are approximated by neural networks with parameters θ and ϕ. The
key problem is how to estimate the gradients to optimize the expected return. The methods could be
divided into two following categories:

Policy Gradient. Policy gradient methods estimate the gradient of the expected return using the
log-probability of sample trajectories, conditioned on the policy’s action distribution. Given a batch
of experience, the policy gradient is computed as:

∇[0]
θ Jθ =

1

|B|

[∑
τ∈B

T∑
t=0

∇θ log πθ(at | st)Aπθ (st, at)

]
, (1)

where Aπθ (·) represents the advantage derived from the value functions using current policy, B de-
notes the minibatch of sampled trajectories, τ represents a trajectory within the minibatch. Because

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

this formulation does not require differentiating through the environment dynamics, it is also named
zeroth-order gradient (ZOG).

Value Gradient. Value gradient methods compute the policy gradient by differentiating through the
action-value function:

∇[q]
θ Jθ =

1

|B|

 |B|∑
i=1

∇θQϕ

(
si, πθ(s

i)
) (2)

(Gao et al. (2024)) named this gradient estimator as Q gradient (QG). Compared with ZOG, the
accuracy of value-function approximation is particularly critical for actor training, since QG relies
directly on backpropagation through the action-value function. In contrast, ZOG estimates advan-
tages with respect to the current policy, which makes actor training more robust to imperfections in
critic learning.

4 FIRST-ORDER GRADIENT APPROACH WITH NON-DIFFERENTIABLE
REWARDS

First-order Gradient. Given the state dynamics T and reward function R being differentiable,
one can compute the exact gradients of the expected return for policy learning via backpropagation
through time. This exact gradient estimate is called first-order gradient (FOG):

∇θJθ =

(
N−1∑
k=0

γk ∂R(st+k)

∂θ

)
, (3)

where N represents the horizon length, i denotes the i-th trajectory within the minibatch, and R
represents the reward function. To consider infinite return while avoiding gradient explosion, an
approximated N-step return (Sutton & Barto (2018)) has been introduced in (Xu et al. (2022)):

∇θJθ =

(
N−1∑
k=0

γk ∂R(st+k)

∂θ

)
+ γN∇θVϕ(st+N). (4)

Here, Vϕ is the state-value function reparameterized by ϕ. As shown in (Xu et al. (2022)), using
this approximated N-step return can introduce smooth landscape for optimization and mitigate the
gradient explosion issues. However, it cannot address non-differentiable rewards as we will discuss
later. Compared to Equation (2) and Equation (1), Equation (4) incorporates component that could
be optimized by precise gradient descent.

Figure 2: An illustration for explaining biased gradient. In a racing task introduced in Section 6.1,
the reward for passing the gate is a conditional constant, unable to automatically compute gradients.

Biased Gradient. When the rewards are partially differentiable, the gradients of non-differentiable
part of the rewards will be absent from backpropagation. For example, as shown in Figure 2, a racing
task’s reward function consists of two components. The first one Rdist depends on the distance from
the drone to the gate to encourage the drone to move toward the gate, which is differentiable w.r.t
the state. The second one Rsucc is a conditional constant score given for successfully passing the
gate, which does not involve gradient computation w.r.t. policy parameters. Therefore, although the
desired objective involves both rewards

Jθ =

(
N−1∑
k=0

γk
(
Rdist(st+k) +Rsucc(st+k)

))
+ γNVϕ(st+N), (5)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

backpropagation-through-time can effectively optimize only the differentiable components:

Jθ =

(
N−1∑
k=0

γkRdist(st+k)

)
+ γNVϕ(st+N), (6)

As a result, the gate crossing reward Rsucc, despite being crucial for learning the expected behavior
(e.g. crossing the gate), is ignored during training. This ignorance can hinder the learned policy’s
ability to perform the desired actions.

5 THE PROPOSED METHOD

As previously discussed, explicit use of first-order gradients for policy learning requires address-
ing gradient bias caused by non-differentiable rewards. Motivated by the value gradient method,
we propose to combine the 0-step return with N-step return for policy learning. This combina-
tion mitigates the gradient bias while leveraging the strength of both gradient types. Our method,
Amended Backpropagation-through-Time (ABPT), is an on-policy actor-critic learning approach.
An overview is presented in Figure 3.

Figure 3: An overview of ABPT. ABPT combines 0-step return and N-step return together, to com-
pensate the biased gradient resulting from partially non-differentiable reward. The red dash lines
indicate the direction of backpropagation. The replay buffer stores only visited states for episode
initialization to improve sampling efficiency, irrelevant to training.

During each training episode, we collect |B| trajectories with a horizon length N and optimize the
following objective function to update the actor network parameters θ:

Jθ =
1

2|B|

|B|∑
i=1

(
JN
θ + J 0

θ

)
(7)

where JN
θ , J 0

θ are N-step return and 0-step return, defined as

JN
θ =

(
N−1∑
k=0

γkR(sit+k)

)
︸ ︷︷ ︸

Gt:t+N
θ

+(1− d)γN Vϕ(s
i
t+N)︸ ︷︷ ︸

Vt+N+1
θ|ϕ

, J 0
θ = Vϕ(s

i
t)︸ ︷︷ ︸

Vt
θ|ϕ

(8)

Here, d is a boolean variable indicating whether the current episode has ended, and i denotes the
trajectory index. Because each trajectory is generated by πθ, all terms are differentiable with respect
to θ. Gt:t+N

θ represents the accumulated reward within the horizon and Vt+N+1
θ|ϕ is the value obtained

by fixed critic. Both 0-step return and N-step return are expected values computed from the same
action-value function Qϕ. Ideally, if the critic Qϕ is learned perfectly, we have Jθ = JN

θ = J0
θ . We

prove using the objective function (7) for gradient computation is equivalent to combining both the
value gradient and the first-order gradient for backpropagation in Appendix A.

We use a Gaussian policy πθ(a|s) = N (µθ(s), σθ(s)) for the actor network and apply the reparam-
eterization trick (Kingma (2013)) to gradient computation. We also normalize the actions using tanh
function to stabilize the training process: at = tanh(µθ(st) + σθ(st)ϵ), where ϵ ∼ N (0, I). After

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 The proposed ABPT algorithm

1: Initialize parameters ϕ, ϕ−, θ randomly, initialize state buffer D = {}.
2: while num time-steps < total time-steps do
3: # Evaluate and collect states
4: for collecting steps = 1 . . . i do
5: Add states D ← D ∪ {(si)Ni=1}
6: end for
7:
8: # Train actor net
9: Sample minibatch {(si)}B ∼ D as initial states

10: Compute the gradient of Jθ and update the actor by gradient ascent θ ← θ + α∇θJθ

11:
12: # Train critic net
13: Compute the estimated value Ṽϕ using (10)
14: for critic update step c = 1..C do
15: Compute the gradient of Lϕ and update weights by gradient descent ϕ← ϕ− α∇ϕLϕ

16: Softly update target critic ϕ− ← (1− τ)ϕ− + τϕ
17: end for
18: end while

updating the critic, target returns are estimated over time and used to further refine the critic network
parameters ϕ by minimizing the MSE loss function:

Lϕ = Es∈{τi}

∥∥∥Vϕ(s)− Ṽϕ(s)
∥∥∥2 . (9)

We employ TD(λ) formulation (Sutton & Barto (2018)) to estimate the expected return using expo-
nentially averaging k−step returns:

Ṽϕ(st) = (1− λ)

(
N−t−1∑
k=1

λk−1Gk
t

)
+ λN−t−1GN−t

t (10)

where Gk
t denotes k−step return from t:

Gk
t =

(
k−1∑
l=0

γlrt+l

)
+ (1− d)γkVϕ(st+k). (11)

where d ∈ {0, 1} indicates task termination. The state-value function is derived from the action-
value function:

Vϕ(s) = Ea∼π [Qϕ(s, a)] + κH (πθ(· | s)) , (12)

where we adopt an extra policy entropy term H (πθ(· | s)) to encourage exploration as in SAC
(Haarnoja et al. (2018)). κ is an adaptive ratio whose computation follows (Haarnoja et al. (2018)).
To stabilize the critic training, we follow (Mnih et al. (2015)) to use a target critic ϕ− to estimate the
expected return (see Equation (10)).

Existing methods (Xu et al. (2022)) start each new horizon at the end of the previous horizon,
which prevents certain regions of the state space from serving as initial states, resulting in inefficient
sampling (see Appendix D). To further encourage broader exploration during policy learning, we
adopt a replay buffer to store all visited states throughout training. This buffer enables random
sampling of dynamically feasible states for episode initialization. While conceptually similar to the
replay buffer used in off-policy learning algorithms, our approach differs in that we store only visited
states rather than transitions, and use these states solely for initialization, preserving the on-policy
nature of training. The pseudo code of the proposed method is shown in Algorithm 1.

6 EXPERIMENTS

We address the following questions in this section: 1) How does ABPT improve performance on
typical quadrotor tasks compared to baseline methods? 2) What distinctive advantages does ABPT
exhibit in behavior? 3) What is the contribution of each individual component?

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

6.1 EXPERIMENT SETUP

We conduct the evaluation on four quadrotor tasks, hovering, tracking, landing, racing, which in-
volve different levels of complexity. The hovering and tracking employ purely differentiable re-
wards. In contrast, both the landing and racing tasks incorporate binary rewards. However, there is
a key difference between them. In landing, the continuous reward teaches the quadrotor to gradually
slow down and descend, while the binary reward serves only to confirm successful touchdown. In
racing, however, the binary reward plays a decisive role by preventing the quadrotor from hovering
near the gates without actually passing through them.

In our experiments, we evaluate the proposed ABPT against three widely used baseline methods:
PPO (Schulman et al. (2017)), BPTT (Freeman et al. (2021)), and SHAC (Xu et al. (2022)). PPO
and SAC (Haarnoja et al. (2018)) remain among the most popular model-free algorithms for policy
training, due to their stability and robustness to hyperparameters. However, SAC is not included in
our comparisons because, in high-dimensional observation spaces, the critic requires substantially
longer training time, making it less competitive (see Appendix C.4). Among first-order-gradient-
based methods, SHAC is considered the most suitable baseline, as other approaches either exhibit
slower wall-time training or share similar features with SHAC.

6.2 BENCHMARK TASKS

Hovering. Starting from a random position, the quadrotor needs to hover stably at a target location.
Fully differentiable rewards are used in this task.

Tracking. Starting from a random position, the quadrotor tracks a circular trajectory with a fixed
linear velocity. Fully differentiable rewards are used in this task.

Landing. Starting from a random position, the quadrotor gradually descends, and eventually lands
at the required position on the ground. This task involves using non-differentiable rewards during
training.

Racing. The quadrotor flies through four static gates as quickly as possible in a given order repeat-
edly. This task involves more rewards with some of them non-differentiable.

We use the quadrotor simulator VisFly (Li et al. (2024)) as our training environment, where the dy-
namics are well implemented with automatic FOG computation achieved via (Paszke et al. (2017)).A
comprehensive description of observation and reward structure is presented in Table 1.

Table 1: Observations and rewards used in benchmark quadrotor tasks
Environments Observation Reward Function

Hovering state & p̂ c − k1 ∥p − p̂∥ − k2 ∥q − q̂∥ − k3 ∥v∥ − k4 ∥ω∥ (fully DIFF)
Tracking state & next 10 p̂i=1∼10 c − k1 ∥p − p̂0∥ − k2 ∥q − q̂∥ − k3 ∥v∥ − k4 ∥ω∥ (fully DIFF)
Landing state & p̂ −k1f

+
(
∥pxy − p̂xy∥

)
+ k2f

+
(
∥vz − v̂z∥

)
+ k3s (partially DIFF)

Racing state & next 2 p̂i=1,2 of gates c − k1 ∥p − p̂0∥ − k2 ∥q − q̂∥ − k3 ∥v∥ − k4 ∥ω∥ + k5s (partially DIFF)

c represents a small constant used to ensure the agent remains alive. ki denotes constant weights for different reward contributions, with
these weights being distinctly defined for each task. s is a boolean variable that indicates whether the task is successfully completed,
to award once at termination if it succeeds. The state comprises position (p), orientation (q), linear velocity (v), and angular velocity
(ω). f+(·) denotes an increasing mapping function used to normalize the reward and (̂·) denotes target status. DIFF is abbreviation for
differentiable. All the action types are individual rotor thrusts.

Figure 4: Quadrotor tasks (left to right): hovering, tracking, landing, and racing. We illustrate
multiple drones (in different colors) simultaneously to indicate episodes from different initial states.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

It is worth noting that the boolean success reward given at termination is necessary. This huge
reward encourages agents to complete the mission, not wander near the target to keep obtaining the
highest accumulative reward.

6.3 RESULTS

Comparison with Baseline Methods. To ensure fair comparison, we implemented SHAC and
BPTT by ourselves based on available source code, and adopt PPO from stable-baselines3 (Raffin
et al. (2021)) in VisFly simulator. All algorithms used parallel differentiable simulations to accel-
erate training. We tuned all hyperparameters to achieve optimal performance, and kept the settings
consistent across all experiments as much as possible. All experiments were conducted on the same
laptop with an RTX 4090 GPU and a 32-core 13th Gen Intel(R) Core(TM) i9-13900K processor,
with 5 random seeds for validation of robustness. Given the different time-step metrics across the
algorithms, we compare their performance in terms of wall-time as well. Figure 5 provides reward
curves of all methods during training.

PPO: PPO demonstrates moderate performance across the four tasks. However, due to the lack of an
analytical gradient, PPO requires more sample collections to estimate the policy gradient, making
it slower in terms of time-steps. In tasks that involve fully differentiable rewards such as hovering
and tracking, it achieves the lowest asymptotic reward compared to FOG-based algorithms. As
expected, PPO produces smooth and acceptable learning curves, since non-differentiable rewards
do not impact the ZOG used by PPO.

BPTT: BPTT exhibits similar performance to SHAC and ABPT in the first two tasks. In the Landing
task, despite the reward function incorporating non-differentiable discrete scores upon success, this
component has only a minor impact on the FOG computation. This is because the reward function
excluding this constant, has correctly determined the gradient via backpropagation. In the Racing
task, we apply learning rate decay to BPTT, SHAC, and ABPT. BPTT shows the worst performance
among all algorithms, demonstrating that the iteration quickly converges to a local minimum, caused
by the bias introduced by the non-differentiable part in rewards.

SHAC: Even though FOG is minimally biased in the Landing task, the curves from the five ran-
dom seeds show significant fluctuations. The terminal success reward leads to high variance in the
TD(λ) formulation used to estimate N-step returns, complicating critic training. As a result, SHAC
performs worse than BPTT in the Landing task. In the Racing task, the terminal value partially
addresses the non-differentiable components but still performs much worse than PPO and ABPT.

Our ABPT: In all tests, our ABPT method converges to the highest rewards. It achieves the fastest
convergence speeds in the first three tasks and similar convergence speed to PPO in the racing tasks.
By replaying visited states as initial states, ABPT enhances sampling efficiency by exploiting corner
cases. Introducing the entropy helps suppress the high variance of the discrete reward space in the
landing task, contributing to greater training stability. In the racing task, ABPT also outperforms
PPO with a higher converged reward. This is largely due to that the value gradient introduced by
0-step returns is unaffected by non-differentiable rewards, making ABPT an effective method to
compensate for biased gradient.

Ablation. As shown in Figure 6, we evaluate the effectiveness of key components of our approach
by removing each during training. The results show that: 1) Incorporating 0-step return clearly im-
proves the training performance in tasks with non-differentiable rewards such as landing and racing.

Figure 6: Ablation study: the key components of
ABPT are sequentially removed in turn to evaluate
each one’s contribution.

2) Initializing episodes from previously visited
states stored in the buffer enhances sampling ef-
ficiency, accelerating convergence. 3) In rac-
ing, the performance gain appears to stem more
from entropy than from 0-step return. Actu-
ally, it is underfitting critic that deteriorates the
actor training, and entropy loss helps stabilize
critic training, especially when multiple critics
are used. Similar to other value-based RL algo-
rithms, convergence critically depends on the
quality of critic training. 4) Removing the N-
step return significantly reduce landing perfor-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Figure 5: Training curves of PPO, SHAC, BPTT, and our ABPT in both time-step (Top) and wall-
time (Bottom). Each curve is averaged over results from five random seeds, and the shaded area
denotes the range of best and worst reward.

mance but has negligible impact on racing. In racing, the binary reward primarily drives the gradient,
whereas in landing it serves only as an auxiliary guidance. This suggests that N-step return does not
substantially contribute to mitigating biased gradients.

Discontinuity Relaxation. To evaluate the effectiveness of relaxation techniques in addressing
non-differentiable rewards, we replace the binary reward with smooth approximations that closely
resemble its behavior while using only N-step return for training. Specifically, we employ logarith-
mic (−5 log(|p − p̂| + 0.01)) and exponential (1/(|p − p̂| + 0.05)) relaxations, as shown in Figure
7. Both functions exhibit a similar trend to the original binary reward.

The objective of racing task is to pass through as many gates as possible. Since the reward scales of
different relaxations are not directly comparable, the number of gates passed provides a fairer metric
for performance evaluation. Although the exponential relaxation achieves performance comparable
to our ABPT method, its variance is significantly higher, leading to instability. As a result, the
quadrotor is more likely to become trapped in local minima. Intuitively, such relaxation encourages
the quadrotor to hover near a gate to repeatedly obtain sub-optimal rewards rather than flying forward
to the next gate.

Figure 7: Training curves for the racing task us-
ing binary reward relaxations. The task is trained
with SHAC after replacing the binary reward with
relaxed rewards.

Additional results. In real world, the increas-
ing complexity of dynamics and variety of tasks
make the optimal hyperparameters of BPTT-
based algorithms to differ substantially from
those reported in previous work (see Appendix
C.3). We validate our trained policies through
real-world experiments, as shown in Figure 1,
and provide a supplementary video demonstra-
tion. The policies perform reliably, and the
flights are stable. We further evaluate all the
methods under different reward types (Ap-
pendix C.1) and learning rates (Appendix C.2),
demonstrating ABPT’s superior robustness.

7 CONCLUSION

We present ABPT, a novel approach to train policies for quadrotor tasks robustly. It effectively
addresses the challenges from the partially non-differentiable rewards associated with existing first-
order gradient learning methods. We validated ABPT on four quadrotor tasks — hovering, tracking,
landing, and racing — and compared them with existing learning algorithms. The results show that
ABPT achieves faster and more stable training processes and converges to higher rewards across all
tasks. ABPT is also robust to the learning rate and different kinds of rewards. The ablation study
also shows the effectiveness of each key component of our approach.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

The code is released at https://anonymous.4open.science/r/APG-E73E. The de-
tailed hyperparameters of all the experiments are introduced in Appendix G. Our trained policies
are also deployed onboard on real-world quadrotors, please refer to the supplementary video.

REFERENCES

Kurtland Chua, Roberto Calandra, Rowan McAllister, and Sergey Levine. Deep reinforcement learn-
ing in a handful of trials using probabilistic dynamics models. Advances in neural information
processing systems, 31, 2018.

Marc Deisenroth and Carl E Rasmussen. Pilco: A model-based and data-efficient approach to policy
search. In Proceedings of the 28th International Conference on machine learning (ICML-11), pp.
465–472, 2011.

C. Daniel Freeman, Erik Frey, Anton Raichuk, Sertan Girgin, Igor Mordatch, and Olivier Bachem.
Brax – A Differentiable Physics Engine for Large Scale Rigid Body Simulation, June 2021. URL
http://arxiv.org/abs/2106.13281. arXiv:2106.13281.

Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error in actor-
critic methods. In International conference on machine learning, pp. 1587–1596. PMLR, 2018.

Feng Gao, Liangzhi Shi, Shenao Zhang, Zhaoran Wang, and Yi Wu. Adaptive-Gradient Policy Opti-
mization: Enhancing Policy Learning in Non-Smooth Differentiable Simulations. In Proceedings
of the 41st International Conference on Machine Learning, pp. 14844–14858. PMLR, July 2024.
URL https://proceedings.mlr.press/v235/gao24m.html. ISSN: 2640-3498.

Ignat Georgiev, Krishnan Srinivasan, Jie Xu, Eric Heiden, and Animesh Garg. Adaptive horizon
actor-critic for policy learning in contact-rich differentiable simulation, 2024. URL https:
//arxiv.org/abs/2405.17784.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In International confer-
ence on machine learning, pp. 1861–1870. PMLR, 2018.

Danijar Hafner, Timothy Lillicrap, Jimmy Ba, and Mohammad Norouzi. Dream to control: Learning
behaviors by latent imagination. arXiv preprint arXiv:1912.01603, 2019.

Eric Heiden, David Millard, Erwin Coumans, Yizhou Sheng, and Gaurav S. Sukhatme. Neural-
Sim: Augmenting Differentiable Simulators with Neural Networks. In 2021 IEEE Interna-
tional Conference on Robotics and Automation (ICRA), pp. 9474–9481, May 2021. doi: 10.
1109/ICRA48506.2021.9560935. URL https://ieeexplore.ieee.org/abstract/
document/9560935. ISSN: 2577-087X.

Taylor A. Howell, Simon Le Cleac’h, Jan Brüdigam, J. Zico Kolter, Mac Schwager, and Zachary
Manchester. Dojo: A Differentiable Physics Engine for Robotics, March 2023. URL http:
//arxiv.org/abs/2203.00806. arXiv:2203.00806.

Yu Hu, Yuang Zhang, Yunlong Song, Yang Deng, Feng Yu, Linzuo Zhang, Weiyao Lin, Danping
Zou, and Wenxian Yu. Seeing through pixel motion: Learning obstacle avoidance from optical
flow with one camera. IEEE Robotics and Automation Letters, pp. 1–8, 2025. doi: 10.1109/LRA.
2025.3560842.

Yuanming Hu, Luke Anderson, Tzu-Mao Li, Qi Sun, Nathan Carr, Jonathan Ragan-Kelley, and
Frédo Durand. DiffTaichi: Differentiable Programming for Physical Simulation, February 2020.
URL http://arxiv.org/abs/1910.00935. arXiv:1910.00935.

Elia Kaufmann, Antonio Loquercio, Rene Ranftl, Alexey Dosovitskiy, Vladlen Koltun, and Davide
Scaramuzza. Deep drone racing: Learning agile flight in dynamic environments. pp. 133–145.
PMLR, 2018. ISBN 2640-3498.

Diederik P Kingma. Auto-encoding variational bayes. 2013.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Fanxing Li, Fangyu Sun, Tianbao Zhang, and Danping Zou. VisFly: An Efficient and Versatile
Simulator for Training Vision-based Flight, September 2024. URL http://arxiv.org/
abs/2407.14783. arXiv:2407.14783.

TP Lillicrap. Continuous control with deep reinforcement learning. arXiv preprint
arXiv:1509.02971, 2015.

Antonio Loquercio, Elia Kaufmann, René Ranftl, Alexey Dosovitskiy, Vladlen Koltun, and Davide
Scaramuzza. Deep drone racing: From simulation to reality with domain randomization. IEEE
Transactions on Robotics, 36(1):1–14, 2019. ISSN 1552-3098.

Antonio Loquercio, Elia Kaufmann, René Ranftl, Matthias Müller, Vladlen Koltun, and Davide
Scaramuzza. Learning high-speed flight in the wild. Science Robotics, 6(59):eabg5810, 2021.
ISSN 2470-9476.

Jun Lv, Yunhai Feng, Cheng Zhang, Shuang Zhao, Lin Shao, and Cewu Lu. Sam-rl: Sensing-aware
model-based reinforcement learning via differentiable physics-based simulation and rendering.
The International Journal of Robotics Research, pp. 02783649241284653, 2023.

Volodymyr Mnih. Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602,
2013.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Belle-
mare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level
control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

Thomas M. Moerland, Joost Broekens, Aske Plaat, and Catholijn M. Jonker. Model-based rein-
forcement learning: A survey. Foundations and Trends® in Machine Learning, 16(1):1–118,
2023. ISSN 1935-8237.

Miguel Angel Zamora Mora, Momchil Peychev, Sehoon Ha, Martin Vechev, and Stelian Coros.
PODS: Policy Optimization via Differentiable Simulation. In Proceedings of the 38th Inter-
national Conference on Machine Learning, pp. 7805–7817. PMLR, July 2021. URL https:
//proceedings.mlr.press/v139/mora21a.html. ISSN: 2640-3498.

Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. 2017.

Antonin Raffin, Ashley Hill, Adam Gleave, Anssi Kanervisto, Maximilian Ernestus, and Noah Dor-
mann. Stable-baselines3: Reliable reinforcement learning implementations. Journal of Machine
Learning Research, 22(268):1–8, 2021.

Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, Erik Wijmans, Bhavana Jain,
Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. Habitat: A platform for embodied
ai research. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
9339–9347, 2019.

Samuel Schoenholz and Ekin Dogus Cubuk. JAX MD: A Framework for Differentiable Physics. In
Advances in Neural Information Processing Systems, volume 33, pp. 11428–11441. Curran As-
sociates, Inc., 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
83d3d4b6c9579515e1679aca8cbc8033-Abstract.html.

John Schulman. Trust region policy optimization. arXiv preprint arXiv:1502.05477, 2015.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Yunlong Song, Sangbae Kim, and Davide Scaramuzza. Learning quadruped locomotion using dif-
ferentiable simulation. arXiv preprint arXiv:2403.14864, 2024.

Hyung Ju Suh, Max Simchowitz, Kaiqing Zhang, and Russ Tedrake. Do Differentiable Simulators
Give Better Policy Gradients? In Proceedings of the 39th International Conference on Ma-
chine Learning, pp. 20668–20696. PMLR, June 2022. URL https://proceedings.mlr.
press/v162/suh22b.html. ISSN: 2640-3498.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Richard S Sutton. Integrated architectures for learning, planning, and reacting based on approxi-
mating dynamic programming. In Machine learning proceedings 1990, pp. 216–224. Elsevier,
1990.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning, second edition: An Introduction.
MIT Press, November 2018. ISBN 978-0-262-35270-3. Google-Books-ID: uWV0DwAAQBAJ.

Emanuel Todorov, Tom Erez, and Yuval Tassa. MuJoCo: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033,
October 2012. doi: 10.1109/IROS.2012.6386109. URL https://ieeexplore.ieee.
org/abstract/document/6386109. ISSN: 2153-0866.

Manuel Watter, Jost Springenberg, Joschka Boedecker, and Martin Riedmiller. Embed to control: A
locally linear latent dynamics model for control from raw images. Advances in neural information
processing systems, 28, 2015.

N. Wiedemann, V. Wüest, A. Loquercio, M. Müller, D. Floreano, and D. Scaramuzza. Training
Efficient Controllers via Analytic Policy Gradient. pp. 1349–1356, June 2023. doi: 10.1109/
ICRA48891.2023.10160581.

Eliot Xing, Vernon Luk, and Jean Oh. Stabilizing reinforcement learning in differentiable multi-
physics simulation. arXiv preprint arXiv:2412.12089, 2024.

Jie Xu, Viktor Makoviychuk, Yashraj Narang, Fabio Ramos, Wojciech Matusik, Animesh Garg, and
Miles Macklin. Accelerated Policy Learning with Parallel Differentiable Simulation, April 2022.
URL http://arxiv.org/abs/2204.07137. arXiv:2204.07137.

Yuang Zhang, Yu Hu, Yunlong Song, Danping Zou, and Weiyao Lin. Back to newton’s laws:
Learning vision-based agile flight via differentiable physics. arXiv preprint arXiv:2407.10648,
2024.

A PROOF

Suppose the value function Qϕ is well trained, the accumulated reward within the horizon can be
approximated as:

Gt:t+N
θ ≈ Vt

θ|ϕ − (1− d)γNVt+N+1
θ|ϕ . (13)

Its value gradient is then given by

∇[q]
θ G

t:t+N
θ = ∇θVt

θ|ϕ − (1− d)γN∇θVt+N+1
θ|ϕ (14)

regardless of the differentiability of the rewards. Noting that, unlike (Xu et al. (2022)), we specif-
ically use action-value function Qϕ to compute the value to ensure Gt:t+N

θ is differentiable with
respect to θ, which makes this derivative expression meaningful, otherwise the derivative would
be zero if using Vϕ solely with state input. Let ∇θGt:t+N

θ denote the first-order gradient of the
accumulated reward. The average of the two gradients can be expressed as:

∇̄θGt:t+N
θ =

1

2

(
∇[q]

θ G
t:t+N
θ +∇θGt:t+N

θ

)
. (15)

It is straightforward to verify that taking the derivative of (7) yields the following gradient for back-
propagation:

∇θJθ =
1

|B|

|B|∑
i=1

[
∇̄θGt:t+N+

θ + (1− d)γN∇θVt+N+1
θ|ϕ

]

=
1

2|B|

|B|∑
i=1

∇[q]
θ G

t:t+N
θ︸ ︷︷ ︸

∇J 0
θ

+∇θGt:t+N
θ + (1− d)γN∇θVt+N+1

θ|ϕ︸ ︷︷ ︸
∇JN

θ

 .

(16)

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Therefore, the difference between this gradient and the gradient (4) used in (Xu et al. (2022)) is that
the first-order gradients in (4) are combined with the value gradients. By leveraging this combina-
tion, our method remains effective in guiding the parameter updates toward the correct direction,
when the first-order gradient is biased due to the non-differentiable rewards.

We conduct a simple experiment to assess the effectiveness of incorporating the 0-step return in ad-
dressing gradient bias. We deliberately detach parts of rewards in the hovering task (see Section 6.1)
to mimic non-differentiable rewards, then backpropagate to compute gradient of network parameter.
As shown in Figure 8, combining the 0-step return with the N-step return in the objective function
(7) for training significantly reduces the model parameter residuals.

B BENCHMARK DYNAMICS

Quadrotor dynamics aligned with real-world conditions are considerably more complex than those
typically assumed in simulation. The dynamics are modeled in full 6-DoF to capture the complex
interactions between translational motion, rotational dynamics, aerodynamic drag, and actuator dy-
namics. Specifically, the state evolution is governed by:

ẋW = vW , v̇W = 1
m
RWB(f + d) + g,

q̇ = 1
2
q⊗Ω, Ω̇ = J−1(η −Ω× JΩ),

(17)

where the translational states (xW ,vW), orientation quaternion q, and angular velocity Ω evolve
under the influence of gravity g, collective thrust vector f , and drag force d. The quaternion product
is denoted by ⊗, and RWB is the rotation matrix from body to world frame. m and J respectively
denote mass and inertial matrix.

The aerodynamic drag d is modeled as quadratic in body-frame velocity:

d = 1
2
ρvB ⊙ vB Cd ⊙ s, (18)

where ρ is the air density, Cd the drag coefficients, s the effective cross-sectional areas, and vB the
velocity in the body frame. The operator ⊙ denotes element-wise multiplication.

Under CTBR control, the action a consists of the collective thrust along z-axis f and the desired
bodyrates (ωx, ωy, ωz). Such commands are distributed onto the four individual motors through a
control allocation process: f1f2f3

f4

 = M−1

 f
τx
τy
τz

 , (19)

where (τx, τy, τz) are the body torques η computed from the commanded bodyrates using a cascaded
attitude controller. The matrix M denotes the allocation matrix that maps individual rotor thrusts to
total thrust and body torques:  f

τx
τy
τz

 =

 1 1 1 1
0 l 0 −l
−l 0 l 0
cτ −cτ cτ −cτ


f1f2f3
f4

 , (20)

where l is the arm length and cτ is the rotor torque coefficient.

This formulation ensures that the collective thrust and commanded bodyrates are consistently
mapped to the individual motor thrusts, enabling low-level execution on real quadrotors.

To account for actuator dynamics, a first-order exponential model with time constant c is introduced
to describe the delay between commanded and actual rotor speeds:

fi = k2ω
2
i + k1ωi + k0, ωi = ωdes

i + (ω′
i − ωdes

i)e−ct, (21)

where ωi is the rotor speed, ω′
i and ωdes

i are the current and desired speeds, and k2, k1, k0 are thrust
coefficients. fi denotes the thrust along the z-axis of rotor i.

The device communication process is modeled with a one-step delay:

at = at−1, (22)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

where at denotes the control command applied at time t. This formulation captures the fact that
actuators cannot instantly follow rapid changes in control inputs.

Besides, it couples a PD controller for stable bodyrate response. The actual bodyrate command is
computed through:

τ = KΩ
p (Ωdes −Ω) + KΩ

d (Ω̇
des − Ω̇), (23)

Then, to reduce simulation-to-reality gap, we made parameter recognition to finetune the parameters
in simulation, aligning the control response as similar as possible. Such complexity makes first-order
gradient computation in backpropagation particularly challenging.

C ADDITIONAL EXPERIMENT

Figure 8: The curve shows the difference between the parameters trained with fully differentiable
and partially differentiable rewards. We deliberately detach parts of the rewards to interrupt gradient
backpropagation and retrain the policy with or without combining the 0-step return.

C.1 REWARD ROBUSTNESS

Designing an appropriate reward function is highly challenging for real-world applications, particu-
larly when dealing with specific requirements. Ensuring robustness to reward architecture is crucial
for the training algorithms. In the racing task, we redefined the reward function by replacing Eu-
clidean distance with approaching velocity in the reward. As shown in Figure 9, ABPT outperforms
other methods with both position-based and velocity-based rewards. With fewer non-differentiable
components, velocity-based rewards allow ABPT and SHAC to pass more gates per episode, while
BPTT fails due to gradient issues.

Figure 9: Training curves with different rewards: position-based rewards (Left column) and
velocity-based rewards (Right column). The number of passed gates is visualized as the perfor-
mance metric because of different rewards used for training.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

C.2 LEARNING RATE ROBUSTNESS

Figure 10: Training curves with different learning rates 0.01, 0.003, 0.001, 0.0003, 0.00001. The
proposed ABPT exhibits stable and fast training performance in all learning rates.

We evaluated the training performance using different learning rates. The fully differentiable hover-
ing task is used for evaluation. As shown in Figure 10, the proposed ABPT exhibits stable and fast
training performance in all learning rates. PPO has the highest variance compared to other FOG-
based algorithms, as expected demonstrating that FOG is much more precise than ZOG. Increasing
the learning rate yields a slight improvement on acceleration once it surpasses 0.001 for PPO and
SHAC, while ABPT’s convergence speed stably grows with increasing learning rate.

C.3 HORIZON LENGTH ANALYSIS

The optimal horizon length in SHAC is typically reported as 32, but the results obtained in this
work reveal a different trend. As shown in Figure 11, for the hovering task the algorithm achieves
comparable final returns with horizons of 64, 96, and 128. This discrepancy can be attributed to
the increased complexity of the quadrotor dynamics discussed in Appendix B. In contrast, for
the landing task the set of effective horizons narrows to a single value, 96, suggesting that not
only the underlying dynamics but also the task context play a crucial role in determining suitable
hyperparameters.

Figure 11: Training curves for hovering and landing tasks with different horizon lengths. Perfor-
mance is evaluated with horizons of 16, 32, 64, 96, and 128.

C.4 SAC COMPARISON

SAC is typically used as a baseline for value-iteration model-free algorithms and has shown strong
performance across various simulation benchmarks. However, in real-world scenarios—particularly
for planning six-dimensional motions in free space—the size and variance of the observation space
are much greater than in simulation. This increased complexity makes it significantly more difficult
to train the critic. Since the degree of critic undertraining is critical for value-iteration methods like
SAC but less so for policy-iteration methods, PPO has become the most widely used algorithm for
training policies deployed in practice.

To validate SAC’s performance, we include it only in the hovering task (Figure 12). The results show
that, in real-world applications, SAC performs much worse than PPO. Therefore, in the experiments
presented in this paper, we focus our comparisons on PPO.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 12: Training curves of hovering for baselines including SAC.

D INEFFICIENT SAMPLING

For convenience, the current implementation of backpropagation-through-time (BPTT) in differ-
entiable simulation always initializes the next computation horizon from the terminal state of the
previous horizon. However, this design prevents certain states from ever being sampled as initial
conditions (see Figure 13), which leads to inefficient exploration of the observation space. In par-
ticular, states that are not reachable within a single horizon length cannot serve as starting points
for training. This issue could be addressed by introducing an external replay buffer that records
states at each step and resamples them as initial conditions, thereby improving coverage of the state
space and enhancing sample efficiency. Noting that, in control task, the randomization domain could
be enlarged enough to tackle such issue, but in planning task, it is usually constrained around the
point of departure. Besides, regardless of randomization, the actual starting point distribution in
observation space is still non-uniform, downgrading the training efficiency.

Figure 13: Illustration of the limited state coverage in the current BPTT implementation. Assuming
the agent’s minimal horizon length is five, it cannot end at points 4 and 5 after executing a horizon
even with randomization. As a result, part of the observation space never serves as beginning of
horizons, reducing sampling efficiency.

E DISCUSSION

We also explored incorporating k-step value functions (k = 0, . . . , N−1) at each step within a finite
horizon, following a similar approach to AOBG (Suh et al. (2022)). However, this led to significant
fluctuations in the learning curves, because introducing undertrained critic results in much higher
variance in training. The mixture ratio in AOBG (Suh et al. (2022)) and AGPO (Gao et al. (2024))
may be effective to handle such unstable factor. However, if for accelerating training purpose, it is
impossible to directly use such method in these works because mixture ratio computation is time
costly. It is worthwhile finding a much faster and simpler method for this optimization problem,
similar to how PPO simplified the ideas behind TRPO.

F LIMITATION AND FUTURE WORK

ABPT enhances the efficiency and robustness of training processes utilizing analytical gradients,
even in scenarios involving partially differentiable reward structures. However, while it significantly
mitigates the gradient bias caused by non-differentiable reward components, it may still fail to fully
eliminate extreme bias if the biased gradient is excessively large. Therefore, when designing re-
ward functions, priority should be given to incorporating smooth and differentiable variables to the

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

greatest extent possible. In the following work, we will further explore how to adaptively mix the
gradient while avoiding incurring excessive computation for mixture-ratio estimation.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

G TRAINING HYPERPARAMETERS

Tables 2∼5 contain the parameters for the baseline experiments, Tables 6∼8 for the ablation exper-
iments, and Table 9 for the reward robustness experiments. Noting that, Simulators like dm control
often ignore the complexity of real-world dynamics. In our case, we conducted detailed system
identification and matched our simulation to actual quadrotor behavior, including communication
delay, motor dynamics, aerodynamic drag, PID control, thrust modeling, and time synchronization.
(see VisFly). This complexity makes optimal hyperparameters differ from original baselines.

Table 2: Hyperparameters of SHAC
Hovering Tracking Landing Racing

learning rate α 0.01 0.01 0.01 0.002
number of parallel environments n 100 100 100 100
discount factor γ 0.99 0.99 0.99 0.99
training critic steps per minibatch 10 10 10 10
weight decay 0.00001 0.00001 0.00001 0.00001
target critic update factor τ 0.005 0.005 0.005 0.005
decay learning rate False False False True
value estimation factor λ 0.95 0.95 0.95 0.95
horizon length H 96 96 96 96
Optimizer Adam Adam Adam Adam

Table 3: Hyperparameters of PPO
Hovering Tracking Landing Racing

learning rate α 0.001 0.0002 0.0005 0.001
number of parallel environments n 100 100 100 100
discount factor γ 0.99 0.99 0.99 0.99
minibatch size 25600 25600 25600 51200
training critic steps per minibatch 5 5 5 5
weight decay 0.00001 0.00001 0.00001 0.00001
GAE λ 1 1 1 1
Optimizer Adam Adam Adam Adam

Table 4: Hyperparameters of BPTT
Hovering Tracking Landing Racing

learning rate α 0.01 0.01 0.005 0.002
number of parallel environments n 100 100 100 100
discount factor γ 0.99 0.99 0.99 0.99
weight decay 0.00001 0.00001 0.00001 0.00001
decay learning rate False False False True
horizon length H 256 256 256 512
Optimizer Adam Adam Adam Adam

Table 5: Hyperparameters of ABPT
Hovering Tracking Landing Racing

learning rate α 0.01 0.01 0.01 0.01
number of parallel environments n 100 100 100 100
discount factor γ 0.99 0.99 0.99 0.99
training critic steps per minibatch 10 10 10 10
weight decay 0.00001 0.00001 0.00001 0.00001
target critic update factor τ 0.005 0.005 0.005 0.005
decay learning rate False True False True
value estimation factor λ 0.95 0.95 0.95 0.95
horizon length H 96 96 96 96
replay buffer size 1000000 1000000 1000000 50000
Optimizer Adam Adam Adam Adam

.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 6: Hyperparameters of ABPT no 0-step Value
Hovering Tracking Landing Racing

learning rate α 0.01 0.01 0.01 0.01
number of parallel environments n 100 100 100 100
discount factor γ 0.99 0.99 0.99 0.99
training critic steps per minibatch 10 10 10 10
weight decay 0.00001 0.00001 0.00001 0.00001
target critic update factor τ 0.005 0.005 0.005 0.005
decay learning rate False True False True
value estimation factor λ 0.95 0.95 0.95 0.95
horizon length H 96 96 96 96
replay buffer size 1000000 1000000 1000000 50000
Optimizer Adam Adam Adam Adam

Table 7: Hyperparameters of ABPT no Entropy
Hovering Tracking Landing Racing

learning rate α 0.01 0.01 0.002 0.002
number of parallel environments n 100 100 100 100
discount factor γ 0.99 0.99 0.99 0.99
training critic steps per minibatch 10 10 10 10
weight decay 0.00001 0.00001 0.00001 0.00001
target critic update factor τ 0.005 0.005 0.005 0.005
decay learning rate False True False True
value estimation factor λ 0.95 0.95 0.95 0.95
horizon length H 96 96 96 96
replay buffer size 1000000 1000000 1000000 50000
Optimizer Adam Adam Adam Adam

Table 8: Hyperparameters of ABPT no 0-step Value no Entropy
Hovering Tracking Landing Racing

learning rate α 0.01 0.01 0.002 0.002
number of parallel environments n 100 100 100 100
discount factor γ 0.99 0.99 0.99 0.99
training critic steps per minibatch 10 10 10 10
weight decay 0.00001 0.00001 0.00001 0.00001
target critic update factor τ 0.005 0.005 0.005 0.005
decay learning rate False True False True
value estimation factor λ 0.95 0.95 0.95 0.95
horizon length H 96 96 96 96
replay buffer size 1000000 1000000 1000000 50000
Optimizer Adam Adam Adam Adam

Table 9: Hyperparameters of ABPT upon Velocity-based Reward in Racing
ABPT SHAC BPTT PPO

learning rate α 0.02 0.02 0.002 0.0002
number of parallel environments n 100 100 100 100
discount factor γ 0.99 0.99 0.99 0.99
training critic steps per minibatch 10 10 10 5
weight decay 0.00001 0.00001 0.00001 0.00001
target critic update factor τ 0.005 0.005 - -
decay learning rate True True True -
value estimation factor λ 0.95 0.95 - -
horizon length H 96 96 512 -
replay buffer size 50000 - - -
minibatch size - - - 51200
GAE - - - 1
Optimizer Adam Adam Adam Adam

19

