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Abstract
Large Language Models (LLMs) have made significant
strides in various intelligent tasks but still struggle with
complex action reasoning tasks that require systematic
search. To address this limitation, we propose a method
that bridges the natural language understanding capabili-
ties of LLMs with the symbolic reasoning strengths of ac-
tion languages. Our approach, termed LLM+AL, leverages
the LLM’s strengths in semantic parsing and commonsense
knowledge generation alongside the action language’s profi-
ciency in automated reasoning based on encoded knowledge.
We compare LLM+AL against state-of-the-art LLMs, includ-
ing CHATGPT-4, CLAUDE 3 OPUS, GEMINI ULTRA 1.0,
and O1-PREVIEW, using benchmarks for complex reasoning
about actions. Our findings indicate that, although all meth-
ods exhibit errors, LLM+AL, with relatively minimal human
corrections, consistently leads to correct answers, whereas
standalone LLMs fail to improve even with human feedback.
LLM+AL also contributes to automated generation of action
languages.

1 Introduction
Large Language Models (LLMs) have made significant
strides in various intelligent tasks (Brohan et al. 2023; Ko-
jima et al. 2022; Huang et al. 2023; Zeng et al. 2022; Yao
et al. 2024; Besta et al. 2024), yet they often struggle with
complex reasoning about actions, particularly in problems
that demand systematic search. An emerging alternative is
to use an LLM as a semantic parser to convert natural lan-
guage into symbolic representations, such as Python pro-
grams (Gao et al. 2023; Nye et al. 2021; Olausson et al.
2023), Planning Domain Definition Language (PDDL) (Liu
et al. 2023; Guan et al. 2023; Xie et al. 2023), or logic pro-
grams (Ishay, Yang, and Lee 2023). These symbolic repre-
sentations are then processed by dedicated symbolic reason-
ers.

However, these methods have limitations. As demon-
strated in this paper, for complex reasoning tasks, LLMs al-
most always fail to generate Python programs for searching
for solutions, except in cases where the problem is a typical
search task that LLMs may have memorized from the train-
ing corpus. Even in such instances, when small variations
are introduced, LLMs struggle to adapt to the changes.
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Using LLMs to generate PDDL could help address
a broader range of action reasoning problems. However,
PDDL is primarily designed as a standard language for task
planning and is not well-suited for expressing more general
forms of knowledge about actions, such as state constraints,
indirect effects, default reasoning, and recursive definitions
(Giunchiglia et al. 2004).

This paper presents a novel method that bridges the nat-
ural language understanding capabilities of LLMs with the
symbolic reasoning strengths of action languages (Gelfond
and Lifschitz 1998; Giunchiglia et al. 2004). Our approach,
termed “LLM+AL,” leverages the LLM’s strengths in se-
mantic parsing and commonsense knowledge generation
alongside the action language’s proficiency in automated
reasoning about actions based on encoded knowledge.

Action languages are particularly well-suited for this pur-
pose. They have an intuitive, natural language like syn-
tax, feature formal semantics, and are supported by effi-
cient computational tools. Action languages are designed for
more knowledge-intensive reasoning than PDDL, encom-
passing not only task planning problems but also temporal
prediction problems, which involve predicting what would
happen if a sequence of actions is executed, and postdic-
tion problems, where one infers the initial state given the
current state and a past sequence of actions. Even when fo-
cused solely on task planning problems, action languages of-
fer greater expressivity, such as representing indirect effects
to address the ramification problem (e.g., the banana’s loca-
tion is determined by the monkey’s location if the monkey is
holding it; thus, any action that moves the monkey will in-
directly affect the banana’s location), and defaults (e.g., by
default, a pendulum swings back and forth unless it is be-
ing held). In particular, this paper leverages one of the latest
members in this family, the action language BC+ (Babb and
Lee 2015, 2020) due to its simplicity and expressivity, as
well as the availability of the efficient BC+ reasoner called
CPLUS2ASP (Babb and Lee 2013).

The LLM+AL pipeline leverages an LLM effectively
across multiple stages, each serving a different purpose.
First, given a reasoning problem in natural language, we use
an LLM to generate a program signature and extract com-
monsense and domain-specific knowledge. Next, the LLM
is tasked with converting this knowledge into BC+ rules,
guided by a prompt that details BC+ syntax and semantics
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and is supplemented with several translation examples. Af-
ter generating a complete BC+ program, the LLM is tasked
with doing a series of revisions if necessary, based on the
output of the BC+ reasoner. This pipeline facilitates the
generation of correct BC+ programs (with plans) or mostly
correct BC+ programs to users. Our code is available on
GitHub https://github.com/azreasoners/llm-al, and the ap-
pendix can be found in the long version of the paper (Ishay
and Lee 2025).

Our findings indicate that LLM+AL, even with basic de-
scriptions of BC+ and a few translation examples, is sur-
prisingly adept at translating English into BC+ rules and
extracting relevant knowledge, thanks to the rich seman-
tic understanding that LLMs acquired during pre-training.
Despite occasional errors in knowledge extraction and rule
generation—a challenge even for human experts—our ap-
proach demonstrates proficiency comparable to that of hu-
man experts, requiring only a few manual corrections to
modify the erroneous BC+ programs and produce correct
solutions.

Our focus is on problems that require deep rather than
shallow reasoning, often involving systematic search, which
LLMs typically struggle with. We evaluated our method
using a benchmark proposed by McCarthy (1998), which
serves as a “Drosophila” for assessing the elaboration toler-
ance of human-level AI—highlighting the importance of an
AI’s ability to represent and reason about new phenomena
or altered circumstances. The problem set includes several
elaborations of the well-known Missionaries and Cannibals
Puzzle (MCP), such as “what if only one missionary and one
cannibal can row?” and “what if there are four missionar-
ies and four cannibals instead?” We found that the most ca-
pable LLMs today, such as CHATGPT-4 (OpenAI 2024a),
CLAUDE 3 OPUS (Anthropic 2024), GEMINI 1.0 ULTRA
(Gemini Team 2023), generally fail to produce correct solu-
tions for this benchmark, even after multiple iterations with
human feedback pointing out errors in the answers. We also
conducted experiments with O1-PREVIEW (OpenAI 2024b),
a novel type of LLM that utilizes test-time compute to han-
dle more complex reasoning tasks. While it outperformed
other LLMs on the benchmarks, it still exhibited notable
limitations.

In contrast, our approach, with relatively few human cor-
rections, consistently leads to correct answers. This suggests
that while current LLMs possess strong natural language
understanding, they lack the systematic reasoning capabil-
ity required to adapt effectively to new or altered scenar-
ios. By integrating LLMs with action languages, our method
demonstrates the potential for achieving a more robust and
adaptable AI system.

2 Preliminaries
2.1 LLMs for Planning
Several works have proposed applying LLMs to planning
tasks (Huang et al. 2022; Brohan et al. 2023; Huang et al.
2023; Singh et al. 2023; Yao et al. 2023). For instance, Say-
Can (Brohan et al. 2023) combines high-level actions with
value functions, grounding LLMs in an environment. In-

ner Monologue (Huang et al. 2023) integrates environmen-
tal feedback, including human feedback, into its pipeline,
thereby enhancing robustness against agent errors. However,
as noted in (Valmeekam et al. 2022, 2023), these methods
struggle with more complex planning tasks.

One approach to address these limitations is using an
LLM as an interface for symbolic reasoning engines. This
includes generating executable Python code, as explored in
recent work where natural language and Python program
pairs are used to produce code for reasoning tasks (Olaus-
son et al. 2023; Gao et al. 2023; Chen et al. 2023b; Lyu et al.
2023; Singh et al. 2023). While this approach offloads much
of the computation to the Python interpreter, it is not well-
suited for planning tasks that involve constraints that are not
easily expressible in a procedural language.

Another alternative is the use of Planning Domain Defini-
tion Language (PDDL) with LLMs. Some studies (Liu et al.
2023; Xie et al. 2023) have focused on translating English
instructions into PDDL goals, assuming pre-existing PDDL
action descriptions. Since only an instance file or goal needs
to be generated, this setting is considerably simpler. Some
recent works embrace a human-in-the-loop approach with
LLMs, using human feedback when constructing domain
models and executing plans (Guan et al. 2023; Huang et al.
2023; Yao et al. 2023). Closest to our approach, Guan et al.
(2023) employed an LLM for generating PDDL descriptions
but noted that many manual corrections by PDDL experts
were necessary due to errors in GPT-4’s translations, which
impacted their execution by a PDDL solver.

A number of recent works show some success using
LLMs to iteratively revise their own output, surpassing base-
line LLM performance while bypassing expensive human
feedback (Madaan et al. 2024; Kim, Baldi, and McAleer
2024). In particular, LLMs are well-suited for self-revision
when they have access to external forms of feedback, such as
external knowledge or tools (e.g., a code interpreter) (Kamoi
et al. 2024; Stechly, Valmeekam, and Kambhampati 2024b;
Guan et al. 2023).

2.2 Action Languages
Action languages, such as A (Gelfond and Lifschitz 1993),
B (Gelfond and Lifschitz 1998), C (Giunchiglia and Lifs-
chitz 1998), C+ (Giunchiglia et al. 2004), BC (Lee, Lifschitz,
and Yang 2013), and BC+ (Babb and Lee 2015, 2020), rep-
resent subsets of natural language specifically designed for
describing actions and their effects. These languages are of-
ten viewed as high-level notations of answer set programs
(Lifschitz 2008; Brewka, Eiter, and Truszczyński 2011; Lee
and Meng 2008; Gebser, Lee, and Lierler 2006), structured
to effectively represent transition systems. Key research top-
ics in this field include the exploration of their expressive
possibilities, such as indirect effects, triggered actions, de-
faults, and additive fluents (Giunchiglia et al. 2004; Gelfond
and Lifschitz 1998; Lee and Lifschitz 2003; Inclezan and
Gelfond 2016). Such languages offer greater expressiveness
than PDDL, which has been well-studied in the literature
(Eyerich et al. 2006; Jiang et al. 2019). Despite the rich body
of research surrounding action languages, a significant chal-
lenge remains: automation of action language generation,
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Listing 1: BC+ signature for Blocks World
:- sorts

loc >> block.

:- objects
b1, b2, b3, b4 :: block;
table :: loc.

:- constants
loc(block) :: inertialFluent(loc);
move(block, loc) :: exogenousAction.

Listing 2: BC+ rules for Blocks World (% is for comments)
% Moving a block changes its location.
move(B,L) causes loc(B)=L.

% Can't move block with something on it.
nonexecutable move(B,L) if loc(B1)=B.

% Two blocks cannot be on the same block.
impossible loc(B1)=B & loc(B2)=B & B1\=B2.

which we address in this paper.
Constants in BC+ are categorized into ‘fluent’ and ‘ac-

tion’ constants. For instance, in the Blocks World domain,
move(B,L) represents an action constant with Boolean val-
ues (indicating whether the action is executed), while loc(B)
is a fluent constant with location values, where B is a vari-
able spanning over blocks.

The rules in BC+ are called causal laws. An example is

move(B,L) causes loc(B) = L (1)

which represents that moving a block B to a location L re-
sults in the block’s location being L. Another rule

nonexecutable move(B,L) if loc(B1) = B (2)

states that moving a block B is not executable if another
block B1 is on top of it. Additionally,

impossible loc(B1) = B ∧ loc(B2) = B (3)

(B1 ̸= B2) illustrates a state constraint where two distinct
blocks cannot occupy the same block. The entire Blocks
World domain can be described by these rules and a few
extra ones. This succinctness is thanks to the separation
between the representation language and the efficient con-
straint satisfaction algorithm for it. For a comprehensive re-
view of BC+, we refer the reader to (Lee, Lifschitz, and
Yang 2013; Babb and Lee 2020).

The input language of the BC+ reasoner provides a con-
venient way of expressing BC+ descriptions. It allows for
declaring sorts, objects that belong to some sort, and
constants, such as fluents and actions. For example, the
signature for the Blocks World is shown in Listing 1 Addi-
tionally, the causal laws (1)–(3) above can be expressed in
the language of the BC+ as in Listing 2.

3 Our Method
Our framework, as depicted in Figure 1, comprises four
principal components: BC+ Signature Generation, English

Knowledge Generation, BC+ Rule and Query Generation,
and Self-Revision. The BC+ Signature Generation is re-
sponsible for defining necessary symbols. English Knowl-
edge Generation involves extracting and structuring rele-
vant information from the natural language problem descrip-
tion, while BC+ Rule Generation focuses on translating this
structured knowledge into formal BC+ rules, thereby bridg-
ing the gap between natural language understanding and
symbolic reasoning. Finally, Self-Revision iteratively refines
the BC+ signature, rules, and query, with feedbacks from
the BC+ reasoner when run on a set of queries generated
by the LLM. The result is either a correct program (and a
correct solution) or a program that requires a typically small
number of corrections to yield a correct solution.

3.1 Input
The input is a natural language description of the problem,
including descriptions of types, objects, and actions involv-
ing them, along with a query in natural language. For ex-
ample, the input for the Missionaries and Cannibals puzzle
(MCP) is given in Appendix A.1.

3.2 BC+ Signature Generation
Given the problem description in English, this step gener-
ates a signature in BC+ syntax. Writing such a BC+ program
typically starts with understanding the problem and consid-
ering the dynamics (knowledge) required, thinking about
what fluent and action constants are useful, and then writ-
ing rules about them. We present the LLM with the problem
and prompt it to generate important parts of the problem
in natural language before signature generation. The Sig-
nature Generation prompt (See Appendix B.1) contains an
introduction to BC+ and a few example translations of the
English description to important knowledge, an analysis of
constants and their natural language reading, and finally, a
BC+ signature. Only the natural language reading of con-
stants and signature are passed to the rest of the pipeline.
For the MCP puzzle, the generated signature can be found
in Appendix A.2.

3.3 Knowledge Generation
We leverage an LLM to extract relevant knowledge from
a problem description for use by the BC+ reasoner. This
is achieved by using a prompt that includes instructions
and a few example domain descriptions in English, along
with their corresponding knowledge statements in English.
The generated knowledge statements broadly fall into two
categories, commonsense knowledge and domain-specific
knowledge. Commonsense knowledge refers to information
that is not explicitly stated in the problem description and
usually takes the form of cause-and-effect relationships. For
example, in the MCP domain, this step correctly generates
the commonsense knowledge statements: “crossing a vessel
causes the location of the vessel to change” and “crossing
a vessel causes the number of a group at a location to de-
crease by the amount of members on the vessel.” Enumerat-
ing such commonsense knowledge can be tedious and prone
to omissions. Therefore, we find it beneficial to use an LLM
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Figure 1: LLM+AL pipeline

for this task. Domain-specific knowledge is directly tied to
the given information about the problem, for instance, “Mis-
sionaries should not be outnumbered by cannibals, or they
will be eaten.” The full prompt for extracting knowledge is
shown in Appendix B.2. The complete knowledge generated
for MCP is shown in Appendix A.3.

3.4 Rules and Query Generation
Further leveraging the capabilities of LLMs, we use them
to convert natural language into a symbolic representation.
This is done with a prompt that contains a brief introduction
of action language BC+ and few-shot examples of natural
language knowledge translated into BC+ rules. This prompt,
together with the natural language reading of constants, sig-
natures, and the English knowledge generated in previous
steps, is given as input to the LLM, which then generates
BC+ causal laws. The full prompt is given in Appendix B.3.

For example, the knowledge “crossing a vessel causes its
location to change” is turned into:

cross(V) causes loc(V)=Loc if going(V)=Loc.

3.5 Self-Revision
The programs generated so far may have errors, either syn-
tactically or semantically. This step leverages an LLM to
revise the generated BC+ program based on the reasoner’s
output.
Satisfiability Check. First, without considering any ini-
tial or goal state, the pipeline performs a satisfiability check,
which runs the BC+ reasoner to ensure if the generated BC+
signature and rules (without a query) are satisfiable. Typical
errors detected in this step are syntax errors and reported
by the BC+ reasoner. Based on the output message of the
BC+ reasoner (e.g., syntax errors on some rules or unde-
clared constants), the LLM is prompted to update the signa-
ture and/or rules accordingly. This step repeats until either
the program is satisfiable, in which case the pipeline pro-
ceeds to Sample Query Generation, or the maximum number
of allowed revisions is reached, in which case the pipeline
ends on this step, settling on the current signature, rules, and
the main query.

Sample Query Generation. Next, the pipeline prompts the
LLM to generate a small set of simple sample queries. These
queries will later serve to check that the program correctly
implements domain-specific rules and constraints (e.g., ac-
tions lead to expected changes in the state, preconditions for
actions are respected, etc.). The LLM is instructed to ap-
pend either “(satisfiable)” or “(unsatisfiable)”, depending on
whether the query is expected to be satisfiable or unsatisfi-
able based on the LLM’s discretion. For example, a sample
query for the Missionaries and Cannibals puzzle could in-
volve an action which is is expected to be disallowed, such
as crossing on the boat with more than the allowed capacity,
which would be appended with “(unsatisfiable)”.
Sample and Main Query Feedback. The pipeline auto-
matically executes each sample query and the main query
using the BC+ reasoner, and the outputs are provided to
the LLM. The LLM is then tasked with verifying that the
outputs align with the domain and revising the BC+ sig-
nature, causal laws, main query, and/or sample queries as
needed. If no changes are required or the maximum num-
ber of revisions is reached, the resulting BC+ program and
the BC+ reasoner’s output are finalized. Otherwise, the pro-
cess repeats. See Appendix A.6. for an example of the Self-
Revision step.

4 Experiments
Benchmarks. We consider benchmarks focusing on com-
plex reasoning. The first set is from (McCarthy 1998), where
McCarthy proposed several variations of the well-known
Missionaries and Cannibals puzzle. The second set consists
of several well-known puzzles along with our own varia-
tions.
Baselines. For the baseline LLMs, we use CHATGPT-4,
CLAUDE 3 OPUS, GEMINI 1.0 ULTRA, and O1-PREVIEW.1
These baseline models are provided with problem descrip-
tions in natural language, as outlined in Section 3.1, and

1All baseline experiments were conducted in May 2024, except
for O1-PREVIEW, which was conducted in September 2024. For
other experiments with more recent LLM, please refer to our github
page.
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tasked with finding a solution. Additionally, we evaluate
CHATGPT-4 using its code interpreter feature to generate
Python programs for solving the problems. This method is
referred to as CHATGPT-4+CODE. Similar to our pipeline,
we prompt CHATGPT-4+CODE to iteratively revise its gen-
erated programs as many times as needed.

Recent studies have shown that methods like Chain-
of-Thought (CoT) (Wei et al. 2022), Program-of-Thought
(PoT) (Chen et al. 2023b), and similar prompting techniques
applied to enterprise LLMs have not been effective and may
even perform worse (Valmeekam et al. 2023; Chen et al.
2023a; Stechly, Valmeekam, and Kambhampati 2024a). This
is likely because such methods are already incorporated dur-
ing the instruction following training of these LLMs. In pre-
liminary experiments, we observed the same, so we did not
include these methods in the final experiments.

4.1 Experiment Results
Benchmark Performance. As shown in Table 1, the
baseline LLMs perform poorly on the MCP elaboration
problems. Neither CLAUDE 3 OPUS nor GEMINI ULTRA
1.0 solve any MCP problems correctly, while CHATGPT-4
solves only three. O1-PREVIEW does better, solving 7 prob-
lems correctly. CHATGPT-4+CODE produces correct plans
for 5 elaborations and occasionally generates solutions that
are mostly correct but include minor issues that can be easily
fixed manually. These cases are denoted with ∆ in Table 1.
LLM+AL2 automatically solves 7 MCP problems. For the re-
maining problems, an average of 3.1 manual corrections to
the generated BC+ program are required to produce correct
plans.

We further include superficial variations of standard puz-
zles and observe that, even for these simple elaborations, the
results are similar, as shown in Table 2. These variations in-
volve minor changes to the initial states (e.g., in Tower of
Hanoi variations, disks are distributed among pegs in no par-
ticular order). The baseline LLMs perform poorly on these
variations, with CHATGPT-4 and O1-PREVIEW solving 1
and 2 variations correctly, respectively. While CHATGPT-
4+CODE performs better than the baseline LLMs, it still
struggles with these variations. In contrast, LLM+AL out-
performs the baseline LLMs, and for the problems it fails
to solve correctly, an average of only 2.2 corrections are re-
quired to produce the correct output.
Effectiveness of Self-Revision. Self-Revision provides a
notable improvement in the quality of the generated BC+
programs. Across all 30 problems in Tables 1 and 2, only
22.3% (7/30) of programs generated prior to the Self-
Revision step are executable without syntax errors. This per-
centage increases substantially to 86.7% (26/30) after the
Self-Revision step. Similarly, the proportion of programs
that produce correct answers when run through the BC+ rea-
soner rises from 16.6% (5/30) before Self-Revision to 50%
(15/30) afterward. In terms of issues requiring correction,
there are 70 issues in the BC+ programs prior to the Self-
Revision step, but this number decreases to 42 following

2For LLM+AL , we use O1-PREVIEW (“o1-preview” in the API)
as the underlying LLM.

the Self-Revision step, with the detailed breakdown as ex-
plained in the next paragraph.

Program Issues. Table 3 enumerates all issues encoun-
tered in the final BC+ programs produced by the LLM+AL
pipeline. Overall, we classify the 42 total issues into three
categories: signature issues, rule issues, and query issues.
Detailed descriptions of all issue cases are provided in Ap-
pendix D.

Signature Issues. There are 12 signature issues in total that
can be categorized into three subcategories. The first and
most common subcategory involves missing declarations for
sorts, objects, variables, or constants, accounting for 7 cases.
The second subcategory, comprising a single case, pertains
to syntactically incorrect declarations. The third subcategory
includes 4 cases and involve semantic issues in declarations,
such as an incorrect supersort statement, which erroneously
specify that certain objects are default members of another
type.

Rule Issues. There are 25 rule issues in total that can be
categorized into three subcategories. The first subcategory,
comprising 48.0% (12/25) of the issues, involves missing
necessary rules required to solve the problems. The second
subcategory accounts for 20.0% (5/25) of the rule issues and
involves harmful rules that represent constraints or condi-
tions not specified in the problem. For example, in MCP #6
(where only one missionary and one cannibal can row), the
pipeline generates an unnecessary rule that disallows both
the missionary rower and the cannibal rower from being on
the boat simultaneously. The final subcategory accounts for
32.0% (8/25) of rule issues and involves harmful rules that
attempt to represent an aspect of the problem but do so incor-
rectly. For example, in MCP #17 (where cannibals can be-
come hungry), the pipeline generates an incorrect rule: “On
either bank, if there are missionaries present, the number of
cannibals cannot exceed the number of missionaries.” This
rule fails to accurately reflect the elaboration, which speci-
fies that the cannibals won’t become hungry as long as the
strong missionary is rowing.

Query Issues. There are 5 query issues in total that can be
categorized into two subcategories: Syntactic issues, which
account for 2 cases, involve errors such as using invalid key-
words like ”initially” or ”goal.” Semantic issues, which ac-
count for 3 cases, pertain to incorrect initial and/or goal state
conditions.

4.2 Analysis

LLMs struggle to consistently adhere to state con-
straints. Of the 17 problems in Table 1, 14 are solv-
able, meaning they have valid plans to reach the goals.
CLAUDE 3 OPUS and GEMINI 1.0 ULTRA fail to solve any
of them correctly, while CHATGPT-4 produces 11 incor-
rect solutions. Among these incorrect plans, the state con-
straint—mandating that missionaries must not be outnum-
bered by cannibals—is frequently violated, despite clear in-
structions to adhere to it. Notably, 89.7% (35 out of 39)
of these violations occur within the first three steps of the
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Problem Opt. Chat Claude Gemini ChatGPT4 o1 LLM
Length GPT4 3 Opus 1 Ultra Code (preview) +AL

MCP (basic) 11 × × × ✓[1] ✓ ✓
1 (the boat is a rowboat) 11 × × × ✓[1] ✓ ✓
2 (missionaries and cannibals can exchange hats) 11 ✓ × × ✓[2] × △(1)
3 (there are 4 missionaries and 4 cannibals) (unsolvable) × × × ∆[6] ✓ △(2)
4 (the boat can carry three, 5 missionaries/cannibals) (unsolvable) × × × ×[2] ✓ ✓
5 (an oar on each bank) 13 × × × ×[1] × △(2)
6 (only one missionary and one cannibal can row) 13 × × × ×[1] × △(4)
7 (missionaries cannot row) (unsolvable) × × × ∆[6] ✓ ✓
8 (a very big cannibal must cross alone) 15 × × × ×[2] × △(2)
9 (big cannibal and small missionary) 11 × × × ×[1] × △(6)
10 (a missionary can walk on water) 7 × × × ✓†[1] × △(7)
11 (missionaries can convert cannibals) 9 × × × ✓†[2] × ✓†

13 (there is bridge that can cross two, 5 missionaries/cannibals) 4 × × × ×[6] ✓† ✓†

14 (the boat leaks with two people on it) 11 ✓ × × ×[1] × △(3)
16 (there is an island, 5 missionaries/cannibals) 19 × × × ×[4] × ✓
17 (cannibals can become hungry, 4 missionaries/cannibals) 13 × × × ×[4] × △(3)
19 (there are two sets of groups) 22 ✓ × × ×[1] ✓ △(1)
Total 3 0 0 5+2△ 7 7+10△

Table 1: Performance on MCP and its elaborations. (We exclude a few elaborations because they require probabilistic reasoning
or the descriptions are vague.) ∆ indicates human intervention was used to produce a correct result. [n] indicates the number
of attempts CHATGPT-4+CODE makes at writing a program, and (n) indicates the number of manual corrections required for
LLM+AL. † indicates that the solution found was not optimal. All elaborations are listed in Appendix E.

Problem Opt. Chat Claude Gem. 1.0 CHATGPT-4 o1 LLM+
Length GPT4 3 Opus Ultra +Code preview AL

River Cross (basic) 7 ✓ ✓ ✓ ✓[5] ✓ ✓
River Cross (var1) 6 × × × ×[3] ✓ ✓
Tower of Hanoi (3-disk, basic) 7 × × × ✓[1] ✓ ✓
Tower of Hanoi (3-disk, var1) 6 × × × ×[1] ✓ △(1)
Tower of Hanoi (5-disk, basic) 31 ✓∗ × × ✓[1] ✓ ✓
Tower of Hanoi (5-disk, var1) 27 × × × ×[4] × ✓
Tower of Hanoi (7-disk, basic) 127 × × × ✓[1] × ✓
Tower of Hanoi (7-disk, var1) 11 × × × ×[2] × △(1)
Sudoku1 0 ✓∗ × × ✓[1] × △(2)
Sudoku2 0 ✓∗ × × ✓[1] × ✓
Sudoku3 0 ×∗ × × ✓[3] × ✓
Sudoku (var1) (unsolvable) ✓∗ × × ∆[3] × △(1)
Sudoku (var2) (unsolvable) ×∗ × × ✓[0] × △(6)
Total 5 1 1 8+1∆ 5 8+5∆

Table 2: Performance on some puzzles and their variations.∗ indicates that the LLM voluntarily generated Python code.

plan.3 Even when these LLMs output intermediate states
during plan generation, they fail to address apparent state
constraint violations and continue generating flawed plans.
In contrast, O1-PREVIEW demonstrates a better adherence
to constraints, producing fewer plans that violate state con-
straints and exhibiting more thoughtful consideration of the
effects of actions and validation of states. However, it oc-
casionally refrains from generating plans for the problems
known to be solvable, as discussed in the next paragraph.
LLMs do not reliably distinguish between solvable/un-
solvable problems. Some MCP elaborations are inherently
unsolvable (MCP elaborations #3, #4, #7). Even for these in-
stances, CHATGPT-4, CLAUDE 3 OPUS, and GEMINI 1.0
ULTRA generate (incorrect) plans, which can be considered
hallucinations. Interestingly, these plans share some similar-
ities. For example, in Elaborations #3 and #4, all plans in-
clude a state where cannibals outnumber missionaries. For

3All plans produced by baseline LLMs are available in the code
repository.

Elaboration #7, where no missionaries are allowed to row,
all plans generated by these LLMs include a missionary
rowing despite this being a clear violation of the elabora-
tion. O1-PREVIEW performs better in recognizing unsolv-
able problems, correctly identifying that no plans are possi-
ble for the three unsolvable elaborations. However, it is un-
clear how O1-PREVIEW arrives at these conclusions, as its
(partial) output does not seem to rule out all possibilities.4
Moreover, it incorrectly concludes that no solution exists
in five solvable instances (#5, #6, #8, #10, and #17). No-
tably, O1-PREVIEW is the only baseline model to explicitly
claim that a solution is impossible, but it suffers from a high
rate of false negatives. In contrast, LLM+AL reliably ensures
that there are no possible plans up to certain fixed lengths
for Elaborations #4 and #7 automatically, and for Elabora-
tion #3 with minimal modifications, leveraging the formal
semantics of BC+ to validate its conclusions.5

4o1-preview does not show all of its CoT reasoning to users.
5Strictly speaking, our pipeline is limited because it doesn’t
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Programs Issues
Signature Rules Query Total

MD Syn Sem MN HU HN Syn Sem
Before 18 11 3 16 5 10 1 6 70
After 7 1 4 12 5 8 2 3 42

Table 3: Number of issues manually examined before (Be-
fore) and after Self-Revision (After). The signature issues
are missing sorts, object, variables, or constants in the dec-
laration (MD), syntactic issues (Syn), or semantic issues
(Sem). The rule issues are missing necessary rules (MN),
harmful rules attempting to represent something not speci-
fied in the problem (HU), and harmful rules attempting to
represent an aspect of the problem (HN). The query issues
are either syntactic (Syn) or semantic (Sem).

LLM code generation struggles to adapt to problem
elaborations. We observe that CHATGPT-4+CODE strug-
gles to correctly incorporate new information into the
Python programs it generates. In particular, it frequently
fails to model actions accurately. As shown in Table 1, 5
of the 12 failures by CHATGPT-4+CODE on the elabora-
tions (#4, #5, #6, #14, #17) occur because the actions in the
generated plans are underspecified. For example, some plans
omit critical information, such as identifying who is rowing,
which renders the plans unusable. The remaining 7 failures
stem from a mix of issues: 2 precondition violations, 2 in-
stances where no plans were generated, and 3 cases where
unsolvable problems were not identified as such. This be-
havior is further corroborated by the results in Table 2, where
CHATGPT-4+CODE fails all problem variations except for
one Sudoku example, despite correctly solving all the corre-
sponding basic problems.

CHATGPT-4+CODE coincidentally succeeds in cases
where it reuses the solution for the standard problem (MCP
#1, #2, #10, and #11), producing identical plans for all.
While the original solution happens to be valid for these
elaborations, it may be suboptimal, as seen in #10 and #11.
Notably, although these programs generate valid—and oc-
casionally optimal—plans, they fail to accurately model the
specific details introduced in the elaborations. Additionally,
CHATGPT-4+CODE exhibits an over-reliance on the stan-
dard problem’s code, misapplying it to 5 MCP elaborations
(#5, #6, #7, #13, and #14). As in the coincidentally cor-
rect cases, CHATGPT-4+CODE ignores the relevant details
specific to the elaborations and demonstrates a bias toward
reproducing code for the basic MCP problem. For MCP
problems, all programs generated by CHATGPT-4+CODE
use naive search algorithms: either breadth-first search (11
cases) or depth-first search (5 cases), often taking too long
to find plans. In 9 instances, CHATGPT-4+CODE revises the
code at least once.
Declarative semantics of BC+ works well with LLMs.
Unlike the LLM+Code approach, LLM+AL does not require
specifying which algorithms to use, thanks to the declar-
ative semantics of action languages. The search algorithm

guarantee the non-existence of a plan of arbitrary length, for which
one can use the method in Sec 6.6 of (Lee 2005).

implemented in the BC+ reasoner is highly optimized for
constraint satisfaction problems and can generate plans in-
stantly.

Self-Revision with the solver feedback significantly im-
proves BC+ program quality. Much like how a human
might debug a program by testing its behavior and refining
it based on feedback, Self-Revision enhances program qual-
ity through iterative refinement. It executes the program to
verify satisfiability and employs simple queries generated by
the LLM to ensure that the BC+ program accurately mod-
els the problem. Additionally, it addresses both syntax and
semantic errors by directly incorporating feedback from the
BC+ reasoner, progressively improving the program’s cor-
rectness. This approach significantly reduces the burden on
the user, as many issues are resolved automatically. Even
when some issues remain, they are relatively straightforward
to address, further streamlining the process of creating accu-
rate and robust BC+ programs.

LLM+AL benefits from human corrections, unlike LLM
or LLM+Code. Occasionally requiring human correc-
tions is a limitation of LLM+AL, stemming from the fact
that LLMs still make mistakes when generating action lan-
guage representations. Despite this, these mistakes are rel-
atively easy to correct due to the declarative semantics of
BC+. On the other hand, using only LLMs to solve these
benchmarks fails to benefit from human corrections. We at-
tempted 50 iterations of human corrections with CHATGPT-
4 by indicating which parts of its answer were incorrect, but
this did not help. For instance, in MCP elaboration #13 (The
Bridge), it repeatedly violated the constraint that cannibals
should not outnumber missionaries. Regarding CHATGPT-
4+CODE, Python code is much less constrained and harder
to interpret for action domains compared to BC+, making it
considerably more difficult for a human to correct the errors.

5 Conclusion

We propose LLM+AL, a framework that bridges LLMs with
action languages, enabling them to complement each other.
Compared to the direct use of LLMs, LLM+AL achieves
more robust and accurate reasoning about actions by lever-
aging the expressiveness and formal reasoning capabilities
of action languages. While the generation of action language
descriptions traditionally requires human expert knowledge,
LLM+AL simplifies this process through an automated pro-
cess. Additionally, we employ a Self-Revision mechanism,
an iterative approach in which an LLM generates sample
queries to test the correctness of its previously generated
BC+ program. Based on feedback from the BC+ reasoner,
the LLM revises its program, significantly improving the
quality of the final output. While some mistakes may persist
in the final programs, the generative capabilities of LLMs
make creating action descriptions significantly easier com-
pared to crafting them from scratch. It is likely that future
LLM improvements will further reduce such errors. More-
over, fine-tuning LLMs could further enhance the perfor-
mance of LLM+AL provided it is feasible.
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