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Abstract—For underwater vehicles, robotic applications have
the added difficulty of operating in highly unstructured and
dynamic environments. Environmental effects impact not only
the dynamics and controls of the robot but also the perception
and sensing modalities. Acoustic sensors, which inherently use
mechanically vibrated signals for measuring range or velocity, are
particularly prone to the effects that such dynamic environments
induce. This paper presents an uncertainty-aware localization
and mapping framework that accounts for induced disturbances
in acoustic sensing modalities for underwater robots operating
near the surface in dynamic wave conditions. For the state
estimation task, the uncertainty is accounted for as the added
noise caused by the environmental disturbance. The mapping
method uses an adaptive kernel-based method to propagate
measurement and pose uncertainty into an occupancy map.
Experiments are carried out in a wave tank environment to
perform qualitative and quantitative evaluations of the pro-
posed method. More details about this project can be found at
https://umfieldrobotics.github.io/PUMA.github.io.

Index Terms—marine robotics, seafloor mapping, uncertainty
propagation

I. INTRODUCTION

Underwater robotic systems have been prominent in a broad
range of applications such as environmental monitoring [1],
[2], exploration [3], [4], [5] marine sample collection [6],
and industrial inspection [7]. Robust sensing and perception
are necessary to enable autonomous operation for such ap-
plications, as it plays a crucial role in accurately estimating
a marine robot’s trajectory and constructing a map of its
environment. This is especially relevant for the operation of
autonomous underwater robots, which face the challenge of
operating in a dynamic and unstructured environment.

It is understood that the inherently dynamic structure of
underwater domains impacts not only the controllability and
stability of underwater vehicles but also the sensing and
perception systems onboard the vehicle. Examples of this
are the effects seen on optical sensors used for underwater
vehicles, where different depths, lighting conditions, and water
quality can drastically impact the ability of light to travel
past a few meters underwater [8]. Acoustic sensors, which
are characterized as mechanically induced waves in the under-
water medium, suffer from similar effects under disturbance,
specifically due to varying dynamic pressure induced by
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Fig. 1: An overview of the robot operating in a wave basin with ground truth
3D scan shown in black. The map constructed by our method is shown as a
point cloud in color. We show the range measurements from the DVL in red
and 1D ping sonar in green.

waves and currents, salinity levels, and temperature changes
[9]. Despite well-developed literature on the effect of such
disturbances on both acoustic and optical sensors, there are
limited methods that both characterize and account for the
effect of these disturbances on perception tasks that heavily
rely on acoustic-based measurements.

In this paper, we propose a solution that builds on proba-
bilistic inference methods for enabling robust perception for
the tasks of robot localization and mapping while accounting
for disturbances on acoustic sensors from external effects
(Fig. 1). We specifically study the methods for acoustic-only
sensing used in robot navigation and mapping, concentrating
on robots operating in highly dynamic and wavy marine
environments, such as the surf zone [10] and near-shore set-
tings. We target the applications for low-cost acoustic sensing
modalities, testing our methods on a robot equipped only with
a single-beam range-measuring sonar, barometer, IMU, and
DVL.

Our main contributions are as follows:
1) we characterize the uncertainty induced on acoustic

sensors by external disturbances i.e. waves,
2) we integrate uncertainty induced from external distur-

bances into a localization and mapping framework for
marine robot platforms,

3) we provide an extension of previous work on con-
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tinuous 3D mapping to the underwater domain while
contributing a novel, adaptive sparse kernel design for
3D mapping to enable uncertainty propagation from
uncertain pose estimates into a 3D occupancy map, and

4) we perform experimental validation in real environ-
ments.

The remainder of this paper is organized as follows: We review
related work in Section II, and give a detailed description of
the proposed method in Section III. We present quantitative
and qualitative results and an in-depth analysis of the results
in Section IV. Section V provides the conclusion and future
work.

II. RELATED WORK

A. State Estimation for Marine Robots

Filtering-based approaches for underwater vehicles use
common sensors in underwater navigation to perform sensor
fusion and dead reckoning. In [11], a sensor fusion method
using an Extended Kalman Filter (EKF) is proposed to esti-
mate the surge and roll of a robot. Visual and inertial sensing
modalities are fused to perform dead reckoning. Our proposed
method differs in using only proprioceptive and acoustic-based
sensors, along with tracking the entire pose and twist as the
state using an Unscented Kalman Filter (UKF) [12].

Potokar et al. extend an Invariant EKF (InEKF) formula-
tion [13], [14] for underwater navigation [15] and provide
results in a simulation environment [16]. They present a
method for fusing the velocity measurements observed from
DVL and depth measurements observed from a barometer into
the InEKF formulation and perform an in-depth analysis of
the log-linear error dynamics of the filtering approach. The
InEKF method is reliant on good quality and high-frequency
IMU measurements. As our test vehicle is limited to a low-
cost IMU with low inertial measurement frequency, we opt to
use an alternative approach that does not heavily rely on IMU
measurements for accurate dead reckoning.

Smoothing-based approaches take advantage of extero-
ceptive sensing provided by optical or acoustic-based sen-
sors [17]–[19]. In [17], [18], Mallios et al. present an Aug-
mented State EKF SLAM method. The key contribution is the
probabilistic scan-matching algorithm used for loop closure
detection. In [19], a visual-inertial odometry (VIO) system
is presented. The main contributions include a robust SLAM
initialization method using IMU and barometer measurements
and fusion of sonar measurements into the VIO framework.
Our method differs in that our formulation of the state estima-
tion problem incorporates measurement uncertainty induced
by environmental factors, in addition to being proprioceptive
and acoustic-based.

B. Seafloor Mapping and Uncertainty Propagation

Uncertainty propagation into a constructed map is essential
for robots with uncertain localization to ensure safe and
effective navigation for mobile robots. In this review, we
specifically consider the literature on seafloor mapping and

methods that construct maps under uncertain poses and obser-
vations.

For pose uncertainty-aware mapping, [20] propagates uncer-
tainty through a Gaussian Process (GP) to construct a 2D map.
Kleiner et al. [21] propose a method that grows the variance
of the height estimate according to the pose uncertainty in
the 2.5D elevation map. This approach is further improved
by accounting for the in-plane pose uncertainty [22]. Though
these methods show impressive mapping performance on a
mobile robot, 2D and 2.5D height maps are limited compared
to dense 3D maps, so we focus on 3D map estimation.

For seafloor depth estimation that aims to account for
the uncertainty inherent in the observation model, Xie et
al. explore the bathymetry reconstruction problem using a
learning-based framework [23]. Supervised by scans of a
multibeam echo sounder (MBES), Xie et al. aim to reconstruct
the bathymetric map using a side-scan sonar (SSS) to learn
a variational fit on the data, reconstructing a depth map
for bathymetric surveys along with implicitly learning the
aleatoric uncertainty [24].

Similar to the work done by Jadidi et al. [20], using GPs
for uncertainty-aware mapping in underwater environments
has also become popular, enabling both pose and observation
uncertainty propagation. A key drawback of standard GP
formulations is the difficulty of scalability over large amounts
of training data provided by measurements due to the cubic
time complexity of inverting the kernel matrix [25]. Approxi-
mations of GPs mitigate impact of this drawback, sparsifying
the problem for tractable computation. Torroba et al. construct
a height map of the seafloor from MBES readings using GPs
with uncertain inputs from the pose [26]. They specifically
use an approximation of a GP via a stochastic variational
GP (SVGP) with uncertain inputs, where pose uncertainty
from a particle filter is propagated into the height map using
an unscented transform. In [27], the work is extended by
implementing a parallelized framework that enables online
mapping and state estimation for bathymetric surveys.

A similar approach to robotic mapping through approxi-
mations to GPs uses Bayesian kernel inference (BKI) [28].
In [29], [30], BKI is used to construct a 3D occupancy
grid map from range measurements, with uncertainty encoded
in the occupancy of each cell. McConnel et al. extend the
application of BKI mapping to the underwater domain by
using range measurements from a stereo pair of orthogonally
placed imaging sonars [31]. Our proposed method similarly
adapts BKI-based mapping methods to the underwater domain
while taking inspiration from [26] to incorporate uncertain
inputs in the map construction. Specifically, we include the
uncertainty present in the measurement model, disturbances,
and pose estimates in the final construction of the map.

We take inspiration from [32], instead designing an adap-
tive kernel with variable length scales proportional to the
pose uncertainty. Our method is similar to [33], in which
researchers propose adaptive kernel inference accounting for
the correlations among the measurement samples. However,
the adaptive kernel in our method has a novel design and
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Fig. 2: An overview of the presented technical method. We account for
environmental disturbances induced by waves on acoustic sensors in a state
estimation and mapping framework.

is used to account for propagating the pose uncertainty. We
also decompose the kernel design in [34] to accommodate the
case for underwater dead reckoning, where the uncertainty at
each axis has a different order of magnitude when the pressure
sensor is available.

III. TECHNICAL APPROACH

In this work, our key contributions are in the area of
uncertainty estimation and propagation for state estimation and
mapping of an underwater robot operating in highly dynamic
environments subject to wave conditions, as shown in Fig. 2.

For the state estimation task, a filter-based approach is taken.
We use a UKF [12] to estimate the state of the robot over
its path. For the mapping, the output of the state estimate,
along with the uncertainty of the poses, are used in order to
construct a 3D occupancy grid map. For both methods, the
sensor measurement model incorporates uncertainty induced
by external disturbances.

We experimentally evaluate the developed methods using a
BlueROV2 [35] equipped with a Waterlinked A50 DVL [36],
IMU, barometer, and a 1D ping sonar.

A. State Estimation

1) Problem formulation: For the state estimation task, the
velocity measurements in the body frame from the DVL,
the angular velocity measurements from the IMU, and the
orientation estimate from a dead reckoning (DR) output from
the DVL were used along with the depth measurements from
the barometer.

The augmented state xt is represented as the pose ηWt in
the world frame, twist νBt in the body frame, and the IMU
gyroscope biases of both the one equipped by the DVL bgt
and the separate IMU equipped on the robot b̄gt .

xt =
[
ηWt νBt bgt b̄gt

]T
(1)

ηWt =
[
x y z ϕ θ ψ

]T
(2)

νBt =
[
u v w p q r

]T
(3)

b̄gt =
[
bIMU
p bIMU

q bIMU
r

]T
(4)

bgt =
[
bDR
p bDR

q bDR
r

]T
(5)

2) State Transition Model: The discrete-time state transi-
tion model used for the robot’s dynamics is a constant velocity
motion model via forward Euler integration, shown in Eqn. (6),
where the acceleration is modeled as Gaussian white noise

ωt ∼ N (0,Γ). The bias terms are predicted as a random
walk ωb

t ∼ N (µb,Γb), where µb is the calibration parameter
representing a time-variant mean of the bias.

f(xt−1) =


ηWt−1 +RW

B

(
ηWt−1

) (
νBt−1∆t+ ωt

∆t2

2

)
νBt−1 + ωt∆t
bgt−1 + ωb

t

b̄gt−1 + ω̄b
t

 (6)

3) Measurement Models: The measurement models are
constructed for the onboard sensors integrated into the system,
including a DVL, barometer, and IMU. The measurements of
the state variables that are made by the sensors are given in
Eqns. (7)-(8).

zbar,t =
[
zdepth,t

]
zDV L,t =

[
ut vt wt

]T
(7)

zIMU,t =
[
pt qt rt

]T
zDR,t =

[
ϕt θt ψt

]T
(8)

The measurement models are modeled as linear, with each
measurement model having an associated zero-mean Gaussian
noise. Each measurement that relies on acoustic measure-
ments, based on a characterization of the disturbance account-
ing for external effects, has an additive Gaussian noise γt
associated with it. We point out that in Eqns. (11)-(12), a
time-varying bias term is incorporated additively.

zWbar,t = Hbarxt + ωbar,t(xt) (9)

zBDV L,t = HDV Lxt + ωDV L,t(xt) + γDV L,t (10)

zBIMU,t = HIMUxt + ωIMU,t(xt) + bgt (11)

zBDR,t = HDRxt + ωDR,t(xt) + γDR,t + b̄gt (12)

The subscript of t in both the measurement noise terms ω
and disturbance noise terms γ in Eqns. (9)-(12) represent the
fact that the noise is time-variant due to factors such as state
dynamics and environmental disturbances.

4) Effect of Added Uncertainty on State Estimates: For
Eqns. (9)-(12), the added uncertainty is accounted for as
the measurement noise in the UKF framework. This additive
gain comes into play in the innovation term of the UKF.
For additional noise, the optimal Kalman gain is computed
such that the measurements are weighed less when computing
the updated posterior distribution of the state conditioned on
measurements. The expected effect is that the estimated state
will take a longer time to match the measured state variables,
aligning closer to the motion model.

B. Seafloor Mapping

For the seafloor mapping, we construct an Occupancy Grid
Map (OGM) using Bayesian Kernel Inference (BKI) [28]. The
map is constructed using range measurements from the altitude
readings of the four transducers of the Waterlinked A50 DVL
and the 1D ping sonar, all of which are downward facing.

1) Notation: For this section, a map cell will be notated as
mi ∈ X ⊆ R3, where X represents the voxel grid. A measure-
ment at a grid cell mi is represented as yi = {y0i , . . . , y

K−1
i },

where yki > 0 and
∑K−1

k=0 yki = 1. K represents the number of
categories making up a measurement. For an occupancy grid



map, K = 2, where k = 0 represents an empty cell and k = 1
represents an occupied cell.

Separately, a map cell mi takes on K different classifica-
tions, and the probability of each classification of mi can be
represented as θj = {θ0j , . . . , θ

K−1
j }, where

∑K−1
k=0 θkj = 1.

2) Seafloor Mapping with BKI: BKI mapping builds on the
probabilistic inference framework of occupancy grid mapping
using the counting sensor model [29]. As a main difference,
BKI-based mapping incorporates spatial relations into the
map, which is constructed through a careful selection of
a sparse, finite kernel function. The kernel function relates
an extended likelihood function p(yi|θ∗,mi,m∗) with the
likelihood function p(yi|θi) by a smoothness constraint [30].
Here θ∗ represents the occupancy value of the query point m∗.

For a selected extended likelihood g(yi) ∝ p(yi|θ∗)k(m∗,m)

that has a bounded KL-Divergence with p(yi|θ∗), we can relate
the two as shown in Eqn. (13), and apply Bayes’ Rule to obtain
the relation shown in Eqn. (15).

N∏
i=1

g(yi)︷ ︸︸ ︷
p(yi|θ∗,mi,m∗) ∝

N∏
i=1

p(yi|θ∗)k(m∗,mi) (13)

k(·, ·) : X × X → [0, 1] (14)
p(θ∗|m∗, y) ∝ p(y|θ∗,m∗)p(θ∗|m∗) (15)

For a Beta distribution on the prior and a categorical likeli-
hood, the posterior is proportional to a Beta distribution param-
eterized by concentration parameters (α∗, β∗) via conjugate
priors [29].

We compute the concentration parameters of the posterior
Beta distribution on the query points, scaled by the kernel
function, as shown in Eqns. (16), (17) and compute the mean
and variance of the occupancy of θ∗, given in Eqns. (18).

α∗ := α0 +

N∑
i=1

k(m∗,mi)yi (16)

β∗ := β0 +

N∑
i=1

k(m∗,mi)(1− yi) (17)

E[θ∗] =
α∗

α∗ + β∗
V[θ∗] =

α∗β∗
(α∗ + β∗)2(α∗ + β∗ + 1)

(18)

The computation cost of this method is directly proportional
to the number of query points m∗, so in order to reduce the
number of query points, we use a sparse kernel function, where
only points within a vicinity of the cell where the measurement
was made mi are considered [37]. The sparse kernel function
is given in Eqn. (19), where d = ∥m∗ −mi∥, the length-scale
parameter l > 0 determines the radius of the points to use for
the sparse kernel, and σ0 represents the information associated
with the sensor making the measurements.

k(m∗,mi) ={
σ0

[
1
3

(
2 + cos

(
2π d

l

)) (
1− d

l

)
+ 1

2π sin
(
2π d

l

)]
, if d < l

0, if d ≥ l

(19)

z
y

x

z y

x

Increased pose 
uncertainty in 

the x and y direction

Fig. 3: A visualization of the proposed adaptive kernel design. The right figure
represents a kernel with a larger length scale in the x and y-axis, which results
from higher uncertainty in the robot’s x and y position. The larger length scale
corresponds to a larger area to apply the continuous kernel. We visualize the
distribution of the kernel in the x axis as an example.

3) Uncertainty Propagation Into a Continuous Map: In
order to account for uncertainty in the occupancy grid map,
we propose an adaptive kernel design, building on Eqn. (19).
For notation purposes, the directions of x, y, z will be denoted
as the standard basis vectors for R3 of e1, e2, e3, respectively.
We take the lengthscale parameter in Eqn. (19) to be a vector
l =

[
le1 le2 le3

]
∈ R3, where for the standard BKI, the

radial kernel is formed under the condition le1 = le2 = le3 .
We propose a similarly sparse, finite support kernel, which

uses an adaptively weighed lengthscale parameter correspond-
ing to the direction of each of the basis vectors. We weigh each
of the decomposed length scale parameters by the uncertainty
of the position at time t, resulting in a larger area being
updated as possibly occupied if there is high pose uncertainty.

The state uncertainty is normalized based on the minimum
and maximum variance for each mapping session. We show an
example to calculate the length scale in Eqn. (20), where le1max

and le1min represent the maximum and minimum length scale
along the x−axis, and σ̃2

x represents the normalized variance
of the state along the x axis.

l̂e1 = σ̃2
x(le1max − le1min) + le1min (20)

The same operation is applied to y and z axes as well. We set
hyper-parameters representing the range of length scale at each
axis because the uncertainty at the z dimension has a smaller
magnitude due to direct measurement from the barometer.

We then redesign the kernel such that it follows the form
in Eqn. (21), where dj =< m∗ −mi, ej >, and j ∈ {1, 2, 3}.

kj(m∗,mi) =
σ0

3

(
2 + cos

(
2π

dj

l̂ej

))(
1− dj

l̂ej

)
+

σ0

2π sin

(
2π

dj

l̂ej

)
if dj < l̂ej

0, if di ≥ l̂ei
(21)

With this new kernel design, the concentration parameters can



be computed as given in Eqn. (22)-(23).

α∗ := α0 +

N∑
i=1

3∏
j=1

kj(m∗,mi)yi (22)

β∗ := β0 +

N∑
i=1

3∏
j=1

kj(m∗,mi)(1− yi) (23)

We show a visualization of the proposed kernel design and
its effect in Fig. 3, highlighting the adaptivity of the kernel
design to the state uncertainty and the implicit distribution of
the kernel function only shown in the x-direction.

IV. RESULTS AND DISCUSSION

A. Implementation Details

The state estimation was implemented using the robot
operating system (ROS) [38] as middleware. We perform a
filter prediction step every time a sensor measurement is made.
Our mapping is implemented in an offline setting due to
insufficient onboard computing resources on our robot. The
map X ⊆ R3 is represented as a KDTree in order to efficiently
conduct neighbor search to query points within the length
scale, l. The parameters used in the mapping implementation
are provided in Table I.

TABLE I: The parameters used in the proposed adaptive length scale BKI
mapping. The minimum and maximum length scales are for the x, y, z
directions, respectively.

Mapping Parameters
Parameter Value
σDVL
0 0.9

σSonar
0 0.6
lmin

[
0.10 0.10 0.05

]
m

lmax
[
0.18 0.18 0.08

]
m

α0 1e-10
β0 1e-10

Grid Size 0.1 m

B. Experimental Design

It is essential to characterize the sensor noise associated with
the robot operating under different environmental conditions.
Experiments were run in the Marine Hydrodynamics Lab
(MHL) at the University of Michigan to perform this charac-
terization. We specifically conducted experiments to quantify
the effect of different wave conditions on the sensor noise and
biases. To properly evaluate the proposed method, we rigidly
mounted the robot to a carriage and moved the carriage in
wave conditions (shown in Fig. 4a). The carriage positions are
recorded and used to serve as ground truth reference for robot
trajectory. Time synchronization across different systems was
conducted to ensure proper evaluation with the ground truth
data.

To measure the external disturbances of waves on the robot,
we recorded the wave characteristics from a wave probe. The
measurements are used to characterize the induced additive
noise from external disturbances. Fig. 4b shows a visualization
of the effect the waves induce on the onboard acoustic sensors.

(a) (b)

Fig. 4: The experimental setup at the MHL in Fig. 4a. The effect of the wave
conditions (first row) is shown for the altitude (second row) and velocity
(third row) measurements in Fig. 4b. The measured induced noise on the
sensor readings are provided in Table II.

TABLE II: The calculated standard deviation of the sensor measurements from
acoustic-based velocity measurements used in the state estimation. Each of
the reported values corresponds to the measured values during the time at
which the oncoming waves had the listed wave characteristics.

Wave Characteristics Std. Dev. of Measurements
During Wave Conditions

Wave
Amplitude (m)

Wave
Frequency (Hz)

vDVL
x

(m/s)
vDVL
y

(m/s)
vDVL
z

(m/s)
0.1 1.0 0.025 0.010 0.003
0.1 0.75 0.040 0.010 0.003

0.05 0.75 0.011 0.010 0.003

We show the statistical summary from the wave probe data and
DVL measurements from experiments in Table II.

The obtained empirical mean and variance of the measure-
ments are incorporated into the measurement models of the
filtering formulation, as shown in Eqns. (9)-(12). We find
that the disturbance characteristics for the DVL measurements
are consistent with findings in wave theory literature [39],
in that as the wavelength decreases, the velocity of the
wave increases, causing larger noise in the DVL readings.
Similarly, as the amplitude decreases, the varying levels of
dynamic pressure decrease, causing smaller deviations in the
measurements. We also observe that the orientation estimate
from DR output from the DVL has a drift over time. Thus,
motivating the addition of an estimated bias to the orientation
estimate. The added bias can be regarded as standard sensor
calibration, as it is constant in all the logs.

C. Evaluation of Uncertainty-aware State Estimation

We evaluate the state estimation results using the recorded
positions of the carriage. We aligned the orientation of the
robot so the carriage moves only in the x axis of the robot.
The depth of the robot was measured when we mounted the
robot on the carriage. The carriage positions are reported in
2000 Hz. We differentiate the carriage positions and apply
convolution smoothing to obtain ground truth velocities. We
use the root mean squared error (RMSE) between the output of
our state estimation algorithm and the ground truth data along
the trajectory as the evaluation metric for state estimation.



TABLE III: Root mean squared error (RMSE) along the trajectory of each estimation method we study. For the collected data, we drove the robot in a straight
line, in the X-direction, for 36.6 meters while the robot was rigidly mounted on a carriage. We quantify the error on the pose estimate and the velocity, which
is a directly observed state variable that gets impacted by the additional noise. Lower is better.

Root mean squared error (RMSE) along the trajectory
Method x (m) y (m) z (m) ϕ (rad) θ (rad) ψ (rad) vx (m/s) vy (m/s) vz (m/s)

Baseline UKF 0.862 0.297 0.004 0.003 0.003 0.015 0.023 0.007 0.003
Proposed 0.869 0.012 0.004 0.003 0.003 0.003 0.020 0.005 0.003

TABLE IV: Ablation study on the state estimation. We study the impact of removing the bias estimation and additional noise on the performance of the UKF
and report the RMSE along the trajectory. We specifically study the state variables that our proposed method improves upon from the baseline UKF method.

Ablation Study on the State Estimation

Method Bias Estimation Added Noise x
(m)

y
(m)

z
(m)

ϕ
(rad)

θ
(rad)

ψ
(rad)

vx
(m/s)

vy
(m/s)

BE-UKF ✓ ✗ 0.857 0.015 0.004 0.003 0.003 0.003 0.023 0.007
AN-UKF ✗ ✓ 0.865 0.293 0.004 0.003 0.003 0.015 0.020 0.005
Proposed ✓ ✓ 0.869 0.012 0.004 0.003 0.003 0.003 0.020 0.005

Table III shows quantitative results of our proposed method
for uncertainty-aware state estimation compared to the baseline
UKF. Note that our proposed method extends the baseline
UKF to include both the additive noise and the estimated bias.
In addition to the quantitative results, we show the estimated
3D trajectory of the proposed state estimation compared to the
baseline UKF in Fig. 5. These results demonstrate the signifi-
cant improvement of the state estimation accuracy achieved by
our proposed method. We highlight the reduction in the drift
of the robot along the trajectory when we use our method,
specifically a nearly 28 cm reduction in error in the y-direction
and 0.012 rad reduction in the error on the estimated yaw over
36.6 meters of travel. Additionally, we highlight the reduction
in the velocity estimation error.

We further study the impact of the added noise and bias
estimation for the state estimation in an ablation study pre-
sented in Table IV. The bias estimation and correction in the
filtering output directly improve the robot’s heading correction
during its operation. We see from the results in Table IV that
this bias correction accounts for a significant correction for
the drift. In addition, we show that the heading correction is
improved, which is a critical factor in reducing the drift over
extended operations of the robot. The reduction of drift and
improvement of heading estimation is crucial to realize safe
and effective robotic navigation.

The most significant contribution of the added noise is to the
velocity estimates of the robot, which is the observable state
variable that is impacted by the additive noise. We note that
when we add noise, the pose estimate is comparable to that
of the baseline UKF method. The underlying advantage of the
added noise on the state estimation is the larger variance on
the state estimate during the times in which waves are induced.

As confirmed from experiments, the physical effect of waves
is the additional noise to the measurements. We claim that
accurately capturing this phenomenon is advantageous for
autonomy tasks, as the decision-making capabilities of high-
level planners and controllers will be better informed by this
accurate uncertainty estimation.

(a) (b)

Fig. 5: Trajectory estimated from the proposed method (blue) against the
baseline method (red) and ground truth trajectory (green) in Fig. 5a. Error
along the trajectory relative to the ground truth in Fig. 5b. The checkered lines
represent the baseline, and the solid lines represent the proposed method.

D. Evaluation of Seafloor Mapping

To evaluate the mapping results, we conducted a 3D scan
of the tank with a dense 3D LiDAR when the tank was
empty. The generated point cloud scan is used as the ground
truth reference for evaluating the mapping performance. We
transform the poses captured by the robot into the frame of
the captured scan of the tank and overlay the map constructed
by our method onto the ground truth scan. The constructed
map from our algorithm is a 3D grid and each cell in it
has values for its mean and variance. We convert it into a
point cloud by grouping the centroid of each cell that has
mean occupancy higher than 0.5. This lends the ability to
evaluate the constructed occupancy grid map with a point
cloud comparison software [40]. We use the cloud-to-cloud
distance as the metric for the map accuracy. We follow [31]
to count the number of occupied cells as a measure of map
density. To highlight the improvement from the proposed map-
ping algorithm, we compare it with other mapping baselines
using the state estimation results from our proposed method,
in addition to a comparison of the overall proposed solution
with the baseline state estimation and mapping algorithm.

Table V shows a comparison of mapping performance for
the complete solution (i.e., adaptive BKI mapping method
based on the proposed filtering method) and a baseline solution
(i.e., vanilla CSM mapping with the baseline UKF method).



TABLE V: Map evaluation metrics that are defined to evaluate the density and accuracy of the map. The occupied cells are considered to have a mean
occupancy value greater than 0.5. Both methods use a 0.1 m grid size. For the BKI without the uncertainty propagation (i.e., adaptive kernel), we use a length
scale of 0.15. For the average point cloud-to-point cloud distance, lower is better.

Mapping Evaluation

Mapping Method Filtering Method Adaptive Kernel Design Average Point Cloud-to-Point
Cloud Distance (m)

Number of Occupied
Grid Cells

CSM Baseline UKF N/A 0.226 2774
CSM Ours N/A 0.091 2720
BKI Ours ✗ 0.099 7783

Adaptive BKI Ours ✓ 0.087 3190

Fig. 6: A visualization of the map constructed from the presented method.
The black point cloud represents the dense LiDAR scan of the tank collected
in air in the empty tank for ground truth, and the red-to-blue colored points
represent the constructed occupancy map using our method. The color map
of the occupancy map represents the distance error, with low being blue and
high being red.

(a) (b)

Fig. 7: Plot from the map slice capturing the rock overlaid on a ground truth
3D model in Fig. 7a and its real-world dimensions in Fig. 7b.

The proposed method achieves notable improvement over
the baseline in terms of mapping accuracy and the density
of the generated map. We also present the results from three
variants of mapping methods with the same filtering method
in Table V. Both BKI mapping methods achieve improved
density of the generated map than the CSM method. In terms
of the map accuracy, the adaptive BKI method achieves the
highest accuracy as it has the lowest point cloud-to-point
cloud distance. We also present a qualitative example of
the constructed map in Fig. 6, which demonstrates that the
constructed map aligns well with the ground truth scan.

In addition to the experiment in which the robot is rigidly
mounted, we also drive the robot to let it capture the shape of
a rock platform with known dimensions. The output map of
the reconstructed rock is shown in Fig. 7. The result validates
the capability of our mapping solution to capture finer details
with the sparse acoustic range measurements.

One of our main novelties in this work is the proposed
adaptive kernel design, where we make the length scales

adaptive to the state uncertainty. This modification enables the
mapping module to adjust the effect of a range measurement
on the map with noisy state estimation. Specifically, when the
estimated state has lower uncertainty, a range measurement
should inform a smaller volume in the map to be occupied.
In addition, we decompose the original kernel in [34] that
conducts radius ball search into 3 separate kernels.

The motivation comes from the finding that as we propagate
the filter for the state estimation, the uncertainties of the robot
state at the x−y plane gradually increase as there is no direct
measurement for the robot’s x − y positions. In contrast, the
uncertainty of the depth of the robot is maintained low due
to the barometer measurements. The adaptive kernel design is
able to account for the imbalance of the uncertainty magnitude,
which can not be addressed by the original kernel in [34]
that always conducts neighbor search in a radius ball. We
also include a qualitative example of a slice of map captured
when the x−y plane uncertainty grows considerably larger in
Fig. 8. The quantitative results shown validate our proposed
kernel design. This figure shows that the adaptive kernel is
able to map more precisely in the z axis, which leads to
fewer incorrect map points in that dimension. The baseline
BKI method fails to obtain benefits from low depth uncertainty
thanks to the pressure sensor and introduces many erroneous
map points along the z axis.

It is also noted that with the adaptive BKI method, the
number of occupied cells is reduced compared with the stan-
dard BKI method. We argue that a larger number of occupied
cells does not necessarily improve the map quality. In the
shown comparison, we set the length scale of the standard
BKI method to be 0.15 m so the radius ball search covers the
same volume as the adaptive BKI method with the maximum
length scales along the three axes. In practice, the baseline BKI
method constructs a map with a notable number of inaccurate
map points due to the lack of adaptivity in its kernel design.
The proposed adaptive BKI method is able to adaptively adjust
its kernel so the generated map is more accurate while keeping
satisfactory density.

E. Characterization of Acoustic Measurements under Distur-
bance

In Table III, we point to the large error in the RMSE along
x axis. After conducting an in-depth analysis of the logs, we
observed the existence of a persistent offset on the velocity
measurement made by the DVL in the direction of travel that
contributes to this large error. We also note that this offset is



(a)

(b)

Fig. 8: We compare the map points from our proposed method 8a against
a baseline BKI method 8b. The gray points indicate the dense LiDAR scan
captured of the bottom of the tank, and the colors of the sparse map points
indicate distance from the ground truth map, blue being lowest distance, and
red being the highest

Fig. 9: The ground truth velocity (green) compared against the estimated
velocity (blue) and measured velocity from the DVL (red) in the x-direction.

persistent only in the constant velocity region and has different
characteristics for when the robot accelerates or decelerates,
indicating that the measurements are affected by many factors
(e.g., velocity, acceleration, external disturbances). We show
the constant offset on the velocity measurements in Fig. 9. As
one of the primary goals of our experiments is to characterize
the DVL behavior under different environments, this finding is
valuable as it reveals the need to study a possible relationship
between the velocity measurement bias and environmental
factors (e.g., external disturbances such as waves) and state
dynamics (e.g., velocity and acceleration). In our current
implementation of the state estimation approach, we do not
account for this offset and instead use the raw measurements
as input. Future work will focus on further experiments to
characterize this offset during constant velocity motion and to
integrate this finding into our framework for uncertainty-aware
state estimation.

V. CONCLUSION AND FUTURE WORK

In this paper, we present an uncertainty-aware localization
and mapping method that can be used for underwater robots
operating in highly dynamic marine environments subject to
wave effects. We present an experimental method to mea-

sure the impact that dynamic pressure has on acoustic-based
sensors, which allows us to assign quantities to physical
phenomena that impact measurement accuracy and noise. We
then formulate a filtering method that utilizes the quantities
estimated from the experimental method to show that account-
ing for both added uncertainty and bias on proprioceptive
sensors greatly improves the state estimation method, both
reducing the drift over time and improving the estimation of
directly observable states for dead reckoning. We evaluate the
accuracy of the state estimation method through ground truth
poses obtained from an experiment where the robot is rigidly
mounted on a linear carriage.

We use acoustic-based range measurements that return the
altitude of the robot relative to the seafloor to construct a
continuous occupancy grid map. The proposed method incor-
porates the sensor noise inherent in the measurements, along
with the pose uncertainty associated with the state estimation
through a sparse kernel design in a BKI framework. We
evaluate the accuracy of the mapping output by first converting
the output occupancy map to a point cloud and by measuring
the average point-to-point distance to a ground truth scan of
the environment.

A key area of improvement for the proposed method in-
volves autonomously detecting and estimating wave conditions
impacting the robot. We assume knowledge about the wave
conditions that the robot may operate in. Incorporating an
additional estimation method, such as work on detecting and
quantifying the disturbances [41], is an interesting direction for
future work to enable the deployment of the proposed system
in real-world applications with unknown wave conditions. We
additionally highlight our empirical findings from experiments
indicating that measurements made from acoustic sensors such
as DVLs are prone to impact from not only disturbances but
also state dynamics. For conditions where characterization
of the effects is possible, accounting for these effects could
further improve the state estimation, and we aim to address
this in future works.
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