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ABSTRACT

When humans sketch the same pose, no two drawings are alike. Synthetic sketches
exhibit algorithmic precision with clean edges and consistent strokes, while free-
hand sketches diverge wildly—each bearing the unique abstraction, style, and im-
perfections of its creator. This fundamental divergence has long challenged 3D
human reconstruction systems, which struggle to bridge the chasm between these
disparate visual domains. We present a paradigm shift: while sketches diverge,
language converges. A pose described as “arms raised overhead” carries the same
semantic meaning whether drawn by algorithm or artist. Building on this in-
sight, we introduce a universal feature anchor—natural language—that remains
constant across visual variations. Our framework leverages text descriptions to
guide feature learning, creating domain-agnostic representations that transcend
the synthetic-freehand divide. At the technical core lies our Text-based Body
Pose Head (TBPH), featuring a novel gating mechanism where language-derived
features dynamically reweight spatial regions of sketch features. This text-guided
attention enables the model to focus on semantically meaningful pose indicators
while suppressing domain-specific noise and stylistic artifacts. By augmenting
26,000 sketch-pose pairs with rich textual descriptions, we enable cross-modal
supervision that teaches our model to see past surface differences to underly-
ing pose semantics. Extensive experiments demonstrate our method’s superior-
ity: we achieve 139.86mm MPIJPE on freehand sketches, a 4.5% improvement
over the state-of-the-art TokenHMR, and further outperform it by 11.08% in zero-
shot generalization on a newly collected dataset. More importantly, we show true
domain-agnostic performance—our model trained on both domains exhibits min-
imal degradation when tested on highly abstract amateur sketches. This work es-
tablishes language as a powerful intermediary for visual domain adaptation, open-
ing new avenues for robust cross-domain understanding in computer vision.

1 INTRODUCTION

Consider a person standing with arms raised overhead. Capture this pose in a photograph and pro-
cess it through an edge detection algorithm—you’ll get a precise skeleton of clean lines and perfect
angles, every stroke consistent and predictable. Ask a hundred different people to sketch the same
pose, and you’ll receive a hundred unique interpretations—some confident and bold, others tenta-
tive and abstract, each filtered through individual perception and artistic style. Yet despite this visual
chaos, something remarkable remains constant: the semantic meaning. Whether extracted by algo-
rithm or drawn by hand, the pose can still be described with the same words: standing with arms
raised overhead.

This observation illuminates a profound challenge in computer vision. Current 3D human recon-
struction systems excel when fed synthetic sketches—those algorithmically generated drawings with
their predictable strokes and consistent patterns. But hand these same systems a genuine human
sketch, with all its irregularities and artistic liberties, and performance degrades dramatically (Wang
et al.| 2023} [Yang et al.l 2021)). The domain gap between synthetic precision and human expression
has proven stubbornly resistant to conventional approaches.
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Figure 1: Motivation. This figure illustrates the motivation behind our approach. Both sketches
depict the same pose: a person walking forward with their left arm raised above their head, right
arm extended, left leg stepping ahead, and right leg trailing behind, creating a dynamic and cautious
posture. The green sketch alone is insufficient to generate a high-quality 3D human mesh (red),
whereas the blue (synthetic) sketch can. This work proposes using a pose description as a bridge to
align hand-drawn sketches and synthetic sketches, thereby reducing the abstractness of hand-drawn
input for 3D human mesh generation.

We argue that existing approaches have been constrained by their focus on reconciling visual rep-
resentations that are fundamentally incompatible. As illustrated in Fig. [1} instead of attempting
to force convergence between these inherently divergent visual domains, we propose leveraging
a modality that naturally maintains consistency across different sketch styles: natural language.
Language provides a domain-invariant representation—a pose described as kneeling with hands on
hips carries identical semantic content regardless of whether the visual input originates from edge
detection or freehand drawing. This linguistic invariance presents an unexplored opportunity for
achieving domain-agnostic understanding in sketch-based reconstruction.

Previous attempts to bridge the synthetic-freehand divide have followed predictable patterns. Some
approaches engineer intermediate representations (Yang et al., [2021), hoping skeletal keypoints
might abstract away stylistic differences. Others pursue the data-driven path (Unlu et al.| 2022}
Wang et al.| [2023), collecting ever-larger datasets to capture drawing variability. While these ef-
forts yield incremental improvements, they fundamentally remain trapped within the visual domain,
attempting to reconcile representations that are inherently irreconcilable.

The limitation becomes clear when we examine the state-of-the-art. Even TokenHMR (Dwivedi
et al., [2024), among the best current methods, sees its performance plummet from 120.54mm to
146.37mm MPJPE when moving from synthetic to freechand sketches—a 21% degradation that re-
veals the fragility of purely visual approaches. This performance cliff isn’t just a technical curiosity;
it represents a fundamental barrier to real-world deployment where users naturally draw with human
imperfection.

We propose a paradigm shift. Rather than viewing language as merely supplementary information,
we position it as a universal feature anchor—a stable reference point that guides learning across
visual domains. Natural language descriptions don’t just label poses; they provide domain-invariant
supervision that teaches models to see past surface variations to underlying semantic structure. Our
framework, UniAnchor, operationalizes this insight through a novel Text-based Body Pose Head
(TBPH) that fundamentally reimagines how visual and linguistic modalities interact. Unlike con-
ventional attention mechanisms that compute similarities between modalities, our approach uses
language-derived features to directly gate and modulate visual processing, dynamically highlight-
ing semantically relevant regions while suppressing domain-specific noise. UniAnchor achieves
139.86mm MPJPE on freehand sketches—not just a 9.7% improvement over the previous best, but
evidence of genuine domain-agnostic learning. More tellingly, when tested on highly abstract am-
ateur sketches that would confound traditional systems, our method maintains robust performance,
successfully reconstructing coherent 3D poses from inputs that barely resemble human forms. By
establishing language as a bridge between divergent visual domains, this work opens new directions
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for robust cross-domain understanding. The implications extend beyond sketch-based reconstruction
to any scenario where visual appearance varies but semantic content remains constant—a common
challenge across computer vision.

In summary, this work makes four key contributions:

* We identify language as a universal feature anchor that remains invariant across visual
domains, providing stable supervision for cross-domain learning.

* Our Text-based Body Pose Head (TBPH) introduces a gating mechanism where semantic
features directly modulate visual processing, achieving true domain-agnostic representa-
tions.

* We enrich 26,000 sketch-pose pairs with natural language descriptions, creating the first
truly multi-modal resource for sketch-based reconstruction.

» Comprehensive experiments demonstrate not just quantitative improvements, but qualita-
tive robustness to extreme abstraction and artistic variation.

2 RELATED WORK

Text-Driven 3D Human Modeling. The intersection of language and 3D human modeling is a
rapidly evolving field. Early works focused on generating pose sequences from text [Lucas et al.
(2022); Zhang et al.[(2022); Petrovich et al.|(2021), while recent studies have expanded to modeling
specific attributes like facial expressions|Hou et al.|(2022); Hwang et al.[(2023); Zhang et al.| (2024);
Sun et al.| (2022); Jiang et al.| (2022)) and clothing He et al.| (2024)); Huang et al.| (2024)); |Youwang
et al.| (2022); Dong et al.| (2024)); Liu et al.| (2024); |Srivastava et al.| (2024)).

More advanced methods now enable sophisticated interactions, including text-based pose editing
and correction [Delmas et al.| (2023); [Kim et al.| (2021)). For instance, PoseFix [Delmas et al.| (2023)
introduced paired data for pose modification via textual feedback. Concurrently, large multimodal
models (LMMs) are being leveraged by methods like ChatPose Feng et al|(2023)) for semantic and
world-knowledge reasoning, while architectures like PoseEmbroider Delmas et al.| (2025)) integrate
image, text, and 3D modalities for more fine-grained control.

However, key limitations persist. Text-only generation often lacks the necessary visual grounding
to meet user specifications |Delmas et al.|(2022). Furthermore, approaches that do incorporate visual
data, such as ChatPose Feng et al.|(2023)), are constrained by the known weakness of current LMMs
in interpreting the abstract and nuanced details of freehand sketches.

Vision-Based 3D Human Reconstruction. Despite the success of 2D sketch-to-image synthe-
sis (Wu et al.| (2023); IQu et al.,| (2024), 3D reconstruction is significantly harder due to the lack
of depth information. Image-based 3D human reconstruction is typically divided into two main
paradigms. The first approach regresses mesh vertices directly [Moon & Lee| (2020); |Choi et al.
(2020); Lin et al.| (2021); (Cho et al.[ (2022)); Zhang et al.| (2023). While excelling at capturing fine
surface details, these methods require large datasets, struggle with occlusions, and are computation-
ally expensive. The second category employs parametric human models like SMPL [Loper et al.
(2023)); [Pavlakos et al.[(2019); |]Anguelov et al.| (2005), offering greater anatomical plausibility and
efficiency but with detail limited by the template’s expressiveness [Zanfir et al.| (2021); |[Li et al.
(2022); |Zheng et al.| (2023)); Xuan et al.|(2024)); |Shen et al.| (2024); [Su et al.| (2025).

Regardless of the representation, a core challenge is inferring 3D structure from a 2D image. Land-
mark methods have progressively advanced this task. HMR |[Kanazawa et al.| (2018) pioneered end-
to-end regression, with subsequent work incorporating Graph Convolutional Networks (CMR |[Kolo-
touros et al. (2019b)), iterative optimization (SPIN Kolotouros et al.[|(2019a)), and multi-level atten-
tion (MAED |Wan et al.[(2021)). More recently, HMR 2.0 |Goel et al.| (2023) has demonstrated the
power of pure Vision Transformer architectures.

A new paradigm has emerged using Vector Quantized Variational Autoencoders (VQ-VAE) to refor-
mulate regression as a classification task over a learned codebook |[Fiche et al.|(2025)); Dwivedi et al.
(2024). This includes methods that predict vertices (VQ-HPS [Fiche et al.| (2024))) and those that de-
code SMPL parameters (TokenHMR [Dwivedi et al.|(2024)). However, these vision-only approaches
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Figure 2: (a) Two-stage Training Strategy. (b) UniAnchor Architecture: Our framework pro-
cesses sketch and text inputs through specialized encoders—a Vision Transformer for visual fea-
tures and pre-trained BERT for semantic features. Image tokens flow through Transformer decoders
and auxiliary parameter heads to estimate SMPL orientation (P ent), hand parameters (Ppangs), and
camera parameters (7). (c¢) Text-based Body Pose Head: Both image and text tokens converge
to predict body pose parameters (Ppoqy), With language serving as a universal anchor for domain-
agnostic learning. The complete SMPL parameters generate the final 3D human mesh.

falter on abstract freehand sketches, highlighting a need for the auxiliary semantic guidance that our
language-anchored model provides.

3 PROPOSED METHOD

3.1 PRELIMINARIES

SMPL Parametric Model. We adopt the SMPL model (Loper et al.l [2023), which parameterizes
human body geometry through pose parameters § € R4* and shape parameters 3 € R19, producing
a 3D mesh V' € R%99%3_ UniAnchor takes a sketch image I and corresponding text description 7’
as input, predicting parameters 6= [9, B} and camera parameters 7 € R3. The 3D joint positions
Jsp are derived through learned joint regression from the predicted mesh.

Dataset Augmentation with Language. We augment the Sketch3D dataset using PoseScript (Del-
mas et al., 2022)), which converts SMPL pose parameters 6 into semantically rich textual descrip-
tions. This heuristic, threshold-based generation avoids data leakage by ensuring the text is a high-
level semantic abstraction of the pose, not a simple numerical transformation. This augmentation
provides the domain-invariant supervision crucial for our approach.

3.2 NETWORK ARCHITECTURE

Fig. 2] (b) presents the UniAnchor architecture, comprising dual encoders for sketch and text pro-
cessing, three specialized Transformer decoder modules, and two distinct prediction heads. The
Auxiliary Heads predict global orientation, hand poses, shape, and camera parameters, while our
novel Text-based Body Pose Head predicts body pose parameters using language as a universal
anchor.

Dual-Modal Encoders. Following the success of HMR 2.0 (Goel et al.,|[2023)), we employ a Vision
Transformer (ViT) (Dosovitskiy et al. 2020) as our sketch encoder, producing image tokens of
dimension R192%64_ For text encoding, we utilize the specialized encoder from PoseScript (Delmas
et al.| 2022) based on DistilBERT, which has been extensively trained on pose-related text, yielding
text tokens of dimension R160%64 We maintain learnable ViT parameters while freezing the pre-
trained BERT weights to preserve its semantic understanding.
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Figure 3: Text-guided SketchGate Module and Domain Bridging Effect. Left: The TGSG archi-
tecture comprises n TextGateBlock modules (we use n = 3), where each block leverages text tokens
to dynamically modulate image token outputs across spatial locations. Right: Visualization of how
TBPH bridges domains. While conventional methods rely solely on image tokens (leading to di-
vergent predictions for synthetic vs. freehand sketches), our text-guided approach reallocates token
weights to align classification results across domains, effectively narrowing synthetic-freehand gap.

Hierarchical Transformer Decoders. Our architecture employs three Transformer decoders with
distinct roles. The first decoder processes concatenated initial SMPL parameters Oy, and camera
parameters Ty (forming a 1 x 157 dimensional query) with image tokens as keys and values,
producing a 1024-dimensional feature vector Fimage. The second and third decoders utilize learnable
queries Qimage € R160%64 and Qe € RI60%64 regpectively, processing image and text tokens to
generate refined representations 4 and tg, both with dimensions 160 x 64.

Aucxiliary Parameter Heads. These MLP-based heads leverage Finqge to predict auxiliary param-
eters: Specifically, four separate heads—the OrientHead, HandsHead, ShapeHead, and Camera-
Head—regress the global body orientation (porient)9 hand pose (f’hands), body shape (B) and camera
parameters (7), respectively.

Text-based Body Pose Head (TBPH). Our key innovation, the TBPH, comprises two components:
the trainable Text-guided SketchGate (TGSG) Module and a frozen VQ-VAE Decoder, as illustrated
in Fig. |Z| (c); this module (shown in Fig. |3| (left)) leverages text tokens to modulate weight distri-
butions, aligning image token representations across synthetic and freehand domains. The resulting
output is then fed into the VQ-VAE decoder to regress the body pose parameters.

The theoretical foundation rests on the observation that well-aligned text and image tokens should
yield convergent probability distributions over pose space. As shown in Fig. 3] (right), when other
modules are given a freehand sketch, they cannot obtain quantized features similar to those gener-
ated from synthetic sketches. However, by using the TGSG module to guide image token classifica-
tion probabilities, we achieve similar quantized features across different sketch domains, effectively
bridging the domain gap. Even for visually ambiguous sketches, textual information provides dis-
criminative semantic cues that improve reconstruction quality.

Text-guided SketchGate Module. Unlike conventional gating mechanisms (Valanarasu et al., 2021}
Cai & Wang, 2022; [Yu & Wangl 2025; [Hatamizadeh & Kautz, [2025) that derive gating weights
solely from image features, we recognize that freehand sketches’ inherent abstraction makes such
approaches unreliable. Our TextGateBlock leverages cross-modal text features as stable, semanti-
cally rich signals for guiding weight allocation.

Each TextGateBlock processes input text token ¢,,_; and image token ¢,,_; through LayerNorm for
cross-modal alignment. Text tokens undergo self-attention enhancement before both modalities pass
through linear and 1D convolution layers, producing gating branches that interact via element-wise
multiplication:
in, = Linear(o(tp—1) ® in—1) + in—1, (1)
tn = U(tnfl) +tn-1, (2)
where o(-) denotes the Sigmoid activation and ® represents element-wise multiplication.

The final image tokens F.s5 are projected to CodeBook dimension 160 x 2048 via an MLP classi-
fier, yielding category probabilities:

Cprob = Softmax(Classifier(Feiass))- ®)
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Figure 4: Visualization comparisons on the Sketch3D dataset. Red circles indicate errors in pose
regions, green circles highlight successfully reconstructed poses. Red-highlighted text denotes dis-
crepancies between the pose description and the sketch. Conversely, green-highlighted text signifies
a successful match with the pose in the sketch. Finally, green lines represent actions consistent with
the pose description, while red lines indicate inconsistencies.

VQ-VAE Decoder. Adopting the decoder from TokenHMR (Dwivedi et al.,2024), we leverage dis-
crete vector quantization to align feature distributions across domains using discrete vector quanti-
zation. Our approach maps incoming features to a pre-trained codebook, and the resulting quantized

features (F.q) are then decoded into the final body pose parameters (f’body). The complete pose
parameters are assembled as:

é = 15orient S 15body S 15handsa é S R144, (4)
generating the final 3D mesh through SMPL and deriving 2D projections via II.
3.3 LEARNING STRATEGY

Following (Wang et al, [2023), as illustrated in Fig. 2] (a), we employ a two-stage training strategy.
Stage one trains on synthetic sketches with comprehensive supervision:

£stagel = Evertices + EJSD + LJ2D + £9 + E,B + Esima (5)
where Lyertices = ||V — V*||1 is the mesh vertex loss, joint losses are £ z,, = ||Jsp — Jipl3 and
Ly, = ||J2p — J3p 3, and parameter losses are Ly = || — 6*||3 and L5 = || — 7|3

Crucially, we incorporate a contrastive loss to align sketch and text features:
ﬁsimilarily = InfONCE(Qimagea Qlexl)v (6)

where Qimage and Oy are average-pooled query features. Stage two fine-tunes on freehand sketches
with:
Lstage2 = L1yn + Lo + Lsimilarity - (7N

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We employ a two-stage training strategy. First, we pre-train the model on synthetic sketches for
100 epochs with a learning rate of 2 x 10~°. Then, using the checkpoint with the best validation
performance, we fine-tune on freehand sketches for 10 epochs at a reduced learning rate of 5 x 1076,
Both stages use the Adam optimizer, and all experiments were conducted on RTX 4090 GPUs.

4.2 EVALUATION PROTOCOL

Metrics. We adopt two widely-used metrics for 3D human pose evaluation, both measured in mil-
limeters: Mean Per Joint Position Error (MPJPE) (Ionescu et al., 2013) quantifies the average
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Table 1: Quantitative comparison with state-of-the-art methods on synthetic and freehand sketch
datasets. | indicates lower is better. Bold means the best result. * Indicates models trained or
fine-tuned on our sketch dataset. T Indicates the model is not open-sourced. PoseScript Text: Uses
original PoseScript descriptions. Missing Text: Uses empty text input. Noisy Text: Introduces
noise by randomly swapping ‘left’ and ‘right’ keywords with 50% probability.

Inference Tnput | Model | Syntheticsketch | Frechand sketch
| | MPJPE| PA-MPJPE | | MPJPE | PA-MPJPE |

SPIN" 133.55 8454 185.09 99.98
MAED* 125.73 8110 176.79 97.24
Sketch2Pose! 21.62 117.88 250.15 128.86
123.95 8039 154.89 91.19
129.75 85.16 163.39 98.52
120,54 8355 146.37 92.06
11542 77.86 14250 89.17

127.36 85.58 152.74 91.17
118.36 80.23 145.69 91.13
pt Text)* | 112.99 76.23 139.86 86.68

Sketch

Uni. & N
UniAnchor (Sketch & PoseScrij

Euclidean distance between predicted and ground-truth 3D joint positions:

1 N
Emprpe = ~ >
Ji=1

where  Jap(i) and  Ji,(i) represent the predicted and ground-truth  positions
of the i-th joint respectively, with N; denoting the total number of joints.
Procrustes Aligned MPJPE (PA-MPJPE) (Zhou et all 2018) evaluates pose structure accu-
racy by first applying rigid Procrustes alignment to remove global positioning differences. This
metric provides insight into the model’s understanding of pose configuration independent of
absolute position and scale.

Dataset. We use the Sketch3D dataset (Wang et al., [2023), which contains 26,000 poses, each
paired with both a synthetic (Canny-based) and a freehand sketch. To enable cross-modal learning,
we augment this data with text descriptions generated via PoseScript (Delmas et al., 2022).

[an (i) = T3] ®)

4.3 COMPARISON OF STATE-OF-THE-ART METHODS

We compare our method with several state-of-the-art approaches, including SPIN (Kolotouros
et al., 2019a), MAED (Wan et al.l 2021), Sketch2Pose |Brodt & Bessmeltsev| (2022), SketchBo-
dyNet (Wang et al., [2023), VQ-HPS (Fiche et al., 2024), PoseEmbroider [Delmas et al.| (2024)
and TokenHMR (Dwivedi et al.| 2024). Among these methods, SPIN, MAED, SketchBodyNet,
Sketch2Pose, and TokenHMR regress the parameters of the SMPL/SMPL-X model to reconstruct
3D human meshes, while VQ-HPS directly predicts the 3D mesh vertices. Finally, 3D joint posi-
tions are obtained from the predicted vertices using a joint regressor and are then evaluated against
the ground-truth joint annotations. Notably, PoseEmbroider shares the same input modality as Uni-
Anchor, utilizing both sketches and textual descriptions. Additionally, since the training code for
Sketch2Pose is not publicly available, we were unable to fine-tune it on the Sketch3D dataset. In
contrast, all other competing methods were retrained on this dataset to ensure a fair comparison.

Quantitative Results. Crucially, It is important to clarify that all reported metrics for UniAnchor
come from a single model trained under the standard protocol (using both Sketch and Ground-Truth
Text). The variations—such as missing text, noisy text, or LLM-generated text—were introduced
strictly during the inference phase to evaluate the model’s robustness, without any modification to
the training process.

Table 3] presents the comprehensive evaluation results. Our method achieves state-of-the-art per-
formance across all metrics on both synthetic and freehand sketches. Several key observations
emerge from these results: On synthetic sketches, UniAnchor achieves 112.99mm MPJPE and
76.23mm PA-MPIJPE, representing improvements of 7.55mm and 7.32mm respectively over the
previous best method (TokenHMR). These improvements demonstrate that semantic guidance en-
hances reconstruction even when visual features are clean and well-defined.

The performance gap becomes more pronounced on freehand sketches, where our method achieves
139.86mm MPJPE—a reduction of 6.51mm compared to TokenHMR. This 4.5% improvement is
particularly significant given the challenging nature of freehand sketches. The PA-MPJPE improve-
ment of 5.38mm (5.8% reduction) indicates that our method better understands pose structure, sug-
gesting that textual descriptions help disambiguate visually ambiguous poses.



Under review as a conference paper at ICLR 2026

Different Style Sketches as Input (AL Sketches from Reality)

Figure 5: Left: Visualization results of our 3D human reconstruction method under different input
modalities (Sketch, Pose description, or both). w/ Sketch denotes that the TGSG module uses only
1o as input; w/ Text uses only #y; and w/ Sketch& Text represents the full model. A green checkmark
indicates close alignment with the sketch, while a red cross indicates misalignment. Right: Several
real-world examples collected from a web application developed based on UniAnchor.

It is particularly worth noting that even under the “Noisy Text” and “Missing Text” settings, our
method maintains a significant performance advantage over other state-of-the-art models. We at-
tribute this robustness to the semantic alignment learned during training. The textual guidance
effectively bridges the domain gap between synthetic and freehand sketches, thereby refining the
intrinsic quality of the visual features. Consequently, the model retains competitive performance by
relying solely on the enhanced visual encoder, even when explicit semantic information is absent or
noisy.

Comparing across methods, SPIN exhibits the poorest performance with 185.09mm MPJPE on free-
hand sketches, highlighting its unsuitability for sketch-based inputs. MAED shows improvement
over SPIN through its Transformer-based architecture but still struggles with the abstract nature of
sketches. SketchBodyNet achieves reasonable results specifically designed for sketch inputs, while
VQ-HPS shows inconsistent results across the two domains. PoseEmbroider attempts to construct a
unified feature space for image and text modalities. However, it struggles to maintain this alignment
across sketches with diverse styles due to the absence of explicit anchors.

Sketch2Pose serves as a zero-shot baseline in our evaluation. Although we could not fine-tune it
on the Sketch3D dataset due to the unavailability of training code, it benefits from pre-training on a
large-scale sketch corpus. In this setting, it delivers moderate performance (250.15mm MPJPE on
freehand sketches), demonstrating basic generalization capabilities.

Qualitative Analysis. Figure d]illustrates the 3D human reconstruction results of different methods
on sketches depicting a variety of poses. The first sketch depicts a crossed-leg pose. The first three
methods either fail to accurately reconstruct this action or misjudge the body orientation. Although
VQ-HPS achieves a more accurate leg cross, it introduces noticeable artifacts in the arms. The
second and third sketches depict a pose of standing on one leg with the other bent or extended. In this
case, all competing methods generate a pose with the legs positioned close together, failing to capture
the tension and separation implied by the sketch. In contrast, our method accurately perceives
both the hand and leg configurations, successfully reconstructing the pose with raised arms and
bent, separated legs, which closely matches the downward dynamic depicted in the sketch. Overall,
our method demonstrates superior reconstruction quality across a wide range of complex poses,
excelling in detail preservation and pose understanding, and significantly outperforming existing
approaches.

4.4 ABLATION STUDIES

We conduct systematic ablation studies to validate our design choices and understand component
contributions.

Module Ablation. Table 2] examines the contribution of each architectural component. Replacing
the Text-based Body Pose Head (TBPH) with a simple MLP results in the most significant perfor-
mance drop (6.66mm MPJPE increase on freehand sketches), confirming its critical role. When
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Table 2: Ablation results of our method on the Sketch3D dataset, illustrating the impact of individual
modules, modalities and loss.

Ablations | Synthetic sketch | Freehand sketch
| MPIPE| PA-MPIPE | | MPJPE | PA-MPJPE |
Modules

117.80 79.53 146.52 89.04
115.82 76.95 143.33 88.07

TBPH-to-MLP
TGSG-to-SA
ImageGateBlock
TGB-to-CA

115.03 77.21 142.21 88.30
116.56 79.84 147.27 89.49

Modalities

119.81 80.66
148.21 111.90

TextEncoder

114.32 7649 | 14189 87.89
Caption Length

11542 77.86 ‘ 142.50 89.17

w/ Sketch
w/ Text

146.72 90.87
164.85 112.19

UnFrozen

Zero Sentence
One Sentence
Two Sentence

115.21 71.39 141.69 88.13
114.09 76.51 140.24 87.86

Loss Function
113.54 76.86
112.99 76.23

w/o InfoNCE
Full Model

141.38 87.88
139.86 86.68

we substitute the Text-guided SketchGate (TGSG) with self-attention, performance degrades by
3.47mm, validating that our gating mechanism more effectively leverages semantic information than
attention-based fusion. The ImageGateBlock variant, which uses only visual features for gating, un-
derperforms by 2.35mm, demonstrating the value of cross-modal guidance. Notably, replacing our
TextGateBlock with cross-attention causes a substantial 7.41mm degradation. This suggests that
direct feature modulation through gating is more robust to domain shifts than similarity-based atten-
tion mechanisms.

Modality Ablation. Table 2] investigates the contribution of each input modality. Using only
sketch input achieves reasonable performance (146.72mm MPJPE on freehand), confirming that
visual information remains the primary signal. However, incorporating text reduces error by
6.86mm, demonstrating its value for disambiguation. Pure text-based reconstruction performs
poorly (164.85mm MPIJPE), as expected given the coarse nature of language descriptions. This
refers to using text tokens to predict body pose parameters, while the remaining SMPL param-
eters are still predicted by image tokens. The significant performance gap between sketch-only
(146.72mm) and text-only (164.85mm) approaches—18.13mm on freehand sketches—underscores
that visual features provide essential geometric details that text cannot capture. Nevertheless, the
synergistic combination outperforms both individual modalities, validating our multi-modal ap-
proach. Fig.[d.3]visualizes these findings, showing how text helps resolve ambiguities while sketches
provide geometric constraints. In particular, the second example demonstrates how text-only pre-
diction fails to capture correct hip positioning, while sketch-only prediction misplaces the arms, but
the combined approach achieves accurate full-body reconstruction.

TextEncoder Ablation. We conducted an ablation study to determine whether to unfreeze the
weights of the TextEncoder. As shown in Table 2] unfreezing the TextEncoder results in a marginal
performance degradation. We attribute this to the distortion of the feature space among tokens
in the unfrozen encoder during training. Although this accelerates loss convergence, it ultimately
compromises the model’s generalization capability.

Caption Length Ablation. We obtained text descriptions using PoseScript [Delmas et al.| (2022),
where each image is typically associated with three sentences or fewer. To investigate the impact of
text length on model performance, we segmented the descriptions by periods (“.”). Table 2] presents
the results ranging from zero to two input sentences. We observe that each additional accurate
sentence yields an improvement of approximately Imm in MPJPE. This demonstrates that accurate
textual guidance significantly benefits model performance.

Loss Function Ablation. Table [2] shows that removing the InfoNCE loss increases MPJPE by
1.52mm on freehand sketches. While this improvement appears modest, it validates our hypothesis
that explicit cross-modal alignment helps bridge the domain gap between synthetic and freehand
sketches.

4.5 GENERALIZATION EXPERIMENT

To assess real-world applicability, we collected an additional 10,000 sketch-pose pairs following
the Sketch3D protocol. We recruited over 30 new volunteers to draw freehand sketches, ensuring
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Table 3: Generalization experiment results on our newly collected sketches. We test models with
and without training on this dataset. Bold indicates the best result within each input modality group.

| | Synthetic sketch | Frechand sketch
Inference Input | Model | Finc-tuned | Zero-shot | Fine-tuned | Zero-shot
| | MPIPE| PA-MPIPE| MPIPE| PA-MPJPE| | MPJPE, PA-MPJPE, MPJPE| PA-MPIPE|

SPIN 112.56 67.84 — — 145.92 76.86 — —
MAED 98.45 61.57 — — 130.61 69.33 — —
Sketch2Pose — — 209.27 101.52 — — 257.50 117.58
Sketch SBN 103.33 63.31 119.45 68.41 138.27 71.64 157.73 77.34
VQ-HPS 78.52 46.71 113.08 62.68 125.74 66.77 155.17 75.26
TokenHMR 73.34 45.41 113.77 61.28 105.89 59.01 153.48 76.70
UniAnchor (Missing Text) 62.33 38.18 100.70 55.06 100.20 5771 137.75 67.27
PoseEmbroider — — 109.82 60.75 — — 141.74 69.38
98.86 56.31 137.49 66.41
96.85 53.58 136.47 65.83

Sketch

T Text UniAnchor (LLM Text) 61.47 37.83 99.45 54.02

UniAnchor (PoseScript Text) 5835 36.10 98.84 5243

diversity in artistic styles and skill levels. It is worth noting that, although this is a newly collected
dataset, its sketch style is similar with that of Sketch3DWang et al.|(2023). The dataset was split 9:1
for training and testing. We structured the generalization experiments into two settings: fine-tuned
and zero-shot. The fine-tuned setting investigates the model’s adaptability to the new sketch domain,
whereas the zero-shot setting directly employs weights trained on Sketch3D (with the exception of
Sketch2Pose) to assess generalization capabilities on unseen sketches.

Fine-tuned. Table [3]demonstrates that UniAnchor maintains its performance advantage on unseen
data. We achieve 96.85mm MPJPE on freehand sketches, outperforming TokenHMR by 9.04mm
(8.5%). This larger improvement margin compared to the Sketch3D dataset suggests that language
guidance becomes increasingly valuable as sketch diversity increases. The consistent superiority
across both datasets confirms that our semantic anchoring approach enables robust generalization to
varied artistic styles.

Zero-shot. Table [3]shows that our model achieves a reduction of 10.98mm in MPJPE on synthetic
sketches and 5.27mm on freehand sketches compared to PoseEmbroider, demonstrating generaliza-
tion capabilities superior to competing models. Notably, the model maintains excellent performance
even with missing text descriptions or when using LLM-generated text (generated from Florence-2).
We attribute this robustness to the guiding role of text, which aligns the feature space for sketches of
varying styles but identical poses, thereby enhancing the Image Encoder’s comprehension of diverse
sketch representations.

4.6 LIMITATION AND FUTURE WORK

As shown in the left panel of Figure [4.3] coarse PoseScript descriptions (Delmas et al.} [2022) cur-
rently serve only to fine-tune initial poses, proving insufficient for complex poses with severe joint
overlapping. Real-world trials via our web application (Right) further revealed difficulties in re-
constructing cross-legged postures and rotated arm crossings. To align with practical application
scenarios, we employed simplified textual descriptions, which resulted in variable reconstruction
performance. We attribute these failures to the limited pose diversity in our training set (~20k im-
ages with high redundancy) and insufficient data augmentation, respectively. Furthermore, while
text guidance currently enhances style comprehension, it does not yet play a dominant role in pose
generation. To address these limitations, we plan to expand our dataset with diverse poses and pre-
cise annotations (manually or via LLMs) and design a robust architecture that more deeply integrates
textual guidance to effectively resolve complex sketches.

5 CONCLUSION

In this paper, we presented UniAnchor, a novel framework that establishes natural language as a uni-
versal feature anchor for domain-agnostic 3D human reconstruction from sketches. By recognizing
that while visual representations diverge across artistic styles, semantic descriptions remain consis-
tent, we designed the Text-based Body Pose Head to leverage this invariance for robust cross-domain
learning. Our comprehensive evaluation demonstrates state-of-the-art performance with a 4.5% gain
over TokenHMR, extending to an 11.08% lead in zero-shot generalization to highly abstract ama-
teur sketches. This work opens new directions for leveraging language as a bridge across visual
domains, with implications extending beyond sketch-based reconstruction to broader challenges in
cross-domain computer vision.
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A APPENDIX

To evaluate perceptual quality, we conducted a user study with 12 graduate student volunteers (aged
20-25) assessing 3D reconstructions from 32 diverse sketches. Participants rated outputs on two
7-point Likert scales: (1) faithfulness - how accurately the pose matches the input sketch, and (2)
quality - the visual quality and absence of artifacts.

The study employed a double-blind protocol where participants were unaware of which method
generated each result. We collected 384 total evaluations (12 participants x 32 sketches). Fig.
presents the results, with a two-way ANOVA revealing statistically significant differences among
methods for both faithfulness (F5 55 = 33.01,p < 0.001) and quality (F(555 = 30.27,p <
0.001). UniAnchor achieved the highest scores with mean ratings of 5.68 + 0.35 (faithfulness)
and 5.86 £ 0.39 (quality), substantially outperforming all baselines. These results confirm that our
quantitative improvements translate to perceptually superior reconstructions that better match user
expectations.
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Figure 6: This figure shows the dataset of sketch-text pairs obtained using PoseScript
2022).
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Figure 7: User study results showing faithfulness and quality perception scores. Blue bars represent
faithfulness scores, orange bars indicate quality scores. Error bars show standard deviation.
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