

WHEN SKETCHES DIVERGE, LANGUAGE CONVERGES: A UNIVERSAL FEATURE ANCHOR FOR DOMAIN-AGNOSTIC HUMAN RECONSTRUCTION

006 **Anonymous authors**

007 Paper under double-blind review

ABSTRACT

013 When humans sketch the same pose, no two drawings are alike. Synthetic sketches
 014 exhibit algorithmic precision with clean edges and consistent strokes, while free-
 015 hand sketches diverge wildly—each bearing the unique abstraction, style, and im-
 016 perfections of its creator. This fundamental divergence has long challenged 3D
 017 human reconstruction systems, which struggle to bridge the chasm between these
 018 disparate visual domains. We present a paradigm shift: while sketches diverge,
 019 language converges. A pose described as “arms raised overhead” carries the same
 020 semantic meaning whether drawn by algorithm or artist. Building on this in-
 021 sight, we introduce a universal feature anchor—natural language—that remains
 022 constant across visual variations. Our framework leverages text descriptions to
 023 guide feature learning, creating domain-agnostic representations that transcend
 024 the synthetic-freehand divide. At the technical core lies our Text-based Body
 025 Pose Head (TBPH), featuring a novel gating mechanism where language-derived
 026 features dynamically reweight spatial regions of sketch features. This text-guided
 027 attention enables the model to focus on semantically meaningful pose indicators
 028 while suppressing domain-specific noise and stylistic artifacts. By augmenting
 029 26,000 sketch-pose pairs with rich textual descriptions, we enable cross-modal
 030 supervision that teaches our model to see past surface differences to underly-
 031 ing pose semantics. **Extensive experiments demonstrate our method’s superi-
 032 ority: we achieve 139.86mm MPJPE on freehand sketches, a 4.5% improvement
 033 over the state-of-the-art TokenHMR, and further outperform it by 11.08% in zero-
 034 shot generalization on a newly collected dataset.** More importantly, we show true
 035 domain-agnostic performance—our model trained on both domains exhibits min-
 036 imal degradation when tested on highly abstract amateur sketches. This work es-
 037 tablishes language as a powerful intermediary for visual domain adaptation, open-
 038 ing new avenues for robust cross-domain understanding in computer vision.

1 INTRODUCTION

041 Consider a person standing with arms raised overhead. Capture this pose in a photograph and pro-
 042 cess it through an edge detection algorithm—you’ll get a precise skeleton of clean lines and perfect
 043 angles, every stroke consistent and predictable. Ask a hundred different people to sketch the same
 044 pose, and you’ll receive a hundred unique interpretations—some confident and bold, others tenta-
 045 tive and abstract, each filtered through individual perception and artistic style. Yet despite this visual
 046 chaos, something remarkable remains constant: the semantic meaning. Whether extracted by algo-
 047 rithm or drawn by hand, the pose can still be described with the same words: *standing with arms
 048 raised overhead*.

049 This observation illuminates a profound challenge in computer vision. Current 3D human recon-
 050 struction systems excel when fed synthetic sketches—those algorithmically generated drawings with
 051 their predictable strokes and consistent patterns. But hand these same systems a genuine human
 052 sketch, with all its irregularities and artistic liberties, and performance degrades dramatically (Wang
 053 et al., 2023; Yang et al., 2021). The domain gap between synthetic precision and human expression
 has proven stubbornly resistant to conventional approaches.

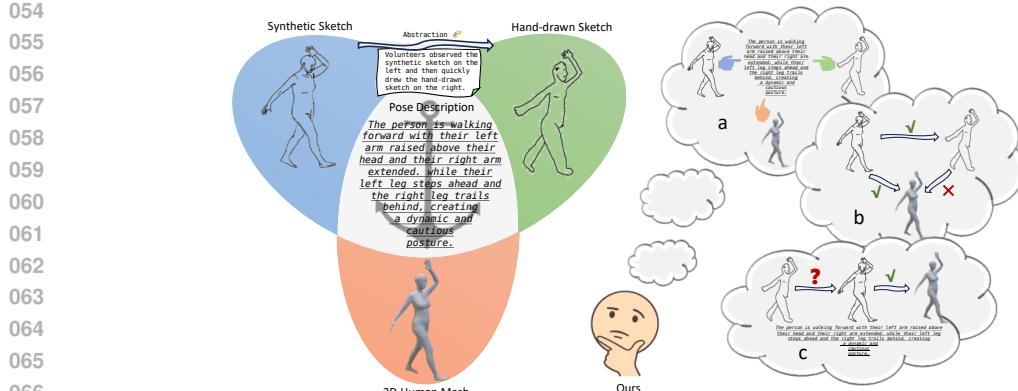


Figure 1: **Motivation.** This figure illustrates the motivation behind our approach. Both sketches depict the same pose: a person walking forward with their left arm raised above their head, right arm extended, left leg stepping ahead, and right leg trailing behind, creating a dynamic and cautious posture. The green sketch alone is insufficient to generate a high-quality 3D human mesh (red), whereas the blue (synthetic) sketch can. This work proposes using a pose description as a bridge to align hand-drawn sketches and synthetic sketches, thereby reducing the abstractness of hand-drawn input for 3D human mesh generation.

We argue that existing approaches have been constrained by their focus on reconciling visual representations that are fundamentally incompatible. As illustrated in Fig. 1, instead of attempting to force convergence between these inherently divergent visual domains, we propose leveraging a modality that naturally maintains consistency across different sketch styles: natural language. Language provides a domain-invariant representation—a pose described as *kneeling with hands on hips* carries identical semantic content regardless of whether the visual input originates from edge detection or freehand drawing. This linguistic invariance presents an unexplored opportunity for achieving domain-agnostic understanding in sketch-based reconstruction.

Previous attempts to bridge the synthetic-freehand divide have followed predictable patterns. Some approaches engineer intermediate representations (Yang et al., 2021), hoping skeletal keypoints might abstract away stylistic differences. Others pursue the data-driven path (Unlu et al., 2022; Wang et al., 2023), collecting ever-larger datasets to capture drawing variability. While these efforts yield incremental improvements, they fundamentally remain trapped within the visual domain, attempting to reconcile representations that are inherently irreconcilable.

The limitation becomes clear when we examine the state-of-the-art. Even TokenHMR (Dwivedi et al., 2024), among the best current methods, sees its performance plummet from 120.54mm to 146.37mm MPJPE when moving from synthetic to freehand sketches—a 21% degradation that reveals the fragility of purely visual approaches. This performance cliff isn’t just a technical curiosity; it represents a fundamental barrier to real-world deployment where users naturally draw with human imperfection.

We propose a paradigm shift. Rather than viewing language as merely supplementary information, we position it as a *universal feature anchor*—a stable reference point that guides learning across visual domains. Natural language descriptions don’t just label poses; they provide domain-invariant supervision that teaches models to see past surface variations to underlying semantic structure. Our framework, *UniAnchor*, operationalizes this insight through a novel Text-based Body Pose Head (TBPH) that fundamentally reimagines how visual and linguistic modalities interact. Unlike conventional attention mechanisms that compute similarities between modalities, our approach uses language-derived features to directly gate and modulate visual processing, dynamically highlighting semantically relevant regions while suppressing domain-specific noise. *UniAnchor* achieves 139.86mm MPJPE on freehand sketches—not just a 9.7% improvement over the previous best, but evidence of genuine domain-agnostic learning. More tellingly, when tested on highly abstract amateur sketches that would confound traditional systems, our method maintains robust performance, successfully reconstructing coherent 3D poses from inputs that barely resemble human forms. By establishing language as a bridge between divergent visual domains, this work opens new directions

108 for robust cross-domain understanding. The implications extend beyond sketch-based reconstruction
 109 to any scenario where visual appearance varies but semantic content remains constant—a common
 110 challenge across computer vision.

111 In summary, this work makes four key contributions:

- 113 • We identify language as a universal feature anchor that remains invariant across visual
 114 domains, providing stable supervision for cross-domain learning.
- 115 • Our Text-based Body Pose Head (TBPH) introduces a gating mechanism where semantic
 116 features directly modulate visual processing, achieving true domain-agnostic representa-
 117 tions.
- 119 • We enrich 26,000 sketch-pose pairs with natural language descriptions, creating the first
 120 truly multi-modal resource for sketch-based reconstruction.
- 121 • Comprehensive experiments demonstrate not just quantitative improvements, but qualita-
 122 tive robustness to extreme abstraction and artistic variation.

124 2 RELATED WORK

126 **Text-Driven 3D Human Modeling.** The intersection of language and 3D human modeling is a
 127 rapidly evolving field. Early works focused on generating pose sequences from text Lucas et al.
 128 (2022); Zhang et al. (2022); Petrovich et al. (2021), while recent studies have expanded to modeling
 129 specific attributes like facial expressions Hou et al. (2022); Hwang et al. (2023); Zhang et al. (2024);
 130 Sun et al. (2022); Jiang et al. (2022) and clothing He et al. (2024); Huang et al. (2024); Youwang
 131 et al. (2022); Dong et al. (2024); Liu et al. (2024); Srivastava et al. (2024).

132 More advanced methods now enable sophisticated interactions, including text-based pose editing
 133 and correction Delmas et al. (2023); Kim et al. (2021). For instance, PoseFix Delmas et al. (2023)
 134 introduced paired data for pose modification via textual feedback. Concurrently, large multimodal
 135 models (LMMs) are being leveraged by methods like ChatPose Feng et al. (2023) for semantic and
 136 world-knowledge reasoning, while architectures like PoseEmbroider Delmas et al. (2025) integrate
 137 image, text, and 3D modalities for more fine-grained control.

138 However, key limitations persist. Text-only generation often lacks the necessary visual grounding
 139 to meet user specifications Delmas et al. (2022). Furthermore, approaches that do incorporate visual
 140 data, such as ChatPose Feng et al. (2023), are constrained by the known weakness of current LMMs
 141 in interpreting the abstract and nuanced details of freehand sketches.

143 **Vision-Based 3D Human Reconstruction.** Despite the success of 2D sketch-to-image synthe-
 144 sis Wu et al. (2023); Qu et al. (2024), 3D reconstruction is significantly harder due to the lack
 145 of depth information. Image-based 3D human reconstruction is typically divided into two main
 146 paradigms. The first approach regresses mesh vertices directly Moon & Lee (2020); Choi et al.
 147 (2020); Lin et al. (2021); Cho et al. (2022); Zhang et al. (2023). While excelling at capturing fine
 148 surface details, these methods require large datasets, struggle with occlusions, and are computa-
 149 tionally expensive. The second category employs parametric human models like SMPL Loper et al.
 150 (2023); Pavlakos et al. (2019); Anguelov et al. (2005), offering greater anatomical plausibility and
 151 efficiency but with detail limited by the template’s expressiveness Zanfir et al. (2021); Li et al.
 152 (2022); Zheng et al. (2023); Xuan et al. (2024); Shen et al. (2024); Su et al. (2025).

153 Regardless of the representation, a core challenge is inferring 3D structure from a 2D image. Land-
 154 mark methods have progressively advanced this task. HMR Kanazawa et al. (2018) pioneered end-
 155 to-end regression, with subsequent work incorporating Graph Convolutional Networks (CMR Kolo-
 156 touros et al. (2019b)), iterative optimization (SPIN Kolotouros et al. (2019a)), and multi-level atten-
 157 tion (MAED Wan et al. (2021)). More recently, HMR 2.0 Goel et al. (2023) has demonstrated the
 158 power of pure Vision Transformer architectures.

159 A new paradigm has emerged using Vector Quantized Variational Autoencoders (VQ-VAE) to refor-
 160 mulate regression as a classification task over a learned codebook Fiche et al. (2025); Dwivedi et al.
 161 (2024). This includes methods that predict vertices (VQ-HPS Fiche et al. (2024)) and those that de-
 code SMPL parameters (TokenHMR Dwivedi et al. (2024)). However, these vision-only approaches

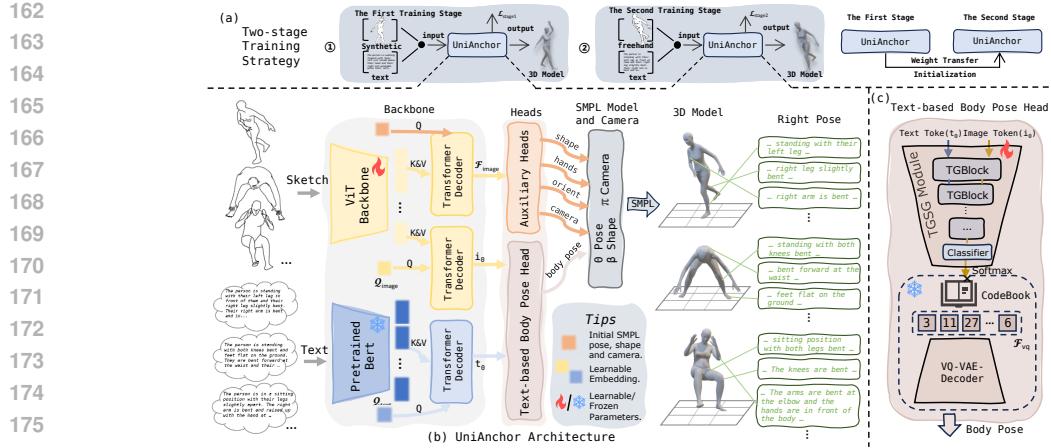


Figure 2: **(a) Two-stage Training Strategy.** Our framework processes sketch and text inputs through specialized encoders—a Vision Transformer for visual features and pre-trained BERT for semantic features. Image tokens flow through Transformer decoders and auxiliary parameter heads to estimate SMPL orientation (P_{orient}), hand parameters (P_{hands}), and camera parameters (π). **(b) UniAnchor Architecture:** Our framework processes sketch and text inputs through specialized encoders—a Vision Transformer for visual features and pre-trained BERT for semantic features. Image tokens flow through Transformer decoders and auxiliary parameter heads to estimate SMPL orientation (P_{orient}), hand parameters (P_{hands}), and camera parameters (π). **(c) Text-based Body Pose Head:** Both image and text tokens converge to predict body pose parameters (P_{body}), with language serving as a universal anchor for domain-agnostic learning. The complete SMPL parameters generate the final 3D human mesh.

falter on abstract freehand sketches, highlighting a need for the auxiliary semantic guidance that our language-anchored model provides.

3 PROPOSED METHOD

3.1 PRELIMINARIES

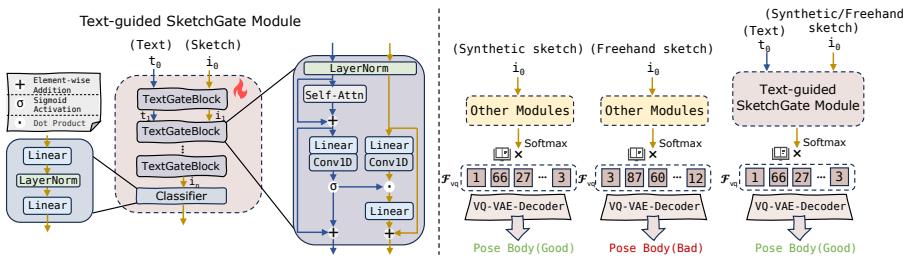
SMPL Parametric Model. We adopt the SMPL model (Loper et al., 2023), which parameterizes human body geometry through pose parameters $\theta \in \mathbb{R}^{144}$ and shape parameters $\beta \in \mathbb{R}^{10}$, producing a 3D mesh $V \in \mathbb{R}^{6890 \times 3}$. UniAnchor takes a sketch image I and corresponding text description T as input, predicting parameters $\hat{\Theta} = [\hat{\theta}, \hat{\beta}]$ and camera parameters $\hat{\pi} \in \mathbb{R}^3$. The 3D joint positions J_{3D} are derived through learned joint regression from the predicted mesh.

Dataset Augmentation with Language. We augment the Sketch3D dataset using PoseScript (Delmas et al., 2022), which converts SMPL pose parameters θ into semantically rich textual descriptions. This heuristic, threshold-based generation avoids data leakage by ensuring the text is a high-level semantic abstraction of the pose, not a simple numerical transformation. This augmentation provides the domain-invariant supervision crucial for our approach.

3.2 NETWORK ARCHITECTURE

Fig. 2 (b) presents the UniAnchor architecture, comprising dual encoders for sketch and text processing, three specialized Transformer decoder modules, and two distinct prediction heads. The Auxiliary Heads predict global orientation, hand poses, shape, and camera parameters, while our novel Text-based Body Pose Head predicts body pose parameters using language as a universal anchor.

Dual-Modal Encoders. Following the success of HMR 2.0 (Goel et al., 2023), we employ a Vision Transformer (ViT) (Dosovitskiy et al., 2020) as our sketch encoder, producing image tokens of dimension $\mathbb{R}^{192 \times 64}$. For text encoding, we utilize the specialized encoder from PoseScript (Delmas et al., 2022) based on DistilBERT, which has been extensively trained on pose-related text, yielding text tokens of dimension $\mathbb{R}^{160 \times 64}$. We maintain learnable ViT parameters while freezing the pre-trained BERT weights to preserve its semantic understanding.

216
217
218
219
220
221
222
223
224

225 **Figure 3: Text-guided SketchGate Module and Domain Bridging Effect.** Left: The TGSG architecture 226 comprises n TextGateBlock modules (we use $n = 3$), where each block leverages text tokens 227 to dynamically modulate image token outputs across spatial locations. Right: Visualization of how 228 TBPH bridges domains. While conventional methods rely solely on image tokens (leading to 229 divergent predictions for synthetic vs. freehand sketches), our text-guided approach reallocates 230 token weights to align classification results across domains, effectively narrowing synthetic-freehand gap.

231
232 **Hierarchical Transformer Decoders.** Our architecture employs three Transformer decoders with 233 distinct roles. The first decoder processes concatenated initial SMPL parameters Θ_{init} and camera 234 parameters π_{init} (forming a 1×157 dimensional query) with image tokens as keys and values, 235 producing a 1024-dimensional feature vector $\mathcal{F}_{\text{image}}$. The second and third decoders utilize learnable 236 queries $Q_{\text{image}} \in \mathbb{R}^{160 \times 64}$ and $Q_{\text{text}} \in \mathbb{R}^{160 \times 64}$ respectively, processing image and text tokens to 237 generate refined representations i_0 and t_0 , both with dimensions 160×64 .

238
239 **Auxiliary Parameter Heads.** These MLP-based heads leverage $\mathcal{F}_{\text{image}}$ to predict auxiliary 240 parameters: Specifically, four separate heads—the OrientHead, HandsHead, ShapeHead, and Camera- 241 Head—regress the global body orientation (\hat{P}_{orient}), hand pose (\hat{P}_{hands}), body shape ($\hat{\beta}$) and camera 242 parameters ($\hat{\pi}$), respectively.

243 **Text-based Body Pose Head (TBPH).** Our key innovation, the TBPH, comprises two components: 244 the trainable Text-guided SketchGate (TGSG) Module and a frozen VQ-VAE Decoder, as illustrated 245 in Fig. 2 (c); this module (shown in Fig. 3 (left)) leverages text tokens to modulate weight 246 distributions, aligning image token representations across synthetic and freehand domains. The resulting 247 output is then fed into the VQ-VAE decoder to regress the body pose parameters.

248 The theoretical foundation rests on the observation that well-aligned text and image tokens should 249 yield convergent probability distributions over pose space. As shown in Fig. 3 (right), when other 250 modules are given a freehand sketch, they cannot obtain quantized features similar to those generated 251 from synthetic sketches. However, by using the TGSG module to guide image token classification 252 probabilities, we achieve similar quantized features across different sketch domains, effectively 253 bridging the domain gap. Even for visually ambiguous sketches, textual information provides dis- 254 criminative semantic cues that improve reconstruction quality.

255 **Text-guided SketchGate Module.** Unlike conventional gating mechanisms (Valanarasu et al., 2021; 256 Cai & Wang, 2022; Yu & Wang, 2025; Hatamizadeh & Kautz, 2025) that derive gating weights 257 solely from image features, we recognize that freehand sketches’ inherent abstraction makes such 258 approaches unreliable. Our TextGateBlock leverages cross-modal text features as stable, semanti- 259 cally rich signals for guiding weight allocation.

260 Each TextGateBlock processes input text token t_{n-1} and image token i_{n-1} through LayerNorm for 261 cross-modal alignment. Text tokens undergo self-attention enhancement before both modalities pass 262 through linear and 1D convolution layers, producing gating branches that interact via element-wise 263 multiplication:

$$i_n = \text{Linear}(\sigma(t_{n-1}) \odot i_{n-1}) + i_{n-1}, \quad (1)$$

$$t_n = \sigma(t_{n-1}) + t_{n-1}, \quad (2)$$

264 where $\sigma(\cdot)$ denotes the Sigmoid activation and \odot represents element-wise multiplication.

265 The final image tokens $\mathcal{F}_{\text{class}}$ are projected to CodeBook dimension 160×2048 via an MLP classifier, 266 yielding category probabilities:

$$\mathcal{C}_{\text{prob}} = \text{Softmax}(\text{Classifier}(\mathcal{F}_{\text{class}})). \quad (3)$$

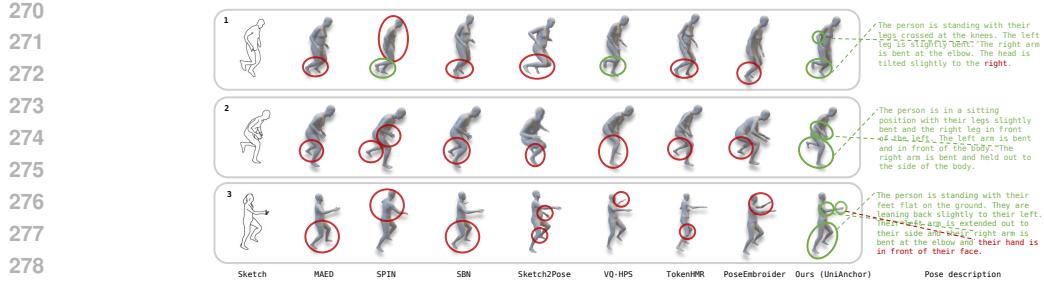


Figure 4: Visualization comparisons on the Sketch3D dataset. Red circles indicate errors in pose regions, green circles highlight successfully reconstructed poses. Red-highlighted text denotes discrepancies between the pose description and the sketch. Conversely, green-highlighted text signifies a successful match with the pose in the sketch. Finally, green lines represent actions consistent with the pose description, while red lines indicate inconsistencies.

VQ-VAE Decoder. Adopting the decoder from TokenHMR (Dwivedi et al., 2024), we leverage discrete vector quantization to align feature distributions across domains using discrete vector quantization. Our approach maps incoming features to a pre-trained codebook, and the resulting quantized features (\mathcal{F}_{vq}) are then decoded into the final body pose parameters ($\hat{\mathbf{P}}_{\text{body}}$). The complete pose parameters are assembled as:

$$\hat{\theta} = \hat{\mathbf{P}}_{\text{orient}} \oplus \hat{\mathbf{P}}_{\text{body}} \oplus \hat{\mathbf{P}}_{\text{hands}}, \quad \hat{\theta} \in \mathbb{R}^{144}, \quad (4)$$

generating the final 3D mesh through SMPL and deriving 2D projections via Π .

3.3 LEARNING STRATEGY

Following (Wang et al., 2023), as illustrated in Fig. 2 (a), we employ a two-stage training strategy. Stage one trains on synthetic sketches with comprehensive supervision:

$$\mathcal{L}_{\text{stage1}} = \mathcal{L}_{\text{vertices}} + \mathcal{L}_{J_{3D}} + \mathcal{L}_{J_{2D}} + \mathcal{L}_{\theta} + \mathcal{L}_{\beta} + \mathcal{L}_{\text{sim}}, \quad (5)$$

where $\mathcal{L}_{\text{vertices}} = \|\hat{V} - V^*\|_1$ is the mesh vertex loss, joint losses are $\mathcal{L}_{J_{3D}} = \|\hat{J}_{3D} - J_{3D}^*\|_2^2$ and $\mathcal{L}_{J_{2D}} = \|\hat{J}_{2D} - J_{2D}^*\|_2^2$, and parameter losses are $\mathcal{L}_{\theta} = \|\hat{\theta} - \theta^*\|_2^2$ and $\mathcal{L}_{\beta} = \|\hat{\beta} - \beta^*\|_2^2$.

Crucially, we incorporate a contrastive loss to align sketch and text features:

$$\mathcal{L}_{\text{similarity}} = \text{InfoNCE}(\bar{\mathcal{Q}}_{\text{image}}, \bar{\mathcal{Q}}_{\text{text}}), \quad (6)$$

where $\bar{\mathcal{Q}}_{\text{image}}$ and $\bar{\mathcal{Q}}_{\text{text}}$ are average-pooled query features. Stage two fine-tunes on freehand sketches with:

$$\mathcal{L}_{\text{stage2}} = \mathcal{L}_{J_{3D}} + \mathcal{L}_{\theta} + \mathcal{L}_{\text{similarity}}. \quad (7)$$

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We employ a two-stage training strategy. First, we pre-train the model on synthetic sketches for 100 epochs with a learning rate of 2×10^{-5} . Then, using the checkpoint with the best validation performance, we fine-tune on freehand sketches for 10 epochs at a reduced learning rate of 5×10^{-6} . Both stages use the Adam optimizer, and all experiments were conducted on RTX 4090 GPUs.

4.2 EVALUATION PROTOCOL

Metrics. We adopt two widely-used metrics for 3D human pose evaluation, both measured in millimeters: **Mean Per Joint Position Error (MPJPE)** (Ionescu et al., 2013) quantifies the average

324
 325 **Table 1:** Quantitative comparison with state-of-the-art methods on synthetic and freehand sketch
 326 datasets. \downarrow indicates lower is better. **Bold** means the best result. * Indicates models trained or
 327 fine-tuned on our sketch dataset. \dagger Indicates the model is not open-sourced. **PoseScript Text:** Uses
 328 original PoseScript descriptions. **Missing Text:** Uses empty text input. **Noisy Text:** Introduces
 329 noise by randomly swapping ‘left’ and ‘right’ keywords with 50% probability.

Inference Input	Model	Synthetic sketch		Freehand sketch	
		MPJPE \downarrow	PA-MPJPE \downarrow	MPJPE \downarrow	PA-MPJPE \downarrow
Sketch	SPIN*	133.55	84.54	185.09	99.98
	MAED*	125.73	81.10	176.79	97.24
	Sketch2Pose \dagger	221.62	117.88	250.15	128.86
	SPIN*	123.95	81.59	154.89	91.19
	VQ-HPS*	129.75	85.16	163.89	98.52
	TokenHMR*	120.54	83.55	146.37	92.06
	UniAnchor (Sketch & Missing Text)*	115.42	77.86	142.50	89.17
Sketch + Text	PoseEmbroider*	127.36	85.58	152.74	91.17
	UniAnchor (Sketch & Noisy Text)*	118.36	80.23	145.69	91.13
	UniAnchor (Sketch & PoseScript Text)*	112.99	76.23	139.88	86.68

330
 331
 332
 333
 334
 335
 336 Euclidean distance between predicted and ground-truth 3D joint positions:

$$E_{\text{MPJPE}} = \frac{1}{N_j} \sum_{i=1}^{N_j} \left\| \hat{J}_{3D}(i) - J_{3D}^*(i) \right\|_2, \quad (8)$$

340 where $\hat{J}_{3D}(i)$ and $J_{3D}^*(i)$ represent the predicted and ground-truth positions
 341 of the i -th joint respectively, with N_j denoting the total number of joints.

342 **Procrustes Aligned MPJPE (PA-MPJPE)** (Zhou et al., 2018) evaluates pose structure accuracy
 343 by first applying rigid Procrustes alignment to remove global positioning differences. This
 344 metric provides insight into the model’s understanding of pose configuration independent of
 345 absolute position and scale.

346 **Dataset.** We use the Sketch3D dataset (Wang et al., 2023), which contains 26,000 poses, each
 347 paired with both a synthetic (Canny-based) and a freehand sketch. To enable cross-modal learning,
 348 we augment this data with text descriptions generated via PoseScript (Delmas et al., 2022).

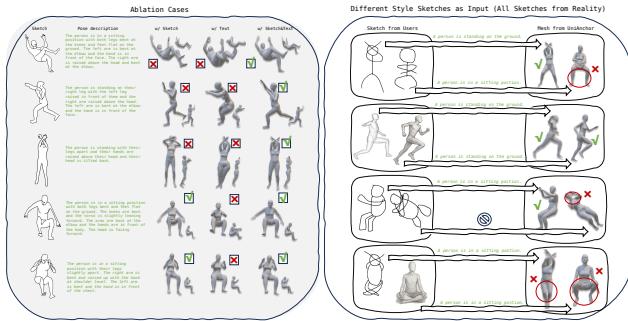
350 4.3 COMPARISON OF STATE-OF-THE-ART METHODS

352 We compare our method with several state-of-the-art approaches, including SPIN (Kolotouros
 353 et al., 2019a), MAED (Wan et al., 2021), Sketch2Pose Brodt & Bessmeltsev (2022), SketchBo-
 354 dyNet (Wang et al., 2023), VQ-HPS (Fiche et al., 2024), PoseEmbroider Delmas et al. (2024)
 355 and TokenHMR (Dwivedi et al., 2024). Among these methods, SPIN, MAED, SketchBodyNet,
 356 Sketch2Pose, and TokenHMR regress the parameters of the SMPL/SMPL-X model to reconstruct
 357 3D human meshes, while VQ-HPS directly predicts the 3D mesh vertices. Finally, 3D joint posi-
 358 tions are obtained from the predicted vertices using a joint regressor and are then evaluated against
 359 the ground-truth joint annotations. Notably, PoseEmbroider shares the same input modality as Uni-
 360 Anchor, utilizing both sketches and textual descriptions. Additionally, since the training code for
 361 Sketch2Pose is not publicly available, we were unable to fine-tune it on the Sketch3D dataset. In
 362 contrast, all other competing methods were retrained on this dataset to ensure a fair comparison.

363 **Quantitative Results.** Crucially, It is important to clarify that all reported metrics for UniAnchor
 364 come from a single model trained under the standard protocol (using both Sketch and Ground-Truth
 365 Text). The variations—such as missing text, noisy text, or LLM-generated text—were introduced
 366 strictly during the inference phase to evaluate the model’s robustness, without any modification to
 367 the training process.

368 Table 4.3 presents the comprehensive evaluation results. Our method achieves state-of-the-art per-
 369 formance across all metrics on both synthetic and freehand sketches. Several key observations
 370 emerge from these results: On synthetic sketches, UniAnchor achieves 112.99mm MPJPE and
 371 76.23mm PA-MPJPE, representing improvements of 7.55mm and 7.32mm respectively over the
 372 previous best method (TokenHMR). These improvements demonstrate that semantic guidance en-
 373 hances reconstruction even when visual features are clean and well-defined.

374 The performance gap becomes more pronounced on freehand sketches, where our method achieves
 375 139.86mm MPJPE—a reduction of 6.51mm compared to TokenHMR. This 4.5% improvement is
 376 particularly significant given the challenging nature of freehand sketches. The PA-MPJPE improve-
 377 ment of 5.38mm (5.8% reduction) indicates that our method better understands pose structure, sug-
 378 gesting that textual descriptions help disambiguate visually ambiguous poses.

378
379
380
381
382
383
384
385
386
387
388

389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 5: Left: Visualization results of our 3D human reconstruction method under different input modalities (Sketch, Pose description, or both). *w/ Sketch* denotes that the TGSG module uses only i_0 as input; *w/ Text* uses only t_0 ; and *w/ Sketch&Text* represents the full model. A green checkmark indicates close alignment with the sketch, while a red cross indicates misalignment. **Right:** Several real-world examples collected from a web application developed based on UniAnchor.

It is particularly worth noting that even under the “Noisy Text” and “Missing Text” settings, our method maintains a significant performance advantage over other state-of-the-art models. We attribute this robustness to the semantic alignment learned during training. The textual guidance effectively bridges the domain gap between synthetic and freehand sketches, thereby refining the intrinsic quality of the visual features. Consequently, the model retains competitive performance by relying solely on the enhanced visual encoder, even when explicit semantic information is absent or noisy.

Comparing across methods, SPIN exhibits the poorest performance with 185.09mm MPJPE on freehand sketches, highlighting its unsuitability for sketch-based inputs. MAED shows improvement over SPIN through its Transformer-based architecture but still struggles with the abstract nature of sketches. SketchBodyNet achieves reasonable results specifically designed for sketch inputs, while VQ-HPS shows inconsistent results across the two domains. PoseEmbroider attempts to construct a unified feature space for image and text modalities. However, it struggles to maintain this alignment across sketches with diverse styles due to the absence of explicit anchors.

Sketch2Pose serves as a zero-shot baseline in our evaluation. Although we could not fine-tune it on the Sketch3D dataset due to the unavailability of training code, it benefits from pre-training on a large-scale sketch corpus. In this setting, it delivers moderate performance (250.15mm MPJPE on freehand sketches), demonstrating basic generalization capabilities.

Qualitative Analysis. Figure 4 illustrates the 3D human reconstruction results of different methods on sketches depicting a variety of poses. The first sketch depicts a crossed-leg pose. The first three methods either fail to accurately reconstruct this action or misjudge the body orientation. Although VQ-HPS achieves a more accurate leg cross, it introduces noticeable artifacts in the arms. The second and third sketches depict a pose of standing on one leg with the other bent or extended. In this case, all competing methods generate a pose with the legs positioned close together, failing to capture the tension and separation implied by the sketch. In contrast, our method accurately perceives both the hand and leg configurations, successfully reconstructing the pose with raised arms and bent, separated legs, which closely matches the downward dynamic depicted in the sketch. Overall, our method demonstrates superior reconstruction quality across a wide range of complex poses, excelling in detail preservation and pose understanding, and significantly outperforming existing approaches.

4.4 ABLATION STUDIES

We conduct systematic ablation studies to validate our design choices and understand component contributions.

Module Ablation. Table 2 examines the contribution of each architectural component. Replacing the Text-based Body Pose Head (TBPH) with a simple MLP results in the most significant performance drop (6.66mm MPJPE increase on freehand sketches), confirming its critical role. When

432
 433 Table 2: Ablation results of our method on the Sketch3D dataset, illustrating the impact of individual
 434 modules, modalities and loss.

Ablations	Synthetic sketch		Freehand sketch	
	MPJPE _↑	PA-MPJPE _↓	MPJPE _↓	PA-MPJPE _↓
Modules				
TBPH-to-MLP	117.80	79.53	146.52	89.04
TGSG-to-SA	115.82	76.95	143.33	88.07
ImageGateBlock	115.03	77.21	142.21	88.30
TGB-to-CA	116.56	79.84	147.27	89.49
Modalities				
w/ Sketch	119.81	80.66	146.72	90.87
w/ Text	148.21	111.90	164.85	112.19
TextEncoder				
UnFrozen	114.32	76.49	141.89	87.89
Caption Length				
Zero Sentence	115.42	77.86	142.50	89.17
One Sentence	115.21	77.39	141.69	88.13
Two Sentence	114.09	76.51	140.24	87.86
Loss Function				
w/o InfoNCE	113.54	76.86	141.38	87.88
Full Model	112.99	76.23	139.86	86.68

447 we substitute the Text-guided SketchGate (TGSG) with self-attention, performance degrades by
 448 3.47mm, validating that our gating mechanism more effectively leverages semantic information than
 449 attention-based fusion. The ImageGateBlock variant, which uses only visual features for gating, underperforms by 2.35mm, demonstrating the value of cross-modal guidance. Notably, replacing our
 450 TextGateBlock with cross-attention causes a substantial 7.41mm degradation. This suggests that
 451 direct feature modulation through gating is more robust to domain shifts than similarity-based atten-
 452 tion mechanisms.

453 **Modality Ablation.** Table 2 investigates the contribution of each input modality. Using only
 454 sketch input achieves reasonable performance (146.72mm MPJPE on freehand), confirming that
 455 visual information remains the primary signal. However, incorporating text reduces error by
 456 6.86mm, demonstrating its value for disambiguation. Pure text-based reconstruction performs
 457 poorly (164.85mm MPJPE), as expected given the coarse nature of language descriptions. **This**
 458 **refers to using text tokens to predict body pose parameters, while the remaining SMPL par-**
 459 **ameters are still predicted by image tokens.** The significant performance gap between sketch-only
 460 (146.72mm) and text-only (164.85mm) approaches—18.13mm on freehand sketches—underscores
 461 that visual features provide essential geometric details that text cannot capture. Nevertheless, the
 462 synergistic combination outperforms both individual modalities, validating our multi-modal ap-
 463 proach. Fig. 4.3 visualizes these findings, showing how text helps resolve ambiguities while sketches
 464 provide geometric constraints. In particular, the second example demonstrates how text-only pre-
 465 diction fails to capture correct hip positioning, while sketch-only prediction misplaces the arms, but
 466 the combined approach achieves accurate full-body reconstruction.

467 **TextEncoder Ablation.** We conducted an ablation study to determine whether to unfreeze the
 468 weights of the TextEncoder. As shown in Table 2, unfreezing the TextEncoder results in a marginal
 469 performance degradation. We attribute this to the distortion of the feature space among tokens
 470 in the unfrozen encoder during training. Although this accelerates loss convergence, it ultimately
 471 compromises the model’s generalization capability.

472 **Caption Length Ablation.** We obtained text descriptions using PoseScript Delmas et al. (2022),
 473 where each image is typically associated with three sentences or fewer. To investigate the impact of
 474 text length on model performance, we segmented the descriptions by periods (“.”). Table 2 presents
 475 the results ranging from zero to two input sentences. We observe that each additional accurate
 476 sentence yields an improvement of approximately 1mm in MPJPE. This demonstrates that accurate
 477 textual guidance significantly benefits model performance.

478 **Loss Function Ablation.** Table 2 shows that removing the InfoNCE loss increases MPJPE by
 479 1.52mm on freehand sketches. While this improvement appears modest, it validates our hypothesis
 480 that explicit cross-modal alignment helps bridge the domain gap between synthetic and freehand
 481 sketches.

483 4.5 GENERALIZATION EXPERIMENT

484 To assess real-world applicability, we collected an additional 10,000 sketch-pose pairs following
 485 the Sketch3D protocol. We recruited over 30 new volunteers to draw freehand sketches, ensuring

486
 487 Table 3: Generalization experiment results on our newly collected sketches. We test models with
 488 and without training on this dataset. **Bold** indicates the best result within each input modality group.

489 490 491 492 493 494	495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539	496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539	Synthetic sketch				Freehand sketch				
			Fine-tuned	Zero-shot	Fine-tuned	Zero-shot	MPIJPE \downarrow	PA-MPIJPE \downarrow	MPIJPE \downarrow	PA-MPIJPE \downarrow	
			MPIJPE \downarrow	PA-MPIJPE \downarrow							
Sketch	SPIN	112.56	67.84	—	—	145.92	76.86	—	—	—	—
	MAED	98.45	61.57	—	—	130.61	69.33	—	—	257.50	117.58
	Sketch2Pose	—	—	209.27	101.52	—	—	—	—	71.64	157.73
	SBN	103.33	63.31	119.45	68.41	138.27	66.77	125.74	59.01	155.17	77.34
	VQ-HPS	78.52	46.71	113.08	62.68	105.89	51.48	105.89	59.01	153.48	75.26
	TokenHMR	73.34	45.41	113.77	61.28	105.89	51.48	105.89	59.01	153.48	76.70
	UniAnchor (Missing Text)	62.33	38.18	100.70	55.06	100.20	57.71	137.75	57.71	141.74	67.27
Sketch + Text	PoseEmbroider	—	—	109.82	60.75	—	—	—	—	141.74	69.38
	UniAnchor (LLM Text)	61.47	37.83	99.45	54.02	98.86	56.31	137.49	66.41	—	—
	UniAnchor (PoseScript Text)	58.35	36.10	98.84	52.43	96.85	53.58	136.47	65.83	—	—

diversity in artistic styles and skill levels. It is worth noting that, although this is a newly collected dataset, its sketch style is similar with that of Sketch3D Wang et al. (2023). The dataset was split 9:1 for training and testing. We structured the generalization experiments into two settings: fine-tuned and zero-shot. The fine-tuned setting investigates the model’s adaptability to the new sketch domain, whereas the zero-shot setting directly employs weights trained on Sketch3D (with the exception of Sketch2Pose) to assess generalization capabilities on unseen sketches.

Fine-tuned. Table 3 demonstrates that UniAnchor maintains its performance advantage on unseen data. We achieve 96.85mm MPJPE on freehand sketches, outperforming TokenHMR by 9.04mm (8.5%). This larger improvement margin compared to the Sketch3D dataset suggests that language guidance becomes increasingly valuable as sketch diversity increases. The consistent superiority across both datasets confirms that our semantic anchoring approach enables robust generalization to varied artistic styles.

Zero-shot. Table 3 shows that our model achieves a reduction of 10.98mm in MPJPE on synthetic sketches and 5.27mm on freehand sketches compared to PoseEmbroider, demonstrating generalization capabilities superior to competing models. Notably, the model maintains excellent performance even with missing text descriptions or when using LLM-generated text (generated from Florence-2). We attribute this robustness to the guiding role of text, which aligns the feature space for sketches of varying styles but identical poses, thereby enhancing the Image Encoder’s comprehension of diverse sketch representations.

4.6 LIMITATION AND FUTURE WORK

As shown in the left panel of Figure 4.3, coarse PoseScript descriptions (Delmas et al., 2022) currently serve only to fine-tune initial poses, proving insufficient for complex poses with severe joint overlapping. Real-world trials via our web application (Right) further revealed difficulties in reconstructing cross-legged postures and rotated arm crossings. To align with practical application scenarios, we employed simplified textual descriptions, which resulted in variable reconstruction performance. We attribute these failures to the limited pose diversity in our training set ($\sim 20k$ images with high redundancy) and insufficient data augmentation, respectively. Furthermore, while text guidance currently enhances style comprehension, it does not yet play a dominant role in pose generation. To address these limitations, we plan to expand our dataset with diverse poses and precise annotations (manually or via LLMs) and design a robust architecture that more deeply integrates textual guidance to effectively resolve complex sketches.

5 CONCLUSION

In this paper, we presented UniAnchor, a novel framework that establishes natural language as a universal feature anchor for domain-agnostic 3D human reconstruction from sketches. By recognizing that while visual representations diverge across artistic styles, semantic descriptions remain consistent, we designed the Text-based Body Pose Head to leverage this invariance for robust cross-domain learning. Our comprehensive evaluation demonstrates state-of-the-art performance with a 4.5% gain over TokenHMR, extending to an 11.08% lead in zero-shot generalization to highly abstract amateur sketches. This work opens new directions for leveraging language as a bridge across visual domains, with implications extending beyond sketch-based reconstruction to broader challenges in cross-domain computer vision.

540 REFERENCES
541

542 Dragomir Anguelov, Praveen Srinivasan, Daphne Koller, Sebastian Thrun, Jim Rodgers, and James
543 Davis. Scape: shape completion and animation of people. In *ACM Siggraph 2005 Papers*, pp.
544 408–416. 2005.

545 Kirill Brodt and Mikhail Bessmeltsev. Sketch2pose: Estimating a 3d character pose from a bitmap
546 sketch. *ACM Transactions on Graphics (TOG)*, 41(4):1–15, 2022.

547

548 Yutong Cai and Yong Wang. Ma-unet: An improved version of unet based on multi-scale and
549 attention mechanism for medical image segmentation. In *Third international conference on elec-*
550 *tronics and communication; network and computer technology (ECNCT 2021)*, volume 12167,
551 pp. 205–211. SPIE, 2022.

552 Junhyeong Cho, Kim Youwang, and Tae-Hyun Oh. Cross-attention of disentangled modalities for
553 3d human mesh recovery with transformers. In *European Conference on Computer Vision*, pp.
554 342–359. Springer, 2022.

555

556 Hongsuk Choi, Gyeongsik Moon, and Kyoung Mu Lee. Pose2mesh: Graph convolutional network
557 for 3d human pose and mesh recovery from a 2d human pose. In *Computer Vision–ECCV 2020:*
558 *16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part VII 16*, pp.
559 769–787. Springer, 2020.

560 Ginger Delmas, Philippe Weinzaepfel, Thomas Lucas, Francesc Moreno-Noguer, and Grégory Rogez.
561 Posescript: 3d human poses from natural language. In *European Conference on Computer*
562 *Vision*, pp. 346–362. Springer, 2022.

563

564 Ginger Delmas, Philippe Weinzaepfel, Francesc Moreno-Noguer, and Grégory Rogez. Posefix:
565 correcting 3d human poses with natural language. In *Proceedings of the IEEE/CVF International*
566 *Conference on Computer Vision*, pp. 15018–15028, 2023.

567 Ginger Delmas, Philippe Weinzaepfel, Francesc Moreno-Noguer, and Grégory Rogez. Poseembroider:
568 Towards a 3d, visual, semantic-aware human pose representation. In *European Conference*
569 *on Computer Vision*, pp. 55–73. Springer, 2024.

570

571 Ginger Delmas, Philippe Weinzaepfel, Francesc Moreno-Noguer, and Grégory Rogez. Poseembroider:
572 Towards a 3d, visual, semantic-aware human pose representation. In *European Conference*
573 *on Computer Vision*, pp. 55–73. Springer, 2025.

574 Junting Dong, Qi Fang, Zehuan Huang, Xudong Xu, Jingbo Wang, Sida Peng, and Bo Dai. Tela:
575 Text to layer-wise 3d clothed human generation. In *European Conference on Computer Vision*,
576 pp. 19–36. Springer, 2024.

577

578 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
579 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
580 image is worth 16x16 words: Transformers for image recognition at scale. *arXiv preprint*
581 *arXiv:2010.11929*, 2020.

582 Sai Kumar Dwivedi, Yu Sun, Priyanka Patel, Yao Feng, and Michael J Black. Tokenhmr: Advancing
583 human mesh recovery with a tokenized pose representation. In *Proceedings of the IEEE/CVF*
584 *Conference on Computer Vision and Pattern Recognition*, pp. 1323–1333, 2024.

585

586 Yao Feng, Jing Lin, Sai Kumar Dwivedi, Yu Sun, Priyanka Patel, and Michael J Black. Posegpt:
587 Chatting about 3d human pose. *arXiv preprint arXiv:2311.18836*, 2023.

588

589 Guénolé Fiche, Simon Leglaise, Xavier Alameda-Pineda, Antonio Agudo, and Francesc Moreno-
590 Noguer. Vq-hps: Human pose and shape estimation in a vector-quantized latent space. In *Euro-*
591 *pean Conference on Computer Vision*, pp. 471–490. Springer, 2024.

592

593 Guénolé Fiche, Simon Leglaise, Xavier Alameda-Pineda, and Francesc Moreno-Noguer. Mega:
594 Masked generative autoencoder for human mesh recovery. In *Proceedings of the Computer Vision*
595 *and Pattern Recognition Conference*, pp. 5366–5378, 2025.

594 Shubham Goel, Georgios Pavlakos, Jathushan Rajasegaran, Angjoo Kanazawa, and Jitendra Malik.
 595 Humans in 4d: Reconstructing and tracking humans with transformers. In *Proceedings of the*
 596 *IEEE/CVF International Conference on Computer Vision*, pp. 14783–14794, 2023.

597

598 Ali Hatamizadeh and Jan Kautz. Mambavision: A hybrid mamba-transformer vision backbone.
 599 In *Proceedings of the Computer Vision and Pattern Recognition Conference*, pp. 25261–25270,
 600 2025.

601

602 Kai He, Kaixin Yao, Qixuan Zhang, Jingyi Yu, Lingjie Liu, and Lan Xu. Dresscode: Autore-
 603 gressively sewing and generating garments from text guidance. *ACM Transactions on Graphics*
 604 (*TOG*), 43(4):1–13, 2024.

605

606 Xianxu Hou, Xiaokang Zhang, Yudong Li, and Linlin Shen. Textface: Text-to-style mapping based
 607 face generation and manipulation. *IEEE Transactions on Multimedia*, 25:3409–3419, 2022.

608

609 Yangyi Huang, Hongwei Yi, Yuliang Xiu, Tingting Liao, Jiaxiang Tang, Deng Cai, and Justus Thies.
 610 Tech: Text-guided reconstruction of lifelike clothed humans. In *2024 International Conference*
 611 *on 3D Vision (3DV)*, pp. 1531–1542. IEEE, 2024.

612

613 Sungwon Hwang, Junha Hyung, Daejin Kim, Min-Jung Kim, and Jaegul Choo. Faceclipnerf:
 614 Text-driven 3d face manipulation using deformable neural radiance fields. In *Proceedings of*
 615 *the IEEE/CVF International Conference on Computer Vision*, pp. 3469–3479, 2023.

616

617 Catalin Ionescu, Dragos Papava, Vlad Olaru, and Cristian Sminchisescu. Human3. 6m: Large scale
 618 datasets and predictive methods for 3d human sensing in natural environments. *IEEE transactions*
 619 *on pattern analysis and machine intelligence*, 36(7):1325–1339, 2013.

620

621 Yuming Jiang, Shuai Yang, Haonan Qiu, Wayne Wu, Chen Change Loy, and Ziwei Liu.
 622 Text2human: Text-driven controllable human image generation. *ACM Transactions on Graphics*
 623 (*TOG*), 41(4):1–11, 2022.

624

625 Angjoo Kanazawa, Michael J Black, David W Jacobs, and Jitendra Malik. End-to-end recovery of
 626 human shape and pose. In *Proceedings of the IEEE conference on computer vision and pattern*
 627 *recognition*, pp. 7122–7131, 2018.

628

629 Hyounghun Kim, Abhay Zala, Graham Burri, and Mohit Bansal. Fixmynpose: Pose correctional cap-
 630 tioning and retrieval. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 35,
 631 pp. 13161–13170, 2021.

632

633 Nikos Kolotouros, Georgios Pavlakos, Michael J Black, and Kostas Daniilidis. Learning to recon-
 634 struct 3d human pose and shape via model-fitting in the loop. In *Proceedings of the IEEE/CVF*
 635 *international conference on computer vision*, pp. 2252–2261, 2019a.

636

637 Nikos Kolotouros, Georgios Pavlakos, and Kostas Daniilidis. Convolutional mesh regression for
 638 single-image human shape reconstruction. In *Proceedings of the IEEE/CVF conference on com-*
 639 *puter vision and pattern recognition*, pp. 4501–4510, 2019b.

640

641 Zhihao Li, Jianzhuang Liu, ZhenSong Zhang, Songcen Xu, and Youliang Yan. Cliff: Carrying loca-
 642 tion information in full frames into human pose and shape estimation. In *European Conference*
 643 *on Computer Vision*, pp. 590–606. Springer, 2022.

644

645 Kevin Lin, Lijuan Wang, and Zicheng Liu. Mesh graphomer. In *Proceedings of the IEEE/CVF*
 646 *international conference on computer vision*, pp. 12939–12948, 2021.

647

648 Xian Liu, Xiaohang Zhan, Jiaxiang Tang, Ying Shan, Gang Zeng, Dahua Lin, Xihui Liu, and Ziwei
 649 Liu. Humangaussian: Text-driven 3d human generation with gaussian splatting. In *Proceedings*
 650 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 6646–6657, 2024.

651

652 Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J Black. Smpl:
 653 A skinned multi-person linear model. In *Seminal Graphics Papers: Pushing the Boundaries,*
 654 *Volume 2*, pp. 851–866. 2023.

702 Kaizhi Yang, Jintao Lu, Siyu Hu, and Xuejin Chen. Deep 3d modeling of human bodies from free-
 703 hand sketching. In *MultiMedia Modeling: 27th International Conference, MMM 2021, Prague,*
 704 *Czech Republic, June 22–24, 2021, Proceedings, Part II* 27, pp. 36–48. Springer, 2021.

705 Kim Youwang, Kim Ji-Yeon, and Tae-Hyun Oh. Clip-actor: Text-driven recommendation and styl-
 706 ization for animating human meshes. In *European Conference on Computer Vision*, pp. 173–191.
 707 Springer, 2022.

708 Weihs Yu and Xinchao Wang. Mambaout: Do we really need mamba for vision? In *Proceedings*
 709 *of the Computer Vision and Pattern Recognition Conference*, pp. 4484–4496, 2025.

710 Mihai Zanfir, Andrei Zanfir, Eduard Gabriel Bazavan, William T Freeman, Rahul Sukthankar, and
 711 Cristian Sminchisescu. Thundr: Transformer-based 3d human reconstruction with markers. In
 712 *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pp. 12971–12980,
 713 2021.

714 Mingyuan Zhang, Zhongang Cai, Liang Pan, Fangzhou Hong, Xinying Guo, Lei Yang, and Ziwei
 715 Liu. Motiondiffuse: Text-driven human motion generation with diffusion model. *arXiv preprint*
 716 *arXiv:2208.15001*, 2022.

717 Xiangjun Zhang, Yinglin Zheng, Wenjin Deng, Qifeng Dai, Yuxin Lin, Wangzheng Shi, and Ming
 718 Zeng. Vertex position estimation with spatial–temporal transformer for 3d human reconstruction.
 719 *Graphical Models*, 130:101207, 2023.

720 Zhaoyang Zhang, Junliang Chen, Hongbo Fu, Jianjun Zhao, Shu-Yu Chen, and Lin Gao. Text2face:
 721 Text-based face generation with geometry and appearance control. *IEEE Transactions on Visual-
 722 ization and Computer Graphics*, 30(9):6481–6492, 2024.

723 Ce Zheng, Xianpeng Liu, Guo-Jun Qi, and Chen Chen. Potter: Pooling attention transformer for
 724 efficient human mesh recovery. In *Proceedings of the IEEE/CVF Conference on Computer Vision*
 725 *and Pattern Recognition*, pp. 1611–1620, 2023.

726 Xiaowei Zhou, Menglong Zhu, Georgios Pavlakos, Spyridon Leonardos, Konstantinos G Derpanis,
 727 and Kostas Daniilidis. Monocap: Monocular human motion capture using a cnn coupled with a
 728 geometric prior. *IEEE transactions on pattern analysis and machine intelligence*, 41(4):901–914,
 729 2018.

730

731

732

733

734

735 **A APPENDIX**

736

737 To evaluate perceptual quality, we conducted a user study with 12 graduate student volunteers (aged
 738 20–25) assessing 3D reconstructions from 32 diverse sketches. Participants rated outputs on two
 739 7-point Likert scales: (1) *faithfulness* - how accurately the pose matches the input sketch, and (2)
 740 *quality* - the visual quality and absence of artifacts.

741 The study employed a double-blind protocol where participants were unaware of which method
 742 generated each result. We collected 384 total evaluations (12 participants \times 32 sketches). Fig. 7
 743 presents the results, with a two-way ANOVA revealing statistically significant differences among
 744 methods for both faithfulness ($F_{(5,55)} = 33.01, p < 0.001$) and quality ($F_{(5,55)} = 30.27, p <$
 745 0.001). UniAnchor achieved the highest scores with mean ratings of 5.68 ± 0.35 (faithfulness)
 746 and 5.86 ± 0.39 (quality), substantially outperforming all baselines. These results confirm that our
 747 quantitative improvements translate to perceptually superior reconstructions that better match user
 748 expectations.

749

750

751

752

753

754

755

756

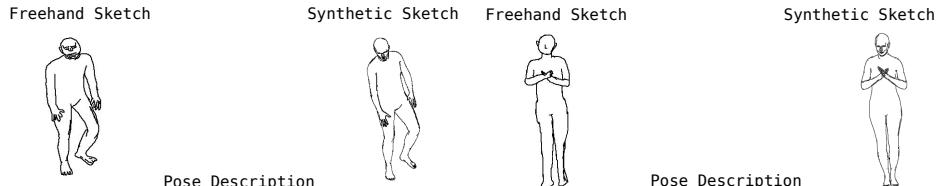
757

758

759

760

761



762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

Figure 6: This figure shows the dataset of sketch-text pairs obtained using PoseScript (Delmas et al., 2022).

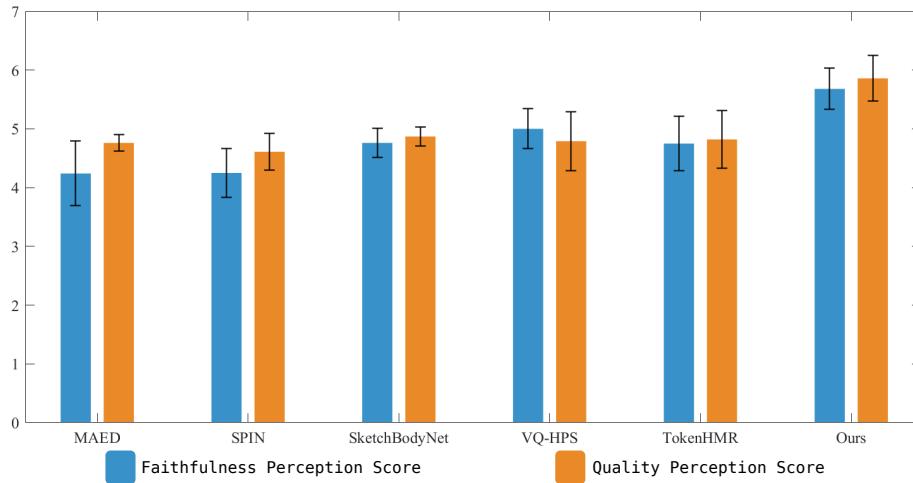


Figure 7: User study results showing faithfulness and quality perception scores. Blue bars represent faithfulness scores, orange bars indicate quality scores. Error bars show standard deviation.