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Abstract

Subject Level Differential Privacy (DP) is a granularity of privacy recently studied
in the Federated Learning (FL) setting, where a subject is defined as an individual
whose private data is embodied by multiple data records that may be distributed
across a multitude of federation users. This granularity is distinct from item level
and user level privacy appearing in the literature. Prior work on subject level
privacy in FL focuses on algorithms that are derivatives of group DP or enforce
user level Local DP (LDP). In this paper, we present a new algorithm – Hier-
archical Gradient Averaging (HiGradAvgDP) – that achieves subject level DP by
constraining the effect of individual subjects on the federated model. We prove the
privacy guarantee for HiGradAvgDP and empirically demonstrate its effectiveness
in preserving model utility on the FEMNIST and Shakespeare datasets. We also
report, for the first time, a unique problem of privacy loss composition, which we
call horizontal composition, that is relevant only to subject level DP in FL. We
show how horizontal composition can adversely affect model utility by either in-
creasing the noise necessary to achieve the DP guarantee, or by constraining the
amount of training done on the model.

1 Introduction

Cross-silo Federated Learning (FL) comprises a collection of institutions collaborating to train a
common Machine Learning (ML) model [13]. This allows these institutions (also called silos) to
jointly train the common model without sharing their private training data. Interestingly, a silo’s
private training data can be made up of private data of individuals (e.g. health records of patients
of a hospital that is participating in a FL federation). In such instances, preservation of privacy of
these individuals (also termed data subjects) is of paramount importance. However, the private data
of a subject may be embodied by multiple data records that could be distributed across a multitude
of federation silos.

As an example, consider a patient visiting different hospitals for treatment of different ailments.
Each hospital contains multiple data records forming the patient’s health history. These hospitals
may decide to participate in a federation that uses their respective patients’ health history records
in their training datasets. Thus potentially distinct health history records of the same data subject
can appear in the datasets of multiple hospitals. In the end, it is the privacy of these subjects that
we want to preserve in a FL federation. The notion of subject level privacy perfectly captures this
condition [19].
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Subject level Differential Privacy (DP) is a recently introduced granularity of privacy enforcement
proposed in the FL setting [19]. This privacy guarantee is distinct from previously studied granu-
larities of item level privacy [1, 9] and user level privacy [20], both of which may make sense in
cross-device FL settings. Prior proposed algorithms [19] to enforce subject level DP either leverage
the notion of group DP [10] or user-level Local DP (LDP) [8, 14, 30]. However, these algorithms
incur significant model utility degradation, as we demonstrate in Section 5, since they amplify the
noise to the contribution of individual subjects in the parameter updates.

In this paper, we present a novel algorithm, called Hierarchical Gradient Averaging
(HiGradAvgDP), that enforces subject level DP in the FL setting. The key insight behind HiGra-
dAvgDP is that instead of amplifying the noise signal to match a subject’s contribution to parameter
updates in a training minibatch, we can constrain a subject’s contribution to match a single data
record’s contribution to achieve subject level DP with less noise. We formally show that HiGra-
dAvgDP leads to lower model utility loss for convex loss functions. We furthermore verify these
insights empirically using the FEMNIST and Shakespeare datasets [6]. We also report an interest-
ing observation about privacy loss composition for subject level DP in the FL setting. Specifically,
we show that subject privacy loss composes across federation users in a FL training round. We
call this horizontal composition of privacy loss and show that it can either lead to increase in the
noise needed to enforce subject level DP, or can constrain the amount of training done on the model.
Further exploration of solutions to the horizontal composition problem is a topic for future work.

The rest of the paper is organized as follows: We revisit the formal definition of subject level DP
in Section 2. Section 3 briefly overviews existing algorithms for subject level DP in FL and then
details our HiGradAvgDP algorithm, with formal arguments for its privacy guarantee. We present
our empirical evaluation in Section 5 and conclude in Section 6.

2 Subject Level Differential Privacy

We first recap the definition of Differential Privacy [9]. Informally, DP bounds the maximum impact
a single data item can have on the output of a randomized algorithm A. Formally,
Definition 2.1. A randomized algorithm A : D → R is said to be (ε,δ)-differentially private if for
any two adjacent datasets D, D′ ∈ D, and set R ⊆ R,

P(A(D) ∈ R) ≤ eεP(A(D′) ∈ R) + δ (1)

where D, D′ are adjacent to each other if they differ from each other by a single data item. δ is the
probability of failure to enforce the ε privacy loss bound.

The above definition of DP can be easily recast in terms of data subjects to define subject level DP.
Let S be the set of subjects whose data is hosted by the federation’s users U . Our definition of
subject level DP is based on the observation that, even though the data of individual subjects s ∈ S
may be physically scattered across multiple users in U , the aggregate data across U can be logically
divided into its subjects in S (i.e. DU =

⋃
s∈S Ds).

Definition 2.2. Given a FL training algorithm F : DU → M, we say that F is subject level
(ε, δ)-differentially private if for any two adjacent subject sets S, S′ ⊆ S, and R ⊆M,

P(F(DS) ∈ R) ≤ eεP(F(DS′) ∈ R) + δ (2)

where S and S′ are adjacent subject sets if they differ from each other by a single subject.

3 Subject Level Differential Privacy with Hierarchical Gradient Averaging

We assume a federation that contains a federation server that is responsible for (i) initialization and
distribution of the model architecture to the federation users, (ii) coordination of training rounds, (iii)
aggregation and application of model updates coming from different users in each training round,
and (iv) redistribution of the updated model back to the users. Each federation user (i) receives
updated models from the federation server, (ii) retrains the received models using its private training
data, and (iii) returns updated model parameters to the federation server.

We assume that the federation users and the server behave as honest-but-curious participants in the
federation: They do not interfere with or manipulate the distributed training process in any way, but
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may be interested in analyzing received model updates. Federation users do not trust each other or
the federation server, and must locally enforce privacy guarantees for their private data.

HiGradAvgDP is based on a federated version of the DP-SGD algorithm by Abadi et al. [1]. DP-
SGD was originially not designed for FL, but can be easily extended to enforce item level DP in
FL: The federation server samples a random set of users for each training round and sends them a
request to perform local training. Each user trains the model locally using DP-SGD. Formally, the
parameter update at step t in DP-SGD can be summarized in the following equation:

Θt = Θt−1 +
η

|B|
(
∑
b∈B

OLCb (Θt−1) +N (0, C2σ2)) (3)

where, B is the sampled minibatch of data items, OLCb is the loss function’s gradient, for data item
b, clipped by the threshold C, σ is the noise scale calculated using the moments accountant method,
N is the Gaussian distribution used to calculate noise, and η is the learning rate. Note that, in each
sampled mini-batch B, the gradient for each data item is computed and clipped separately to limit
the influence (sensitivity) of each data item on the loss function’s gradient.

The users ship back updated model parameters to the federation server, which averages the updates
received from all the sampled users. The server redistributes the updated model and triggers another
training round if needed. The original paper [1] also proposed the moments accountant method for
tighter composition of privacy loss bounds compared to prior work on strong composition [11].

3.1 Alternate Algorithms for Subject Level Differential Privacy

Prior work by Marathe and Kanani [19] presents two different algorithms for subject level DP en-
forcement in FL. Both algorithms are variants of the DP-SGD algorithm in FL as described above.
The first algorithm is called LocalGroupDP, which uses the notion of group differential privacy [10]
to enforce subject level DP. The intuition here is that a subject’s contribution to gradients in a mini-
batch can be trivially mapped to a group of data items sampled in the minibatch, thus making group
DP a natural solution for subject level DP. The second algorithm is UserLDP that enforces a stronger
user level Local Differential Privacy (LDP) [8, 14, 30] guarantee that amplifies the notion of a group
to the entire sampled minibatch. More detailed description of both algorithms and their privacy guar-
antee formalism appears in Appendix A and Appendix B.

3.2 Hierarchical Gradient Averaging (HiGradAvgDP)

The key challenge to enforce subject level DP is that the following constraint seems fundamental: To
guarantee subject level DP, any training algorithm must obfuscate the entire contribution made by
any subject in the model’s parameter updates. UserLDP complies with this constraint by scaling up
the noise to the entire user signal, whereas LocalGroupDP complies with the constraint by scaling up
the noise to a subject’s signal in every minibatch. While LocalGroupDP may seem like an attractive
alternative to UserLDP, the former’s utility penalty due to group DP can be significant – the privacy
loss ε incurred due to group DP increases linearly with the group size, and the failure probability δ
increases exponentially [10, 19]. For instance, even a group of size 2 effectively halves the available
privacy budget ε for training.

Our new algorithm, called HiGradAvgDP (Algorithm 1), takes a diametrically opposite view to
comply with the same constraint: Instead of scaling the noise to a subject’s group size (as is done
in LocalGroupDP), HiGradAvgDP scales down each subject’s mini-batch gradient contribution to
the clipping threshold C. This is done in three steps: (i) collect data items belonging to a common
subject in the sampled mini-batch, (ii) compute and clip gradients using the threshold C for each
individual data item of the subject, and (iii) average those clipped gradients for the subject, denoted
by g(SSa ). Clipping and then averaging gradients ensures that the entire subject’s gradient norm is
bounded by C. Subsequently, HiGradAvgDP sums all the per-subject averaged gradients along with
the Gaussian noise, which are then averaged over the mini-batch size B. HiGradAvgDP gets its
name from this average-of-averages step.

The Gaussian noise scale σ is calculated independently at each user ui using standard parameters –
the privacy budget ε, the failure probability δ, total number of mini-batches T.R, and the sampling
fraction per mini-batch B

|Di| . The calculation uses the moments accountant method to compute σ.
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Algorithm 1: Pseudo code for HiGradAvgDP that guarantees subject level DP via hierarchical
gradient averaging.
Parameters: Set of n users U = ui, u2, ..., un; Di, the dataset of user ui; M , the model to be

trained; θ, the parameters of model M ; gradient norm bound C; noise scale σ;
sample of users Us; mini-batch size B; R training rounds; T batches per round; η
the learning rate; SSa the subset of data items from set S that have a as their
subject.

1 HiGradAvgDP(ui):
2 for t = 1 to T do
3 S = random sample of B data items

from Di
4 for a ∈ subjects(S) do
5 for si ∈ SSa do
6 Compute gradients:
7 g(si) = OL(θ, si)
8 Clip gradients:
9 ḡ(si) = Clip(g(si), C)

10 Average subject a’s gradients:
11 g(SSa ) = 1

|SS
a |

(
∑
i ḡ(si))

12 g̃S = 1
B (
∑
a∈subjects(S) g(SSa ) +

N (0, σ2C2I))
13 θ = θ − ηg̃S
14 return M
15

16 Server Loop:
17 for r = 1 to R do
18 Us = sample s users from U
19 for ui ∈ Us do
20 θi = HiGradAvgDP(ui)

21 θ = 1
s

∑
i θi

22 Send M to all users in U

To formally prove that HiGradAvgDP enforces subject level DP, we first provide a formal definition
of subject sensitivity in a sampled mini-batch.
Definition 3.1 (Subject Sensitivity). Given a model M, and a sampled mini-batch S of training
data, we define subject sensitivity SS for S as the maximum difference caused by any single subject
a ∈ subjects(S) inM’s parameter gradients computed over S.

Lemma 3.1. For every sampled mini-batch S in a sampled user ui’s training round in HiGra-
dAvgDP, the subject sensitivity SS for S is bounded by C; i.e. SS ≤ |C|.
Theorem 3.2. HiGradAvgDP locally enforces subject level (ε,δ)-differential privacy.

Proofs for Lemma 3.1 and Theorem 3.2 appear in Appendix D. Moreover, due to space constraints
we leave the formal analysis on utility loss bounds of HiGradAvgDP, as well as UserLDP and
LocalGroupDP, to Appendix C.

3.3 Composition Over Multiple Training Rounds

Composition of privacy loss across multiple training rounds can be done by straightforward appli-
cation of DP composition results, such as the moments accountant method that we use in our work.
Thus the privacy loss εr incurred in any single training round r amplifies by a factor of

√
R when

federated training runs for R rounds. We note that privacy losses are incurred by federation users
independently of other federation users. Foreknowledge of the number of training rounds R lets us
calculate the Gaussian noise distribution’s standard deviation σ for a privacy loss budget of (ε,δ) for
the aggregate training over R rounds.

4 Composing Subject Level DP Across Federation Users

At the beginning of a training round r, each sampled user receives a copy of the global model,
with parameters Θr−1, which it then retrains using its private data. Since all sampled users start
retraining from the same modelMΘr−1

, and independently retrain the model using their respective
private data, parallel composition of privacy loss across these sampled users may seem to apply
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naturally [21]. In that case, the aggregate privacy loss incurred across multiple federation users,
via an aggregation such as federated averaging, remains identical to the privacy loss εr incurred
individually at each user. However, parallel composition was proposed for item level privacy, where
an item belongs to at most one participant. With subject level privacy, a subject’s data items can span
across multiple users, which limits application of parallel privacy loss composition to only those
federations where each subject’s data is restricted to at most one federation user. In the more general
case, we show that subject level privacy loss composes sequentially via the federated averaging
aggregation algorithm used in our FL training algorithms.

Formally, consider a FL training algorithmF = (Fl,Fg), whereFl is the user local component, and
Fg the global aggregation component of F . Given a federation user ui, let Fl : (M, Dui

) → Pui
,

where M is a model, Dui
is the private dataset of user ui, and Pui

is the updated parameters
produced by Fl. Let Fg = 1

n

∑
i Pui

, a parameter update averaging algorithm over a set of n
federation users ui.
Theorem 4.1. Given a FL training algorithm F = (Fl,Fg), in the most general case where a sub-
ject’s data resides in the private datasets of multiple federation users ui, the aggregation algorithm
Fg sequentially composes subject level privacy losses incurred by Fl at each federation user.

We term this sequential composition of privacy loss across federation users as horizontal compo-
sition. Horizontal composition has a significant effect on the number of federated training rounds
permitted under a given privacy loss budget.
Theorem 4.2. Consider a FL training algorithm F = (Fl,Fg) that samples s users per training
round, and trains the modelM forR rounds. LetFl at each participating user, over the aggregate of
R training rounds, locally enforce subject level (ε,δ)-DP. Then F globally enforces the same subject
level (ε,δ)-DP guarantee by training for R√

s
rounds.

The main intuition behind Theorem 4.2 is that the s-way horizontal composition via Fg results
in an increase in training mini-batches by a factor of s. As a result, the privacy loss calculated
by the moments accountant method amplifies by a factor of

√
s, thereby forcing a reduction in

number of training rounds by a factor of
√
s to counteract the privacy loss amplification. This

reduction in training rounds can have a significant impact on the resulting model’s performance, as
we demonstrate in Section 5. Proofs for Theorem 4.1 and Theorem 4.2 appear in Appendix D.

An alternate approach to account for horizontal composition of privacy loss is to simply scale the
number of training minibatches (called lots by Abadi et al. [1]) by the number of federation users
sampled in each training round. The scaled minibatch (lot) count can be used by each user to
privately calculate the noise scale σ at the beginning of the entire federated training process. An
increase in the number of total minibatches does lead to a significant increase in the noise introduced
in each minibatch’s gradients, resulting in model performance degradation.

5 Empirical Evaluation

We implemented UserLDP, LocalGroupDP, and HiGradAvgDP, and a version of the DP-SGD al-
gorithm by Abadi et al. [1] that enforces item level DP in the FL setting (LocalItemDP). We also
compare these algorithms with a FL training algorithm, FedAvg [16], that does not enforce any
privacy guarantees. All our algorithms are implemented in our distributed FL framework built on
distributed PyTorch.

We focus our evaluation on Cross-Silo FL [13], containing 16 federation users (silos), which we
believe is the most appropriate setting for the subject level privacy problem. We use the FEMNIST
and Shakespeare datasets [6] for our evaluation. Due to space constraints, we report simple test
accuracy results here (Figure 1) and the more exhaustive evaluation appears in Appendix E.

In FEMNIST, the hand-written numbers and letters can be divided based on authors, which ordinar-
ily serve as federation users in FL experiments by most researchers. In Shakespeare, each character
in the Shakespeare plays serves as a federation user. In our experiments however, the FEMNIST
authors and Shakespeare play characters are treated as data subjects. To emulate the cross-silo FL
setting, we report evaluation on a 16-user federation.

We use the CNN model on FEMNIST appearing in the LEAF benchmark suite [6] as our target
model to train. More specifically, the model consists of two convolution layers interleaved with
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Figure 1: Average test accuracy and loss on the FEMNIST (a),(b) and Shakespeare (e),(f) datasets over training
rounds for various algorithms. For DP guarantees: ε = 4.0 and δ = 10−5 budgeted over 100 and 200 training
rounds for FEMNIST and Shakespeare respectively. Model performance for the subject level privacy algorithms
is constrained by the limited number of training rounds (25 for FEMNIST, and 50 for Shakespeare) permitted
under the prescribed privacy budget. Number of mini-batches with subject group sizes over the entire training
run for FEMNIST (c) and Shakespeare (g). Number of mini-batches with distinct subjects per mini-batch for
FEMNIST (d) and Shakespeare (h). Minibatch size is 512 and 100 for FEMNIST and Shakespeare respectively.

ReLU activations and maxpooling, followed by two fully connected layers before a final log softmax
layer. For the Shakespeare dataset we use a stacked LSTM model with two linear layers at the end.

In our implementations of UserLDP, LocalGroupDP, and HiGradAvgDP, we used the privacy loss
horizontal composition accounting technique that reduces the number of training rounds by

√
s,

where s is the number of sampled users per training round. We experimented with the alternative
approach that scales up the number of minibatches by s to calculate a larger noise scale σ, but this
approach consistently yielded worse model utility than our first approach. Hence here we report
only the performance of our first approach.

Figure 1 shows performance of the models trained using the algorithms. FedAvg performs the
best since it does not incur any DP enforcement penalties. Item level privacy enforcement in Lo-
calItemDP results in performance degradation of 8% for FEMNIST and 22% for Shakespeare. The
utility cost of user level LDP in UserLDP is quite clear from the figure. This cost is also reflected
in the relatively high observed loss for the respective model. LocalGroupDP performs significantly
better than UserLDP, but worse than LocalItemDP, by 15% on FEMNIST, and 18% on Shakespeare.
The reason for LocalGroupDP’s worse performance is clear from Figure 1(c) and (g): the group size
for a mini-batch tends to be dominated by 3 on both FEMNIST and Shakespeare, which cuts the pri-
vacy budget for these mini-batches by a factor of 3, leading to greater Gaussian noise, which in turn
leads to model performance degradation.

HiGradAvgDP performs competitively with LocalItemDP for the 25 and 50 rounds it is trained
for on FEMNIST and Shakespeare respectively. Figure 1 (d) and (h) show that instances of sam-
pling multiple data items corresponding to the same subject in a single mini-batch are relatively low
– the number of distinct subjects sampled per mini-batch of 512 for FEMNIST averages to 475,
and per mini-batch of 100 for Shakespeare averages to 86. As a result, HiGradAvgDP incurs in-
significant performance degradation for both datasets. However, the training round restriction does
result in degradation of the final model produced by HiGradAvgDPcompared to LocalItemDP: For
FEMNIST, HiGradAvgDP gives 75.24% prediction accuracy after 25 rounds compared to 77.96%
accuracy after 100 rounds with LocalItemDP. For Shakespeare, HiGradAvgDP gives 41.58% model
accuracy after 50 rounds compared to 45.91% accuracy with LocalItemDP after 200 rounds.

6



6 Conclusion

In this paper we presented a novel algorithm called Hierarchical Gradient Averaging
(HiGradAvgDP) that enforces the recently studied subject level DP guarantee in the FL setting [19].
We showed that the approach taken by HiGradAvgDP – scale a subject’s signal down to a single
data item’s signal – instead of prior work’s approach to scale the noise to a subject’s signal, leads to
much better model utility. We also studied the novel problem of horizontal composition of privacy
loss for subjects in the FL setting, which can further degrade model utility. We leave mitigation of
this utility degradation to future research.

References
[1] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar, and L. Zhang. Deep

learning with differential privacy. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security, pages 308–318, 2016.

[2] R. Bassily, V. Feldman, K. Talwar, and A. Thakurta. Private stochastic convex optimization
with optimal rates. CoRR, abs/1908.09970, 2019.

[3] R. Bassily, A. D. Smith, and A. Thakurta. Private empirical risk minimization: Efficient algo-
rithms and tight error bounds. In 55th IEEE Annual Symposium on Foundations of Computer
Science, pages 464–473. IEEE Computer Society, 2014.

[4] K. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V. Ivanov, C. Kiddon,
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[6] S. Caldas, P. Wu, T. Li, J. Konečný, H. B. McMahan, V. Smith, and A. Talwalkar. LEAF: A
benchmark for federated settings. CoRR, abs/1812.01097, 2018.

[7] K. Chaudhuri, C. Monteleoni, and A. D. Sarwate. Differentially private empirical risk mini-
mization. The Journal of Machine Learning Research, 12:1069–1109, July 2011.

[8] J. C. Duchi, M. I. Jordan, and M. J. Wainwright. Local privacy and statistical minimax rates.
CoRR, abs/1302.3203, 2013.

[9] C. Dwork, F. McSherry, K. Nissim, and A. Smith. Calibrating noise to sensitivity in private
data analysis. In Proceedings of the Third Conference on Theory of Cryptography, TCC’06,
pages 265–284, 2006.

[10] C. Dwork and A. Roth. The algorithmic foundations of differential privacy. Foundations and
Trends in Theoretical Computer Science, 9(3&#8211;4):211–407, Aug. 2014.

[11] C. Dwork, G. N. Rothblum, and S. P. Vadhan. Boosting and differential privacy. In 51th Annual
IEEE Symposium on Foundations of Computer Science, FOCS, pages 51–60, 2010.

[12] R. Iyengar, J. P. Near, D. Song, O. Thakkar, A. Thakurta, and L. Wang. Towards practical
differentially private convex optimization. In 2019 IEEE Symposium on Security and Privacy,
pages 299–316. IEEE, 2019.

[13] P. Kairouz, H. B. McMahan, B. Avent, A. Bellet, M. Bennis, A. N. Bhagoji, K. Bonawitz,
Z. Charles, G. Cormode, R. Cummings, R. G. L. D’Oliveira, S. E. Rouayheb, D. Evans,
J. Gardner, Z. Garrett, A. Gascón, B. Ghazi, P. B. Gibbons, M. Gruteser, Z. Harchaoui, C. He,
L. He, Z. Huo, B. Hutchinson, J. Hsu, M. Jaggi, T. Javidi, G. Joshi, M. Khodak, J. Konecný,
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Algorithm 2: Pseudo code for UserLDP.
Parameters: Set of n users U = ui, u2, ..., un; Di, the dataset of user ui; M , the model to be

trained; θ, the parameters of model M ; noise scale σ; gradient norm bound C;
mini-batch size B; R training rounds; the learning rate η.

1 UserLDP(ui):
2 for t = 1 to T do
3 S = random sample of B data items from Di
4 Compute gradients:
5 g(S) = OL(θ, S)
6 Clip gradients:
7 ḡ(S) = g(S)/max(1, ‖g(S)‖2

C )
8 Add Gaussian noise:
9 g̃(S) = ḡ(S) +N (0, σ2C2I)

10 θ = θ − ηg̃(S)

11 return θ

12 Server Loop:
13 for r = 1 to R do
14 Us = sample s users
15 from U
16 for ui ∈ Us do
17 θi = UserDPSGD(ui)

18 θ = 1
s

∑s
i=1 θi

19 Send M to all users
20 in U

A User Level Local Differential Privacy (UserLDP)

In general, user level privacy [20] does not guarantee subject level privacy. However, we observe
that a stronger privacy guarantee, called Local Differential Privacy (LDP) [8, 14, 30], enforced at
user granularity, is sufficient to guarantee subject level privacy. There are strong parallels between
the traditional LDP setting, where a data analyst can get access to the data only after it has been
perturbed, and privacy in the FL setting, where the federation server gets access to parameter updates
from users after they have been locally perturbed by the users. In fact, in the FL setting [27], LDP
is a much stronger privacy guarantee than item level or user level DP in that it obfuscates the entire
signal from a user to the extent that an adversary, even the federation server, cannot tell the difference
between the signals coming from any two different users.

Definition A.1. We say that FL algorithm Fl : DU → M is user level (ε,δ)-locally differentially
private, where DU is the dataset domain of users in set U , andM is the model parameter domain,
if for any two users u1, u2 ∈ U , and S ⊆M,

P(Fl(Du1
) ∈ S) ≤ eεP(Fl(Du2

) ∈ S) + δ (4)

where Du1
and Du2

are the datasets of users u1 and u2 respectively.

User level LDP is a stronger privacy guarantee than subject level DP. More formally,

Theorem A.1. User level (ε,δ)-local differential privacy entails (ε, δ)-subject level differential pri-
vacy.

Proof. The definition of user level local DP can be easily reframed as a group differential privacy
instance, where groups are as large as the entire dataset of each user. More specifically, Equation 4
is the definition of (ε, δ)-group differential privacy for groups of size g = max(|Du1

|, |Du2
|).

Beyond this observation, a simple application of Theorem B.3 proves (ε, δ)-subject level differential
privacy.

We now present a new user level (ε,δ)-LDP algorithm called UserLDP. The underlying intuition
behind this algorithm is to let the user locally inject enough noise to make its entire signal indis-
tinguishable from any other user’s signal. In every training round, each federation user enforces
user level LDP independently of the federation and any other users in the federation. The federa-
tion server simply averages parameter updates received from users and broadcasts the new averaged
parameters back to the users.

UserLDP’s pseudo code appears in Algorithm 2. UserLDP appears significantly similar to DP-SGD.
The key difference is that while DP-SGD computes noise proportional to the gradient contribution
of any single data item in a mini-batch, UserLDP computes noise proportional to the gradient contri-
bution of the entire mini-batch, thus obfuscating the entire signal from the mini-batch. To guarantee
DP, we need to first cap the sensitivity of each user ui’s contribution to parameter updates. To that
end, we focus on change affected by any mini-batch b trained at ui.
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Lemma A.2. For every mini-batch b of a sampled user ui’s training round in UserLDP, the sensi-
tivity Sb of the computed parameter gradient is bounded by C; i.e. Sb ≤ |C|.

Proof. The gradient clipping step of UserDPSGD() forces the bound on the gradient: ‖g(S)‖2 ≤ C.
Thus the sensitivity of parameter gradient Sb ≤ |C|.

Theorem A.3. UserLDP enforces user level (ε,δ)-local differential privacy for each mini-batch b.

Proof. For any two users u1 and u2, the parameter gradient for each mini-batch is identically
bounded by C. The Gaussian noise added per mini-batch parameter gradient is also drawn from
the same distribution N (0, σ2C2I) scaled to the gradient bound C.

Over T mini-batches, the cumulative parameter gradient is bounded by TC. Thus the aggregate
sensitivity of parameter gradients over a training round (T mini-batches) for both u1 and u2 is TC.

For every training round, we use the moments accountant technique [1] to compute the correct noise
scale σ given a privacy budget of ε, and a DP failure probability of δ.

The resulting parameter updates from both u1 and u2 received by the federation server in a training
round are effectively locally randomized [14].

Parameter updates from both u1 and u2, as observed by the federation server, can each be broken
down into a signal bounded by |TC| (we can ignore the scaling factor of the learning rate η since it
is identical for all users), and the cumulative noise from the distribution N (0, Tσ2C2I) (by linear
composition of random variables with identical Gaussian distributions). More precisely, let C be the
change in parameters affected by any user ui. Then

|C(ui)| ≤ η(|TC|+ |N (0, Tσ2C2I|) (5)

Also note that a dataset containing just u1 is adjacent to a dataset containing just u2 since they
differ from each other in just one data item. Thus we can apply the classic proof of (ε,δ)-DP for the
Gaussian mechanism [10] Theorem A.1 to show that

P(F(u1,M) ∈Mo) ≤ eεP(F(u2,M) ∈Mo) + δ (6)

We can further extend this guarantee over multiple training rounds with a σ computed correctly
using the moments accountant DP-composition technique.

Intuitively, the parameter updates Mu1 and Mu2 computed by any single mini-batch at users u1

and u2 respectively, can be viewed as locally randomized responses [30] that satisfy Equation 4.
Applying standard DP composition results [1, 11] to Theorem A.3, and combining it with Theorem
A.1 locally proves subject level DP guarantee for UserLDP over individual training rounds.

B Locally Enforced Group Level Differential Privacy (LocalGroupDP)

While user level LDP is a stronger guarantee than subject level privacy, LDP in general is known
to induce excessive noise in the training process, leading to significant utility degradation in the
trained model [8, 14]. Intuitively, user level LDP is guaranteeing privacy at a coarser granularity
(user level) as opposed to granularity of individual data subjects. As a result, we need to find better
alternatives that more precisely calibrate noise proportional to a data subject’s influence on training.
A direct method to attain that is by obfuscating the effects of the group of data items belonging to
the same subject. We can apply formalism of group differential privacy [10] to achieve this group
level obfuscation. Formally (from [10]),
Theorem B.1. Any (ε, δ)-differentially private randomized algorithm A is (gε, ge(g−1)εδ)-
differentially private for groups of size g. That is, given two g-adjacent datasets D and D′, and
R ∈M, whereM is the output space domain,

P(A(D) ∈ R) ≤ egεP(A(D′) ∈ R) + ge(g−1)εδ (7)
where D and D′ are g-adjacent if they differ from each other in g data items.
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Algorithm 3: Pseudo code for LocalGroupDP that guarantees subject level DP via group DP
enforcement.
Parameters: Set of n users U = ui, u2, ..., un; Di, the dataset of user ui; M , the model to be

trained; θ, the parameters of model M ; gradient norm bound C; sample of users
Us; mini-batch size B; Z, largest group size in a mini-batch, σZ , precomputed
noise scale for group of size Z; R training rounds; T batches per round; the
learning rate η.

1 LocalGroupDP(ui):
2 for t = 1 to T do
3 S = random sample of B data items from

Di
4 for si ∈ S do
5 Compute gradients:
6 g(si) = OL(θ, si)
7 Clip gradients:
8 ḡ(si) = Clip(g(si), C)

9 Z = LrgGrpCnt(S)

10 g̃s = 1
B (
∑
i ḡ(si) +N (0, σ2

ZC
2I))

11 θ = θ − ηg̃s
12 return M

13 Server Loop:
14 for r = 1 to R do
15 Us = sample s users from U
16 for ui ∈ Us do
17 θi = LocalGroupDP(ui)

18 θ = 1
s

∑
i θi

19 Send M to all users in U

Clearly, group DP incurs a big linear penalty on the privacy loss ε, and an even bigger penalty in the
failure probability (ge(g−1)εδ). Nevertheless, if g is restricted to a small value (e.g. 2) the group DP
penalty may be acceptable.

Theorem B.1 is a bi-directional implication. So it can be restated as follows:
Corollary B.2. Any (E ,∆)-group differentially private algorithm A, for a group size of g, is
(E/g,∆/(ge(g−1) Eg )-differentially private.

In the FL setting, subject level DP immediately follows from group DP for every sampled mini-batch
of data items at every federation user. Let S be a sampled mini-batch of data items at a user ui, and
M be the domain space of the ML model being trained in the FL setting.
Theorem B.3. Let training algorithm Ag : S → M be group differentially private for groups of
size g, and l be the largest number of data items belonging to any single subject in S. If l ≤ g, then
Ag is subject level differentially private.

Composition of group DP guarantees over multiple mini-batches and training rounds also follows
established DP composition results [1, 11, 22]. For instance, the moments accountant method
by Abadi et al. [1] shows that given an (ε,δ)-DP gradient computation for a single mini-batch,
the full training algorithm, which consists of T mini-batches and a mini-batch sampling frac-
tion of q, is (O(qε

√
T ), δ)-differentially private. Theorem B.1 implies that the same algorithm

is (O(gqε
√
T , ge(g−1)εδ)-differentially private for a group of size g.

We now present our new FL training algorithm, LocalGroupDP, that guarantees group DP. We make
a critical assumption in LocalGroupDP: Each user can determine the subject for any of its data items.
Absent this assumption, the user may need to make the worst case assumption that all data items
used to train the model belong to the same subject. On the other hand, these algorithms are strictly
local, and do not require that the identity of the subjects be resolved across users.

LocalGroupDP ( Algorithm 3) enforces subject level privacy locally at each user. Like prior work [1,
20, 24], we enforce DP in LocalGroupDP by adding carefully calibrated Gaussian noise in each
mini-batch’s gradients. Each user clips gradients for each data item in a mini-batch to a clipping
threshold C prescribed by the federation server. The clipped gradients are subsequently averaged
over the mini-batch. The clipping step bounds the sensitivity of each mini-batch’s gradients to C.

To enforce group DP, LocalGroupDP also locally tracks the item count of the subject with the
largest number of items in the sampled mini-batch. This count determines the group size needed
to enforce group DP for that mini-batch. This group size, Z in Algorithm 3, helps determine the
noise scale σZ , given the target privacy parameters (E ,∆) over the entire training round. More
specifically, we use the moments accountant method and Corollary B.2 to calculate σ for ε = E/Z,
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and δ = ∆/(Ze(Z−1) EZ ). Note that the value of Z can vary between mini-batches, due to which we
represent the noise scale as σZ in the pseudo code. σZ is computed using the moments accountant
method. The rest of the parameters to calculate σZ – E , ∆, total number of mini-batches (T.R),
and sampling fraction (B/total dataset size) – remain the same throughout the training process.
LocalGroupDP enforces (E/Z,∆/(Ze(Z−1) EZ )-differential privacy, which by Corollary B.2 implies
(E ,∆)-group differential privacy, hence subject level DP by Theorem B.3.

C Utility Loss

Our formal analysis leverages a long line of former work on differentially private empirical risk
minimization (ERM) [2, 3, 7, 8, 12, 15, 24, 25, 26, 28]. In particular, we extend the notation of and
heavily base our formal analysis on work by Bassily et al. [2], applying it to subject level DP in
general, with specializations for our individual algorithms.

Let Z denote the data domain, and D denote a data distribution over Z . We assume a L-Lipschitz
convex loss function ` : Rd × Z → R that maps a parameter vector w ∈ W , where W ⊂ Rd is a
convex parameter space, and a data point z ∈ Z , to a real value.
Definition C.1 (α-Uniform Stability [2, 5]). Let α > 0. A (randomized) algorithm A : Zn →W is
α-uniformly stable (w.r.t loss ` : W × Z → R) if for any pair S, S′ ∈ Zn differing in at most one
data point, we have

sup
z∈Z

E
A

[`(A(S), z)− `(A(S′), z)] ≤ α

Definition C.2 ((k, α)-Uniform Stability). Let α > 0. A (randomized) algorithm A : Zn → W is
said to be (k, α)-uniformly stable (w.r.t loss ` : W ×Z → R) if for any pair S, S′ ∈ Zn differing in
at most k data points, we have

sup
z∈Z

E
A

[`(A(S), z)− `(A(S′), z)] ≤ kα

We use (k, α)-uniform stability to represent the effect of a data subject with cardinality k in the
dataset. Thus algorithm A is (k, βk )-uniformly stable if

E
A

[`(A(Sk), z)− `(A(S0), z)] ≤ β

Lemma C.1. A (randomized) algorithm A : Zn → W is (k, βk )-uniformly stable iff it is β
k -

uniformly stable.

Proof. Consider sets S0, S1, S2, ..., Sk ⊂ Z such that Si = Si−1 ∪ {xi}, for all 1 ≤ i ≤ k, where
xi ∈ Z . In other words, Si contains a single additional data point than Si−1.

Assume that A : Zn →W is (k, βk )-uniformly stable. Then we have

E
A

[`(A(Sk), z)− `(A(S0), z)]

= E
A

[

k∑
i=1

(`(A(Si), z)− `(A(Si−1), z))]

=

k∑
i=1

E
A

[`(A(Si), z)− `(A(Si−1), z)]

≤ β

By i.i.d. and symmetry assumptions, we get ∀i ∈ 1, 2, ..., k

E
A

[`(A(Si), z)− `(A(Si−1), z)] ≤ β

k
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For the other direction of the iff we use the same sets S0, S1, S2, ..., Sk, and assume ∀i ∈ 1, 2, ..., k

E
A

[`(A(Si), z)− `(A(Si−1), z)] ≤ β

k

Hence,

E
A

[`(A(Sk), z)− `(A(S0), z)]

= E
A

[

k∑
i=1

(`(A(Si), z)− `(A(Si−1), z))]

=

k∑
i=1

E
A

[`(A(Si), z)− `(A(Si−1), z)]

≤ β

C.1 General Utility Loss for Subject Level Privacy

Given the parameter vector w ∈ W , dataset S = s1, s2, ..., sn, and loss function `, we define
the empirical loss of w as L̂(w;S) , 1

n

∑n
i=1 `(w, si), and the excess empirical loss of w as

∆L̂(w;S) , L̂(w;S) − min
˜w∈W
L̂(w̃;S). Similarly we define the population loss of w ∈ W w.r.t.

loss ` and a distribution D over Z as L(w;D) , E
z∼D

[`(w, z)]. The excess population loss of w is

defined as ∆L(w;D) , L(w;D)− min
w̃∈W

L(w̃;D).

Lemma C.2 (from [2]). Let A : Zn → W be a β
k -uniformly stable algorithm w.r.t. loss ` :

W ×Z → R. Let D be any distribution over Z , and let S ∼ Dn. Then,

E
S∼Dn,A

[L(A(S);D)− L̂(A(S);S)] ≤ β

k
(8)

Let A be a L-Lipschitz convex function that uses dataset S to generate an approximate minimizer
ŵS ∈ W for L(.;D). Thus the accuracy of A is measured in terms of expected excess population
loss

∆L(A;D) , E[L(ŵS ;D)− min
w∈W

L(w;D)] (9)

Lemma C.3. LetASDP be a L-Lipschitz randomized algorithm that guarantees subject level (ε, δ)-
DP. Let T be the number of training iterations, m the minibatch size per training step, and η the
learning rate. Then,ASDP is (κ, α)-uniformly stable, where κ is the expected number of data items
for any subject sp appearing in ASDP ’s training dataset, and α = L2 (T+1)η

n .

Proof. Consider dataset S comprising data items of ns subjects s1, ..., sp−1, sp, sp+1, ..., sns
, and

dataset S′ comprising data items of ns − 1 subjects s1, ..., sp−1, sp+1, ..., sns
; i.e. S and S′ differ

from each other by a single data subject sp. Let number of data items per subject |si| > 0.

Let w0,w1, ...wT and w′0,w
′
1, ...,w

′
T be the parameter values ofASDP corresponding to T training

steps taken over input datasets S and S′ respectively. Let ξt , wt −w′t for any t ∈ [T ].

Assume random sampling with replacement for a minibatch of data items. Let r be the number
of data items in a sampled minibatch of size m that belong to subject sp. Then, by the non-
expansiveness property of the gradient update step, we have

‖ξτ+1‖ ≤ ‖ξτ‖+ 2Lη
r

m
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Note that r is a binomial random variable. Thus the expected value of r, i.e. E[r] = mκ
n , where

κ = E[|sp|]. Thus κ depends on the underlying data distribution D. For instance, if D is a uniform
distribution, κ = n

ns
, where ns is the number subjects in S. Assuming ‖ξ0‖ = 0, taking expectation

and using the induction hypothesis, we get

E[‖ξτ+1‖] ≤ 2L
η(τ + 1)κ

n

= 2L
η(τ + 1)κ

n

Now let w̄T =
∑T
t=1 wt and w̄′T =

∑T
t=1 w

′
t. Since ` is L-Lipschitz, for every z ∈ Z we get

E[`(w̄T , z)− `(w̄′T , z)] = E[`(ASDP (S), z)− `(ASDP (S′), z)]

≤ L.E[‖w̄T − w̄′T ‖]

≤ L 1

T

T∑
t=1

E[‖ξt‖]

≤ L 1

T

2Lηκ

n

T∑
t=1

t

= L2 (T + 1)ηκ

n

Note that the above bound is a scaled version (by κ) of the recently shown bound for item level
DP [2]. Thus, intuitively in our case, the smaller the number of data items per subject in a dataset,
the closer our bound is to that of item level DP. Our bound is identical to the item level DP bound in
the extreme case where each subject has just one data item in the dataset.

From Lemma C.3, Equation 8 and Equation 9, and substituting k = κ and β = L2 (T+1)ηκ
n in Equa-

tion 8, we get

Theorem C.4. Let ASDP be a L-Lipschitz randomized algorithm that guarantees subject level
(ε, δ)-DP. Then its excess population loss is bounded by

∆L(ASDP ;D) ≤

E
S∼Dn,ASDP

[L̂(w̄T ;S)− min
w∈W

L(w;S)] + L2 η(T + 1)

n

Interestingly, the above inequality appears to be identical to the excess population loss bound of
work by Bassily et al. on item level DP [2]. However, only the third RHS term is identical, and the
first two RHS terms evaluate to different quantities for all of our algorithms as we show below.

C.2 Utility Loss for LocalGroupDP and UserLDP

We now formally show how LocalGroupDP amplifies the Gaussian noise that factors directly into
excess population loss ∆L.

Lemma C.5. Let W be the M -bounded convex parameter space for LocalGroupDP, and S ∈ Zn
be the input (training) dataset. Let (ε, δ) be the subject level DP parameters for LocalGroupDP, q
be the minibatch sampling ratio, and d the model dimensionality. Then, for any η > 0, the excess
empirical loss of LocalGroupDP is bounded by
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E[L̂(w̄T ;S)]− min
w∈W

L(w;S) ≤

M2

2ηT
+
ηL2

2
+ ηd

c2k2q2

ε2

(
T log

ke(k−1)ε/k

δ

)

Proof. From the classic analysis of gradient descent on convex-Lipschitz functions [2, 23], we get

E[L̂(w̄T ;S)]− min
w∈W

L(w;S) ≤ M2

2ηT
+
ηL2

2
+ ησ2d

where the last term on the right hand side of the inequality is the additional empirical error due to
that privacy enforcing noise.

By Theorem 1 from [1], the term σ is lower bounded by

σ ≥ c
q
√
T log(1/δ)

ε
(10)

for item level DP. Extending the bound to group level DP, for groups of size k, by substituting (ε, δ)
with (kε, ke(k−1)εδ) gives us

σ ≥ c
kq
√
T log(ke

(k−1)ε/k

δ )

ε

We get the theorem’s inequality by substituting σ as above.

Combining Lemma C.5 with Theorem C.4 gives us

Theorem C.6. The excess population loss of ALocalGroupDP is satisfied by

∆L(ALocalGroupDP;D) ≤
M2

2ηT
+
ηL2

2
+ ηd

c2k2q2

ε2

(
T log

ke(k−1)ε/k

δ

)
+ L2 η(T + 1)

n

Note that the noise term amplifies quadratically with group size k, which leads to rapid utility degra-
dation with increasing group size. The excess population loss measure for UserLDP can be obtained
by simply replacing the group size term k to the size of the minibatch m, which clearly leads to sig-
nificantly greater noise amplification. Formally,

Theorem C.7. The excess population loss of AUserLDP is satisfied by

∆L(AUserLDP;D) ≤
M2

2ηT
+
ηL2

2
+ ηd

c2m2q2

ε2

(
T log

me(m−1)ε/m

δ

)
+ L2 η(T + 1)

n
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C.3 Utility Loss for HiGradAvgDP

Recall that unlike LocalGroupDP, HiGradAvgDP does not scale up the noise to the group size of a
subject in a minibatch. It instead scales down the gradients of all data items of the subject to a single
data item’s gradient bounds (established by the clipping threshold). As a result, the noise amplifi-
cation we showed for LocalGroupDP does not exist for HiGradAvgDP. However, scaling down the
gradient signal of a subject does indeed affect HiGradAvgDP’s utility. To show the effect formally
we go back to the classic analysis of gradient descent for convex-Lipschitz functions, Lemma 14.1
in [23].

Let w∗ = argmin
w∈W

L(w, S). Given that L̂ is a convex L-Lipschitz function, from [23] we have

E[L̂(w̄T ;S)]− L(w∗;S) ≤ 1

T

T∑
t=1

〈wt −w∗,5L̂(wt)〉 (11)

Consider wt+1 = wt + ηvt, where vt = 5L̂(wt), and η is the learning rate.
Lemma C.8. Consider algorithm A−HiGradAvgDP that performs the same steps as HiGradAvgDP ex-
cept for the noise injection step (at line 12 of Algorithm 3). Let L̂−HiGradAvgDP(w;S) be the L-
Lipschitz continuous empirical loss function, and W be the M -bounded convex parameter space
for A−HiGradAvgDP. If k is the expected number of data items per subject in a sampled minibatch, then

E[L̂−HiGradAvgDP(w̄T ;S)]− L−HiGradAvgDP(w∗;S) ≤ kM2

2ηT
+
ηL2

2k

Proof. Consider

〈wt −w∗,vt〉 =
k

η
〈wt −w∗,

η

k
vt〉

=
k

2η
(−‖wt −w∗ − η

k
vt‖2 + ‖wt −w∗‖2 +

η2

k2
‖vt‖2)

=
k

2η
(−‖wt+1 −w∗‖2 + ‖wt −w∗‖2) +

η

2k
‖vt‖2

Summing the equality over t and collapsing the first term on the right hand side gives us

T∑
t=1

〈wt −w∗,vt〉

=
k

2η
(‖w1 −w∗‖2 − ‖wT+1 −w∗‖2) +

η

2k

T∑
t=1

‖vt‖2

≤ k

2η
(‖w1 −w∗‖2) +

η

2k

T∑
t=1

‖vt‖2

=
k

2η
(‖w∗‖2) +

η

2k

T∑
t=1

‖vt‖2,

assuming w1 = 0. Since W is M bounded and L̂−HiGradAvgDP is L-Lipschitz, combining the above
with Equation 11, we get

E[L̂−HiGradAvgDP(w̄T ;S)]− L−HiGradAvgDP(w∗;S) ≤ kM2

2ηT
+
ηL2

2k
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Now reintroducing the noise in HiGradAvgDP (at line 12 in Algorithm 3), with L̂HiGradAvgDP(w;S)
as the L-Lipschitz continuous loss function of HiGradAvgDP, we get

E[L̂HiGradAvgDP(w̄T ;S)]− L̂HiGradAvgDP(w∗;S) ≤
kM2

2ηT
+
ηL2

2k
+ ησ2d,

where the last term of the right hand side is the additional empirical error due to the privacy enforcing
noise [2]. Combining the above inequality with Theorem C.4 we get
Theorem C.9. The excess population loss of AHiGradAvgDP is satisfied by

∆L(AHiGradAvgDP;D) ≤ k2M2 + η2TL2

2kηT
+ ησ2d

+L2 η(T + 1)

n

where σ takes a value satisfying Equation 10.

Note that the noise term for HiGradAvgDP is identical to that of the DP-SGD algorithm’s noise
term that enforces item level privacy guarantee [1]. However, the first term on the right hand side
of the inequality scales linearly with k, the expected number of data items per subject. Thus we
should expect some utility loss compared to DP-SGD for k > 1. At k = 1 HiGradAvgDP performs
identically to DP-SGD.

D Additional Proofs

Proof for Lemma 3.1: Clipping gradients for each data item belonging to subject a ∈ S before
averaging the clipped gradients over the SSa ensures that the averaged gradients’ L2-norm is bounded
by C. Hence SS ≤ |C|.

Proof for Theorem 3.2: Bounding subject sensitivity SS ≤ |C| and scaling the Gaussian noise to
that sensitivity bound clearly results in (ε, δ)-DP guarantee in gradient computation for each subject
of each mini-batch S. The mini-batch wide averaging of gradients g̃S done using the mini-batch
size B is justified since the per subject gradients’ average can be restated as aggregation of scaled
down gradients for data items corresponding to a subject a; i.e. g(SSa ) =

∑
i
ḡ(si)
|SS

a |
. This gives us

B distinct gradient quantities for the data items in the sampled mini-batch S, and averaging these
quantities requires the term B in the denominator of the expression that computes g̃S . We can apply
the moments accountant method for privacy budget composition to extend the subject level (ε,δ)-
DP guarantee over T mini-batches in a training round, aggregated over R training rounds. Thus
HiGradAvgDP locally enforces subject level (ε,δ)-differential privacy.

Proof for Theorem 4.1: Assume two distinct users u1 and u2 in a federation that host private data
items of subject s. Let ε1 and ε2 be the respective subject privacy losses incurred by the two users
during a training round.

It is straightforward to see that, in the worst case, data items of s at users u1 and u2 can affect
disjoint parameters inM. Thus parameter averaging done by Fg simply results in summation and
scaling of these disjoint parameter updates. As a result, the privacy losses, ε1 and ε2 incurred by u1

and u2 respectively are retained to their entirety by Fg . In other words, privacy losses incurred for
subject s at users u1 and u2 compose sequentially.

Proof for Theorem 4.2: The proof of training round constraints on horizontal composition can be
broken down into two cases: First, each user in the federation locally trains for exactly T mini-
batches per training round, with exactly the same mini-batch sampling fraction q. Since horizontal
composition is equivalent to sequential composition in the worst case, the moments accountant
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method shows us that the resulting algorithm will be (O(qε
√
TRs), δ)-differentially private. To

compensate for the
√
s factor scaling of the privacy loss, F can be executed for R√

s
training rounds,

yielding a (O(qε
√
TR), δ)-differentially private algorithm.

In the second case, each user ui may train for a unique number of mini-batches per training round,
with a unique mini-batch sampling fraction dictated by ui’s private dataset. Let T1, T2, ..., Ts, and
q1, q2, ..., qs be the number of mini-batches per training round and mini-batch sampling fraction for
the sampled users u1, u2, ..., us respectively.

All our algorithms 2, 3, and 1 locally enforce subject level (O(qiε
√
TiR),δ)-DP at each user ui.

Privacy enforcement is done independantly at each federation user ui. Furthermore, note that the
privacy loss is uniformly apportioned among training rounds. Let E = O(qiε

√
TiR). Note that

E is identical for each user ui in the federation. Thus if E is the total privacy loss budget over R
training rounds, a sampled user incurs εr = E/R privacy loss in a single training round r. Similarly,
each of the s sampled users in round r incurs identical privacy loss εr despite having different mini-
batches per training round Ti and mini-batch sampling fractions qi. As noted earlier, these privacy
losses compose horizontally (sequentially) via Fg over s users, leading to privacy loss amplification
by a factor of

√
s as per the moments accountant method. To compensate for this privacy loss

amplification, F can be executed for R√
s

training rounds.

E Empirical Evaluation in More Detail

We implemented all our algorithms UserLDP, LocalGroupDP, and HiGradAvgDP, and a version
of the DP-SGD algorithm by Abadi et al. [1] that enforces item level DP in the FL setting (Lo-
calItemDP). We also compare these algorithms with a FL training algorithm, FedAvg [16], that
does not enforce any privacy guarantees. All our algorithms are implemented in our distributed FL
framework built on distributed PyTorch.

We focus our evaluation on Cross-Silo FL [13], which we believe is the most appropriate setting
for the subject level privacy problem. We use the FEMNIST and Shakespeare datasets [6] for our
evaluation. In FEMNIST, the hand-written numbers and letters can be divided based on authors,
which ordinarily serve as federation users in FL experiments by most researchers. In Shakespeare,
each character in the Shakespeare plays serves as a federation user. In our experiments however,
the FEMNIST authors and Shakespeare play characters are treated as data subjects. To emulate the
cross-silo FL setting, we report evaluation on a 16-user federation.

We use the CNN model on FEMNIST appearing in the LEAF benchmark suite [6] as our target
model to train. More specifically, the model consists of two convolution layers interleaved with
ReLU activations and maxpooling, followed by two fully connected layers before a final log softmax
layer. For the Shakespeare dataset we use a stacked LSTM model with two linear layers at the end.

We use 80% of the training data for training, and 20% for validation. Test data comes separately
in FEMNIST and Shakespeare. Training and testing was done on a local GPU cluster comprising 2
nodes, each containing 8 Nvidia Tesla V100 GPUs.

We extensively tuned the hyperparameters of mini-batch size B, number of training rounds T , gra-
dient clipping threshold C, and learning rate η. The final hyperparameters for FEMNIST were:
B = 512, T = 100, C = 0.001, and learning rates η of 0.001 and 0.01 for the non-private
and private FL algorithms respectively. Shakespeare hyperparameters were: B = 100, T = 200,
C = 0.00001, and learning rates η of 0.0002 and 0.01 for the non-private and private FL algorithms.

In our implementations of all our algorithms UserLDP, LocalGroupDP, and HiGradAvgDP, we used
the privacy loss horizontal composition accounting technique that reduces the number of training
rounds by

√
s, where s is the number of sampled users per training round. We experimented with

the alternative approach that scales up the number of minibatches by s to calculate a larger noise
scale σ, but this approach consistently yielded worse model utility than our first approach. Hence
here we report only the performance of our first approach.
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Figure 2: Average test accuracy and loss on the FEMNIST (a),(b) and Shakespeare (e),(f) datasets over training
rounds for various algorithms. For DP guarantees: ε = 4.0 and δ = 10−5 budgeted over all 100 and 200
training rounds for FEMNIST and Shakespeare respectively. Model performance for the subject level privacy
algorithms is constrained by the limited number of training rounds (25 for FEMNIST, and 50 for Shakespeare)
permitted under the prescribed privacy budget. Number of mini-batches with subject group sizes over the
entire training run for FEMNIST (c) and Shakespeare (g). Number of mini-batches with distinct subjects per
mini-batch for FEMNIST (d) and Shakespeare (h).
E.1 FEMNIST and Shakespeare Performance

We first conduct an experiment that reports average test accuracy and loss at the end of each training
round, over a total of 100 and 200 training rounds for FEMNIST and Shakespeare respectively. The
FEMNIST dataset contains 3500 subjects, and the Shakespeare dataset contains 660 subjects. In
both datasets each subject comprises hundreds of data items. Each subject’s data items are uniformly
distributed among the 16 federation users.

Figure 2 shows performance of the models trained using our algorithms. FedAvg performs the
best since it does not incur any DP enforcement penalties. Item level privacy enforcement in Lo-
calItemDP results in performance degradation of 8% for FEMNIST and 22% for Shakespeare. The
utility cost of user level LDP in UserLDP is quite clear from the figure. This cost is also reflected
in the relatively high observed loss for the respective model. LocalGroupDP performs significantly
better than UserLDP, but worse than LocalItemDP, by 15% on FEMNIST, and 18% on Shakespeare.
The reason for LocalGroupDP’s worse performance is clear from Figure 2(c) and (g): the group size
for a mini-batch tends to be dominated by 3 on both FEMNIST and Shakespeare, which cuts the pri-
vacy budget for these mini-batches by a factor of 3, leading to greater Gaussian noise, which in turn
leads to model performance degradation.

HiGradAvgDP performs competitively with LocalItemDP for the 25 and 50 rounds it is trained
for on FEMNIST and Shakespeare respectively. Figure 2 (d) and (h) show that instances of sam-
pling multiple data items corresponding to the same subject in a single mini-batch are relatively low
– the number of distinct subjects sampled per mini-batch of 512 for FEMNIST averages to 475,
and per mini-batch of 100 for Shakespeare averages to 86. As a result, HiGradAvgDP incurs in-
significant performance degradation for both datasets. However, the training round restriction does
result in degradation of the final model produced by HiGradAvgDPcompared to LocalItemDP: For
FEMNIST, HiGradAvgDP gives 75.24% prediction accuracy after 25 rounds compared to 77.96%
accuracy after 100 rounds with LocalItemDP. For Shakespeare, HiGradAvgDP gives 41.58% model
accuracy after 50 rounds compared to 45.91% accuracy with LocalItemDP after 200 rounds.

E.2 Effect of Subject Data Distribution

While evaluation of our algorithms using a uniform distribution of subject data among federation
users is a good starting point, often times the data distribution is non-uniform in real world settings.
To emulate varying subject data distributions, we conduct experiments on the FEMNIST dataset
where subject data is distributed among federation users according to the power distribution

P (x;α) = αxα−1, 0 ≤ x ≤ 1, α > 0
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Figure 3: Model performance over FEMNIST dataset of our algorithms over different subject data distributions
dictated by the parameter α of the power distribution.
Figure 3 shows performance of the models trained using our algorithms over varying subject data

distributions of FEMNIST. As expected, different data distributions clearly do not significantly affect
FedAvg, LocalItemDP, and User-Local-SGD. However, performance of the model trained using
LocalGroupDP degrades substantially as the unevenness of data distribution increases, resulting in
test accuracy under 50% for α = 16. This degradation is singularly attributable to growth in subject
group size per mini-batch – the average group size per mini-batch ranges from 3 when α = 2 to
6 when α = 16. This increase in group size significantly reduces the privacy budget leading to
increase in Gaussian noise that restricts test accuracy. On the other hand, HiGradAvgDP appears
to be much more resilient to non-uniform subject data distributions among federation users – test
accuracy drops by just about 5% from α = 1 (75.84% accuracy) to α = 16 (71.89% accuracy). The
corresponding subjects per minibatch observed in our experiments goes from an average of 475 to
310 respectively (not reported in detail due to space constraints).

E.3 Small-FEMNIST Performance
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Figure 4: Average test accuracy (a) and loss (b) measured over training rounds for various algorithms on the
Small-FEMNIST dataset (350 subjects) distributed among 16 federation users. For DP guarantees: ε = 4.0
and δ = 10−5. Observed grouping sizes per mini-batch in LocalGroupDP aggregated across all mini-batches
at all federation users in the training run (c), and number of subjects observed per mini-batch in HiGradAvgDP
aggregated across all mini-batches at all federation users in the training run (d).

HiGradAvgDP appears to generally perform well when the number of subjects in the federation is
sufficiently large. To study the effects of fewer subjects in a federation we experimented with a
trimmed down version of FEMNIST, called Small-FEMNIST, that contains just the first 350 sub-
jects in the aggregate dataset. For these experiments we reduced mini-batch size to 256. Figure 4
shows the performance of our algorithms on Small-FEMNIST. We note a substantial drop in the
performance of LocalGroupDP, which can be explained by the increase in subject group size (to
an average of 4) as can be seen in Figure 4 (c). There is also a noticable drop in performance of
HiGradAvgDP, which is attributable to a decrease in distinct subjects occuring per mini-batch (from
Figure 4 (d)). This drop in number of subjects adversely affects performance of models trained using
the algorithms that enforce subject level privacy.
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