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ABSTRACT

Generating novel artistic styles from a single style is a formidable challenge for
for traditional style transfer techniques, which typically focus on emulating the
provided style without introducing fresh and meaningful elements. In this paper, we
propose a creativity process for producing new and meaningful artistic styles, called
creative style transfer (CSFer). We first introduce a neural permutation network
(PerNet) to rearrange the feature maps of a single style image, thereby adapting
them to the feature maps of a content image, resulting in the desired stylization
content. Essentially, this permutation process enriches the bases of the single style
within a high-dimensional feature space, departing from the conventional linear
combination of multiple styles. To gauge the quality of our stylized content, we
leverage metrics encompassing content structure, style perception, and artistic aes-
thetics. These metrics enable us to assess our stylized content in comparison to the
output produced by traditional style transfer methods. In the training phase, PerNet
learns to generate high-quality stylized content by randomly sampling permuta-
tion matrices that yield high-quality stylization outcomes. Experimental results
demonstrate that our CSFer can create novel and original stylization outcomes.
Furthermore, CSFer exhibits robust generalization capabilities by simply inserting
the PerNet into the style transfer methods.

1 INTRODUCTION

Developing computer vision techniques to create human-level visual art is a long-term goal within the
rich history of artificial intelligence and art. One fundamental feature of this endeavor is creativity,
which is defined as the process of producing novel and meaningful artifacts while evaluating them
simultaneously (Boden, 1998; Cetinic & She, 2022; Boden, 2004). Recently, a popular neural style
transfer (NST) technique has been introduced to achieve this goal by transferring the artistic style of
one image to another in many successful applications, such as creating artistic images (Gatys et al.,
2016), videos (Chen et al., 2017), and 3D scenes (Huang et al., 2021). Although NST has produced
many impressive visual artworks (Huang et al., 2017; Chen et al., 2020; Mu et al., 2022), it still
struggles to generate truly creative outputs since these methods only imitate the style image, lacking
novelty and meaning. Therefore, we are searching for a method that can produce creative artistic
styles using a single style image and transfer it to a content image.

Most style transfer methods aim to create new artistic styles but often fall short in terms of novelty
and surprise. For instance, style interpolation techniques (Huang & Belongie, 2017; Park & Lee,
2019; Ali et al., 2023) rely on linearly combining the features of several style images with normalized
weights. More recent approaches such as style-former (Wu et al., 2021) and ArtINS (Xie et al.,
2022) have attempted to increase the diversity of style bases by incorporating FastICA (Hyvarinen,
1999) algorithms, but they still rely on linear combinations of used styles to generate their mixed
styles. Unfortunately, despite these efforts, the stylized images produced by these methods are often
predictable and fail to deliver novel and surprising results since all the styles are already known and
the linear combinations cannot create new style bases from the used styles.

Furthermore, in theory, when a substantial number of style bases are employed, the interpolation
technique can generate a wide range of styles through linear combinations. Nevertheless, this process
can become computationally demanding when searching for the optimal coefficients. For example,
ArtINS (Xie et al., 2022) typically utilizes approximately ten distinct style components in practice.
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To tackle this issue, we adopt a streamlined approach by utilizing a deep neural network to compute
a style’s feature vector, which in turn serves as the foundation for generating a fresh style feature
vector. This novel approach draws inspiration from permutation theory, leveraging it to rearrange
the style features effectively. By applying permutation to the index set of a feature vector, we
can generate diverse feature vectors, thereby creating new stylistic variations. For instance, a
vector like [0, 0, 0, 1, 1, 1] can be transformed into a new vector [0, 1, 0, 1, 0, 1] through the use of a
permutation matrix. For a feature space comprising of m dimensions, there exists a wealth of potential
permutations, specifically m(m−1)

2 − 1, enabling the creation of numerous novel stylistic outcomes.
Following this, we leverage a style perception distance technique (Li et al., 2017a), and an aesthetic
assessment method (Yi et al., 2023) to select the most innovative and meaningful style outcomes.
This combined approach surpasses the limitations associated with traditional NST methods, enabling
the discovery of creative styles from the provided style reference.

In this work, we develop a learnable creative process for the style transfer, named Creative Style
TransFer (CSFer), which is shown in Figure 1. Given an artistic style image and a content image, we
formulate this process to alternate between producing meaningful styles, which are surprising to the
given style, and evaluating their novelties of the stylized content images. Firstly, we learn a neural
permutation network (PerNet) to predict the permutation matrix for sorting means and variances of
feature maps of the style image, and then use them to adjust those of the content image for producing
the newly stylized content. Secondly, we assess the uniqueness of the newly stylized content using a
combination of content structure, style perception, and aesthetic metrics, e.g., structural similarity
(SSIM) (Wang et al., 2004), style perception distance (SPD) (Li et al., 2017a), and style-specific art
assessment network (SAAN) score (Yi et al., 2023). These metrics enable us to highlight distinctions
in semantic meaning and structural information between our newly stylized content and the traditional
stylized content produced by conventional NST methods like AdaIN (Huang & Belongie, 2017).
Thirdly, we train the PerNet by randomly sampling a permutation matrix to satisfy the newly and
meaningfully stylized content image. Overall, our contributions are summarized as follows:

• We propose a neural permutation method that sorts the means and variances of feature maps
from a single style image, enabling us to capture the distinctiveness and surprise elements
inherent to the style image. This approach extends the imitation boundaries of traditional
NST methods by generating fresh stylistic feature bases from the single style image.

• By combining the permutation method, we explore a creative style transfer approach to
produce novel and meaningful artworks. To the best of our knowledge, we are the first to
efficiently and skillfully fuse creativity and style transfer.

• Experiments demonstrate that our method outperforms the creativity or diversity of the
stylized styles generated by the existing style transfer techniques, and also exhibits robust
generalization capabilities with a straightforward integration process. (see Figures 3 and 6) .

2 RELATED WORK

Artistic style transfer starts from the pioneered ideology (Gatys et al., 2015) and has become an
attractive research topic for both academy and industry since its variants (Li et al., 2019; xin Cheng
et al., 2021; Jing et al., 2020) are introduced from single style to multiple/arbitrary style, and produce
favorable visual results in many applications, e.g., artistic image/video/text (xia Zou et al., 2021;
Chen et al., 2020; Deng et al., 2021; Yang et al., 2019; Zhang et al., 2019; Hong et al., 2021; Kwon &
Ye, 2022; Kotovenko et al., 2021; Yang et al., 2022b; Wen et al., 2023; Xu et al., 2023), animation
(Siarohin et al., 2019; Aberman et al., 2020; Siarohin et al., 2021; Tianxin et al., 2022), photorealism
(Yoo et al., 2019; Xia et al., 2020), shape deformation (Kim et al., 2020; Liu et al., 2021b), and
industrial design (Jiang et al., 2022; Yang et al., 2022a).

Recently, a number of works try to increase the diversity of the style using different methods.
For example, Style-mixer (Huang et al., 2019; Liu et al., 2021a) introduces a multi-level feature
concatenation and a patch attention to achieve better semantic correspondences and preserve richer
style details. A diversity loss (Li et al., 2017b) is presented to allow the feed-forward networks to
generate diverse outputs. Deep feature perturbation (DFP) (Wang et al., 2020) uses an orthogonal
random noise matrix to perturb the deep image feature maps. Moreover, diverse image style transfer
(Chen et al., 2021b) enforces an invertible cross-space mapping to achieve significant diversity. Spatial
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control (Huang & Belongie, 2017; Gatys et al., 2017; Chiu & Gurari, 2020) is to transfer different
styles to different regions of the content image using masks and segmentation. In addition, mentioned
in the introduction, style interpolation (Park & Lee, 2019; Liu et al., 2021a) is to interpolate a set of
style features with corresponding weights. Style-former (Wu et al., 2021) are based on transformer to
find global composition of a finite set of the style codes. Style-discovery (Xie et al., 2022) also builds
a set of style components to linearly combine them for discovering new artistic styles.

Our proposed approach differs significantly from previous works that use a linear combination of
style components. Instead, we introduce a novel neural permutation method that operates on the
features of a single style image, producing meaningful and surprising stylization results that stand
out from previous works which often fall within similar stylistic boundaries.

Creating arts still has two other important technologies in addition to the artistic style transfer. The
first is creative adversarial networks (CAN) (Elgammal et al., 2017), which extends the capabilities
of generative adversarial networks (GAN) (Goodfellow et al., 2014) to generate art that deviates
from established styles while still adhering to the distribution of art. The second is the creative
decoder (Das et al., 2020), which enhances the decoder of variational autoencoder (VAE) (Kingma
& Welling, 2014) to generate creative art by using a sampling, clustering, and selection strategy
to capture neuronal activation patterns. Moreover, (Cintas et al., 2022) applies group-based subset
scanning on node activations from internal layers by integrating GAN and creative decoder. Unlike
the two techniques, our approach involves the use of a permutation matrix to sort the means and
variances of feature maps in the style image as they rely on style classification and ambiguity losses,
and neuronal activation patterns, respectively. Furthermore, our approach outperforms both CAN and
creative decoder in producing exceptional creative artworks.

3 METHODOLOGY

In this section, we propose a creative style transfer (CSFer) for generating distinctive and meaningful
stylized results, as depicted in in Figure 1. Specifically, we present a neural permutation module
with a deep network to create new feature maps of the style image. Subsequently, we design a
novelty evaluation scheme to assess the novelty of the stylistic outcomes for sampling a meaningful
style. Finally, PerNet is trained using randomly sampling permutation matrices with the established
evaluation criteria. Before delving into our method, we first present a new style transfer problem.

3.1 A NEW STYLE TRANSFER PROBLEM

Standard NST method produces a stylized content image by transferring the style of the reference
image into the content image. The resulting stylized image is predominantly influenced by the chosen
style image. However, traditional NST techniques lack the capacity for creative artistic expression, as
they primarily imitate the style image. This gives rise to a significant challenge, which we refer to as
Creative Style Transfer, defined as follows:

The goal of creative style transfer is to imaginatively infuse a fresh and
meaningful style from the style image into the content image.

Mathematically, given a style image Is ∈ IRn×m×3 and a content image Ic ∈ IRn×m×3, they are
transformed into distinct feature maps fs ∈ IRH×W×K and fc ∈ IRH×W×K via an encoder network
E, such as the pre-trained VGG net (Karen Simonyan, 2015), denoted as fs = E(Is) and fc = E(Ic).
Subsequently, a new content feature f c is derived by transferring the style information of fs into fc,
denoted as f c = Transfer(fs, fc), using techniques like AdaIN (Huang & Belongie, 2017), LST (Li
et al., 2019) and ArtINS (Xie et al., 2022). Finally, a decoder D is employed to map the transformed
feature back to the image space, generating the stylized outcome O, denoted as O = D

(
f c

)
. In this

transformation process, how to create a fresh and meaningful outcome O?

This problem can be further subdivided into two key aspects: creating a new and meaningful style
from the single style image, and transferring it into the content image. While existing style transfer
methods can be employed for the style transfer step, our primary focus lies in the inventive generation
of new and meaningful styles from the single style image.
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Figure 1: The framework of our creative style transfer. The upper picture illustrates the style transfer
process alongside a sampling module that employs content structure, style perception, and aesthetic
evaluations The down picture showcases the architecture of the neural permutation network (PerNet).

To tackle this issue, we present a neural permutation mechanism to produce new style feature from
the single style image for generating fresh styles. Additionally, we introduce a novelty evaluation
criterion to sample distinctive styles. Lastly, we utilize two artistic image aesthetics evaluation
techniques, namely SAAN (He et al., 2022) and TANet (Yi et al., 2023), to gauge the quality of the
newly generated styles, thereby demonstrating the significance of our style creation approach.

3.2 NEURAL PERMUTATION MECHANISM

Here, we introduce a neural permutation mechanism designed to rearrange the means and variances
of style feature maps for the creation of new styles, as illustrated in Figure 1. We begin with the
style image Is ∈ Rn×m×3, which is transformed into feature maps fs through an encoder network
E, fs = E(Is). The means and variances of the style image features fs are defined as follows:

µs = µ (fs) , σs = σ (fs) , µs, σs ∈ IRK , (1)

where µ(·) and σ(·) indicate the computation of the mean and standard deviation of the image feature
map across different channels, with K representing the number of channels.

Neural Permutation. Our objective is to sort the feature mean and variance, (µs, δs), from the
style image Is to capture different mean and variance characteristics for creating new style features.
To achieve this, we design a neural permutation network (PerNet) that operates on the means µs

to predict a permutation matrix P ∈ RK×K . The sorted mean and variance can then be obtained
through matrix-vector multiplication as follows:

µ̃s = Pµs, σ̃s = Pσs with P = PerNet (µs;ϕ) . (2)

where ϕ represents the network parameters of the designed PerNet, and the crimson letters correspond
to Figure 1. Subsequently, we align the permuted channel-wise mean and variance to match those of
the style feature fs, resulting in the new style feature f̃s obtained through an affine transformation:

f̃s = σ̃s

(
fs − µs

σs

)
+ µ̃s. (3)

In this transformation, the new feature scales the normalized content input with σ̃s, and shifts it with
µ̃s. Finally, following the transfer function and decoder in the standard style transfer process, we can
generate a new stylized outcome Õ = D(f̃c), where f̃c = Transfer(f̃s, fc).

Architectures of PerNet. Due to difficulty of learning the binary matrix, we utilize the Gumbel-
Sinkhorn Softmax method (Adams & Zemel, 2011; Mena et al., 2018) for the purpose of learning the
permutation matrix. As shown in Figure 1, the architecture of PerNet is defined as follows:

PerNet(µs;ϕ) = Nc

(
Nr

(
exp(Net(µs;ϕ)

τ

))
, (4)
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where Net(µs;ϕ) ∈ I!RK×K represents a feed-forward convolutional network with network param-
eters ϕ and mean inputs µs, the symbol τ denotes the temperature parameter, Nc(M) and Nr(M)
denote the column and row-wise normalization operators applied to a matrix, respectively.

The architecture of Net(µs;ϕ) comprises two branches. The first branch involves reshaping the
mean inputs µs ∈ IR1×K into a 1×K1 ×K2 mean map, where K = K1 × K2. Subsequently,
convolutional operations are applied to obtain feature maps from 1× to li× and K ×K1 ×K2

by increasing the number of channels step by step, where li is the number of channels at ith
layer. Recognizing the significance of position information alongside the means, the second branch
simultaneously incorporates a position encoding into the features, defined by (Vaswani et al., 2017):

PE(pos, 2i) = sin
( pos

100002i/dmodel

)
, and PE(pos, 2i+ 1) = cos

( pos

100002i/dmodel

)
, (5)

where pos denotes the position of a value within the entire vector, where 0 ≤ pos < K, and dmodel

represents the positional arrangement information for the row, with the variable i ranging from 0 to
dmodel−1. To encode these positions, we utilize the Eq. 5: left equation for even values of i and right
equation for odd values of i. Next, we combine the results from these two branches and incorporate
the resulting position embeddings, denoted as PE, into the feature vector fP . This vector is then
reshaped into a permutation matrix of dimensions K ×K, yielding an output matrix P . During the
testing phase, it’s important to note that we convert the soft permutation into a hard permutation
matrix using the Hungarian algorithm as described in (Kuhn, 1955).

3.3 SAMPLING A NOVEL STYLE FROM NEWLY STYLIZED OUTCOMES

Building upon the permutation mechanism discussed earlier, this method can produce a set of fresh
stylized images, denoted as Õ. This is achieved by utilizing a collection P consisting of M randomly
generated permutation matrices and the affine transformation presented in Eq. 3 for both the style
image Is and the content image Ic. In this section, we introduce a novel sampling approach to choose
the most suitable style from the set Õ. The primary concept involves comparing the newly generated
stylized result Õ with the standard stylized result O as well as the content image Ic. This selection
process encompasses a balanced sampling technique along with an aesthetic evaluation.

Sampling a subset Õsub from Õ utilizing SSIM and SPD scores. (please refer to Appendix A.) Our
aim is to sample a stylized output Õ that preserves the structural characteristics of Ic while exhibiting
a more diverse style. To ensure the preservation of structural features, we employ the Structural
Similarity Index (SSIM) (Wang et al., 2004) to calculate the SSIM score between Õ and Ic, ensuring
they are suitably similar. To promote a wider style diversity, we employ the Style Perception Distance
(SPD) (Li et al., 2017a) to compute SPD scores between Õ and Ic as well as between Õ and O. We
then select outcomes with higher SPD scores. This sampling process is defined as follows:

Õsub =
{
Õ |α ≤ SSIM(Õ, Ic) & β1 ≤ SPD(Õ, Ic) & β2 ≤ SPD(Õ, O), Õ ∈ Õ

}
, (6)

where α, β1 and β2 represent hyper-parameters that control the boundaries of these conditions.

)SSIM( , CO I 

1 CSPD(O, I ) 

2 SPD(O,O) 

 
sub

arg max SAAN( )
O

O


෨𝒪

O
SICI O

sub

Figure 2: Sampling process
for creating stylized images.

Selecting the optimal Õ(Is,Ic)
opt from Õsub using aesthetic assess-

ment. To determine the most aesthetically pleasing style, we lever-
age the Style-Specific Art Assessment Network (SAAN) score (Yi
et al., 2023) for aesthetic quality assessment. We select the optimal
aesthetic style by maximizing the following objective:

Õ
(Is,Ic)
opt = argmax

Õ∈Õsub

{
SAAN(Õ)

}
, (7)

where SAAN(Õ) directly predicts the aesthetic score of the image Õ.
SAAN is trained using a dataset of artistic images from Boldbrush,
with human-labeled scores collected from online users.

In Figure 2, we illustrate a practical sampling process employing
the AdaIN technique (Huang & Belongie, 2017). This process
involves generating a set denoted as P consisting of 1, 000 random
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Table 1: Aesthetic evaluation of style transfer methods on three datasets: WikiArt, CAN and CD.
Note that ArtINS and ArtINS+CSFer only use the images in Figure 3 to compute the scores.

Methods Aesthetic SAAN Scores (Yi et al., 2023) Aesthetic TANet Scores (He et al., 2022)
WikiArt CAN CD WikiArt CAN CD

Style Images 4.519±0.205 4.585±0.047 4.723±0.312 5.119±0.078 5.076±0.040 4.156±0.007
DFP 4.674±0.184 4.575±0.065 4.695±0.093 5.046±0.109 4.604±0.038 4.530±0.108

AdaAttN 3.884±0.093 4.517±0.049 4.659±0.019 5.253±0.051 4.784±0.042 4.810±0.051
ArtFlow 4.485±0.089 4.483±0.044 4.333±0.056 4.700±0.039 4.898±0.032 4.378±0.022
StyTr2 4.631±0.103 4.459±0.037 4.598±0.068 5.282±0.057 4.989±0.045 5.171±0.032
AdaIN 4.634±0.112 4.556±0.066 4.441±0.046 5.360±0.036 4.453±0.021 4.296±0.062

Our CSFer 4.675±0.069 4.683±0.069 4.458±0.154 5.444±0.027 4.889±0.042 4.748±0.058
MST 3.885±0.093 4.700±0.073 4.740±0.071 4.331±0.119 5.517±0.028 5.373±0.073

MST+CSFer 3.888±0.095 4.746±0.063 4.776±0.097 4.338±0.123 5.521±0.026 5.458±0.028
LST 4.621±0.081 4.612±0.040 4.485±0.181 4.810±0.044 4.845±0.012 4.539±0.041

LST+CSFer 4.704±0.044 4.722±0.024 4.686±0.032 4.839±0.029 4.863±0.021 4.567±0.007
IEC 4.532±0.077 4.563±0.024 4.434±0.097 4.952±0.052 5.103±0.032 4.442±0.016

IEC+CSFer 4.599±0.033 4.534±0.030 4.537±0.023 4.862±0.039 4.875±0.024 4.762±0.036
ArtINS 5.053±0.341 - - 4.118±0.051 - -

ArtINS+CSFer 5.112±0.376 - - 4.144±0.027 - -

permutation matrices, subsequently leading to the creation of a stylized image set named Õ. Using
the Eq. 6, we then extract a subset denoted as Õsub from Õ with the dual objective of preserving
clear content information while introducing distinct style characteristics. Finally, we identify the
optimal result Õ(Is,Ic)

opt by employing the Eq. 7.

3.4 TRAINING LOSS

Using the sampling method described above, we gather the optimal outcomes Õ(Is,Ic)
opt from a variety

of style and content image pairs (Is, Ic) by employing the AdaIN technique (Huang & Belongie,
2017). Subsequently, we can generate numerous pairs of original style images and creatively modified
style images as (Is, Õ

(Is,Ic)
opt ). We then calculate their respective feature means, denoted as (µs, µ̂Õ),

where µs = µ(E(Is)) and µ̂Õ = µ(E(Õ
(Is,Ic)
opt )) using the pre-trained VGG net (Karen Simonyan,

2015). These data points collectively form a dataset denoted as D. Using this dataset, we can train
the PerNet model in Eq. 2 within a supervised setting. The training loss is defined as follows:

LP =
1

|D|
∑

(µs,µ̂Õ)∈D

∥∥PerNet(µs, ϕ)µs − µ̂Õ

∥∥2
2
. (8)

4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Training and Datasets. We train our model (i.e., the decoder network and the PerNet network)
though two stages using Wikiart (Phillips & Mackintosh, 2011) as style images and MS-COCO (Lin
et al., 2014) as content images. In the first stage, following the setting (Huang & Belongie, 2017),
we build about 80, 000 training style and content image pairs to train our the decoder network. The
training setting is similar to the AdaIN (Huang & Belongie, 2017) by using the adam optimizer
(Kingma & Ba, 2015) and a batch size of 16 content and style image pairs, resize them to the smallest
size 512× 512, and randomly crop regions of size 256× 256.

In the second stage, we randomly choose 4400 content and style image pairs from MS-COCO
(Phillips & Mackintosh, 2011) and Wikiart (Lin et al., 2014). For each image pair, we use the novelty
sampling scheme in Eqs. 6 and 7 to sample 1000 meaningful stylized images, and select one of them
as an optimally stylized image. Then, these 4400 image pairs lead to 4400 feature mean pairs using
the pre-trained VGG net (Karen Simonyan, 2015). We still use the Adam optimizer (Kingma & Ba,
2015) to train the PerNet network with a gradual decline in learning rate and a batch size of 25 feature
mean pairs. We can test arbitrary other style images. When K = 512,K1 = 16,K2 = 32, the
PerNet structure is 1× 512 → 1× 16× 32 → 64× 16× 32 → 128× 16× 32 → 256× 16× 32 →
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Figure 3: Example style transfer results in comparison with AdaIN (Huang & Belongie, 2017),
AdaAttN (Liu et al., 2021a), DFP (Wang et al., 2020) and ArtINS (Xie et al., 2022).

512 × 16 × 32 → 512 × 512. We conducted our experiments using four NVIDIA GeForce RTX
3090 GPUs. In the style test stage, we consider three datasets: the rest of the WikiArt training set
(37,729 style images), the Creative Adversarial Networks (CAN) (Elgammal et al., 2017) (160 style
images), and the Creative Decoder (CD) (Das et al., 2020) (select 5 style images from the paper).

Compared Methods. To demonstrate that our CSFer can build new and meaningful stylization
outcomes, we conduct eleven baselines for CSFer from various aspects. We first consider nine
popular artistic style transfer methods, AdaIN (Huang & Belongie, 2017) and LST (Li et al., 2019),
AdaAttN (Liu et al., 2021a), ArtFlow (An et al., 2021), StyTr2 (Deng et al., 2022), MST(Zhang et al.,
2019) and IEC (Chen et al., 2021a) that transfer arbitrary styles to content images. Recently, deep
feature perturbation (DFP) (Wang et al., 2020) tries to produce diverse styles by using orthogonal
noise with α = 0.8, and ArtINS (Xie et al., 2022) discovers new styles by using independent
components of given styles. Furthermore, to verify the generalization ability of our CSFer, we apply
the learned PerNet to the LST, MST, IEC and ArtINS methods, called CSFer+LST, CSFer+MST,
CSFer+IEC and CSFer+ArtINS. In addition, there are two different methods to create new artistic
styles. Creative Adversarial Networks (CAN) (Elgammal et al., 2017) extends generative adversarial
networks to generate art. Creative Decoder (CD) (Das et al., 2020) enhances the decoder of variational
autoencoder by sampling the neuronal activation patterns.

4.2 MAIN RESULTS

We conduct comparisons between our CSFer and both (i) various NST methods and (ii) creative
approaches. Subsequently, we demonstrate the generalization capabilities of our CSFer, accompanied
by the findings from our user study. Note that all our results exclusively showcase novel stylistic
variations while maintaining consistent content. More results, please refer to Appendix D.

Comparisons with different NST methods. Various visual examples of style transfer achieved
through different methods are illustrated in the Figure 3. We have the following four observations.
Firstly, AdaIN (Huang & Belongie, 2017) transfers the artistic style of the style image to the content
image with a similar art style, without producing much diversity, not to mention the creativity.
Secondly, Although DFP (Wang et al., 2020) generates diverse styles, it still stays close to the given
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Figure 4: Comparing artistic styles generated by CAN, Creative Decoder, and our CSFer method.
AdaIN is used to transfer the styles into the same content images for ensuring a fair comparison.

style due to the small perturbation applied. DFP may fail to transfer the art when using a large
perturbation. Thirdly, ArtINS (Xie et al., 2022) produces more diverse styles than AdaIN, LST and
DFP, but it has a limit of about 10 bases of the independent components. ArtINS also requires manual
parameter setting for the linear combination. Finally, our CSFer, in contrast to these methods, creates
novel and meaningful art styles as our neural permutation has the ability to produce novel style bases.
Even when applied to ArtINS, ArtINS+CSFer generates richer and more creative results.

Quantitative aesthetic evaluations. To ascertain the capacity of our CSFer to generate aesthetically
meaningful styles, we employ two methods for aesthetic evaluation, namely, SAAN (Yi et al.,
2023) and TANet (He et al., 2022), to gauge the quality of the generated styles. The results are
presented in Table 1. It is evident that our CSFer and its various adaptations outperform SOTA
style transfer methods in terms of SAAN and TANet aesthetic scores. For instance, ArtINS+CSFer
and MST+CSFer achieve the highest SAAN scores, namely 5.112 (WikiArt), 4.746 (CAN), and
4.776 (CD). Similarly, our CSFer and MST+CSFer attain the highest TANet scores, which are 5.444
(WikiArt), 5.521 (CAN), and 5.458 (CD).

AdaIN Our CSFerWikiArt

Figure 5: Artistic examples created by
our CSFer from the WikiArt dataset.

Comparison with the creative methods. Figure 4 com-
pares the artistic styles generated by CAN (Elgammal
et al., 2017), Creative Decoder (CD) (Das et al., 2020),
and our CSFer method. To ensure a fair comparison, we
used AdaIN to transfer each style to the same content.
Our approach produces novel styles with mixed colors,
which is a significant improvement over both CAN and
the creative decoder. For example, in the second col-
umn, CSFer naturally creates a mixed green and red style,
which is more visually appealing than the black and yel-
low styles of CAN+AdaIN. Similarly, in the fifth column,
CSFer generates a mixing green and yellow style that
is more appealing than the yellow style of CD+AdaIN.
Furthermore, as shown in Figure 5, our approach can create colorful arts based on the WikiArt dataset,
as seen in the results in the last column. In addition, in the first and second columns, our approach
create the green and weak pink style from the red and yellow style images, respectively.

Generalization capability of our CSFer. Our method exhibits remarkable generalization abilities.
It seamlessly integrates with various NST techniques by simply incorporating the acquired PerNet.
These methods include LST, MST, IEC, and ArtINS. The visual results, as depicted in Figures 3
and 6, provide compelling evidence that these variations consistently yield fresh and meaningful
styles. Additionally, Table 1 presents the aesthetic scores, showcasing how CSFer enhances all the
variants except for ArtINS. It’s worth noting that comparing ArtINS is challenging due to its linear
combination of eight styles, which complicates the tuning of combinatorial parameters. Furthermore,
in Figure 7, we present the SPD scores calculated between the original style Is and both the stylized
image O and our creatively stylized image Õ. This comparison illustrates our CSFer significantly
influences the NST methods, resulting in higher SPD scores and novel stylized outcomes.

User Study. We conducted a user study to assess the effectiveness of our CSFer algorithm in
comparison to other methods. The evaluation was divided into three categories based on different
perspectives. These were favorite results among the five NST methods, and creative art results

8
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Figure 6: Generalization results using our CSFer to insert into the LST, MST and IEC methods.

Figure 7: Style Perception Distance (SPD) comparisons with different methods on WikiArt and CAN.

Table 2: Quantitative evaluations of stylization methods.
Methods AdaIN LST DFP ArtINS CSFer ArtINS+CSFer CD CSFer CAN CSFer
Vote ↑ 64 38 87 16 96 37 146 192 142 196

between CAN (or CD) and CS-
Fer. Each group received 338
votes, resulting in a total of
1014 votes from 169 users. Ta-
ble 2 reports the voting results. CSFer received the most votes, with 28.4% of users indicating that it
was their preferred method, compared to only 4.7% for ArtINS. Additionally, approximately 57% of
users believed that CSFer provided a more creative style than the CAN method, and 58% believed
that it produced a superior visual experience than CD. Overall, our CSFer was the most popular of all
novel creative ways. The scheme of user study, refer to Appendix B

4.3 PARAMETER ANALYSIS OF SAMPLING

Table 3: Parameter analysis
with β1 and β2 using the SNNA
scores when α = 0.2.
β1\β2 0.1 0.2 0.3 0.4

0.3 5.054 5.157 5.214 5.244
0.4 5.107 5.182 5.241 5.244
0.5 5.107 5.218 5.321 5.321
0.6 5.150 5.233 5.233 5.319

During our sampling procedure in Figure 2, we determined the
values of three parameters α, β1, and β2, in Eq. 6. based on 200
pairs of style and content images. To generate an image set Õ
for each image pair, we performed 1000 random permutations of
(µS , δs). Our decision to set the parameters α = 0.2, β1 = 0.5,
and β2 = 0.3 was informed by Table 3 for β1 and β2, as well as
Appendix C for α. These parameter values were selected because
they yielded the highest average aesthetic assessment SNNA score
(Yi et al., 2023). Using these parameter settings, we obtained a
subset of images denoted as Õsub and identified an optimal image Õopt(Is,Ic).

5 CONCLUSION

In this paper, we introduce an innovative NST method designed to generate novel and meaningful
stylized images using just a single style image. Our approach consists of two crucial components:
neural permutation for generating fresh stylized outputs, and the selection of novel and meaningful
results from these newly stylized outputs. The former involves training a neural network to rearrange
the means and variances of feature maps derived from the style image, while the latter entails
evaluating the novelty of these newly stylized outputs to choose the optimal outcome. Our experiments
demonstrate that our approach excels in producing novel and meaningful stylized images when
compared to both popular NST methods and other creative techniques in the field.
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Table 4: Parameter analysis with α β1 and β2 using the SNNA scores.
α = 0.1 α = 0.2 α = 0.3

β1\β2 0.1 0.2 0.3 0.4 β1\β2 0.1 0.2 0.3 0.4 β1\β2 0.1 0.2 0.3 0.4
0.3 4.961 5.068 5.121 5.154 0.3 5.054 5.157 5.214 5.244 0.3 5.095 5.187 5.245 5.286
0.4 5.001 5.126 5.162 5.204 0.4 5.107 5.182 5.241 5.244 0.4 5.151 5.224 5.282 5.314
0.5 5.001 5.154 5.195 5.224 0.5 5.107 5.218 5.321 5.321 0.5 5.170 5.242 5.302 5.333
0.6 5.091 5.179 5.224 5.255 0.6 5.150 5.233 5.233 5.319 0.6 5.183 5.271 5.318 5.352

A SSIM AND SPD

• Structural Similarity (SSIM) (Wang et al., 2004) between images x and y is defined by:

SSIM(x, y) = [l(x, y)]α[c(x, y)]β [s(x, y)]γ , (9)

where [l]α, [c]β and [s]γ computes the brightness, contrast and structure between images x
and y, and the parameter is typically set to α = β = γ = 1. SSIM is close to 1 or 0, that is,
x is structural similar or dissimilar to y.

• Style Perception Distance (SPD) (Li et al., 2017a) between images x and images y is
computed by:

SPD(x, y) =

L∑
i=1

∥µ(ϕi(x))− µ(ϕi(y))∥2 +
L∑

i=1

∥σ(ϕi(x))− σ(ϕi(y))∥2, (10)

where each ϕi denotes a layer in VGG-19 used to compute the style perception distance. In
our experiments we use relu1 1, relu2 1, relu3 1, relu4 1 layers with equal weights. µ and
σ represent the mean and variance of each layer. The style of the images x is less similar to
the style of the images y as the SPD increases.

B THE SCHEME OF USER STUDY

In this subsection, we present the user study, as depicted in Figure 8. The first question involves
Choose your favorite stylized image base on the content image and style image by considering both
the content and style images. This comparison is carried out across various methods, including the
work by AdaIN (Huang & Belongie, 2017), AdaAttN (Liu et al., 2021a), DFP (Wang et al., 2020),
and ArtINS (Xie et al., 2022). In the second question, we focus on leveraging the CAN dataset
(Elgammal et al., 2017) and the Creative Decoder dataset (Das et al., 2020) to generate novel images.
Respondents are prompted to select their preferred stylized image based on the content image alone.

C PARAMETER ANALYSIS

We determined the values of α, β1, and β2 by examining Table 4. It was observed that when α = 0.2,
β1 = 0.5, and β2 = 0.3, our CSFer achieved a relatively high SAAN score, leading us to select these
values. Additionally, we visualized the sampling results using these parameters in Figure 9. This
visualization demonstrates that our evaluation method is capable of sampling novel and meaningful
styles.

D MORE VISUAL RESULTS

In this section, we present more visual results. Figure 10 shows more results to verify the general-
ization abilities of our CSFer method. Figure 11 showcases more visual results compared with the
creative methods,e.g., CAN and Creative Decoder.
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Figure 8: The process of user study.
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Content style AdaIN Sampling

Figure 9: Visualizations of the sampling results using the parameters α = 0.2, β1 = 0.5, and
β2 = 0.3.
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Figure 10: More generalization results using our CSFer to insert into the LST, MST and IEC methods
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Figure 11: More results by comparing artistic styles generated by CAN, Creative Decoder, and our
CSFer method
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