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Abstract

We investigate improving the utility of standard differential private optimization algorithms
by adaptively determining the clipping radius in federated learning. Our adaptive clipping
radius is based on the root-mean-square of the gradient norms, motivated by the interpo-
lation property and smoothness of the objectives. In addition to Renyi Differential Privacy
(RDP) analysis, we conduct theoretical utility analysis of the proposed algorithm, show-
ing that our method enhances utility compared to DP-SGD for smooth and non-strongly
convex objectives. Numerical experiments confirm the superiority of our adaptive clipping
algorithm over standard DP optimization with fixed clipping radius in federated learning
settings.

1 Introduction

Federated Learning (FL) is an emerging distributed learning paradigm in machine learning. In this frame-
work, each client possesses a local dataset, and these clients work collaboratively to train a shared machine
learning model by exchanging information through communication (Konečnỳ et al., 2016; McMahan et al.,
2017). To preserve the privacy of client information, federated learning prohibits direct sharing of local
datasets. Instead of sharing the raw datasets, federated learning algorithms try to learn a model only by
exchanging the local model parameters or the gradients computed on the local datasets. However, this
approach does not fully protect the privacy of the local datasets. In fact, it is possible to extract private
information from the communicated local models or gradients. Major attacks designed to steal private
information include membership inference attack (Shokri et al., 2017; Yeom et al., 2018; Nasr et al., 2019)
and reconstruction attack (Fredrikson et al., 2015; Zhu et al., 2019; Yang et al., 2019; Wang et al., 2019b;
Geiping et al., 2020; Zhang et al., 2020).

Differential Privacy (DP) has recently received much attention to protect client data privacy against the
aforementioned attacks. DP provides a framework that measures the extent to which privacy informa-
tion leaks when using a given random mechanism (Dwork et al., 2006; Dwork & Naor, 2010; Dwork et al.,
2010; Dwork, 2011; Dwork et al., 2014). To ensure the DP guarantees of a federated learning algorithm,
existing works typically rely on the gradient perturbation technique(Song et al., 2013; Abadi et al., 2016;
McMahan et al., 2018; Geyer et al., 2017; Triastcyn & Faltings, 2019). For example, Differential Private
Stochastic Gradient Descent (DP-SGD) is a workhorse of DP optimization. In DP-SGD, independent Gaus-
sian noise with a mean of zero is added to the computed gradient, resulting in a noisy gradient that is then
used to update the parameters at each iteration. The algorithm determines the standard deviation of this
noise, referred to as the DP-noise size, based on the desired privacy level.
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In DP optimization, a fundamental trade-off exists between the optimization accuracy (often referred to as
utility) and the privacy level. Thus, it is crucial to compare the utility of the algorithms at a given privacy
level in order to evaluate the performance of the DP optimization algorithms. For instance, DP-SGD is
known to achieve a utility of O(

√
d log(1/δ)/(nε)) with a central (ε, δ)-DP guarantee, where d represents the

problem dimension and n is the total number of samples. This rate is indeed minimax optimal in non-strongly
convex settings (Bassily et al., 2014). Given certain privacy levels, the development of a DP optimization
algorithm with improved utility attracts much interest in the field due to its fundamental importance.

To enhance utility, a promising approach is to use adaptive clipping (Pichapati et al., 2019; Asi et al., 2021;
Andrew et al., 2021; Yang et al., 2022; Bu et al., 2022; Xia et al., 2023). Standard DP optimization algo-
rithms often use gradient clipping to bound the L2-sensitivity of communicated parameters, with a fixed
clipping radius (Abadi et al., 2016). In contrast, adaptive clipping dynamically adjusts the clipping radius
based on observed gradient values, leading to improved utility. In particular, iteration-level adaptive clip-
ping aims to reduce the DP noise size by estimating the iteration-dependent L2 sensitivity from the gradient
information. A key implicit assumption underlying the iteration-level adaptive clipping is the interpolation
property of the objectives, meaning that per-sample gradient norms converge to zero as the model parameter
approaches the optimum. This property is often observed in high-dimensional problems, such as training
deep neural networks. With the growing prevalence of large-scale machine learning models, the interpolation
property has become much more realistic, further highlighting the importance of iteration-level adaptive
clipping.

However, many iteration-level adaptive clipping algorithms are primarily heuristic, lacking rigorous utility
analysis and theoretical improvements over non-adaptive clipping algorithms. While empirical effectiveness
has been reported, a solid theoretical foundation is often missing. The objective of this study is to develop
a novel iteration-level adaptive clipping algorithm for federated learning and provide a theoretical utility
analysis. Additionally, we conduct numerical experiments to demonstrate the superiority of the proposed
method over non-adaptive clipping approaches.

Main Contributions

We propose a new adaptive clipping algorithm for local record-level DP federated learning, which is particu-
larly relevant in cross-silo FL. The proposed per-round adaptive clipping radius Cr is determined based on
the root-mean-square gradient norm

√
(τ/n)

∑
z∈D ∥∇ℓz(xr−1)∥2 at the current global model xr−1, which

becomes smaller as the optimization proceeds, and reduces the amount of DP noise added to the model
parameter in local optimization by exploiting the interpolation property of the objective function, where τ
is the predefined parameter controlling the clipping bias.

We provide not only DP guarantees of the algorithm based on RDP technique (Mironov, 2017), but also
a utility analysis. In our utility analysis, the main technical difficulty is to show the utility improvement
over DP-SGD by carefully quantifying the trade-off between the reduction of the adaptive clipping radius
Cr (and the DP noise size) and the clipping bias depending on the choice of τ . Furthermore, we analyze the
impact of local optimization bias and the stochastic gradient noise, as our algorithm is based on FedAvg.

For smooth convex objectives under interpolation regimes, we show that our algorithm with (ε, δ)-DP guaran-
tees achieves a utility of õ(ϵDP-SGD

util ) with a factor depending on τ and τq, where ϵDP-SGD
util := Θ̃(

√
d/(nloc

√
Pε))

is the best-known utility of DP-SGD under local record-level DP settings, and τq is the mean-quantile ratio
as defined in Definition 1. Our result indicates a theoretical utility improvement over the best-known one
when the mean-quantile ratio τq is not too large, which depends on the model and dataset. To validate this
finding, we conduct numerical experiments to demonstrate empirical superiority over DP-FedAvg, which is
a natural counterpart in federated learning of DP-SGD.

Related Works

Here, we briefly discuss the relationship between existing studies on adaptive clipping and this study.

One primary motivation for adaptive clipping is to enhance utility compared to fixed clipping methods
such as DP-SGD and DP-FedAvg. Fu et al. (2022) studied an iteration-level adaptive clipping method for
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DP federated learning, utilizing the mean of the (non-squared) gradient norm with heuristic DP noise size
scheduling. Despite its empirical efficacy, this approach lacks utility analysis and fails to achieve theoretical
improvements over the non-adaptive clipping methods. In contrast, we delve into the theoretical utility of
the proposed algorithm and demonstrate both empirical and theoretical enhancements over the non-adaptive
clipping methods. Pichapati et al. (2019) introduced a coordinate-level adaptive clipping method based on
gradient normalization and de-normalization techniques. Asi et al. (2021) proposed PAGAN, which is a
combination of a coordinate-level adaptive clipping with adaptive gradient methods (Duchi et al., 2011).
These studies provided theoretical utility improvements over DP-SGD under the assumption of gradient
magnitude imbalance. While coordinate-level adaptive clipping is conceptually different from iteration-level
adaptive clipping, it is feasible to merge these approaches. However, our study primarily focuses on iteration-
level adaptive clipping.

Another motivation for adaptive clipping is to reduce the cost of tuning fixed clipping radius (Andrew et al.,
2021; Yang et al., 2022; Bu et al., 2022; Xia et al., 2023). Andrew et al. (2021) studied a quantile estimation
method to estimate the L2 sensitivity of the loss gradient and empirically demonstrated that the hyperpa-
rameter of the estimation algorithm was much more robust than using the fixed clipping radius. Yang et al.
(2022); Bu et al. (2022); Xia et al. (2023) explored per-sample normalized gradient methods to eliminate the
need for a predefined clipping radius and reported that these methods achieved nearly the same accuracy as
DP-SGD.

Another related study investigated DP optimization under interpolation regimes. (Asi et al., 2022) proposed
a DP optimization based on their so-called Lipschitz extension with a decreasing Lipschitz constant under
interpolation regimes for non-federated learning settings. While the theoretical result is quite strong, their
theory essentially relies on a quadratic growth condition, which is much stronger than our assumptions, and
it requires a huge computational cost due to the need to solve a per-sample optimization sub-problem to
obtain the Lipschitz extension at each iteration. In addition, (Béthune et al., 2024) recently proposed a novel
algorithm called Clipless DP-SGD, which removes the clipping procedure and its resulting bias in standard
DP-SGD by analytically accounting the per-layer Lipschitzness of the neural network during training.

2 Notation and Problem Settings

This section first introduces the notation used in this paper. Then, the problem settings are explained.

Notation. ∥ · ∥ denotes the Euclidean L2 norm ∥ · ∥2: ∥x∥ =
√∑

i x
2
i for vector x. For a natural number

m, [m] denotes the set {1, 2, . . . ,m}. For any number a, b, a ∨ b means max{a, b} and a ∧ b does min{a, b}.
Clip(x,C) := min{1, C/∥x∥}x for x ∈ Rd and C ≥ 0. For any q ∈ [0, 1], Qq(X) denotes the q-quantile of X.
R≥ denotes the set of non-negative real numbers.

In this paper, we consider the minimization of objective functions that typically arise in federated learning
under differential privacy constraints.

Objective Function. The objective function is defined as f(·) := (1/P )
∑
p∈[P ] fp(·) on Rd. Here, fp(·)

is the local objective associated with client p and is defined by (1/np)
∑
z∈Dp

ℓz(·), where Dp is the local
dataset of client p and np is its size, and ℓz is the loss function associated with sample z. Let n and np be
|D| and |Dp| respectively.

Differential Privacy Constraint. We focus on local record-level differential privacy (also known as Inter-
Silo Record-Level (ISRL)-DP (Lowy et al., 2023)), which plays a crucial role in private cross-silo federated
learning. Local record-level privacy assumes that both a central server and clients are honest-but-curious,
i.e., the server is not trustworthy. Then, given a mechanism M, it is required to guarantee record level
(ε, δ)-differential privacy1 for all the outputs of client p with respect to each local dataset Dp for every
p ∈ [P ], that is P(M(Dp) ∈ S) ≤ eεP(M(D′

p) ∈ S) + δ, for every S and every adjacent2local datasets Dp

1Although we focus on record-level differential privacy, it is straightforward to extend our analysis to the case of client-level
differential privacy.
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and D′
p, where ε > 0 denotes the distinguishable bound of all outputs on two adjacent data subsets and

δ ∈ (0, 1) represents the probability of information leakage.

We introduce an important notion referred to as the τq-quantile-mean ratio, which plays an important role
in our theoretical analysis. In the following, let Qq denote the q-quantile of the input values. Note that we
always have the loose bound τq(x) ≤ n.
Definition 1 (τq-quantile-mean ratio). For given q ∈ [0, 1], we define τq : Rd → R≥0 as τq(x) :=
Qq({∥∇ℓz(x)∥2}z∈D)/((1/n)

∑
z∈D ∥∇ℓz(x)∥2).

To analyze the utility of our proposed algorithm, the following theoretical assumptions are required. With
the exception of Assumption 2, our assumptions are fairly standard. Importantly, in our DP guarantees
analysis, Assumptions 1-4 are not necessary.
Assumption 1 (Convexity of ℓz). ℓz is convex on Rd for every z ∈ D.
Assumption 2 (Interpolation Regimes (Vaswani et al., 2019)). There exists an optimal solution x∗ of f ,
i.e., x∗ ∈ arg minx∈Rd f(x) with ∥x∗∥ ≤ B for some B > 0. Moreover, it holds that ℓz ≥ 0 and ℓz(x∗) = 0
for every z ∈ D.

This assumption is a key to our utility improvement. It is well-known that interpolation often occurs in
high-dimensional problems including (approximated) kernel methods and over-parameterized deep learning
(Jacot et al., 2018; Allen-Zhu et al., 2019). Here, we do not assume the strong growth condition or its
variants, which are much stronger than Assumption 2.
Assumption 3 (G-Lipschitzness of ℓz). ℓz is G-Lipschitz, i.e., |ℓz(x)−ℓz(y)| ≤ G∥x−y∥, for every x, y ∈ Rd
and z ∈ D.
Assumption 4 (L-smoothness of ℓz). ℓz is L-smooth, i.e., ∥∇ℓz(x) − ∇ℓz(y)∥ ≤ L∥x − y∥, for every
x, y ∈ Rd and z ∈ D.

3 Approach and Proposed Algorithm

In this section, we present our strategy for incorporating adaptive DP noise in federated learning.

3.1 Review of DP-GD and DP-SGD

First, we briefly review the algorithm of DP-GD and DP-SGD (Abadi et al., 2016), which are the gold
standard methods in DP optimization based on non-adaptive clipping, to clarify our approach.

In DP optimization, the running algorithm is required to be (ε, δ)-DP, and a gradient perturbation technique
is typically used to satisfy this constraint in federated learning, where privacy preservation is required even
during training time communications. Gradient perturbation adds some random noise to the aggregated
gradient to satisfy the DP constraint for each iteration. For example, DP-(S)GD has the update rule of
xr = xr−1 − η(gr + ξr), where gr is the full gradient ∇f(xr−1) for DP-GD and is a minibatch stochastic
gradient for DP-SGD, η is a learning rate, and ξr is Gaussian noise with mean zero and variance σ2, which
is called DP noise.

For DP-GD, the noise size σ for (ε, δ)-DP depends on the number of iterations R, dataset size n, privacy
parameters ε, δ, and L2 sensitivity ∆ of gr. Specifically, it is known that the DP noise size to satisfy (ε, δ)-DP
is σ = O(∆

√
R log(1/δ)/ε). The L2 sensitivity of gr is formally defined as ∆ := supdH(D,D′)=1 ∥gr(D) −

gr(D′)∥, where the supremum is taken over every pair of adjacent datasets (D,D′) and gr(D) denotes the
gradient computed on dataset D.

A standard sensitivity analysis requires the uniform boundedness of the norm of the per-sample gradients,
i.e., ∥∇ℓz(xr−1)∥ ≤ C for every sample z ∈ D and every parameter xr−1 for some C ≥ 0. To satisfy this
requirement, a typical approach is to use gradient clipping; gr := (1/n)

∑
z∈D Clip(∇ℓz(x), C) for some

predefined C. Then, we can get a simple upper bound ∆ ≤ 2C/n.
2We say that datasets D = {zi}n

i=1 and D′ = {z′
i}

n
i=1 are adjacent if dH(D, D′) = 1, where dH is the Hamming distance

between D and D′ defined by dH(D, D′) :=
∑n

i=1 1xi ̸=x′
i
.
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3.2 Our Approach

Gradient clipping requires the clipping radius C to execute the algorithm. Most of the previous methods focus
on using a constant C. However, this may degrade the utility of the algorithm; clipping bias occurs when
∥∇ℓz(xr−1)∥ ≫ C for a large potion of D, and the privacy budget is wasted in vain when ∥∇ℓz(xr−1)∥ ≪ C
for every z ∈ D. Thus, it is desirable to adaptively determine C based on the observed per-sample gradients
{∥∇ℓz(xr−1)∥}z∈D for each round r to obtain better utility.

Since {∥∇ℓz(xr−1)}z∈D depends on xr−1 and changes across rounds, it is desirable to make the clipping
radius depend on the parameter xr−1. This type of clipping is referred to as iteration-level adaptive clip-
ping in this paper. A basic approach to realize iteration-level adaptive clipping is to use the q-quantile
Qq({∥∇ℓz(xr−1)∥}z∈D) with some q ∈ [0, 1] for constructing the clipping radius for each iteration. How-
ever, direct use of the quantile is difficult because the quantile information is much more sensitive than the
standard aggregation results such as the mean, which results in large DP noise. To mitigate this problem,
several estimators have been proposed in the previous study (Fu et al., 2022). However, these are heuristic
and do not provide theoretical improvements.

We propose an adaptive clipping radius Cr based on the key quantity
√

(τ/n)
∑
z∈D ∥∇ℓz(xr−1)∥2 for a

given hyper-parameter τ ≥ 1, which can be an upper bound of Qq({∥∇ℓz(xr−1)∥}z∈D)) with adequate τ
for some q ∈ [0, 1] with high probability. To guarantee (ε, δ)-DP of this procedure, we need to add DP
noise ξ(p),C

r , because (τ/n)
∑
z∈D ∥∇ℓz(xr−1)∥2 already contains private information. The behind reason for

using this quantity is that (1/n)
∑
z∈D ∥∇ℓz(xr−1)∥2 ≤ 2Lf(xr−1) holds in general for L-smooth convex f

in interpolation regimes. This means that Cr can adaptively decrease depending on the current model xr−1
as f(xr−1) goes to f(x∗) = 0 in optimization. Then, the L2 sensitivity of Cr and thus the DP noise size also
decreases, and we expect better utility than non-adaptive clipping methods.

3.3 Proposed Algorithm

Algorithm 1 AdaptDP-FedAvg
1: for p ∈ [P ] in parallel do
2: Compute σCp and σp based on (1).
3: end for
4: x0 = xini.
5: for r = 1 to R do
6: for p ∈ [P ] in parallel do
7: G

(p),C
r = 1

bC

∑
z∈I(p),C

r
Clip(∥∇ℓz(xr−1)∥2, Ĝ2), where I(p),C

r ∼ Dp with size bC .
8: end for
9: Cr =

√
2τ
(

1
P

∑P
p=1(G(p),C

r + ξ
(p),C
r ) + ν̃

)
∧ Ĝ, where ξ(p),C

r ∼ N(0, (σCp )2Ĝ4).

10: for p ∈ [P ] in parallel do
11: x

(p)
0,r−1 = xr−1.

12: for k = 1 to K do
13: g

(p)
k,r−1 = 1

b

∑
z∈I(p)

k,r−1
Clip(∇ℓz(x(p)

k,r−1), Cr), where I(p)
k,r−1 ∼ Dp with size b

14: x
(p)
k,r−1 = x

(p)
k−1,r−1 − η(g(p)

k,r−1 + ξ
(p)
k,r−1), where ξ(p)

k,r−1 ∼ N(0, σ2
p(Cr)2I).

15: end for
16: x̄

(p)
r = 1

K

∑K
k=1 x

(p)
k−1,r−1.

17: end for
18: xr = Clip( 1

P

∑
p∈[P ] x

(p)
K,r−1, B).

19: x
(out)
r = 1

P

∑
p∈[P ] x̄

(p)
r .

20: end for
21: x(out) = 1

R

∑
r∈[R] x

(out)
r .

22: Return: xR, x(out).
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The concrete procedures of our proposed method are given in Algorithm 1. In each round, we first compute
Cr. Each client p computes G(p),C

r based on local minibatch gradients with size bC , which is the average of the
squared per-sample gradient norm with a constant clipping radius Ĝ2. Then, the central server aggregates
G

(p),C
r +ξ(p),C

r and constructs Cr as in line 9. Here, ξ(p),C
r ∼ N(0, (σCp )2) is Gaussian noise with mean zero and

variance (σCp )2 is DP noise to protect the privacy of G(p),C
r . The constant ν̃ is also added to account for the

stochastic noise due to the minibatch sampling and the gradient deviation ∥∇ℓz(x(p)
k−1,r−1) − ∇ℓz(xr−1)∥2

because we use a common Cr for each client p and each local iteration k within round r. Reusing the
clipping radius in a round is desirable as it reduces both the number of privacy information releases and
the computational cost. After calculating Cr, the server sends Cr to each client, and each client runs local
optimization based on the adaptive clipping radius Cr. The local optimization follows standard DP-SGD
with minibatch size b and DP noise ξ(p)

k,r−1. A key distinction is that σr depends linearly on the adaptive
clipping radius Cr instead of an estimated Lipchitzness parameter Ĝ. The resulting parameters {x(p)

K,r−1}p∈[P ]
are aggregated by the server to form the next round global parameter xr. The specific values of {σCp }p∈[P ]
and {σp}p∈[P ] to guarantee (ε, δ)-DP will be provided in the next section.

Remark 1 (Additional computational and communication costs). Compared to DP-FedAvg, constructing
Cr requires additional computational and communication costs. However, these costs are often negligible
because (i) Cr is computed only once per round; (ii) Cr allows relying on minibatch sampling, which further
reduces the computational cost; and (iii) G(p),C

r is scalar and the communication cost is only Θ(P ) instead
of Θ(Pd), which is quite small.

Remark 2 (Hyperparameters). The hyperparameters of Algorithm 1 are η, τ and Ĝ. Since the hyperparam-
eters of DP-SGD are η and fixed clipping radius C, our algorithm requires only one more hyperparameter
than DP-SGD. Note that ν̃ can be theoretically determined by Proposition 2 with u = 0.01, for example. The
parameter clipping radius B never affects the DP guarantees of Algorithm 1 and the clipping procedure is
only necessary for technical reasons related to utility analysis. Therefore, in practice, the clipping in line 18
can be ignored.

4 Theoretical Analysis

In this section, we provide a theoretical analysis of our proposed algorithm.

4.1 DP Guarantee Analysis

We investigate the DP noise size σC and σ to guarantee (ε, δ)-DP of Algorithm 1 based on RDP theory
(Mironov, 2017) and incorporates the subsampling amplification technique (Wang et al., 2019a).

Given any ε : (1,∞] → (0,∞] and γ ∈ (0, 1], we define S(ε, γ) : (1,∞] → (0,∞] as

S(ε(·), γ)(α) := 1
α− 1

log
(

1 + γ2
(
α

2

)
min

{
4(eε(2) − 1), eε(2) min{2, (eε(∞) − 1)2}

}
+

α∑
j=3

γj
(
α

j

)
e(j−1)ε(j) min{2, (eε(∞) − 1)j}

 ,

which is defined in (Wang et al., 2019a). In the following analysis, we assume that the minibatch sampling
is based on uniform sampling without replacement.

Proposition 1 (One-round RDP analysis). Suppose that b, bC ≤ np for p ∈ [P ]. Let ∆C := 2/bC , γCp :=
bC/np, ∆ := 2/b and γp := b/np. We define εCp (α) := α(∆C)2/(2(σCp )2), εp(α) := α∆2/(2σ2

p). Given xr−1,
Cr is (α,S(εCp (·), γCp )(α))-RDP, and given xr−1 and Cr, ({x(p)

k,r−1}k∈[K], x̄
(p)
r ) is (α,KS(εp(·), γp)(α))-RDP

for any integer α ≥ 2.
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Theorem 1 (DP noise size). Let α∗ := 1 + ⌈2 log(1/δ)/ε⌉. Then, the output information of client p ∈ [P ]
in Algorithm 1 is (ε, δ)-DP, if{

σCp := min{σCp ≥ 0 | RS(εCp (·), γCp )(α∗) ≤ εtarget},
σp := min{σp ≥ 0 | RKS(εp(·), γp)(α∗) ≤ εtarget}

(1)

with εtarget := ε/4. In particular, the DP noise size σCp and σp in (1) satisfy
σCp = O

(√
R log 1

δ

npε
∨

√
log 1

δ

bC
√
ε

)
σp = O

(√
KR log 1

δ

npε
∨

√
log 1

δ

b
√
ε

) (2)

under bC ≤ np

2eα∗
∧
(

4np

α∗(σC
p )2

) 1
3 , b ≤ np

2eα∗
∧
(

4np

α∗σ2
p

) 1
3 and ε = O(log(1/δ)).

Remark 3. When the computation of Cr involves full-batch gradients rather than minibatch ones, replacing
∆C := 2/(bC) and RS(εCp (·), γC)(α∗) ≤ εtarget in (1) with ∆C := 2/np and RεCp (α∗) ≤ εtarget respectively
gives (ε, δ)-DP guarantees, and (2) still holds.

4.2 Utility Analysis

In this subsection, we derive a convergence rate and utility of Algorithm 1 with (ε, δ)-DP. In the convergence
analysis, the minibatch sampling is assumed to be uniform sampling with replacement for simplicity. Also,
to simplify the arguments, we assume that the gradients in the computation of Cr are deterministic, i.e., we
focus on the full batch cases, and np = np′ holds.

Notation used in utility analysis. Let ℓCz (x) := min{1, C/∥∇ℓz(x)∥}ℓz(x), fCp (x) :=
(1/np)

∑
z∈Dp

ℓCz (x) and fC(x) := (1/P )
∑
p∈[P ] f

C
p (x). Also, ∇̂ℓCz (x), ∇̂fCp (x) and ∇̂fC(x) de-

note min{1, C/∥∇ℓz(x)∥}∇ℓz(x), (1/np)
∑
z∈Dp

∇̂ℓCz (x) and (1/P )
∑
p∈[P ] ∇̂fCp (x) respectively. We de-

fine (σC)2 := (1/P )
∑P
p=1(σCp )2, σ2 := (1/P )

∑P
p=1 σ

2
p, ξ̄Cr−1 := (1/P )

∑P
p=1 ξ

(p),C
r−1 and ξ̄k,r−1 :=

(1/P )
∑P
p=1 ξ

(p)
k,r−1. nloc denotes np = np′ .

The following proposition ensures that for at least a qτ (xr−1)-fraction of the n per-sample gradients, our
adaptive gradient clipping with radius Cr only reduces to 1/

√
1 ∨ (τq(xr−1)/τ of the original size. Also, it

provides a theoretical suggestion for parameter ν̃.
Proposition 2 (Simplified version of Proposition 4). Let u ∈ (0, 1) be sufficiently small, q ∈ [0, 1] and τ > 0.
Suppose that Assumptions 3 and 4 hold. With Ĝ ≥ G and appropriate η ≤ Õ(1/(KL) ∧

√
P/(

√
Kσ̄2dL)),

with probability at least 1 − u, for every k ∈ [K], r ∈ [R], it holds that Qq({∥∇ℓz(x̄k−1,r−1)∥}z∈D) ≤√
1 ∨ (τq(xr−1)/τ)Cr, when we set ν̃ :=

√
2(σC)2Ĝ4/P

√
log(2PR/u).

To derive a convergence rate, we first derive a single round bound. Unlike the standard analysis, we develop a
bound for fCr rather than the original f . Also, our analysis relies on the arguments from (Woodworth et al.,
2020) to bound the localization error due to the use of multiple local updates (K > 1).
Proposition 3 (One-round Analysis (Simplified version of Proposition 5)). Suppose that Assumptions 1, 2,
3 and 4 hold. Let u ∈ (0, 1) be sufficiently small and q ∈ [0, 1]. With probability at least 1 − u, Algorithm 1
satisfies

∥x̄K,r−1 − x∗∥2 ≤ ∥x̄0,r−1 − x∗∥2 − Ω(η)
K∑
k=1

E[fCr (x̄k−1,r−1) | E] + Õ(A)C2
r

− Ω
( η
L

) K∑
k=1

1
P

∑
p∈[P ]

1
np

∑
z∈Dp

1
min{1, Cr/∥∇ℓz(x(p)

k−1,r−1)∥}
∥∇̂ℓCr

z (x(p)
k−1,r−1)∥2 + Stoc. Error.
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for every r ∈ [R] under τ ≤ τmax
1 and η ≤ Õ(1/(

√
τmax

1 /τKL) ∧ 1/(
√
τmax

1 /τ
√
Kσ2dL), where τmax

q :=
maxr∈[R] τq(x̄r−1). Here, A := η3K3L + η3K2Lσ2d + (η2Kσ2d/P ) + (η2K/(Pb) and Stoc. Error. :=
−2η

∑K
k=1

〈
x̄k−1 − x∗, ḡk − E{I(p)

k
}p∈[P ]

[ḡk] + ξ̄k,r−1

〉
.

Then, we incorporate the adaptive clipping radius Cr, which includes another DP noise ξCr into consideration
in the inequality derived in Proposition 3. Finally, applying this inequality recursively leads to our main
result.
Theorem 2 (Convergence Rate (Simplified version of Theorem 3)). Suppose that Assumptions 1, 2, 3 and 4
hold. Let u ∈ (0, 1) be sufficiently small. Then, with probability at least 1 − u, Algorithm 1 with ν̃ as defined
in Proposition 2 and (σC , σ) as defined in Theorem 4, satisfies

1
KR

R∑
r=1

K∑
k=1

fCr (x̄k−1,r−1)

≤ Õ

(
∥xini − x∗∥2 +B2

ηKR
+ τ

√
RG2

nloc
√
Pε

(
η2K2L+ ηKRd

n2
locPε

2 + η

Pb
+
(
ηKL+ 1

P

)
ηd

b2ε

))
.

under Ĝ ≥ G with Ĝ = Θ(G), τ ≤ τmax
1 and

η ≤ Õ

(
1

ϕ(τ)KL
∧ 1
KGB

∧ nlocε

ϕ(τ)K
√
RdL

∧ n2
locPε

2

ψ(τ)KRLd
∧ Pb

ψ(τ)L

)
,

where ϕ(τ) :=
√
τmax

1 /τ + (τmax
1 τ)1/4, ψ(τ) :=

√
τmax

1 τ and τmax
q is defined in Proposition 3.

Note that Theorem 2 only guarantees the convergence of fCr rather than f . To obtain meaning-
ful results, we use a fact that there exists Dq ⊂ D such that |Dq| ≥ qn and fDq (x̄k−1,r−1) ≤
O(
√

1 ∨ (τmax
q )/τ)fCr (x̄k−1,r−1) under suitable conditions, where fDq (x) := (1/|Dq|)

∑
z∈Dq ℓz(x). Note

that when q = 1, D1 = D and thus we can always have a lower bound of fCr based on f . Using this fact,
from Theorem 2, choosing appropriate η, K and R, which minimize the convergence error yields the best
achievable utility of Algorithm 1 with (ε, δ)-DP guarantees, summarized in the following corollary.
Corollary 1 (Utility bound (Simplified version of Corollary 2)). It is assumed that ∥xini − x∗∥, B, G and
L are Θ(1). Then, for any q ∈ [0.5, 1.0], there exists Dq ⊂ D such that |Dq| ≥ q|D| and Algorithm 1 with
(ε, δ)-DP guarantees satisfies

fDq

(
x(out)

)
≤ Õ

(√
1 ∨

τmax
q

τ

(
τ

4
9

d
2
9

(ϵDP-SGD
util ) 10

9 + (ϕ(τ)τ
√
P ) 1

3

d
1
6

(ϵDP-SGD
util ) 4

3 +
√
τ

d
1
4

(ϵDP-SGD
util ) 3

2 + τ
7

15

d
7

30
(ϵDP-SGD

util ) 19
15

+ (ϕ(τ)τ2
√
P ) 1

5

d
1
5

(ϵDP-SGD
util ) 7

5 + ψ(τ) 1
5

d
1
5

(ϵDP-SGD
util ) 8

5 + τ
2
5

(ϕ(τ)d) 1
5

(ϵDP-SGD
util ) 6

5 + ψ(τ)(ϵDP-SGD
util )2

))
.

under the conditions in Theorem 2, where fDq (x) := (1/|Dq|)
∑
z∈Dq ℓz(x), ϵDP-SGD

util = Θ̃(
√
d/(nloc

√
Pε))

and ϕ(τ), ψ(τ) are defined in Theorem 2.
Remark 4 (Interpretation of Corollary 1). Corollary 1 gives a utility bound of fDq , which represents the
averaged risk on some dataset Dq ⊂ D with |Dq| ≥ qn. At first, setting q = 1 gives a utility bound of the
original objective f , since D1 = D always holds. In this case, setting τ := Θ(τmax

1 ) minimizes the utility
bound. However, setting q < 1 can yield a much better bound because τmax

q may be much smaller than τmax
1 , at

the expense of the replacement of f with fDq . This observation suggests that using τ ≪ τmax
1 can be beneficial

in practical situations. This point will be further explored in Section 5. Note that our algorithm does not
explicitly depend on the choice of q, the bound given in Corollary 1 holds every q ∈ [0.5, 1.0] simultaneously.
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Remark 5 (Comparison with the best known utility bound). The best known utility under local record-
level (ε, δ)-DP is ϵDP-SGD

util := Θ̃(
√
d/(nloc

√
Pε) for non-strongly convex objectives, which is achieved by

DP-(S)GD. Compared with this rate, we can see that all the terms of our bound have o(ϵDP-SGD
util ), thanks to

the interpolation property and our adaptive clipping scheme. Thus, our method can achieve better theoretical
utility than the best-known one of DP-(S)GD in our problem settings. Although each term has a factor
depending on τ , τmax

q and τmax
1 , it also has a factor of 1/da for some a > 0 except for the last term,

which is favorable in high-dimensional problems. In Section 5, we will empirically confirm that τmax
q is not

significantly large.

5 Numerical Experiments

5.1 Experimental Setups

To empirically demonstrate the efficiency of the proposed AdaptDP-FedAvg, as detailed in Algorithm 1,
several experiments were conducted.

Comparing Algorithms For comparison, we use DP-FedAvg (Abadi et al., 2016) with a fixed noise size as
the baseline. However, the original analysis of DP-FedAvg did not incorporate the subsampling amplification
technique, which we include in our analysis in Section 4. To ensure a fair comparison, we conduct a new
study to determine the appropriate noise size for DP-FedAvg, along with its update rules, as presented in
Algorithm 2 in Appendix D.

Task Settings To compare the performance of algorithms—AdaptDP-FedAvg using adaptive noise size
versus DP-FedAvg employing fixed noise size—we prepared three privacy levels for each dataset, as shown
in Table 1. Based on our understanding, conventional studies on model training using DP typically follow
one of two evaluation approaches: i) setting the target privacy level (ε, δ) first and then computing the
corresponding noise size σ, e.g., (Pichapati et al., 2019; Geyer et al., 2017; Triastcyn & Faltings, 2019); or
ii) setting the noise size σ in advance, which implicitly determines the resulting (ε, δ), e.g., (Abadi et al., 2016;
Bu et al., 2020; Fu et al., 2022). While the number of data samples and rounds needed for model convergence
vary across datasets, the latter approach is more practical for testing purposes, and we therefore adopted
it. As shown in Table 1, we first set three fixed noise sizes for DP-FedAvg on each dataset. For a fair
comparison, the corresponding privacy level ε was computed while fixing δ = 10−4, using (3) in Appendix
D. Then, (σp, σCp ) for AdaptDP-FedAvg was determined, as in line 2 in Algorithm 1. Note that noise sizes
differ between AdaptDP-FedAvg and DP-FedAvg as in Table 1, the same privacy level (ε, δ) is theoretically
ensured.

In total, we prepared four benchmark tests, denoted T1)–T4). For T1), which uses an artificial dataset,
we evaluated the function 1/(2ntrain)(x− b)⊤(Z⊤Z)(x− b), where b represents the reference parameters, x
the model parameters, and Z the data samples. The dataset was randomly generated with Z ∈ Rd×ntrain .
In addition, we utilized real-world datasets, including T2) Bank Marketing3 (ntrain = 45, 211), T3) MNIST
(ntrain = 3, 000), and T4) FashionMNIST (ntrain = 3, 000) (Xiao et al., 2017). Separate test datasets were
prepared for each task.

For the convex model, we employed a two-layer Multi-Layer Perceptron (MLP) with fixed (i.e., untrainable)
first-layer weights to ensure convexity. This design choice is motivated by our utility analysis in Corollary
1, which suggests that a larger model parameter size d can lead to a smaller upper bound on the utility for
convex objectives. In our setup, the hidden layer dimension was set to 128 units for T2) and 512 units for T3)
- T4). The training dataset, consisting of ntrain samples, was partitioned across P = 2 clients such that each
client holds nmin = ⌊ntrain/P ⌋ samples. Test accuracy was recorded at the center server at the end of each
round. As additional experiments, we conducted evaluations with P = 4, 6 clients, as well as experiments
using a non-convex model. These results are provided in Appendix E.2 and Appendix E.3, respectively.

Hyperparameter Tuning We configured (R,K) for each dataset to ensure that the model parameters
approached convergence using a minibatch size of b = 100 and τ = 1. Under this condition, we performed

3https://archive.ics.uci.edu/dataset/222/bank+marketing
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Table 1: Comparison of noise sizes for each privacy level and tested hyperparameters used for tuning, across
each method and dataset. Noise sizes in AdaptDP-FedAvg and DP-FedAvg are chosen to ensure the same
privacy level (ε, δ), as described in Section 5.1.

Dataset Privacy DP-FedAvg AdaptDP-FedAvg Tested hyperparameters
level η (C, Ĝ)

T1) Artificial dataset Lv.1 σp = 0.003 (σp, σC
p ) = (0.0042, 0.00097)

Lv.2 σp = 0.006 (σp, σC
p ) = (0.0078, 0.0021) {0.1, 0.3, 0.5} {0.5, 1, 3, 5}

Lv.3 σp = 0.01 (σp, σC
p ) = (0.012, 0.0043)

T2) Bank Marketing Lv.1 σp = 0.006 (σp, σC
p ) = (0.0077, 0.0025)

Lv.2 σp = 0.01 (σp, σC
p ) = (0.0103, 0.0078) {0.01, 0.03, 0.1} {0.05, 0.1, 0.5}

Lv.3 σp = 0.03 (σp, σC
p ) = (0.0524, 0.010)

T3) MNIST Lv.1 σp = 0.003 (σp, σC
p ) = (0.0041, 0.0011)

Lv.2 σp = 0.006 (σp, σC
p ) = (0.093, 0.0021) {0.1, 0.3} {0.05, 0.1, 0.5}

Lv.3 σp = 0.01 (σp, σC
p ) = (0.013, 0.0050)

T4) FashionMNIST Lv.1 σp = 0.003 (σp, σC
p ) = (0.0041, 0.0011)

Lv.2 σp = 0.006 (σp, σC
p ) = (0.093, 0.0021) {0.03, 0.1, 0.3} {0.05, 0.1, 0.5}

Lv.3 σp = 0.01 (σp, σC
p ) = (0.013, 0.0050)

Table 2: The lowest training loss and the highest test accuracy over R rounds with selected hyperparameters.
For T1), test accuracy is omitted since it is not a classification task.

Dataset Privacy DP-FedAvg AdaptDP-FedAvg
level Trainloss/TestAcc Selected (C, η) Trainloss/TestAcc Selected (Ĝ, η)

T1) Artificial dataset Lv.1 6.73e−6 ±0.28 /− (0.5, 0.3) 3.34e−7 ±0.43 /− (1, 0.1)
(R, K)=(150, 20) Lv.2 2.69e−5 ±0.21 /− (0.5, 0.3) 3.81e−6 ±0.15 /− (3, 0.1)

Lv.3 7.62e−5 ±0.24 /− (0.5, 0.3) 1.82e−5 ±0.10 /− (3, 0.1)
T2) Bank Marketing Lv.1 3.13e−1±0.02/89.08±0.21 (0.05, 0.03) 3.12e−1 ±0.02 /89.43 ±0.14 (0.05, 0.03)
(R, K)=(100, 226) Lv.2 3.12e−1±0.17/89.26±0.33 (0.5, 0.03) 3.12e−1±0.04/88.73 ±0.42 (0.1, 0.03)

Lv.3 3.13e−1±0.15/89.09±0.40 (0.05, 0.03) 3.13e−1±0.13/89.15±0.16 (0.1, 0.03)
T3) MNIST Lv.1 4.84e−5±0.10 /61.50 ±5.50 (0.05, 0.3) 4.25e−5 ±0.41/56.50 ±0.50 (0.05, 0.3)
(R, K) = (1000, 15) Lv.2 5.57e−5 ±0.31/64.75 ±7.25 (0.05, 0.3) 4.38e−5 ±0.53/59.00 ±1.00 (0.05, 0.3)

Lv.3 4.06e−4 ±1.44/57.35 ±0.35 (0.1, 0.1) 4.02e−5 ±0.09/60.30 ±1.20 (0.05, 0.3)
T4) FashionMNIST Lv.1 2.02e−2 ±1.97/57.50 ±7.50 (0.05, 0.3) 5.96e−5 ±4.51/68.50 ±7.50 (0.1, 0.3)
(R, K)=(1000, 15) Lv.2 3.39e−2 ±1.10/60.00 ±4.00 (0.5, 0.03) 2.94e−4 ±2.30/67.20 ±7.80 (0.1, 0.3)

Lv.3 1.28e−1 ±0.22/29.50 ±2.50 (0.1, 0.03) 1.27e−1 ±0.05/32.80 ±0.70 (0.05, 0.3)

experiments with several hyperparameter settings, as shown in Table 1. The results obtained with the
optimal combination of (C, Ĝ) and η to achieve the lowest training loss are summarized in Subsec. 5.2.
Further details are provided in Appendix E.1.

5.2 Experimental Results

Figure 1: Training loss curves with selected/tuned hyperparameters. (a) corresponds to the T1) artificial
dataset, while (b) corresponds to T3) MNIST under privacy level Lv.3.
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Figure 2: (a1) Transition of clipping radius Cr and (a2) transition of τq for various q =
{0.5(median), . . . , 1.0 (max)} in AdaptDP-FedAvg with well-tuned hyperparamers on T1) artificial dataset
under privacy level Lv.3. (b1) and (b2) present the corresponding results for T3) MNIST under privacy level
Lv.3.

Table 2 presents the experimental results obtained using the selected hyperparameter settings that achieve
the lowest training loss for each method. A comprehensive version of the experimental results, including
various hyperparameter settings (e.g., learning rate η, noise size σ, clip radius C, Ĝ), is summarized in
Table 3 in Appendix E.1. From Table 2, we observe that AdaptDP-FedAvg consistently achieved lower
training loss than DP-FedAvg. Lower training loss generally corresponds to smaller gradient norms, which
we numerically confirm in the following paragraph for a part of tasks. Since the noise size in AdaptDP-
FedAvg is determined by the gradient norm, it typically injects less noise size compared to DP-FedAvg. This
reduced noise injection may be a key factor contributing to the superior performance of AdaptDP-FedAvg.
Thus, AdaptDP-FedAvg was empirically effective under the conditions of lower training loss (i.e., smaller
gradient norms). In some cases, the test accuracy of AdaptDP-FedAvg is lower than that of DP-FedAvg,
which is likely due to overfitting. Note that our theory primarily focuses on effectively reducing training loss,
and low test accuracy in some experimental settings does not contradict our theory. It should also be noted
that the variance of DP-FedAvg is very large (e.g., 5.5 and 7.25), whereas the variance of AdaptDP-FedAvg
remains small. While DP-FedAvg may appear to achieve better average performance, this is likely due to a
few seeds that happened to yield exceptionally good results. Therefore, it does not indicate that DP-FedAvg
consistently outperforms AdaptDP-FedAvg.

To further analyze the experimental results, Fig. 1 presents the convergence curves using training loss. Fig.
2 shows (a1) transitions of the adaptive clipping radius Cr in AdaptDP-FedAvg and (a2) transitions of the
quantile-mean ratio τq for T1) artificial dataset, while the corresponding results for T3) MNIST are shown
in Figs. 2 (b1) and (b2), respectively. As shown in Figs. 2 (a2) and (b2), τq is approximately 1.0 when
q = 0.7, indicating that 70% of data samples have gradient norms smaller than the average gradient norm.
Furthermore, when q ≥ 0.8, τq does not diverge but instead converges to a moderate value. This observation
supports Corollary 1, which theoretically asserts that the training loss can be lower compared to DP-SGD.
Empirically, as shown in Fig. 1, the training loss of AdaptDP-FedAvg is lower than that of DP-FedAvg. This
improvement can be attributed to the adaptive changes in the clipping radius Cr as the communication round
progresses, as illustrated in Figs. 2(a1) and (b1). In contrast, DP-FedAvg employs a fixed clipping radius
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throughout the training process. When a large proportion of data samples undergoes gradient clipping,
performance will be degraded. However, this result suggests that as the training progresses, the number
of data samples that remain unclipped increases, leading to improved performance of AdaptDP-FedAvg.
Moreover, through our experiments, we obtained empirical insights indicating that τ = 1 and approximately
Ĝ = 0.05 tend to yield good performance for the models and datasets we used. However, the optimal values
of τ and Ĝ vary depending on the models and datasets, and there is currently no principled method to
determine them universally. Similar to learning rate selection, a greedy search remains necessary.

6 Conclusion

We proposed AdaptDP-FedAvg, a method designed to enhance the utility of standard differential private
optimization algorithms by introducing adaptive clipping radius in federated learning. Our adaptive clipping
radius was determined based on the root-mean-square of the gradient norms, motivated by the interpolation
property and smoothness of the objectives. We theoretically demonstrated the privacy analysis of the pro-
posed algorithm in general settings. Furthermore, for smooth and non-strongly convex objectives, we showed
that our method achieves an improved utility bound compared to DP-SGD in specific cases. Through sev-
eral numerical experiments, we confirmed that our AdaptDP-FedAvg outperforms standard DP optimization
(DP-FedAvg) with a fixed clipping radius.
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A Preliminary

A.1 Review of Rényi Differential Privacy

Our DP analysis relies on Rényi differential privacy (RDP) technique. This sub-section is excerpted from
(Murata & Suzuki, 2023), which summarizes several known results about RDP used in our theoretical anal-
ysis.
Definition 2 ((α, ε)-RDP (Definition 4 in Mironov (2017))). A randomized mechanism M : D → R satisfies
(α, ε)-RDP (α ∈ (1,∞) and ε > 0) if for any datasets D,D′ ∈ D with dH(D,D′) = 1, it holds that

1
α− 1

logEo∼M(D′)

(
M(D)(o)
M(D′)(o)

)α
≤ ε,

where M(D)(o) denotes the density of M(D) at o.
Lemma 1 (Post-processing Property of RDP (Mironov (2017))). Let M : D → R be (α, ε)-RDP and
g : R → R′ be any function. Then, g ◦ M : D → R′ is also (α, ε)-RDP.
Lemma 2 (Composition of RDP Mechanisms (Proposition 1 in Mironov (2017))). Let Mr : R1 × · · · ×
Rr−1 × D → Rr be (α, εr)-RDP for r ∈ [R]. Then, M : D → R1 × · · · × RR defined by M(D) :=
(M1(D),M2(M1(D), D), . . . ,MR(M1(D), . . . , D)) is (α,

∑R
r=1 εr)-RDP.

Lemma 3 (From RDP to DP (Proposition 3 in Mironov (2017))). If a randomized mechanism M is (α, ε)-
RDP, then M is (ε+ log(1/δ)/(α− 1), δ)-DP for every δ ∈ (0, 1).
Definition 3 (lq-sensitivity). ∆q(h) := supdH(D,D′)=1 ∥h(D) − h(D′)∥q is called lq-sensitivity for function
h, where the maximum is taken over any adjacent datasets D,D′ ∈ D.
Lemma 4 (Gaussian Mechanism (Corollary 3 in Mironov (2017))). Given a function h, Gaussian Mechanism
M(D) := h(D) + N (0, σ2

1I) satisfies (α, α∆2
2(h)/(2σ2

1))-RDP for every α ∈ (1,∞).
Lemma 5 (Subsampling Amplification (Theorem 9 in (Wang et al., 2019a))). Let M be a randomized
mechanism that takes a dataset of b ≤ n points as an input and γ := b/n. M◦ subsampleγ be defined as: (1)
subsampleγ : subsample γn points without replacement from the input dataset with size n, and (2) apply M
taking the subsampled points as the input. For every integer α ≥ 2, if M is (α, ε(α))-RDP, M ◦ subsampleγ
is (α, ε′(α))-RDP, where

ε′(α) ≤ 1
α− 1

log
(

1 + γ2
(
α

2

)
min

{
4(eε(2) − 1), eε(2) min{2, (eε(∞) − 1)2}

}
+

α∑
j=3

γj
(
α

j

)
e(j−1)ε(j) min{2, (eε(∞) − 1)j}

 .

We can derive a simple upper bound using Lemma 5.
Lemma 6 (Subsampling Amplification (Simple Upper Bound)). On the same settings as in Lemma 5, if
ε(α) is monotonically increasing with respect to α, it holds that

ε′(α) ≤ 2
3

(
4 + e

c

) γ2α2ε(2)
α− 1

under ε(α) ≤ 1/3 ∧ log(1/(2γα)) and γ ≤ ε(2)/(cα) for any c > 0.

Proof. See the proof of Lemma B.8 of (Murata & Suzuki, 2023).

A.2 Concentration Inequalities

In this subsection, we provide known concentration inequalities for norm-subGaussian random vectors
(Jin et al., 2019) used in our analysis. Note that any random vector X satisfying ∥X∥ ≤ σ is 2σ-norm-
subGaussian (and any σ-bounded centered random vector is σ-norm-subGaussian). Thus, the following
concentration inequalities is also applicable to bounded random vectors.
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Lemma 7 (Martingle version of Azume-Hoeffding’s inequality for norm-subGaussian (Corollary 7 in
Jin et al. (2019))). Let X1, . . . , Xn be random vectors in Rd. Suppose that {Xi}ni=1 and corresponding filtra-
tions {Fi}ni=1 satisfy the following conditions:

E[Xi | Fi−1] = 0 and P(∥Xi∥ ≥ s | Fi−1) ≤ 2e
− s2

2σ2
i ,∀s ∈ R,∀i ∈ [n]

for fixed {σi}ni=1. Then, for any u ∈ (0, 1), with probability at least 1 − u it holds that∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ ≤ c

√√√√ n∑
i=1

σ2
i log2d

u
,

where c :=
√

2.
Lemma 8 (Martingle version of Azume-Hoeffding’s inequality for norm-subGaussian (Jin et al., 2019)). Let
X1, . . . , Xn be random vectors in Rd. Suppose that {Xi}ni=1 and corresponding filtrations {Fi}ni=1 satisfy the
following conditions:

E[Xi | Fi−1] = 0 and P(∥Xi∥ ≥ s | Fi−1) ≤ 2e
− s2

2σ2
i ,∀s ∈ R,∀i ∈ [n]

for random variables {σi}ni=1 with σi ∈ Fi−1(i ∈ [n]). Then, for any u ∈ (0, 1) and A > a > 0, with
probability at least 1 − q it holds that

n∑
i=1

σ2
i ≥ A or

∥∥∥∥∥
n∑
i=1

Xi

∥∥∥∥∥ ≤ c

√√√√max

{
n∑
i=1

σ2
i , a

}(
log2d

u
+ loglogA

a

)
,

where c :=
√

2.
Remark 6. In Lemma 8, in practice, we can choose sufficiently small a > 0 and a deterministic value
A > a such that

∑n
i=1 σ

2
i < A and then we have essentially the same bound as in Lemma 7, because 1/a and

A will always have only polynomial dependencies on the other parameters such as K, R, P , n, G, L, Cproj,
d, 1/ε and 1/δ in our analysis. This approach sacrifices some rigor but yields correct results and simplifies
the analysis.

B DP Guarantee Analysis

B.1 Proof of Proposition 6

Here, we focus on DP analysis with respect to client p ∈ [P ].

RDP Analysis of Cr

Let minibatch I(p),C
r be given. Then, we can see that the L2 sensitivity with respect to client p ∈ [P ] of G(p)

r

is ∆CĜ2, where ∆C := 2
bC , because |G(p),C

r (I) − G
(p),C
r (I ′)| ≤ 2Ĝ2/bC for adjacent minibatches I and I ′,

where G(p),C
r (I) denotes the averaged squared per-sample gradient norm on the samples I. From Lemmas 4

and 1, we conclude that Cr is (α, εCp (α))-RDP, where εCp (α) := α(∆C)2/(2(σCp )2).

Then, we apply the subsampling amplification technique to the proven results for the fixed minibatch. From
Lemma 5, it holds that for every integer α ≥ 2, Cr is (α,S(εCp (·), γCp )(α))-RDP with γCp := bC/np.

RDP Analysis of {x(p)
k,r−1}k∈[K]

In the following, we omit round index r. We consider RDP property of x(p)
k conditioned on Cr and x(p)

k−1. To
realize this, first, we focus on the L2 sensitivity of g(p)

k conditioned the previous randomness. Since g(p)
k is
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constituted of b samples, we have that ∥g(p)
k (I) − g

(p)
k (I ′)∥ ≤ 2Cr/b for adjacent minibatches I and I ′, where

g
(p)
k (I) denotes the averaged gradient on the samples I. Thus, the mechanism that takes a minibatch with

size b as an input and returns the sum of the average of the clipped per-sample gradients and Gaussian noise
ξ

(p)
k ∼ N(0, σ2

pC
2
r I) leads to (α, εp(α))-RDP for every α ∈ (1,∞) from Lemma 4, where εp(α) := 2α/(b2σ2

p).
Then, from Lemma 5 and Lemma 1, taking into account the subsampling amplification effect, we immediately
obtain that x(p)

k is (α,S(εp(·), γp)(α))-RDP for every integer α ≥ 2 with γp := b/np.

Using the composition theorem of RDP (Lemma 2) finishes the proof of Proposition 6.

B.2 Proof of Theorem 4

Let α ≥ 2 be some integer. Combining Proposition 6 with Lemma 2, it holds that the outputs of client
p ∈ [P ] is (α,RS(εCp (·), γCp )(α) + RKS(εp(·), γp)(α))-RDP. From Lemma 3, we can see that the outputs of
client p ∈ [P ] is (ε/2 + log(1/δ)/(α− 1), δ)-DP under RS(εCp (·), γCp )(α), RKS(εp(·), γp)(α) ≤ ε/4 = εtarget.
Thus, using α∗ := 1 + ⌈2 log(1/δ)/ε⌉ implies (ε, δ)-DP. Thus, we only need to determine the minimum noise
size σCp and σp satisfying RS(εCp (·), γCp )(α)(α∗) ≤ εtarget and RKS(εp(·), γp)(α∗) ≤ εtarget as in (1).

Finally, we estimate the order of the noise size. Then, we only need to determine the minimum noise size σp
satisfying KRεγp

(α∗) ≤ εtarget and σCp satisfying RεCγC
p

(α∗) ≤ εtarget as in (1). We first estimate the order
of the noise size σp. Suppose that

σ2
p = Θ

(
KR log 1

δ

(npε)2 ∨
log 1

δ

b2ε

)
is sufficiently large and

b ≤ np
2eα∗

∧
(

4np
α∗σ2

p

) 1
3

.

Since 2γpα∗ ≤ 1/e, it holds that log(1/(2γpα∗)) ≥ 1. Thus, ε(α∗) = 2α∗/(b2σ2
p) ≤ 1/3 ∧ log(1/(2γpα∗)) is

satisfied under ε = O(log(1/δ)). Also, note that γp ≤ 4/(α∗b
2σ2
p) = ε(2)/α∗ holds. Thus, the conditions of

Lemma 6 are satisfied. Finally, from Lemma 6, we have

ε′
γp

(α∗) ≤ O

(
γ2
pα

2
∗εp(2)

α∗ − 1

)
= O

(
α∗

n2
pσ

2
p

)
under ε = O(log(1/δ)).

Thus, choosing appropriate σp gives KRS(εCp (·), γCp )(α∗) ≤ εtarget.

Similarly, setting

(σCp )2 = Θ
(
R log 1

δ

(npε)2 ∨
log 1

δ

(bC)2ε

)
is sufficiently large and

bC ≤ np
2eα∗

∧
(

4np
α∗(σCp )2

) 1
3

gives RS(εCp (·), γCp )(α∗) ≤ εtarget

This finishes the proof of Theorem 4.

C Utility Analysis

In this section, we provided utility analysis of Algorithm 1. All the minibatch sampling is assumed to be
uniform sampling with replacement. Also, to simplify the arguments, we assume that the gradients in the
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computation of Cr are deterministic, i.e., we focus on the full batch cases. Moreover, we assume that np = np′

for every p, p′ ∈ [P ] and define nloc := np.

First, we give some notation used in our analysis.

Notation

Let ℓCz (x) := min{1, C/∥∇ℓz(x)∥}ℓz(x), fCp (x) := (1/np)
∑
z∈Dp

ℓCz (x) and fC(x) := (1/P )
∑
p∈[P ] f

C
p (x).

Also, ∇̂ℓCz (x) denotes min{1, C/∥∇ℓz(x)∥}∇ℓz(x). Similarly, ∇̂fCp (x) denotes (1/np)
∑
z∈Dp

∇̂ℓCz (x) and

∇̂fC(x) denotes (1/P )
∑
p∈[P ] ∇̂fCp (x). Note hat ∇̂ℓCz (x) ̸= ∇ℓCz (x) in general.

Also, we define ξ̄Cr := (1/P )
∑P
p=1 ξ

(p),C
r , ξ̄k,r−1 := (1/P )

∑P
p=1 ξ

(p),C
k,r−1, (σC)2 := (1/P )

∑P
p=1(σCp )2 and

σ2 := (1/P )
∑P
p=1 σ

2
p.

As long as no confusion, we omit the round index r. For example, we write x(p)
k,r−1 as x(p)

k in r-th round of
Algorithm 1.

C.1 Useful Concentration Results

Lemma 9. Suppose that Assumption 3 holds. Let u ∈ (0, 1). With probability at least 1 − u, for every
k ∈ [K], r ∈ [R], and p ∈ [P ], it holds that∣∣∣∣∣∣

k∑
κ=1

1
b

∑
z∈I(p)

κ

⟨∇f(x(p)
κ−1),Clip(∇ℓz(x(p)

κ−1), Cr) − 1
np

∑
z∈Dp

Clip(∇ℓz(x(p)
κ−1), Cr)⟩

∣∣∣∣∣∣
≤ Õ

(√
KGCr√
b

)
.

Proof. Observe that |⟨∇f(x(p)
κ−1),Clip(∇ℓz(x(p)

κ−1), Cr) − 1
np

∑
z∈Dp

Clip(∇ℓz(x(p)
κ−1), Cr)⟩| ≤ 2GCr. Applying

Lemma 8 with A = 2KbG and sufficiently small a > 0 and taking union bounds over k ∈ [K], p ∈ [P ] and
r ∈ [R] give the desired result.

Lemma 10. Let u ∈ (0, 1). With probability at least 1 − u, for every k ∈ [K], r ∈ [R], and p ∈ [P ], it holds
that ∥∥∥∥∥∥∥

1
b

∑
z∈I(p)

k

Clip(∇ℓz(x(p)
k−1), Cr) − 1

np

∑
z∈Dp

Clip(∇ℓz(x(p)
k−1), Cr)

∥∥∥∥∥∥∥ ≤ Õ

(
Cr√
b

)
.

Similarly, with probability at least 1 − u, for every k ∈ [K], r ∈ [R], it holds that∥∥∥∥∥∥∥
1
P

∑
p∈[P ]

1
b

∑
z∈I(p)

k

Clip(∇ℓz(x(p)
k−1), Cr) − 1

np

∑
z∈Dp

Clip(∇ℓz(x(p)
k−1), Cr)

∥∥∥∥∥∥∥ ≤ Õ

(
Cr√
Pb

)
.

Proof. Applying Lemma 7 and taking union bounds over p ∈ [P ], k ∈ [K] and r ∈ [R] give the desired
results.

Lemma 11. Let u ∈ (0, 1/4). With probability at least 1 − 4u, for every p ∈ [P ], k ∈ [K] and r ∈ [R], it
holds that

|ξ(p),C
r | ≤ Õ(σCp Ĝ2), |ξ̄Cr | ≤ Õ

√ (σC)2

P
Ĝ2

 ,
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∥ξ(p)
k,r−1∥ ≤ Õ(σpCr

√
d), ∥ξ̄k,r−1∥ ≤ Õ

√σ2d

P
Cr


and

Clip(g(p)
k,r−1 + ξ

(p)
k,r−1, Cproj) = g

(p)
k,r−1 + ξ

(p)
k,r−1

under Cproj ≥ Ω̃((1 + σp
√
d)Ĝ).

Proof. Since ξ(p),C
r ∼ N(0, σCp Ĝ2), we have P(|ξ(p),C

r | > s) ≤ 2 exp(−s2/(2(σCp Ĝ2)2)) for any s > 0. This
implies |ξCr | ≤

√
2σCĜ2

√
log(2/u) with probability at least 1 − u. Taking union bounds over p ∈ [P ] and

r ∈ [R] gives the desired result. The proof of the case of ξ̄Cr is perfectly same. Thus, the first result is proven.
Similarly, we have (ξ(p)

k,r−1)2
j ≤ 2σ2

pC
2
r log(2/u) with probability at least 1 − u. Taking union bounds with

respect to j ∈ [d], p ∈ [P ], k ∈ [K] and r ∈ [R] gives the desired result. The case of ξ̄k,r−1 is completely
same. This gives the second result. The last result is trivial since Cr ≤ Ĝ.

In the following, we always assume that the events defined in Lemmas 9, 10 and 11, which simultaneously
hold with probability at least 1 − 7u for any u ∈ (0, 1/7).

Remark

Due to a technical reason, we modify Algorithm 1 of line 16 as follows: x(p)
k,r−1 = x

(p)
k−1,r−1 − ηClip(g(p)

k,r−1 +
ξ

(p)
k,r−1, Cproj) for Cproj > 0. First note that this modification does not affect the DP guarantee anal-

ysis thanks to the post processing property of RDP. We particularly use sufficiently large Cproj :=
Θ̃((1 + maxp∈[P ] σp

√
d)Ĝ). Under this choice, we can see that (i) the sequence of model parameters

{xk,r−1}k∈[K],r∈[R] is bounded almost surely, which is necessary to utlize Lemma 8, and (ii) the clipping
does not happen for every k and r with high probability from Lemma 11. Practically, we do not need to
implement this clipping process thanks to (ii). Additionally, the choice of Cproj is quite robust because Cproj
only depends on the convergence rate with log-log order. Thus, we can omit this clipping process in practice
as in Algorithm 1.

C.2 Analysis of Clipping Radius

Lemma 12. Suppose that Assumption 4 holds. For any x1, x2 ∈ Rd and C > 0, we have

min{1, C/∥∇ℓz(x1)∥} ≤ min{1, C/∥∇ℓz(x2)∥} + L∥x1 − x2∥
C

.

Proof. We will prove the lemma by considering different cases below

(i) ∥∇ℓz(x2)∥ ≤ C

In this case, min{1, C/∥∇ℓz(x1)∥} ≤ 1 = min{1, C/∥∇ℓz(x2)∥} holds.

(ii) ∥∇ℓz(x2)∥ > C and ∥∇ℓz(x1)∥ ≤ C

Observe that

|min{1, C/∥∇ℓz(x2)∥} − 1| = ∥∇ℓz(x2)∥ − C

∥∇ℓz(x2)∥

≤ ∥∇ℓz(x2)∥ − ∥∇ℓz(x1)∥
C

≤ L∥x1 − x2∥
C

and thus min{1, C/∥∇ℓz(x1)∥} ≤ min{1, C/∥∇ℓz(x2)∥} + L∥x1−x2∥
C .
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(iii) ∥∇ℓz(x2)∥ > C and ∥∇ℓz(x1)∥ > C

In this case, we have

|min{1, C/∥∇ℓz(x1)∥} − min{1, C/∥∇ℓz(x2)∥}| = C
|∥∇ℓz(x1)∥ − ∥∇ℓz(x2)∥|

∥∇ℓz(x1)∥∥∇ℓz(x2)∥

≤ |∥∇ℓz(x1)∥ − ∥∇ℓz(x2)∥|
C

.

The remained proof is similar to the arguments of case (ii).

Lemma 13. Let u ∈ (0, 1/11). Suppose that the requirements in Proposition 2 are satisfied. Then, with
probability 1 − 11u, for every k ∈ [K], r ∈ [R] and x ∈ Rd, it holds that

∥x̄k − x̄0∥2 ≤ Õ

(
η2KC2

r

Pb
+ η2Kσ2dC2

r

P

)
+O(η2K)

K∑
k=1

∥∥∥∥∥∥ 1
P

∑
p∈[P ]

∇̂fCr
p (x(p)

k−1)

∥∥∥∥∥∥
2

.

In particular, we have

∥x̄k − x̄0∥2 ≤ Õ

(
η2K2C2

r + η2Kσ2dC2
r

P

)
.

Here, x̄k := 1
P

∑
p∈[P ] x

(p)
k .

Similarly, we have

∥x(p)
k − x

(p)
0 ∥2 ≤ Õ

(
η2K2C2

r + η2Kσ2
pdC

2
r

)
for every p ∈ [P ].

Proof. Let r be fixed and we omit index r. We define ḡk := 1
P

∑
p∈[P ] g

(p)
k and ξ̄k := 1

P

∑
p∈[P ] ξ

(p)
k . Observe

that

∥x̄k − x̄0∥2 = ∥x̄k−1 − x̄0∥2 + η⟨x̄k−1 − x̄0, x̄k − x̄k−1⟩ + η2∥x̄k − x̄k−1∥2

≤
(

1 + 1
K

)
∥x̄k−1 − x̄0∥2 − 2η⟨x̄k−1 − x̄0,E[ḡk]⟩

− 1
K

∥x̄k−1 − x̄0∥2 − 2η⟨x̄k−1 − x̄0, ḡk − E[ḡk]⟩ − 2η⟨x̄k−1 − x̄0, ξ̄k⟩

+O(η2)∥E[gk]∥2 +O(η2)∥gk − E[gk]∥2

≤
(

1 + 1
K

)
∥x̄k−1 − x̄0∥2 +O(η2K)∥E[ḡk]∥2

− 1
2K

∥x̄k−1 − x̄0∥2 − 2η⟨x̄k−1 − x̄0, ḡk − E[ḡk]⟩ − 2η⟨x̄k−1 − x̄0, ξ̄k⟩

+O(η2)∥gk − E[gk]∥2

≤
(

1 + 1
K

)
∥x̄k−1 − x̄0∥2

− 1
2K

∥x̄k−1 − x̄0∥2 − 2η⟨x̄k−1 − x̄0, ḡk − E[ḡk]⟩ − 2η⟨x̄k−1 − x̄0, ξ̄k⟩

+O(η2K)

∥∥∥∥∥∥ 1
P

∑
p∈[P ]

∇̂fCr
p (x(p)

k−1)

∥∥∥∥∥∥
2

+ Õ

(
η2C2

r

Pb

)
.

Here, for the last inequality, we used Lemma 10.
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Now, we use this inequality recursively. Since (1 + 1/K)k ≤ e = O(1), we have

∥x̄k − x̄0∥2

≤ − 1
2K

k∑
κ=1

∥x̄k−1 − x̄0∥2 − 2η
k∑
κ=1

v(κ)⟨x̄k−1 − x̄0, ḡk − E[ḡk]⟩ − 2η
k∑
κ=1

v(κ)⟨x̄k−1 − x̄0, ξ̄k⟩

+O(η2K)
K∑
k=1

∥∥∥∥∥∥ 1
P

∑
p∈[P ]

̂
∇fC

(p)
r

p (x(p)
k−1)

∥∥∥∥∥∥
2

+ Õ

(
η2KC2

r

Pb

)
,

where v(κ) := (1 + 1/K)k−κ.

Then, applying Lemma 8 to the third and fourth terms of the right hand side, with probability 1 − 2u, we
get

∣∣∣∣∣2η
k∑
κ=1

v(κ)⟨x̄k−1 − x̄0, ḡk − E[ḡk]⟩

∣∣∣∣∣ ≤ Õ

2η

√√√√ k∑
κ=1

v(κ)2∥x̄κ−1 − x̄0∥2C
2
r

Pb


≤ Õ

(
η2KC2

r

Pb

)
+ 1

4K

k∑
κ=1

∥x̄κ−1 − x0∥2

and ∣∣∣∣∣2η
k∑
κ=1

v(κ)⟨x̄k−1 − x̄0, ξ̄k⟩

∣∣∣∣∣ ≤ Õ

2η

√√√√ k∑
κ=1

v(κ)2∥x̄κ−1 − x̄0∥2σ
2C2

rd

P


≤ Õ

(
η2Kσ2C2

rd

P

)
+ 1

4K

k∑
κ=1

∥x̄κ−1 − x0∥2,

where σ2 := (1/P )
∑P
p=1 σ

2
p. Here, note that it holds that ∥x̄k−1 − x̄0∥ ≤ ηKCproj.

Hence, we obtain

∥x̄k − x̄0∥2 ≤ Õ

(
η2KC2

r

Pb
+ η2Kσ̄2dC2

r

P

)
+O(η2K)

K∑
k=1

∥∥∥∥∥∥ 1
P

∑
p∈[P ]

̂
∇fC

(p)
r

p (x(p)
k−1)

∥∥∥∥∥∥
2

.

Noting ∥∇f̂Cr
p (x(p)

k−1)∥ ≤ Cr finishes the proof of the first result. The proof of the second result is completely
same as that of the first result.

Proposition 4. Let u ∈ (0, 1/11), q ∈ [0, 1] and τ > 0. Suppose that Assumptions 3 and 4 hold. Under
Ĝ ≥ G and η ≤ O(1/(KL) ∧

√
P/(

√
Kσ̄2dL)), with probability at least 1 − 11u, for every k ∈ [K], r ∈ [R],

it holds that

Qq({∥∇ℓz(x̄k−1,r−1)∥}z∈D) ≤
√

1 ∨ τq(xr−1)
τ

Cr,

when we define

Cr :=

√√√√2τ

(
1
n

∑
z∈D

Clip(∇∥ℓz(xr−1)∥2, Ĝ2) + ν̃ + ξ̄r

)
∧ Ĝ,
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where

ν̃ := c

√
(σC)2

P
Ĝ2
√

log 2PR
u

and ξ̄r := (1/P )
∑P
p=1 ξ

(p)
r . Here, c =

√
2.

Proof. Let p, k and r be fixed. x
(p)
k−1 denotes x

(p)
k,r−1. From Assumption 4, we have ∥∇ℓz(x̄k−1)∥2 ≤

(1 + γ)∥∇ℓz(x̄0)∥2 +
(

1 + 1
γ

)
∥∇ℓz(x̄k−1) − ∇ℓz(x̄0)∥2 ≤ (1 + γ)∥∇ℓz(x̄0)∥2 + L2

(
1 + 1

γ

)
∥x̄k−1 − x̄0∥2 for

any z ∈ D, p ∈ [P ] and γ > 0. Also, note that Clip(∇ℓz(x(p)
k−1), Ĝ) = ∇ℓz(x(p)

k−1) from Assumption 3 and
Ĝ ≥ G. Thus, we have

Qq({∥∇ℓz(x̄k−1)∥2}z∈D)

≤ (1 + γ)τq(x̄0)
P

∑
p∈[P ]

1
np

∑
z∈Dp

∥∇ℓz(xr−1)∥2 +
(

1 + 1
γ

)
L2∥x̄k−1 − x̄0∥2

≤ (1 + γ)τq(x̄0)
P

∑
p∈[P ]

1
np

∑
z∈Dp

∥∇ℓz(xr−1)∥2 +
(

1 + 1
γ

)
Õ

(
η2K2L2 + η2KL2σ̄2d

P

)
C2
r

≤ (1 + γ)τq(x̄0)
P

∑
p∈[P ]

1
np

∑
z∈Dp

∥∇ℓz(xr−1)∥2 +

(
1 + 1

γ

)
C2
r

16

for some p ∈ [P ]. Here, the third inequality holds from Lemma 13. The last inequality holds by choosing
appropriate η ≤ O(1/(KL) ∧

√
P/(

√
Kσ̄2dL)).

Thus, setting γ := 1/3 gives

Qq({∥∇ℓz(x̄k−1)∥2}z∈D) ≤ 1 + γ

2
τq(xr−1)

τ
C2
r +

(
1 + 1

γ

)
C2
r

16

≤ max
{

1, τq(xr−1)
τ

}
C2
r .

Here, we used the fact that ν̃ ≥ ξ̄r from 11.

This finishes the proof of Proposition 2.

C.3 Convergence Analysis

Proposition 5 (One-round Analysis). Suppose that Assumptions 1, 2, 3 and 4 hold. Let u ∈ (0, 1/11) and
q ∈ [0, 1]. With probability at least 1 − 11u, Algorithm 1 satisfies
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∥x̄K,r−1 − x∗∥2

≤ ∥x̄0,r−1 − x∗∥2 − Ω(η)
K∑
k=1

E[fCr (x̄k−1,r−1) | E]

+ Õ

(
η3K3L+ η3K2Lσ2d+ η2Kσ2d

P
+ η2K

Pb

)
C2
r

− Ω
( η
L

) K∑
k=1

1
P

∑
p∈[P ]

1
np

∑
z∈Dp

1
min{1, Cr/∥∇ℓz(x(p)

k−1,r−1)∥}
∥∇̂ℓCr

z (x(p)
k−1,r−1)∥2

− 2η
K∑
k=1

〈
x̄k−1,r−1 − x∗, ḡk,r−1 − E{I(p)

k,r−1}p∈[P ]
[ḡk,r−1]

〉

− 2η
K∑
k=1

⟨x̄k−1,r−1 − x∗, ξ̄k,r−1⟩.

for every r ∈ [R] under τ ≤ τmax
1 and η ≤ Õ(1/(

√
τmax

1 /τKL) ∧ 1/(
√
τmax

1 /τ
√
Kσ2

pdL), where τmax
q :=

maxr∈[R] τq(x̄r−1).

Proof. First note that from Lemma 11, it holds that Clip(g(p)
k,r−1 + ξ

(p)
k,r−1, Cproj) = g

(p)
k,r−1 + ξ

(p)
k,r−1 with high

probability.

We define x̄k := 1
P

∑
p∈[P ] x

(p)
k , ḡk := 1

P

∑
p∈[P ] g

(p)
k . Since E{I(p)

k
}p∈[P ]

[ḡk] = (1/P )
∑
p∈[P ] ∇̂fCr

p (x(p)
k−1), we

have

∥x̄k − x∗∥2

= ∥x̄k−1 − x∗∥2 − 2η⟨x̄k−1 − x∗, ḡk⟩ − 2η⟨x̄k−1 − x∗, ξ̄k⟩ + 2η2∥ḡk∥2 + 2η2∥ξ̄k∥2

≤ ∥x̄k−1 − x∗∥2 − 2η

〈
x̄k−1 − x∗,

1
P

∑
p∈[P ]

∇̂fCr
p (x(p)

k−1)

〉
+ 4η2

∥∥∥∥∥∥ 1
P

∑
p∈[P ]

∇̂fCr
p (x(p)

k−1)

∥∥∥∥∥∥
2

− 2η
〈
x̄k−1 − x∗, ḡk − E{I(p)

k
}p∈[P ]

[ḡk]
〉

− 2η⟨x̄k−1 − x∗, ξ̄k⟩

+ 4η2
∥∥∥ḡk − E{I(p)

k
}p∈[P ]

[ḡk]
∥∥∥2

+ 2η2∥ξ̄k∥2.

Note that

−

〈
x̄k−1 − x∗,

1
P

∑
p∈[P ]

∇̂fCr
p (x(p)

k−1)

〉

= 1
P

∑
p∈[P ]

1
np

∑
z∈Dp

(〈
x

(p)
k−1 − x̄k−1, ∇̂ℓCr

z (x(p)
k−1)

〉
+
〈
x∗ − x

(p)
k−1, ∇̂ℓ

Cr
z (x(p)

k−1)
〉)

.

Since 〈
x

(p)
k−1 − x̄k−1,∇ℓz(x(p)

k−1)
〉

≤ ℓz(x(p)
k−1) − ℓz(x̄k−1) + L

2
∥x(p)

k−1 − x̄k−1∥2

from Assumption 4 and〈
x∗ − x

(p)
k−1,∇ℓz(x

(p)
k−1)

〉
≤ ℓz(x∗) − ℓz(x(p)

k−1) − 1
2L

∥∇ℓz(x(p)
k−1)∥2
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from Assumptions 1, 2 and 4, we get

−
〈
x̄k−1 − x∗,∇ℓz(x(p)

k−1)
〉

≤ −ℓz(x̄k−1) + L

2
∥x(p)

k−1 − x̄k−1∥2 − 1
2L

∥∇ℓz(x(p)
k−1)∥2.

Multiplying the both side by min{1, Cr/∥∇ℓz(x(p)
k−1)∥} ≤ 1, we have

−
〈
x̄k−1 − x∗, ∇̂ℓCr

z (x(p)
k−1)

〉
≤ − min{1, Cr/∥∇ℓz(x(p)

k−1)∥}ℓz(x̄k−1) + L

2
∥x(p)

k−1 − x̄k−1∥2 − 1
2 min{1, Cr/∥∇ℓz(x(p)

k−1)∥}L
∥∇̂ℓCr

z (x(p)
k−1)∥2.

Now we bound the first term. Suppose that From Proposition 2, for any z ∈ Dp and p ∈ [P ], we have
∥∇ℓz(x̄k−1)∥ ≤

√
1 ∨ (τ1(x̄r−1)/τ)Cr, and thus it holds that

min{1, Cr/∥∇ℓz(x̄k−1)∥} ≥ 1/
√

1 ∨ (τ1(x̄r−1)/τ).

Choosing appropriate η ≤ Õ(1/(
√

1 ∨ (τmax
1 /τ))KL) ∧ 1/(

√
1 ∨ (τmax

1 /τ))
√
Kσ2

pdL), from Lemma 12, we
have

min{1, Cr/∥∇ℓz(x̄k−1)∥} ≤ min{1, Cr/∥∇ℓz(x(p)
k−1)∥} +

L∥x(p)
k−1 − x̄k−1∥
Cr

≤ min{1, Cr/∥∇ℓz(x(p)
k−1)∥} + Õ(ηKL+ η

√
KLσp

√
d)

≤ min{1, Cr/∥∇ℓz(x(p)
k−1)∥} + 1

4
min{1, Cr/∥∇ℓz(x̄k−1)∥}

Thus, we get − min{1, Cr/∥∇ℓz(x(p)
k−1)∥}ℓz(x̄k−1) ≤ −(3/4)ℓCr

z (x̄k−1).

In summary, we obtain

−
〈
x̄k−1 − x∗, ∇̂ℓCr

z (x(p)
k−1)

〉
≤ − 3

4
ℓCr
z (x̄k−1) + L

2
∥x(p)

k−1 − x̄k−1∥2 − 1
2 min{1, Cr/∥∇ℓz(x(p)

k−1)∥}L
∥∇̂ℓCr

z (x(p)
k−1)∥2.

Averaging this inequality with respect to z ∈ Dp and p ∈ [P ] results in

−

〈
x̄k−1 − x∗,

1
P

∑
p∈[P ]

∇̂fCr
p (x(p)

k−1)

〉

≤ − 3
4
fCr (x̄k−1) + L

2
1
P

∑
p∈[P ]

∥x(p)
k−1 − x̄k−1∥2

− 1
2L

1
P

∑
p∈[P ]

1
np

∑
z∈Dp

1
min{1, Cr/∥∇ℓz(x(p)

k−1)∥}
∥∇̂ℓCr

z (x(p)
k−1)∥2.

Next, we bound
∥∥∥ḡk − E{I(p)

k
}p∈[P ]

[ḡk]
∥∥∥2

:

∥∥∥ḡk − E{I(p)
k

}p∈[P ]
[ḡk]
∥∥∥2

≤ Õ

(
C2
r

Pb

)
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from Lemma 10.

Since

∥∥∥∥∥∥ 1
P

∑
p∈[P ]

∇̂fCr
p (x(p)

k−1)

∥∥∥∥∥∥
2

≤ 1
P

∑
p∈[P ]

1
np

∑
z∈Dp

∥∇̂ℓCr
z (x(p)

k−1)∥2,

combining all the results yields

∥x̄k − x∗∥2

≤ ∥x̄k−1 − x∗∥2 − 3η
2
fCr (x̄k−1) + ηL

1
P

∑
p∈[P ]

∥x(p)
k−1 − x̄k−1∥2

− η

2L
1
P

∑
p∈[P ]

1
np

∑
z∈Dp

1
min{1, Cr/∥∇ℓz(x(p)

k−1)∥}
∥∇̂ℓCr

z (x(p)
k−1)∥2

− 2η
〈
x̄k−1 − x∗, ḡk − E{I(p)

k
}p∈[P ]

[ḡk]
〉

− 2η⟨x̄k−1 − x∗, ξ̄k⟩

+ Õ

(
η2

Pb
+ η2σ2d

P

)
C2
r

under η ≤ 1/(4KL).

From Lemma 13, we have

1
P

∑
p∈[P ]

∥x(p)
k−1 − x̄k−1∥2 ≤ 1

P 2

∑
p,p′∈[P ]

∥x(p)
k−1 − x

(p′)
k−1∥2 ≤ Õ

(
η2K2 + η2Kσ2d

)
C2
r

and then, we get

∥x̄k − x∗∥2

≤ ∥x̄k−1 − x∗∥2 − Ω(η)fCr (x̄k−1)

+ Õ

(
η3K2L+ η3KLσ2d+ η2σ2d

P
+ η2

Pb

)
C2
r

− Ω
( η
L

) 1
P

∑
p∈[P ]

1
np

∑
z∈Dp

1
min{1, Cr/∥∇ℓz(x(p)

k−1)∥}
∥∇̂ℓCr

z (x(p)
k−1)∥2

− 2η
〈
x̄k−1 − x∗, ḡk − E{I(p)

k
}p∈[P ]

[ḡk]
〉

− 2η⟨x̄k−1 − x∗, ξ̄k⟩

Recursively using this inequality and rearranging the result gives
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∥x̄K − x∗∥2

≤ ∥x̄0 − x∗∥2 − Ω(η)
K∑
k=1

E[fCr (x̄k−1) | E]

+ Õ

(
η3K3L+ η3K2Lσ2d+ η2Kσ2d

P
+ η2K

Pb

)
C2
r

− Ω
( η
L

) K∑
k=1

1
P

∑
p∈[P ]

1
np

∑
z∈Dp

1
min{1, Cr/∥∇ℓz(x(p)

k−1)∥}
∥∇̂ℓCr

z (x(p)
k−1)∥2

− 2η
K∑
k=1

〈
x̄k−1 − x∗, ḡk − E{I(p)

k
}p∈[P ]

[ḡk]
〉

− 2η
K∑
k=1

⟨x̄k−1 − x∗, ξ̄k⟩.

This is the desired result.

Theorem 3 (Convergence Rate). Suppose that Assumptions 1, 2, 3 and 4 hold. Let u ∈ (0, 1) be sufficiently
small. Then, with probability at least 1 − u, Algorithm 1 with ν̃ defined in Proposition 2 and (σC , σ) defined
in Theorem 4 satisfies

1
KR

R∑
r=1

K∑
k=1

fCr (x̄k−1,r−1)

≤ Õ

(
∥xini − x∗∥2 +B2

ηKR
+ τ

√
RG2

nloc
√
Pε

(
η2K2L+ ηKRd

n2
locPε

2 + η

Pb
+
(
ηKL+ 1

P

)
ηd

b2ε

))
.

under Ĝ ≥ G with Ĝ = Θ(G), τ ≤ τmax
1 and

η ≤ Õ

(
1

ϕ(τ)KL
∧ 1
KGB

∧ nlocε

ϕ(τ)K
√
RdL

∧ n2
locPε

2

ψ(τ)KRLd
∧ Pb

ψ(τ)L

)
,

where ϕ(τ) :=
√
τmax

1 /τ + (τmax
1 τ)1/4, ψ(τ) :=

√
τmax

1 τ and τmax
q is defined in Proposition 3.

Proof. From Proposition 3, we have

∥xr − x∗∥2

≤ ∥xr−1 − x∗∥2 − Ω(η)
K∑
k=1

E[fCr (x̄k−1,r−1) | E]

+ Õ

(
η3K3L+ η3K2Lσ2d+ η2Kσ2d

P
+ η2K

Pb

)
C2
r

− Ω
( η
L

) K∑
k=1

1
P

∑
p∈[P ]

1
np

∑
z∈Dp

1
min{1, Cr/∥∇ℓz(x(p)

k−1,r−1)∥}
∥∇̂ℓCr

z (x(p)
k−1,r−1)∥2

− 2η
K∑
k=1

〈
x̄k−1,r−1 − x∗, ḡk,r−1 − E{I(p)

k,r−1}p∈[P ]
[ḡk,r−1]

〉

− 2η
K∑
k=1

⟨x̄k−1,r−1 − x∗, ξ̄k,r−1⟩.

Here, we used the fact that ∥Clip(x,B) − x∗∥ ≤ ∥x− x∗∥ for any x ∈ Rd and ∥x∗∥ ≤ B from the elementary
projection property.
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Recursively using this inequality from r = 1 to R yields

∥xR − x∗∥2

≤ ∥x0 − x∗∥2 − Ω(η)
R∑
r=1

K∑
k=1

E[fCr (x̄k−1,r−1) | E]

+ Õ

(
η3K3L+ η3K2Lσ2d+ η2Kσ2d

P
+ η2K

Pb

)
R∑
r=1

C2
r

− Ω
( η
L

) R∑
r=1

K∑
k=1

1
P

∑
p∈[P ]

1
np

∑
z∈Dp

1
min{1, Cr/∥∇ℓz(x(p)

k−1,r−1)∥}
∥∇̂ℓCr

z (x(p)
k−1,r−1)∥2

− 2η
R∑
r=1

K∑
k=1

〈
x̄k−1,r−1 − x∗, ḡk,r−1 − E{I(p)

k,r−1}p∈[P ]
[ḡk,r−1]

〉

− 2η
R∑
r=1

K∑
k=1

⟨x̄k−1,r−1 − x∗, ξ̄k,r−1⟩.

Observe that ∥x̄k−1,r−1−x∗∥2 ≤ 2∥x̄k−1,r−1−x̄0,r−1∥2+2∥x̄0,r−1−x∗∥2 ≤ Õ
(
η2K2C2

r + η2K2σ2dC2
r

P +B2
)

≤

Õ
(
η2K2σ2dC2

r

P +B2
)

from Lemma 13 with high probability under ηKG ≤ B.

Then, applying Lemma 8 to the third and fourth terms of the right hand side, with probability 1 − 2u, we
get

∣∣∣∣∣2η
R∑
r=1

K∑
k=1

⟨x̄k−1,r−1 − x∗, ḡk,r−1 − E[ḡk,r−1]⟩

∣∣∣∣∣ ≤ Õ

η
√√√√ R∑

r=1

K∑
k=1

(
η2Kσ2dC2

r

P
+B2

)
C2
r

Pb


≤ Õ

(
η2K

√
σ2d

P
√
b

+ η2K

Pb

)
R∑
r=1

C2
r + Õ(B2)

≤ Õ

(
η2Kσ2d

P
+ η2K

Pb

)
R∑
r=1

C2
r + Õ(B2)

and

∣∣∣∣∣2η
R∑
r=1

K∑
k=1

⟨x̄k−1,r−1 − x∗, ξ̄k,r−1⟩

∣∣∣∣∣ ≤ Õ

2η

√√√√ R∑
r=1

K∑
k=1

(
η2Kσ2dC2

r

P
+B2

)
σ2C2

rd

P


≤ Õ

(
η2Kσ2d

P

)
R∑
r=1

C2
r + Õ(B2).

Thus, we have
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∥xR − x∗∥2

≤ ∥x0 − x∗∥2 + Õ(B2) − Ω(η)
R∑
r=1

K∑
k=1

E[fCr (x̄k−1,r−1) | E]

+ Õ

(
η3K3L+ η3K2Lσ2d+ η2Kσ2d

P
+ η2K

Pb

)
R∑
r=1

C2
r

− Ω
( η
L

) R∑
r=1

K∑
k=1

1
P

∑
p∈[P ]

1
np

∑
z∈Dp

1
min{1, Cr/∥∇ℓz(x(p)

k−1,r−1)∥}
∥∇̂ℓCr

z (x(p)
k−1,r−1)∥2.

From the definition of Cr and Proposition 2, for each round r it holds that

C2
r = 2τ

P

∑
p∈[P ]

G(p),C
r +O(τ ν̃)

= 2τ
P

∑
p∈[P ]

1
np

∑
z∈Dp

∥∇ℓz(xr−1)∥2 +O(τ ν̃)

≤
2τ
√

1 ∨ τ1(xr−1)
τ

P

∑
p∈[P ]

1
np

∑
z∈Dp

min{1, Cr/∥∇ℓz(xr−1)∥}∥∇ℓz(xr−1)∥2 +O(τ ν̃).

Here, for the inequality, we used Proposition 2.

Since τ ≤ τmax
1 , choosing appropriate η ≤ Õ(1/(

√
τmax

1 /τKL) ∧ 1/(
√
τmax

1 /τ
√
Kσ2

pdL), from Lemma 12,
we have

min{1, Cr/∥∇ℓz(x̄k−1)∥} ≤ min{1, Cr/∥∇ℓz(x(p)
k−1)∥} +

L∥x(p)
k−1 − x̄k−1∥
Cr

≤ min{1, Cr/∥∇ℓz(x(p)
k−1)∥} + Õ(ηKL+ η

√
KLσp

√
d)

≤ min{1, Cr/∥∇ℓz(x(p)
k−1)∥} + 1

4
min{1, Cr/∥∇ℓz(x̄k−1)∥}

Observe that

min{1, Cr/∥∇ℓz(xr−1)∥}∥∇ℓz(xr−1)∥2

≤ 2 min{1, Cr/∥∇ℓz(xr−1)∥}∥∇ℓz(x(p)
k−1,r−1)∥2 + 2∥∇ℓz(x(p)

k−1,r−1) − ∇ℓz(xr−1)∥2

≤ O(min{1, Cr/∥∇ℓz(x(p)
k−1,r−1)∥}∥∇ℓz(x(p)

k−1,r−1)∥2 + L2∥x(p)
k−1,r−1 − x

(p)
0,r−1∥2)

≤ O

(
1

min{1, Cr/∥∇ℓz(x(p)
k−1,r−1)∥}

∥∇̂ℓCr
z (x(p)

k−1,r−1)∥2 + (η2K2L2 + η2KL2σ2
pd)C2

r

)
.

Here, for the second inequality, we used Assumption 4. Furthermore, if we appropriately choose τ ≤ τmax
1

and η ≤ Õ(1/((τmax
1 τ)1/4KL) ∧ 1/((τmax

1 τ)1/4
√
Kσ2

pdL), we get

C2
r ≤O

(√
τmax

1 τ

K

)
K∑
k=1

1
P

∑
p∈[P ]

1
np

∑
z∈Dp

1
min{1, Cr/∥∇ℓz(x(p)

k−1,r−1)∥}
∥∇̂ℓCr

z (x(p)
k−1,r−1)∥2 +O(τ ν̃).
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Let

A := η3K3L+ η3K2Lσ2d+ η2Kσ2d

P
+ η2K

Pb

Then, if we appropriately choose η satisfying

Õ

(
A

√
τmax

1 τ

K

)
≤ Ω

( η
L

)
to cancel out the term Õ(AC2

r ), from Proposition 3, we obtain

∥xR − x∗∥2 ≤ ∥x0 − x∗∥2 + Õ(B2) + Õ (Rτν̃A) − Ω(η)
R∑
r=1

K∑
k=1

E[fCr (x̄k−1,r−1) | E],

which implies

1
KR

R∑
r=1

K∑
k=1

fCr (x̄k−1,r−1)

≤ Õ

(
∥xini − x∗∥2 +B2

ηKR
+ τ ν̃A

ηK

)

= Õ

∥xini − x∗∥2 +B2

ηKR
+
τ

√
(σC)2G2

√
P

(
η2K2L+ η2KLσ2d+ ησ2d

P
+ η

Pb

)
= Õ

(
∥xini − x∗∥2 +B2

ηKR
+ τ

√
RG2

nloc
√
Pε

(
η2K2L+ ηKRd

n2
locPε

2 + η

Pb
+
(
η2KLd+ ηd

P

)
1
b2ε

))
.

Here, we used

(σC)2 = Õ

(
R

(nlocε)2

)
and

σ2 = Õ

(
KR

(nlocε)2 + 1
b2ε

)
.

Finally, we summarize a sufficient condition on η:

η ≤ Õ

(
1

ϕ(τ)KL
∧ 1
KGB

∧ nlocε

ϕ(τ)K
√
RdL

∧ n2
locPε

2

ψ(τ)KRLd
∧ Pb

ψ(τ)L

)
,

where ϕ(τ) :=
√
τmax

1 /τ + (τmax
1 τ)1/4 and ψ(τ) :=

√
τmax

1 τ .

This finishes the proof.

Corollary 2. It is assumed that ∥xini − x∗∥, B, G and L are Θ(1). Then, for any q ∈ [0.5, 1.0], there exists
Dq ⊂ D such that |Dq| ≥ q|D| and Algorithm 1 with (ε, δ)-DP guarantees satisfies

fDq

(
x(out)

)
≤ Õ

(√
1 ∨

τmax
q

τ

(
τ

4
9

d
2
9

(ϵDP-SGD
util ) 10

9 + (ϕ(τ)τ
√
P ) 1

3

d
1
6

(ϵDP-SGD
util ) 4

3 +
√
τ

d
1
4

(ϵDP-SGD
util ) 3

2 + τ
7

15

d
7

30
(ϵDP-SGD

util ) 19
15

+ (ϕ(τ)τ2
√
P ) 1

5

d
1
5

(ϵDP-SGD
util ) 7

5 + ψ(τ) 1
5

d
1
5

(ϵDP-SGD
util ) 8

5 + τ
2
5

(ϕ(τ)d) 1
5

(ϵDP-SGD
util ) 6

5 + ψ(τ)(ϵDP-SGD
util )2

))
.

under the conditions in Theorem 2, where fDq (x) := (1/|Dq|)
∑
z∈Dq ℓz(x) and ϵDP-SGD

util =
Θ̃(

√
d/(nloc

√
Pε)).
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Proof. Let q ∈ [0.5, 1]. First, note that

Dq :=

{
z ∈ D : ∀r ∈ [R],∀k ∈ [K] : ∥∇ℓz(x̄k−1,r−1)∥ ≤

√
1 ∨ τq(xr−1)

τ
Cr

}

satisfies |Dq| ≥ q|D| from Proposition 2..

Hence, when we define
fDq (x) := 1

|Dq|
∑
z∈Dq

ℓz(x),

from Theorem 2 we have

fDq

(
x(out)

)
≤ 1
R

R∑
r=1

1
K

K∑
k=1

fDq (x̄k−1,r−1)

≤ O


√
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R

R∑
r=1

1
K

K∑
k=1

fCr (x̄k−1,r−1)


≤ Õ

(√
1 ∨
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q

τ

(
∥xini − x∗∥2 +B2

ηKR
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√
RG2

nloc
√
Pε

(
η2K2L+ ηKRd
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2 + η

Pb
+
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b2ε
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= Õ
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(
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+ τηKR

3
2G2d
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√
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√
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√
Pε

(
η2K2L+ η
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+
(
ηKL+ 1

P
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3
2 d
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+ τ
√
R

nloc
√
Pε

(
η2K2 + η

Pb
+
(
ηK + 1

P

)
ηd

b2ε

)))
.

Here, for the first inequality, we used convexity of fDq . The second inequality holds because

fDq (x̄k−1,r−1) ≤ 2
n

∑
z∈Dq

ℓz(x̄k−1,r−1)

≤
2
√

1 ∨ τq(xr−1)
τ

n

∑
z∈Dq

min{1, Cr/∥∇ℓz(x̄k−1,r−1)∥}ℓz(x̄k−1,r−1)

≤
2
√

1 ∨ τq(xr−1)
τ

n

∑
z∈D

min{1, Cr/∥∇ℓz(x̄k−1,r−1)∥}ℓz(x̄k−1,r−1)

≤ O

(√
1 ∨ τq(xr−1)

τ
fCr (x̄k−1,r−1)

)
.

To derive the best achievable utility, we need to determine the optimal choices of η, K, and R.

We first determine R.

• R ≤ Õ

(
(nloc

√
Pε)

6
5

(τd)
2
5 (ηK)

4
5

)
=: R1 is a sufficient condition for 1st term ≥ 2nd term

• R ≤ Õ

(
(nloc

√
Pε)

2
3

τ
2
3 (ηK)2+τ

2
3 η

2
3 (ηK)

2
3 ( 1

P b +(ηK+ 1
P ) d

b2ε
)

)
=: R2 is a sufficient condition for 1st term ≥

3rd term,
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Also, from the condition on η in Theorem 2, we need

• R ≤ Õ
(

(nlocε)2

ϕ(τ)2(ηK)2d

)
=: R3,

• R ≤ Õ
(

(nloc
√
Pε)2

ψ(τ)ηKd

)
=: R4.

Thus, if R1, R2, R3, R4 ≥ 1, setting R∗ := R1 ∧R2 ∧R3 ∧R4 gives

fDq

(
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)
≤ Õ
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τmax
q

τ

(
1

ηKR∗
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3 ηK
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3
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2
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3
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Pε) 2

3
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1
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)
d

b2ε

)
+ ψ(τ)d
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√
Pε)2

+ ϕ(τ)2ηKd

(nlocε)2

))
.

Note that 3rd term can be arbitrary small by reducing η and increasing K for any fixed optimal choice of
(ηK)∗ when we focus on the asymptotic utility bound. Thus, we ignore this term.

Now, we need to determine the optimal choice of ηK.

• ηK ≤ Õ

(
d

1
3

τ
2
9 (nloc

√
Pε)

4
9

)
=: (ηK)1 is a sufficient condition for 1st term ≥ 2nd term,

• ηK ≤ Õ

(
τ

1
3 (nlocε)

2
3

ϕ(τ)
5
3

√
Pd

)
=: (ηK)2 is a sufficient condition for 1st term ≥ 5th term,

• ηK ≤ Õ

(
(nloc

√
Pε)

3
2√

τd

)
=: (ηK)3 is a sufficient condition for R1 ≥ 1 with sufficiently small η and

large K,

• ηK ≤ Õ

(
(nloc

√
Pε)

1
3

τ
1
3

)
=: (ηK)4 is a sufficient condition for R2 ≥ 1,

• ηK ≤ Õ
(

nlocε

ϕ(τ)
√
d

)
=: (ηK)5 is a sufficient condition for R3 ≥ 1,

• ηK ≤ Õ
(

(nloc
√
Pε)2

ψ(τ)d

)
=: (ηK)6 is a sufficient condition for R4 ≥ 1.

Also, from the condition on η in Theorem 2, we need

ηK ≤ Õ

(
1

ϕ(τ)
∧ KPb

ψ(τ)

)
:= (ηK)7.

Thus, setting (ηK)∗ := (ηK)1 ∧ (ηK)2 ∧ (ηK)3 ∧ (ηK)4 ∧ (ηK)5 ∧ (ηK)6 ∧ (ηK)7 yields an asymptotic utility
bound of
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fDq

(
x(out)

)
≤ Õ
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This finishes the proof.

D DP-FedAvg

Here, we describe the implementation details of DP-FedAvg, which is a natural baseline in our experiments.

Algorithm 2 DP-FedAvg
1: for r = 1 to R do
2: for p ∈ [P ] in parallel do
3: Compute σp based on (3).
4: x

(p)
0,r−1 = xr−1

5: for k = 1 to K do
6: Sample minibatch I

(p)
k,r−1 ∼ Dp with size b.

7: g
(p)
k,r−1 = 1

b

∑
z∈I(p)

k,r−1
Clip(∇ℓz(x(p)

k−1,r−1), C)

8: x
(p)
k,r−1 = x

(p)
k−1,r−1 − η(g(p)

k,r−1 + ξ
(p)
k,r−1), where ξ(p)

k,r−1 ∼ N(0, σ2
pC

2I).
9: end for

10: end for
11: xr = 1

P

∑
p∈[P ] x

(p)
K,r−1.

12: end for
13: Return: xR.

The concrete procedures of DP-FedAvg are given in Algorithm 2 for record level centralized DP.

As in Section 4, we assume that the minibatch sampling is random permutation. The following proposi-
tion and theorems are natural counter parts of Proposition 6 and Theorem 4 respectively. The proofs are
completely same as the ones of Proposition 6 and Theorem 4, and we omit them.

Proposition 6 (One-round RDP analysis). Suppose that b ≤ np for p ∈ [P ]. Let ∆ := 2/b and γp := b/np.
We define εp(α) := α∆2/(2σ2

p). Given xr−1, {x(p)
k,r−1}k∈[K] is (α,KS(εp(·), γp)(α))-RDP for any integer

α ≥ 2.
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Theorem 4 (DP noise size). Let α∗ := 1 + ⌈2 log(1/δ)/ε⌉. Then, the output information of client p ∈ [P ]
in Algorithm 1 is (ε, δ)-DP, if

σp := min{σp ≥ 0 | RKS(εp(·), γp)(α∗) ≤ εtarget} (3)

with εtarget := ε/2. In particular, the DP noise size σp in (1) satisfies

σp = O


√
KR log 1

δ

npε
∨

√
log 1

δ

b
√
ε


under b ≤ np

2eα∗
∧
(

4np

α∗σ2
p

) 1
3 and ε = O(log(1/δ)).
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E Additional experiments

E.1 Hyperparameter Tuning

We briefly describe the hyperparameter tuning process for both the conventional DP-FedAvg and the pro-
posed AdaptDP-FedAvg. Both methods require setting the clipping radii C, Ĝ, as well as the learning rate
η, prior to model training. These optimal values generally depend on the target privacy level and task.
Therefore, we performed an empirical search to identify the hyperparameters that minimize the training loss
for each dataset, using the three privacy levels listed in Table 1. The results of this hyperparameter search
are presented in Table 3. For each privacy level and task in Table 1, the configuration that achieved the
lowest training loss is used to report the final results in Table 2.

Table 3: Training loss for each hyperparameter setting tested.
Dataset Hyperparameter DP-FedAvg AdaptDP-FedAvg

η C or Ĝ Lv.1 Lv.2 Lv.3 Lv.1 Lv.2 Lv.3
T1) Artificial dataset 0.1 0.5 3.88e−0 3.89e−0 3.91e−0 3.88e−0 3.92e−0 3.93e−0

(R, K)=(150, 20) 0.1 1 8.11e−6 3.24e−5 9.01e−5 3.34e−7 4.72e−6 2.34e−5

0.1 3 6.77e−5 2.71e−4 7.53e−4 5.02e−7 3.81e−6 1.82e−5

0.1 5 1.88e−4 7.52e−4 2.09e−3 2.48e−6 1.82e−5 5.30e−5

0.3 0.5 6.73e−6 2.69e−5 7.62e−5 4.29e−6 9.13e−5 1.14e−4

0.3 1 2.80e−5 1.12e−4 3.15e−4 3.96e−6 1.69e−4 2.56e−4

0.3 3 2.52e−4 1.01e−3 2.83e−3 3.69e−6 1.66e−4 2.49e−4

0.3 5 2.80e−3 2.80e−3 7.86e−3 3.94e−6 1.61e−4 2.40e−4

0.5 0.5 1.36e−5 5.44e−5 1.61e−4 1.37e−7 1.77e−4 2.27e−4

0.5 1 5.08e−5 2.04e−4 6.19e−4 1.36e−5 6.20e−4 8.91e−4

0.5 3 4.57e−4 1.84e−3 5.59e−3 1.18e−5 6.80e−4 1.09e−3

0.5 5 1.27e−3 5.10e−3 1.55e−2 7.85e−6 5.99e−4 8.85e−4

T2) Bank Marketing 0.01 0.1 3.15e−1 3.16e−1 3.14e−1 3.15e−1 3.17e−1 3.14e−1

(R, K)=(100, 226) 0.01 0.5 3.14e−1 3.16e−1 3.14e−1 3.14e−1 3.16e−1 3.14e−1

0.03 0.05 3.13e−1 3.14e−1 3.14e−1 3.12e−1 3.13e−1 3.14e−1

0.03 0.1 3.21e−1 3.13e−1 3.13e−1 3.15e−1 3.12e−1 3.13e−1

0.03 0.5 3.15e−1 3.12e−1 3.14e−1 3.15e−1 3.14e−1 3.14e−1

0.1 0.05 3.15e−1 3.14e−1 3.14e−1 3.14e−1 3.13e−1 3.15e−1

0.1 0.1 3.15e−1 3.14e−1 3.13e−1 3.15e−1 3.12e−1 3.16e−1

0.1 0.5 3.16e−1 3.14e−1 3.15e−1 3.15e−1 3.12e−1 3.16e−1

T3) MNIST 0.1 0.05 6.91e−4 5.96e−4 5.62e−4 4.49e−4 3.49e−4 5.70e−4

(R, K)=(100, 15) 0.1 0.1 1.54e−1 2.86e−4 4.06e−4 3.27e−4 2.22e−4 2.51e−4

0.1 0.5 7.80e−2 7.98e−5 1.28e−1 2.63e−4 2.03e−4 9.16e−5

0.3 0.05 4.84e−5 5.57e−5 7.79e−4 4.25e−5 3.38e−5 4.02e−5

0.3 0.1 4.57e−2 3.10e−2 9.31e−2 4.30e−5 3.97e−5 4.96e−5

0.3 0.5 2.97e−3 4.40e−4 6.32e−2 2.04e−4 4.04e−5 8.36e−5

T4) FashionMNIST 0.03 0.05 1.58e−1 1.30e−1 1.45e−1 1.25e−1 1.25e−1 1.37e−1

(R, K)=(100, 15) 0.03 0.1 1.38e−1 1.05e−1 1.28e−1 9.65e−2 1.09e−1 1.45e−1

0.03 0.5 2.06e−2 3.39e−2 8.64e−1 1.03e−2 1.97e−2 7.84e−1

0.1 0.05 2.39e−1 1.23e−1 1.52e−1 1.62e−1 1.04e−1 2.04e−1

0.1 0.1 1.97e−1 4.82e−2 1.60e−1 1.54e−1 8.07e−2 1.78e−1

0.1 0.5 3.26e−2 9.57e−3 9.94e−1 4.11e−4 2.30e−3 9.48e−1

0.3 0.05 2.02e−2 4.23e−2 5.94e−1 2.55e−2 7.45e−2 1.27e−1

0.3 0.1 1.52e−2 3.94e−2 1.80e−1 5.96.e−5 2.94.e−4 8.10e−1

0.3 0.5 1.37e−1 3.14e−1 8.15e−1 4.05e−4 3.53e−3 2.97e−1

E.2 Evaluation under Varying Number of Clients

Here, we describe how the performance of DP-FedAvg and AdaptDP-FedAvg changes with varying numbers
of clients. We empirically evaluated the training loss for each dataset using P = 2, 4, 6 clients. For each
dataset, we set the number of training samples per client to ntrain = 3000, 6000, 9000 for P = 2, 4, 6 clients,
respectively. The results are presented in Table 4. As shown in Table 4, although the training loss varies
depending on the number of clients, AdaptDP-FedAvg generally outperforms DP-FedAvg.
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Table 4: Training loss for each hyperparameter setting tested.
Dataset Num of DP-FedAvg AdaptDP-FedAvg

client Lv.1 Lv.2 Lv.3 Lv.1 Lv.2 Lv.3
T1) Artificial dataset 2 6.73e−6 2.69e−5 7.62e−5 3.34e−7 3.81e−6 1.82e−5

(R, K)=(150, 20) 4 4.44e−6 1.78e−5 4.93e−5 2.00e−7 2.49e−6 1.23e−5

6 3.05e−6 1.22e−5 3.38e−5 1.39e−7 1.72e−6 7.76e−6

T3) MNIST 2 4.84e−5 5.57e−5 4.06e−4 4.25e−5 3.38e−5 4.02e−5

(R, K)=(100, 15) 4 3.79e−5 4.28e−5 7.53e−5 3.09e−5 3.38e−5 4.11e−5

6 4.28e−4 1.99e−3 4.29e−3 1.19e−3 1.60e−3 4.51e−3

T4) FashionMNIST 2 2.02e−2 3.39e−2 1.28e−1 5.96e−5 2.94e−4 1.27e−1

(R, K)=(100, 15) 4 4.96e−5 5.75e−2 5.98e−2 4.92e−5 5.75e−2 5.86e−2

6 4.04e−5 5.55e−2 1.09e−1 3.88e−5 5.52e−2 1.08e−1

E.3 Evaluation using a non-convex model

Although AdaptDP-FedAvg is theoretically guaranteed only for convex models, we experimentally evaluated
its performance compared to DP-FedAvg on the image classification task (T3: MNIST) with P = 2 using
a non-convex model. Specifically, we employed MobileNet as the model architecture, with η = 0.3 and
C, Ĝ = 0.05. As shown in Table 5, even when using a non-convex model, AdaptDP-FedAvg achieves lower
training loss compared to DP-FedAvg. While this observation lacks theoretical guarantees, it aligns with our
expectation that the proposed method remains effective for overparameterized deep neural networks, even
in the non-convex setting.

Table 5: Training loss using non-convex model.
Dataset DP-FedAvg AdaptDP-FedAvg

Lv.1 Lv.2 Lv.3 Lv.1 Lv.2 Lv.3
T3) MNIST 8.12e−5 1.24e−4 4.40e−5 1.35e−4 9.13e−5 2.69e−5
(R, K)=(100, 15)

E.4 Evaluation additional computational costs

As noted in Remark 1, AdaptDP-FedAvg requires additional computational costs compared to DP-FedAvg.
We conducted additional experiments on the image classification task (T3: MNIST) with P = 2 clients to
measure the runtime per communication round as well as the peak memory usage. As shown in Table 6, we
experimentally found that both the runtime and peak memory usage of AdaptDP-FedAvg and DP-FedAvg are
nearly identical, indicating that the additional cost introduced by AdaptDP-FedAvg is practically negligible.

Table 6: the runtime per communication round and the peak memory usage.
Dataset DP-FedAvg AdaptDP-FedAvg

runtime[Sec] CPU/GPU memory usage[GB] runtime[Sec] CPU/GPU memory usage[GB]
T3) MNIST 19.60 2.10/1.62 19.63 2.10/1.62(R, K)=(100, 15)

F Impact statement

We propose a new adaptive clipping algorithm for local record-level DP federated learning. While our
method provides theoretical guarantees of statistical data privacy under differential privacy, it does not
ensure complete immunity to data leakage. Consequently, there remains a potential risk of privacy breaches.
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