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ABSTRACT

Semantic feature norms have been foundational in the study of human concep-
tual knowledge, yet traditional methods face trade-offs between concept/feature
coverage and verifiability of quality due to the labor-intensive nature of norming
studies. Here, we introduce a novel approach that augments a dataset of human-
generated feature norms with responses from large language models (LLMs) while
verifying the quality of norms against reliable human judgments. We find that our
AI-enhanced feature norm dataset shows much higher feature density and overlap
among concepts while outperforming a comparable human-only norm dataset and
word-embedding models in predicting people’s semantic similarity judgments.
Taken together, we demonstrate that human conceptual knowledge is richer than
captured in previous norm datasets and show that, with proper validation, LLMs
can serve as powerful tools for cognitive science research.
Keywords: semantic knowledge; feature listing; large language models; similar-
ity judgments

1 INTRODUCTION

The study of human conceptual knowledge has relied on semantic feature norms — representations
of concepts in terms of their associated features — since their introduction by Rosch in the 1970s
(Rosch, 1975). Norming studies present participants with a set of concepts and, for each, asks them
to list as many characteristic properties as they can. Aggregating features across items and partic-
ipants creates semantic vectors the elements of which correspond to the elicited features and the
entries of which indicate whether people regularly judge the concept to possess the corresponding
property. Proximity between two such feature vectors relates systematically to their perceived se-
mantic relatedness—thus lions and tigers are viewed as similar kinds of things because they have
many overlapping and fewer distinguishing properties. Norming datasets collected over the years
(McRae et al., 2005; Devereux et al., 2014; Buchanan et al., 2019; Ruts et al., 2004; Hansen &
Hebart, 2022; Dilkina et al., 2008) have helped to answer questions about the organization of seman-
tic memory (Collins & Loftus, 1975; Ashcraft, 1978), its degradation in semantic disorders (Farah
& McClelland, 2013; Rogers & McClelland, 2004; Garrard et al., 2001; Cree & McRae, 2003), its
relationship to control (Giallanza et al., 2024), and its neural bases (Cox et al., 2024; Clarke & Tyler,
2014) (see Kumar (2021) for a review).

Semantic norming requires extensive human labor both in data collection and curation/post-
processing. Prior studies have met this challenge in different ways, each requiring some degree of
compromise as elaborated below. Other recent work has sought alternatives to human feature norms
by making use of natural language processing technologies, including word embeddings from meth-
ods such as word2vec and GloVe (Pennington et al., 2014; Mikolov et al., 2013) as well as feature
norms generated artificially by large language models (LLMs) (Hansen & Hebart, 2022). However,
word embeddings fail to capture the semantic structure perceived by humans as effectively as feature
norms, and their dimensions lack the transparent interpretability of feature-based representations, at
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least for for concrete objects (Suresh et al., 2023b;a). LLMs can generate super-human lists of fea-
tures that go far beyond what a typical person might know, however they also frequently confabulate
properties that are untrue -— the well documented ‘hallucination problem’ (Huang et al., 2024).

LLMs have demonstrated remarkable alignment with human behavior across diverse tasks, ranging
from semantic similarity judgments to higher-order reasoning (Hagendorff, 2023; Street et al., 2024;
Giallanza & Campbell, 2024; Dasgupta et al., 2022; Kosinski, 2024; Binz & Schulz, 2023; Chuang
et al., 2023b;a; Mukherjee et al., 2024; Sucholutsky et al., 2023). Although these models are prone
to hallucination (Bender et al., 2021; Ji et al., 2023; Farquhar et al., 2024; Xu et al., 2024) —occa-
sionally generating inaccurate or spurious outputs—they have been successfully harnessed to create
synthetic datasets and experimental stimuli for both cognitive science and ML applications (Trott,
2024; Hansen & Hebart, 2022; Gupta et al., 2023; Wu et al., 2024; Patel, 2024).Building on these
insights, our work leverages LLMs to construct a large-scale feature norming dataset that synergis-
tically integrates robust human judgments with machine-generated enhancements, thereby bridging
the gap between human fidelity and computational scalability.

The current work seeks a middle way between human-only and machine-only norm generation.
We crowd-sourced feature lists for a modestly large and representative set of 786 concrete object
concepts thus ensuring that the features included in the set are those that human participants discern.
We then used LLMs to aid in the most labor-intensive parts of data curation and post-processing,
resulting in a novel AI-enhanced set of semantic feature norms. We illustrate remarkable differences
between human-only and AI-enhanced norm sets, then report empirical studies designed to assess
whether the AI-enhanced norms capture human-perceived semantic structure better than do human-
only norms or “out-of-the-box” word embeddings.

2 RELATED WORK

Human-Centric Semantic Norms The use of semantic feature norms has a rich history in cognitive
science, beginning with early work by Rosch (1975) and further developed in datasets such as those
by McRae et al. (2005), Devereux et al. (2014), and others. (Buchanan et al., 2019; Ruts et al., 2004;
Hansen & Hebart, 2022; Dilkina et al., 2008). These datasets have been instrumental in exploring
the organization of semantic memory(Collins & Loftus, 1975; Ashcraft, 1978), its degradation in
clinical populations(Farah & McClelland, 2013; Rogers & McClelland, 2004; Garrard et al., 2001),
and even the neural underpinnings of concept representation(Cox et al., 2024; Clarke & Tyler, 2014).
Their transparent, interpretable structure has also made them useful in understanding the cognitive
basis of semantic similarity.

Machine Learning and NLP Representations Parallel to human-based approaches, the ma-
chine learning community has advanced distributed semantic representations through methods like
word2vec(Mikolov et al., 2013) and GloVe(Pennington et al., 2014). Although these models enable
large-scale applications, their latent dimensions often lack clear semantic meaning when compared
to feature norm-based representations. More recently, LLMs such as GPT-3 and BERT(Brown et al.,
2020; Devlin et al., 2018) have been tapped to generate(Hansen & Hebart, 2022) and verify seman-
tic features (Suresh et al., 2023a). However, challenges remain regarding the factual accuracy and
reliability of these models due to issues such as hallucination(Huang et al., 2024).

Cogntive Science and LLMs Recent work in cognitive science has increasingly leveraged LLMs
both as experimental subjects and as computational models of human cognition. For instance, stud-
ies such as Misra et al. (2022); Marjieh et al. (2022) have demonstrated that LLMs can simulate
human-like responses in psycholinguistic tasks, while Marjieh et al. (2023) highlights their use in
generating stimuli that capture subtle semantic variations. Other research (Suresh et al., 2023b) has
compared the internal representations of LLMs with human behavioral data, revealing notable paral-
lels and differences in semantic memory organization. Furthermore, studies such as Campbell et al.
(2024), Binz et al. (2024), and Marjieh et al. (2024) have tried understanding LLMs and VLMs using
behavioral tasks grounded in Cognitive Science. Collectively, these works underscore the dual role
of LLMs as both scalable experimental proxies and as computational frameworks for understanding
human cognition.

Hybrid Human–AI Systems and Interpretability Our work aligns with emerging trends in hybrid
human–AI systems for data annotation and curation(Trott, 2024; Hansen & Hebart, 2022; Gupta
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et al., 2023; Wu et al., 2024; Patel, 2024). By combining the scalability of LLMs with the reliability
of human judgments, we aim to overcome the limitations inherent in both approaches. Moreover,
our AI-enhanced feature norms offer a pathway to help out both Cognitive Scientists and ML In-
terpretibility researchers. Feature norm semantic dimensions that can be used for explainable AI,
thereby bridging gaps between human cognition and machine learning.

3 STUDY I: BUILDING AN LLM-ASSISTED SEMANTIC NORM DATASET

3.1 OVERVIEW OF THE APPROACH

Human feature-norming studies involve up to 4 steps, each requiring significant effort and thus are
subject to constraints that can limit the resulting data. Here we consider each step, limitations faced
by prior studies, and the approach taken in the current work. The overall workflow for our approach
is shown in Figure 1.
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Figure 1: A schematic representation of our workflow. Features were initially crowd-sourced for 786
concepts, forming a human-generated matrix. A subset of 10,000 concept-feature pairs underwent
validation via human judgments. LLM responses were compared to these human judgments to
determine the best-performing strategy. Using this method, LLMs completed the matrix for all
8,200 selected features, forming the AI-augmented matrix.
Concept selection. The structure appearing in a given dataset depends on the concepts included.
Early norms, used in semantic memory studies, focused on hierarchically structured, easily name-
able concepts (e.g., animals, plants), often excluding typical examples (e.g., robins, sparrows) in
favor of atypical ones (e.g., penguins, ostriches) and omitting concepts that don’t fit neatly into
these hierarchies. To improve representativeness, we included all 565 concepts from the Ecoset
dataset Mehrer et al. (2021), which comprises frequent, unambiguous basic-level concrete object
names, along with items from the McRae (McRae et al., 2005) and Leuven (De Deyne et al., 2008)
norms. We also added superordinate categories (e.g., animal, vehicle) and higher-frequency subor-
dinate names (e.g., robin, trout) to better capture domain substructure. The final set comprised 786
concrete object concepts.

Feature elicitation. In common with other recent norming studies (De Deyne et al., 2008; McRae
et al., 2005; Ruts et al., 2004; Devereux et al., 2014), we elicited features from participants on
Amazon Mechanical Turk using procedures described below.

Feature reduction. Norming studies typically yield a large set of unique features, most appearing
in a single concept. To manage this complexity, researchers often consolidate distinct yet semanti-
cally related properties – e.g., if is hairy and is furry are used by different participants to describe
a‘ coconut’, these features may be deemed as equivalent and thus a single feature allowing for fea-
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Figure 2: Models’ ability to reliably predict human feature-concept ratings measured using d′ using
raw responses (orange) and responses re-verified using GPT-4o. Bar heights are mean d′ across the
0-shot and 2-shot experiments. Gray and black dashed lines correspond to GPT-4o’s performance
in the 0-shot and 2-shot setting respectively. Errorbars correspond to bootstrapped 95% confidence
intervals.

ture overlap with concepts possessing both is hairy (e.g., ape) and is furry (e.g., rabbit). While
this process simplifies the feature space and enhances conceptual similarity across items, it is labor-
intensive and relies on subjective human judgments. Here, we extracted using phrase embeddings
from GPT-3 to perform minimal feature collapse. Specifically, we extracted embeddings for featural
descriptions (e.g., has a furry outer layer) and merged only highly similar clusters, merging propo-
sitions with near-identical semantic content but variable wording (e.g., has a furry outer layer ‘,is
furry, and feels furry) while still distinguishing them from close synonyms (e.g., is hairy). This au-
tomated approach reduced the initial 25k raw features to approximately ∼20k features, from which
we randomly sampled ∼8,200 features for subsequent analysis.

Feature verification. The features that participants generate in the elicitation phase typically consti-
tute a fraction of what they actually know. For this reason, some norming studies conduct a feature
verification step where human participants consider every concept/feature pair and judge whether
the feature is true of the concept (De Deyne et al., 2008; Dilkina et al., 2008). This step greatly en-
riches the structure encoded in the norms. For instance, most participants list the feature has a long
neck for giraffes and swans but for few other items. Yet when asked, most participants agree that
has a long neck is true of items as varied as a duck, a beer bottle, and a cello. Thus, the verification
phase surfaces people’s latent knowledge that they don’t generate spontaneously. Since the number
of concept/feature pairs grows exponentially, this is by far the most labor-intensive part of the pro-
cess and prior studies have either employed a relatively modest set of concepts and features (Dilkina
et al., 2008) or have limited verification only to specific semantic domains (De Deyne et al., 2008).
We leveraged LLMs to conduct the feature-verification phase – first comparing different models and
strategies in their ability to capture human judgments on a set of 6,122 concept-feature pairs where
human participants showed unanimous agreement, then using the most successful strategy to verify
all ∼6.5M concept/feature pairs, producing an AI-enhanced norm set.

3.2 METHODS

Human feature elicitation. This phase provided human-elicited data for all concepts in the set,
providing the raw features from which human-only and AI-enhanced norms were derived.

Participants. 50 participants were recruited through Amazon Mechanical Turk and were compen-
sated 4$ for the task which would require 20 minutes to complete. The study was approved by the
home university’s IRB.

Stimuli and procedure. Stimuli were 786 concrete object nouns. Using a web-based interface, each
participant viewed up to 75 different words in randomized order, and for each typed in as many
different features as they could generate. The instructions emphasized generating various types
of features, including physical/perceptual features (appearance, smell), functional features (uses,
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contexts), and other characteristics. Participants were asked to format their responses as individual
features per line using standardized phrasing (e.g., “has ears” rather than “a dog is an animal that
has ears”).

3.2.1 HUMAN FEATURE VERIFICATION.

This phase had human participants verify ∼10k concept-feature pairs, providing an empirical basis
for evaluating the performance of different AI-aided approaches to feature verification.

Participants. 556 participants were recruited through Amazon Mechanical Turk and compensated
$1.40 for a 5-8 minute task. Participants were allowed to complete multiple sessions contingent
upon maintaining satisfactory performance.

Stimuli and procedure. The stimuli were concept-property pairs sampled randomly from results of
the feature-elicitation task. Data were collected through an online interface. Each trial paired one
concept (e.g. “alligator”) with one feature randomly sampled from the full set. The sampled fea-
ture could come from any domain or item–for alligator, it could be something reasonable (e.g. “has
legs”), something clearly false (e.g. “has wheels”) or something uncertain (e.g. “has ears”). For
each pair participants judged whether the property is true of the item by pressing a keyboard but-
ton. The instructions emphasized that subjective properties should be evaluated based on common
consensus (e.g., “cute” for “dog”), and properties that were sometimes true should be marked as
true (e.g., “brown” for “dog”). Each participant made about 110 judgments, and we collected 5 or
more judgments on each of 10,545 unique pairs. Participants could skip unfamiliar concepts or non-
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Figure 3: t-stochastic neighbor embeddings of the semantic vectors for each of 787 concepts derived
from the final verified matrix. Category labels were generated by combining higher order labels from
existing norm datasets and LLM-suggested categories from GPT-4o.
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Figure 4: (A) Counts of valid features per concept and number of concepts that share common
features for the reduced human-generated matrix (top row) and AI-enhanced norm matrix (bottom
row). (B) Pairwise cosine dissimilarity matrices based on the reduced human-generated norm matrix
(left) and AI-enhanced norm matrix (right).

sensical properties by pressing the space bar, with skipped items replaced to maintain the required
number of judgments.

Machine assisted feature verification.

Our ultimate goal was to use LLMs to complete the feature-verification step for all possible con-
cept/property pairs. Since there are millions of possible pairs, we first considered how well each
of several different models and prompting strategies could capture real human judgments on the
items collected in the human feature-verification study. In these data participants showed different
opinions for about 40% of the items–thus either opinion expressed by an LLM would agree with at
least one human participant for these items. We therefore selected the 6,122 concept-feature pairs
for which all participants made the same decision (either all yes or all no), and used these decisions
as a ground-truth for evaluating LLM performance.

Model Suite. We primarily focused on performant open-sourced models because these are accessi-
ble to other researchers for replication purposes and generally more affordable to run. We included
open-sourced models that have open weights, are generally high-scoring on standard LLM bench-
marks (Hendrycks et al., 2020), and can be run on consumer-grade hardware. Specifically, we
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evaluated 3 models from Meta’s Llama family (Llama3, Llama3.1, and Llama3.2) (Dubey
et al., 2024), Microsoft’s Phi-4 (Abdin et al., 2024), Ai2’s Olmo2 (OLMo et al., 2024), and
Google’s Gemma2 (Team et al., 2024) and Flan-T5 (Wei et al., 2021). We evaluated all models
at full bfloat16 precision on a commercially available Nvidia H100 GPU. For comparison to a
state-of-the-art closed model, we also evaluated GPT-4o via its API.

Evaluation Protocol. We prompted all models using the following general prompt -

In one word True or False, answer the following
question question: Is the property [x] true for
[y]? Answer:

...where x was a feature and y was a concept with the square brackets included in the prompt. We ran
two prompting experiments: (1) a zero-shot experiment providing the models with just the question
above as input, and (2) a two-shot experiment providing the models with two example feature-
concept pairs, one true and one false to potentially improve the models’ ability to perform the task
via in-context learning (Brown et al., 2020). We used the same two examples for all prompts.

Post-processing. To extract meaningful answers from model-generated text we first restricted re-
sponses to a maximum of five tokens, then conducted a case-insensitive search of model responses
for the strings ‘True’ or ‘Yes’ to indicate a positive response, and ‘False’ or ‘No’ to indicate a nega-
tive response. In rare cases where no match was found we set the model response to ‘False’.

3.2.2 RESULTS.
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Figure 5: (A) Procedure for generating trials for
the triadic judgment experiment and an exam-
ple trial. (B) Proportion of human responses
that aligned with the human matrix (yellow bar)
vs. the AI-enhanced matrix (purple bar) and
with FastText word embeddings (orange) vs. AI-
enhanced semantic vectors (purple) in Experiment
2. Error bars represent standard errors of the
means.

To measure how closely LLM responses
aligned with unanimous human judgments for
the 6,122 feature-concept pairs, we adopted a
signal detection approach, treating human re-
sponses as the true signal and model responses
as guesses. Where humans agreed the property
was true of the concept, model guesses were
scored as hits if they concurred and misses oth-
erwise. Where humans agreed the property was
not true of the concept, model guesses were
scored as correct rejections if they concurred
and false alarms otherwise. From these counts
we computed hit rates and false alarms rates,
then converted these to the d′ measure of signal
discrimination.

The average d′ for both zero and two shot con-
ditions can be seen in Figure 2 (yellow bars).
Two-shot GPT-4o outperformed all open-
sourced models, which varied in their match to
human responses. Two-shot Flan-T5 XXL
performed best amongst open-sourced mod-
els and better than the zero-shot GPT-4o.
Flan-T5’s lower d′ relative to GPT-4o
was driven by a propensity to respond with
‘true’ to many queries, buoying its hit rate
but also increasing its false-positive rate. To
preserve the benefits of GPT-4o without in-
curring a prohibitive cost, we next consid-
ered a ‘re-verification’ approach in which the
‘true’ responses generated by a given open-
source model were subsequently re-verified by
GPT-4o, retaining the ‘true’ value only if both
models agreed. The results are shown as purple
bars in Figure 2. Re-verification improved per-
formance for all models, surpassing GPT-4o
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alone. Flan-T5 XXL remained a top model,
closely matched by Gemma2 9B. Given the
strong baseline performance of Flan T5, we
chose this model with GPT-4o re-verification
to fill out the full semantic feature matrix.

Using Flan T5 and GPT-4o to impute the AI-enhanced matrix. In the human-only matrix, entry
[i, j] has a value of 1 wherever a participant produced feature j for concept i and a 0 in all other
entries. For every 0 in this matrix, we prompted Flan T5 XXL to decide whether the correspond-
ing property is / is not true of the corresponding concept. Where the model decided ‘not true,’ the
zero value was retained in the matrix. Where the model decided ‘true,’ (534,010 out of 6,436,554
possible pairs) we prompted GPT-4o with the same pair to re-verify the answer. If GPT-4o agreed
the property was true, the cell value was replaced with 1, otherwise the 0 value was retained. This
procedure yielded the final AI-enhanced norms matrix. Figure 3 shows tsne-based embeddings of
all concepts from this matrix.

The AI-enhanced matrix differed remarkably from the human-only matrix in its feature density.
While the human matrix has about 20 features per concept on average, the AI-enhanced matrix
has about 700 (Figure 4A), and while the majority (78%) of features in the human-only matrix
are true of just one concept, this is true of just 5% of features in the AI-enhanced matrix. The
increased feature density produces much more richly-structured similarity relations, as shown by the
heat plot of pairwise distances between concepts in Figure 4B. While some of this difference may
be attributable to false-positives in the AI-enhanced dataset, the comparison to human judgments
suggests that the LLM verification strategy is quite good at discriminating true positives from true
negatives (d′ > 3.0). Thus the result suggests that human knowledge about features of concepts
may be considerably richer than prior norming studies have suggested.

4 STUDY 2: USING THE NEW NORMS DATASET TO PREDICT HUMAN
SEMANTIC JUDGMENTS

To assess whether the AI-enhanced norms capture information about semantic structure beyond
human-only norms or other approaches, we compared different approaches in their ability to predict
human behavior in a triadic similarity judgment task. In this task, participants must decide which
of two option concepts is semantically more similar to a target concept. A candidate semantic
embedding can “predict” human decisions by selecting whichever option word lies closer to the
target word in the embedding space. We can assess the quality of the embedding by comparing how
often the predicted response agrees with actual human decisions. In this study, we compared the
predictions of the AI-enhanced model to predictions based on the human-only feature norms and to
those generated by a common word-embedding approach (FastText).

We selected triplets designed to maximally discriminate the AI-enhanced and human-only feature
norms. Thus for each trial, one of the option items was closer to the target in the human-only
space while the other was closer in the AI-enhanced space (see Figure 5). We then computed how
often the majority-vote across human participants agreed with the predictions of each embedding
(AI-enhanced, human-only, FastText). If the AI-enhanced norms contain information irrelevant to
human-perceived semantics, their predictions should agree with human judgments less often than
do those of the human-only norms. Furthermore, if either set of norms simply recapitulates the
semantic structure evident in word embeddings, then predictions from the norms should do about as
well as predictions from the FastText embeddings.

Generating maximally disagreeing triplets. To generate triplets that maximally differentiated
the human-only and AI-enhanced norms, we computed cosine dissimilarity matrices for each set
(Figure 4B), Procrustes-aligned them to minimize disparity, and identified concepts with the largest
discrepancies in their distances to other concepts. This is described in Equation (1) where where
dik represents the distance between concepts i and k 1. For example, in the AI-enhanced space,
‘accordion’ was closer to ‘flute’ than to ‘geyser’, while the reverse was true in the human-only space
(Figure 5A). We constructed 1,424 triplets where the two matrices produced divergent predictions,

1A detailed explanation of the discripancy metric can be found in the Appendix A.1
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with each of the 786 concepts serving as the target approximately twice. The critical question was
which matrix’s predictions would align more closely with human similarity judgments.

Participants 31 participants were recruited from a University subject pool. Participants completed
the task online for course credit. Each participant provided informed consent in compliance with the
Institutional IRB.

Stimuli and Procedure. The stimuli were the set of 1,424 triplets described above. Data were
collected online via jsPsych (De Leeuw, 2015). On each trial, a randomly selected triplet was
displayed, with participants indicating which of two options was more similar to the target concept
using a mouse click. All triplets were judged by each participant2.

Phuman(i, j, k) =
dhuman
ik

dhuman
ik + dhuman

jk

,

Pllm(i, j, k) =
dllmik

dllmik + dllmjk
,

Discrepancy(i, j, k) = −1× (Phuman(i, j, k)− 0.5)

× (Pllm(i, j, k)− 0.5),

(1)

Results. Human similarity judgments agreed with predictions of the AI-enhanced norms for 86.20%
of triplets, a result unlikely to arise by chance p < 0.001, binomial test). Human judgments
agreed with predictions of the FastText embeddings on 60.40% of trials: reliably better than chance
(p < 0.001, binomial test), but significantly worse than the AI-enhanced embeddings (paired t-test,
t(1423) =18.37, p < 0.001). Thus the richer structure evident in the AI-enhanced feature norms
appear to better express human-discerned semantic similarity structure than to norms derived from
humans alone or from word-embeddings.

5 DISCUSSION

We present both a new approach for generating AI-enhanced semantic norms along with an ac-
companying dataset. We first conducted controlled experiments evaluating LLM feature verification
performance against a reliable subset of human norm judgments in order to assess and selected the
most human-aligned model. We then further enhanced the performance of an open-sourced model
by selectively incorporating responses from a more powerful frontier model, GPT-4o, improving
norm quality without full reliance on proprietary model outputs. Using our best performing model
combination, we generated a large-scale norm dataset spanning over 750 concepts and over 8,000
features. Inspection of the organization of concepts based on these generated features showed that
concepts showed a greater degree of feature overlap relative to the raw human-generated matrix.
This overlap of features did not come at the cost of category selectivity, with concepts being rea-
sonably organized into meaningful clusters. We further assessed the quality of our norms dataset by
conducting a triadic judgment task, the results of which showed that semantic vectors derived from
the AI-enhanced matrix more accurately predicted human similarity judgments than those based on
human norms alone or word embedding models.

Taken together, our work addresses longstanding limitations in semantic norm generation by creat-
ing a dataset that is (1) diverse in the concepts and features represented and (2) verified for feature-
concept validity. The feature density of the AI-enhanced norms reveals semantic similarity structure
richer than previous norm datasets, unlocking the potential to better understand the neural basis of
semantic memory (Clarke & Tyler, 2014; Rogers & McClelland, 2004; Cox et al., 2024; Fernandino
et al., 2022) and to guide the development of future computational neurocognitive models (Dilkina
et al., 2008; Riordan & Jones, 2011; Saxe et al., 2019; Giallanza et al., 2024; Suresh et al., 2024).
Lastly, the present work highlights the promise of integrating large-language models into workflows
for cognitive science research in a controlled and verifiable manner and provides a replicable frame-
work for future endeavors in this domain (Suresh et al., 2023a; Mukherjee et al., 2023; Trott, 2024;
Dillion et al., 2023; Mukherjee et al., 2024).

2there was data loss of a few trials for some participants due to technical issues.
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A APPENDIX

A.1 DETAILED EXPLANATION OF THE TRIPLET DISCREPANCY METRIC

For any triplet of concepts with target i and two candidate options j and k, we quantify the similarity
relationships in two representational spaces (e.g., human judgments and a language model) via rela-
tive distance measures. Specifically, for each space we compute a probability that reflects the extent
to which the distance between the target and one option outweighs that of the alternative. Formally,
we define:

Phuman(i, j, k) =
dhuman
ik

dhuman
ik + dhuman

jk

, Pllm(i, j, k) =
dllm
ik

dllm
ik + dllm

jk

. (2)

Here, dhuman
ik (or dllm

ik ) denotes the distance between concepts i and k in the human (or language
model) similarity space. These probabilities lie in the interval [0, 1], with a value of 0.5 indicating
indifference (i.e., no preference for one option over the other).

To assess the confidence and direction of the preference, we center these probabilities by subtracting
0.5. A positive deviation, P − 0.5, implies a preference for one option, while a negative deviation
implies a preference for the alternative.
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Our primary quantity of interest is the discrepancy between the two spaces, defined as:

Discrepancy(i, j, k) = −
(
Phuman(i, j, k)− 0.5

)
·
(
Pllm(i, j, k)− 0.5

)
. (3)

This formulation has two key properties:

1. Sign of the Discrepancy:
• When both Phuman(i, j, k) and Pllm(i, j, k) deviate from 0.5 in the same direction (i.e.,

both systems agree on which option is more similar to the target), the product(
Phuman(i, j, k)− 0.5

)(
Pllm(i, j, k)− 0.5

)
is positive, and thus the discrepancy becomes negative after multiplication by −1.

• Conversely, if one probability is above 0.5 and the other below 0.5 (i.e., the two sys-
tems disagree), the product is negative, and the discrepancy becomes positive after
applying the negative sign.

2. Magnitude of the Discrepancy:
• The magnitude of each term |P − 0.5| reflects the degree of confidence in the respec-

tive judgment. Thus, triplets where both the human and LLM judgments are made
with high confidence (i.e., probabilities far from 0.5) will yield a larger absolute dis-
crepancy value.

• In contrast, when either system exhibits little bias (i.e., P is near 0.5), the resulting
discrepancy will be small, even if the signs are opposed.

Triplets with large positive discrepancy values therefore represent cases where the human judgments
and the LLM predictions are both confident yet in direct conflict. Selecting these triplets allows us
to focus our analysis on the stimuli that reveal the most substantial disagreements between the two
representational spaces.

This metric thus serves as an effective tool for identifying and prioritizing triplets that are most
informative for understanding the divergence between human and model similarity assessments.
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