
Under review as a conference paper at ICLR 2021

NEURAL CELLULAR AUTOMATA MANIFOLD

Anonymous authors
Paper under double-blind review

ABSTRACT

Very recently, the Neural Cellular Automata (NCA) has been proposed to simulate
the morphogenesis process with deep networks. NCA learns to grow an image
starting from a fixed single pixel. In this work, we show that the neural network
(NN) architecture of the NCA can be encapsulated in a larger NN. This allows us
to propose a new model that encodes a manifold of NCA, each of them capable of
generating a distinct image. Therefore, we are effectively learning a representation
space of CA, which shows generalization capabilities. We accomplish this by
introducing dynamic convolutions inside an Auto-Encoder architecture, for the
first time used to join two different sources of information, the encoding and cell’s
environment information. In biological terms, our approach would play the role of
the transcription factors, modulating the mapping of genes into specific proteins
that drive cellular differentiation, which occurs right before the morphogenesis.
We thoroughly evaluate our approach in a dataset of synthetic emojis and also in
real images of CIFAR-10. Our model introduces a general-purpose network, which
can be used in a broad range of problems beyond image generation.

1 INTRODUCTION

Reproduction of multi-cellular organisms entails generating entire bodies from a single cell. Complex
organisms also require to create different types of somatic cells and spatially arrange them to form
the different tissues while ensuring temporal stability. These three aspects, cellular differentiation,
morphogenesis and cell-growth control are the pillars of developmental biology. Computational
methods are a key ingredient of the developmental biology study, up to the point that the term
“morphogene” itself was coined by Turing (1952) decades before its empirical demonstration.

In this context, we model these fundamental processes using novel dynamic neural network ar-
chitectures in combination with neural cellular automata (NCA) (Mordvintsev et al., 2020). We
evaluate the proposed approach on the synthetic NotoColorEmoji (Google, 2020) and real
CIFAR-10 (Krizhevsky et al., 2009) image datasets. In both cases our model is able to “grow” the
images with a low error (see Fig. 1).

Most complex organisms have their DNA protected inside a nucleus. DNA expression outside the
nucleus is carried out by the cellular machinery and regulated via Transcription Factors (TF). Many
TF are involved in defining an organism’s spatial arrangement. Most of them are Morphogenes,
soluble molecules that can diffuse and carry signals via concentration gradients. This biological
model inspired our network architecture at the macro-scale (see Fig. 2). In our network, we create
a vector encoding where common information for all cells is stored, as in DNA. The expression
of such encoding by the “cellular machinery” is modulated by a Parameter Predictor (PP), with a
similar role to that of TF. The “cellular machinery” (NCAM’s Dynamic Convolutions) receives two
sources of information: one from its DNA-encoding through the Parameter Predictor and another
from the gradients of Morphogenes in its surrounding environment. Both are combined to model cell
differentiation, producing the “phenotype” (color) and other Morphogenes (invisible channels) that
drive the expression of neighboring cells.

In this work, we aim to learn not only a single model suitable for one specific phenotype, but a single
model suitable for different species with thousands of phenotypes. For this purpose, we introduce a
novel Auto-Encoder architecture with dynamic convolutions, which is able to learn a representation
space of NCAs suitable for thousands of images. The proposed model is trainable in an end-to-end
manner, and exhibits consistent generalization capabilities, in relation to the produced images.

1



Under review as a conference paper at ICLR 2021

Figure 1: Growth process step by step from pixel seed image. Top, sample from the full
NotoColorEmoji dataset. Bottom, sample from the full CIFAR-10 dataset.

In our “genetic engineering” experiments (Sec.3) we show that it is possible to produce sensible
new images from CA defined by new codes based on existing samples in the dataset. For the sake
of similarity with the biological model, we also included an encoding conceptually similar to that
of DNA, i.e. a vector encoding on a base of four possible categorical values similar to our DNA’s
cytosine, guanine, adenine, and thymine bases (the well-known “CGAT” sequences).

In the biological domain, the model we propose could be useful to solve problems such as those
faced by Peak et al. (2004), when it was not possible to completely model plant’s stomata complexity
due to difficulties to obtain CA’s function from noisy real data. Its applications can spread among
many other biological domains where CA-modeling has been previously used, from tumor growth
processes (Jiao & Torquato, 2011) up to infection dynamics (González et al., 2013).

Although biologically inspired, our model is capable of dealing with any kind of vectorial data,
making it useful for a general range of problems. Having an embedding space of CA opens the
possibility to create new CA which can generate unseen behaviors based on the recombination of
features from learned CA samples.

2 NEURAL CELLULAR AUTOMATA MANIFOLD

Let us first introduce the main concepts of CA and NCA. A Cellular Automata (CA) is a model
based on a grid representation of the world. Each cell of the grid is an automaton or program which
perceives the environment (i.e. its state and the state of the neighboring cells) and updates its own
state according to a fixed rule, generally a mathematical function. The rule is the same for every cell
and does not change over time. CA models can be universal (Cook, 2004), which means that they can
be programmed to emulate any other system without changing its underlying construction. Despite
its expressive power, the main shortcoming of CAs is that given any specific rule, it is impossible to
predict its behavior. This means that in order to understand its behavior, each rule has to be tried with
multiple starting states, and its performance needs to be observed for many iterations. The Neural
Cellular Automata (NCA), recently proposed by Mordvintsev et al. (2020), is a class of Cellular
Automata which uses an artificial neural network as update function, so the the NN parameters can
be learned to obtain a desired behavior.

We already described in the introduction the biological inspiration of our model. Next, we move
forward to its detailed formulation. The Neural Cellular Automata Manifold (NCAM) uses dynamic
convolutions to model a space of NCAs. This space is learned through an Auto-Encoder framework.

2



Under review as a conference paper at ICLR 2021

Figure 2: Model overview. Beige elements contain trainable parameters while orange layers use
only predicted parameters. See Fig.3 for details of the architecture.

Formally, our model is defined by the following equations:

It = {Ct
ij} ∀i, j ∈ I

Ct
ij = f(Ct−1

ij ,M t−1
kl , κ(eI ,θ), θLF ) ∀(k, l) ∈ εij

M t
ij = g(Ct−1

ij ,M t−1
kl , κ(eI ,θ), θLF ) ∀(k, l) ∈ εij

κ(eI ,θ) = P(D(eI ,θD),θP)
θ = {θP ,θD}
εij = ({i− nx, . . . , i+ nx}, {j − ny, . . . , j + ny})

(1)

where It is the image generated at step t,Ct
ij is the color vector (RGB or RGB-Alpha) of the pixel in

position (i, j),M t
ij is the corresponding vector of “Morphogenes” (i.e. invisible channels in the grid),

εij are indices of the neighborhood of the cell (i, j) which extend nx, ny positions to each side in x
and y axis, and eI is the vector encoding the image. f(·) and g(·) are the functions implemented as
an NCA to predict the colors and “Morphogenes”, respectively. κ(eI ,θ) is the function that predicts
the weights of the NCA from the encoding eI and its learned parameters θ, which is actually the
composition of the functions learned by the DNA-decoder D(·) and the Parameter Predictor P(·).
The learned parameters are θP , θD and θLF , the Leak Factor (see Sec. 2.1).

In order to train this model, we could simply feed it with arbitrary codes, compute the reconstruction
error for corresponding target images, and back-propagate the error to learn the parameters. However,
we found it more sensible to learn embedding codes that can exploit similarities between images. We,
therefore, decided to use an Auto-Encoder architecture (LeCun, 1987) at the macro level, which learns
to map the set of inputs to a latent space and reconstructs them back. The Auto-Encoder consists of an
Encoder and a Decoder (see Fig. 3). The Encoder is composed of two main components: a continuous
encoder, that maps the input to a continuous variables encoding; and a DNA-encoder, that transforms
this encoding to a categorical variables encoding. The Decoder’s structure is symmetrical, mapping
first the DNA-encoding to a continuous encoding which, in turn, feeds the parameter predictor block.
From an auto-encoder perspective, the NCA should be considered the third part of the decoder since
it is the responsible for finally providing the reconstructed images. From a NN perspective, we can
see the NCA as a stack of Residual CNN blocks sharing weights or a “Recurrent Residual CNN”.

2.1 ARCHITECTURE DETAILS

The architecture of the net is based on different types of residual blocks (He et al., 2016). The smallest
building blocks are of 3 types: Convolutional Block 3x3 (CB3), Convolutional Block 1x1 (CB1)
and Fully Connected Block (FCB) (see details in Fig. 3). Unlike most of previous works (He et al.,
2016; Xie et al., 2017; Szegedy et al., 2017), the blocks do not modify input/output representation
dimensionality, neither in space resolution or number of filters. While these characteristics can be

3



Under review as a conference paper at ICLR 2021

conv nxn

conv nxn

conv nxn

conv nxn

FC

FC

FC

FC

Input

Output

Input

Output

CBn

FCB

ReLU

ReLU

ReLU

ReLU

+

+

Cont. encoding

InstanceNorm
CB1

Encoder

CB3

FCB
FCB

LF

Image

x4

Macro Block

+*

DNA-encodding

CB1

DNA Encoder

Reshape
SoftMax

CB3

CB1
CB1
CB1

CB3

x64

Sobel
InstanceNorm

Decoder

DynaConv 1x1

LF
DynaConv 1x1

FCB
FCB
FCB
FCB

Cont. Encoding

Reconstructed Image

Parameter 
Predictor

Pixel 
Seed

NCA

+*

ReLU

DNA Decoder
Reshape

DNA-encodding

CB1
CB1
CB1
CB1

Figure 3: Architecture Details. Beige elements contain trainable parameters while orange layers
use only predicted parameters. CBn blocks can be CB1 or CB3. All blocks share the same number of
filters except the last blocks whose output matches the embedding or parameters dimensionality.

useful for classification problems, where information needs to be condensed through processing steps,
our intuition is that this is not desirable in a reconstruction problem since detail information is lost.

A significant peculiarity of CB1 and CB3 is the expansion of the number features in the internal
layer by a factor of 4 and 2, respectively. We consider that this increase of dimensionality of the
representation space allows for a better disentanglement of the data manifold. Notice that CB1 needs
to be used in combination with CB3 to introduce neighbourhood information. This detail is opposed
to previous architectures (He et al., 2016; Xie et al., 2017; Szegedy et al., 2017) that reduce the
number of filters in the inner layer of the block, while increasing dimensionality in the short-cut path.

A specific detail of the architecture is the use of a Leak Factor (LF) as an aid for training stability.
LF is a single learnable parameter that regulates how much each successive step contributes to the
output. A low value of LF encourages the network to retain most of the knowledge from previous
steps, avoiding to distort the image too abruptly at any given step. After the network has learnt the
basics of the problem this scenario is less likely, thus the network can learn to let more and more
information to leak through each step. LF is constrained between 10−3 and 103, initialized at 10−1.

Unlike many architectures that only take the spatial mean of the convolutional output tensor to feed
FC layers, we use 3 additional slices. Being (c ∗ h ∗ w) the dimensions of the output tensor, a spatial
mean over h,w provides a (c) dimensional encoding of the image. A mean over h yields a (c ∗ w)
dimensional vector, and doing similarly over the other 2 dimensions (c and w), we obtain the input to
our FCB of dimension = c+ (c ∗ h) + (c ∗ w) + (h ∗ w) .

2.2 DNA-ENCODING

The latent vector representation can be interpreted as the source code that dictates the behavior
on the cells of each of the NCAs. This definition inspired us to think of a possible alternative
representation of such source code: each value in the latent vector can be encoded into a categorical
base, making our encoding compatible to that of the DNA. Notice that a simple quantization on the
continuous variable would provide an ordinal discrete variable instead of a DNA-like categorical one.
This encoding is dimensioned to handle the same 32 bits of information of the corresponding float
variable, thus no additional bottleneck or expansion is introduced here.

As we can see in Fig. 3, the DNA-encoder is composed of 4 successive CB1 feeding a softmax layer
to obtain the 4-categories DNA-embedding. The DNA-decoder follows a symmetrical structure,
mapping back each “gene” to a continuous feature. These CB1 are all 1D convolutions, independently
expanding each feature of the continuous encoding to a 16-features “gene”. This independent

4



Under review as a conference paper at ICLR 2021

Target

CE-STO
16-512

DNA-STO
16-512

CE-SYN
16-512

DNA-SYN
16-512

DNA-STO
16-256

DNA-STO
16-1024

Figure 4: Growth results. First row is a random set of images from the full NotoColorEmoji
dataset. Following rows are generated by different variants of NCAM codified as: CE: Continuous
encoding, DNA: DNA-encoding; STO: Stochastic update, SYN: Synchronous update; 16-512:
number of channels in NCA (16,32) - Dimensionality of the continuous embedding (256, 512, 1024)
(DNA dimensionality is 16 times that of continuous).

processing of different variables makes no assumption about the “meaning” of each category for one
variable in relation to its “meaning” in other variables, so the actual “meaning” depends only on latter
interaction between corresponding continuous variables.

In order to train our encoding, we add a biologically plausible noise replacing half of the letters
by randomly drawn letters. Our intent is not to precisely mimic the mutation rate of DNA (2.5 ×
10−8/generation (Nachman & Crowell, 2000)) but to enforce a high redundancy in the encoding.

2.3 DYNAMIC CONVOLUTIONS

Several architectures have been proposed to augment CNNs capabilities, all performing some kind
of scaling over intermediate representations between convolutional layers. Attention models (Xu
et al., 2015; Wang et al., 2018) scale the input according to a spatial probability distribution, being
essentially a mask that tells the CNN which parts of the input are the most relevant. Conditioning
models use information either from the same network (Hu et al., 2018), from another network (Karras
et al., 2019) or from a completely independent source (Dumoulin et al., 2018), to scale the internal
representation channel-wise.

An even more precise adjustment is provided by the Dynamic convolutions, where the weights of the
convolutional kernel are specifically computed for each sample. In previous works (Klein et al., 2015;
Jia et al., 2016), the architecture branches in two paths from the input image: one to compute the
kernels, and the other to process the input through the dynamic kernels. In contrast, in our approach,
the kernel weights are generated from an encoding which is completely independent (and different)
from the image to be processed by them. Indeed, the image to be processed in the first step is the pixel
seed, which is the same for all targets. Similarly to (Klein et al., 2015), for an image sample I , being
XI the input tensor of the convolution and Y I the output tensor, we define the dynamic convolution
as Y I

n =
∑

m κ(eI)mn ?X
I
m, where κ(eI)mn is the convolution kernel dynamically computed

from the encoding for I , and (m,n) are the input and output channels of the convolution. Although
dynamic convolutions are quite a novel idea, in our case they are the simplest way to achieve our
goal, keeping the original NCA architecture unchanged but encapsulated in a meta-learning system.

2.4 NEURAL CELLULAR AUTOMATA ARCHITECTURE

The last component of the decoder is an NCA. To reconstruct an image, the NCA starts from a pixel
seed image (typically a blank image with a different pixel). Then, each cell in the grid recurrently
perceives the environment and computes an update. After a fixed number of steps, the output is

5



Under review as a conference paper at ICLR 2021

Chars

Emos

Heads

Variety

Figure 5: Growth results on reduced datasets. For each subset of NotoColorEmoji, first row
are random images while the second are generated using DNA-encoding and stochastic update.

evaluated and the reconstruction error back-propagated. In (Mordvintsev et al., 2020), NCA’s kernel
weights are directly updated, but in our case the error is back-propagated further, through the NCA
and to the parameter predictor, updating its weights instead of the NCA’s. We can divide the NCA
architecture in two main blocks, perception and update.

The Perception Layer was designed to propagate the gradients across the grid in the 16 channels
composing it (the first four corresponding to the visible RGBA). This is achieved with manually
defined Sobel filters (see Fig. 2), similarly to (Mordvintsev et al., 2020). Since our network’s
architecture has only ReLU activation functions, the activations have an unbounded positive value.
Given the recurrent architecture of the NCA, during the training process, an exponential reinforcement
can occur, leading activations and weights to∞ and degenerate states. To avoid this problem, we
apply instance normalization (Ulyanov et al., 2016) on top of the Sobel filters.

To compute the Update, we use the NCA architecture, consisting on 2 pixel-wise dense layers
(implemented as 1x1 convolutions). The update is modulated by the Leak Factor (the only trainable
parameter in our NCA), analogous to the LF used in the Continuous Encoder. Finally, the update is
stochastically applied on the current state with an independent probability of p = 0.5 for each cell.

3 EXPERIMENTS

We next present several experiments to highlight different aspects of our Neural Cellular Automata
Manifold (NCAM). We also provide qualitative and quantitative evaluation (MSE error).

Datasets. NotoColorEmoji dataset (Google, 2020): 2924 images of synthetic emojis. This
kind of images are very simple and with sharp edges, therefore it is relatively easy to visually
assess the quality of the produced images. The original images are 128x128 pixels but in our
experiments we downscaled them to 64x64 to reduce the computational requirements. CIFAR-10
dataset (Krizhevsky et al., 2009): 50.000 real 32x32 images from 10 categories: plane, car, bird, cat,
deer, dog, frog, horse, ship, truck. The number of images and its variability make it challenging.

Continuous vs. DNA encoding. Generation results for these two sets of experiments are very similar,
both visually (see Fig. 4, rows 1-2) and numerically in MSE (CE: 0.01591, DNA: 0.01633). Results
show no clear reduction or increase on performance with the extra processing involved in the DNA
encoding and decoding process. We consider that the proposed DNA-encoding methodology achieves
the desired objective of obtaining an equivalent encoding. It is remarkable the absence of artifacts in
the background of the emojis given that we removed the alive masking used in (Mordvintsev et al.,
2020), proving that our design is able to learn by itself the limits of the figure.

6



Under review as a conference paper at ICLR 2021

mean mean

0.5 0.7 0.9 0.5 0.7 0.9

Figure 6: “Genetic engineering” results. On top: source images for each of two mean encodings.
Just below: mean images generated by different thresholds (0.5, 0.7, 0.9): the higher, more common
need to be the “genes”. Three bottom rows: On the left: 3 original target images; On the right:
different images generated when mean “genes” are injected to targets.

Stochastic vs. synchronous update. We consider that the stochastic update feature of the NCA,
while being relevant in the biological analogy, may suppose an extra difficulty in the learning process.
In these experiments we remove the stochastic update (p = 0.5) making it synchronous at every time
step (p = 1.0). Notice that this change implies, on average, doubling the number of steps on the NCA
processing. It also makes more reliable the expected state of neighboring cells. This modification
reduced the error significantly in both scenarios, continuous and DNA encoding. Note that images
generated with this approach succeed in reconstructing even the finest details (see Fig.4, rows 3-4).
MSE is one order of magnitude below stochastic approaches (MSE: CE: 0.00199, DNA: 0.00262).

Effect of encoding dimensionality. We next evaluate our method under significant changes in
the encoding dimensionality setting it to half (256) and double (1024) size. Notice that these
dimensionalities refer to the continuous encoding, the actual DNA-encoding dimensions are 16 times
larger. The experiments show (see Fig. 4, rows 5-6) that there is a significant quality degradation
when the dimensionality is reduced to half while there is no appreciable improvement when it is
doubled (MSE: 256: 0.02302, 1024: 0.01584). Therefore, we consider that the embedding size is not
a bottleneck for the problem at hand.

Smaller datasets. In order to assess the challenge that the size of the dataset and its visual complexity
poses on the proposed method, we experiment on 4 different subsets of the NotoColorEmoji
dataset, classified by the authors according to their visual appearance. Chars (96 images): emojis
containing characters of the Latin set and a few symbols. They are simple shapes, usually with
straight lines and few colors. Emos (103 images): round yellow faces showing emotions. Heads
(858 images): images of person heads, typically showing different professions. All theses images
include the full set of versions according to skin tone. Variety (684 images): images not present in
other sets that are also visually different among them. It mainly includes animals, objects and food.

Results show that, as expected, problems have a growing level of difficulty in terms of MSE: Chars:
0.00976 < Emos: 0.01799 < Heads: 0.02439 < Variety: 0.05035 which can also be visually
assessed on Fig. 5. The primary factor is the visual complexity or variety, not the size of the dataset.
Linear simple shapes seem easier to generate than more rounded or intricate ones.

“Genetic engineering”. We next play a little of “genetic engineering”, injecting part of the DNA-
encoding from some images to others. To do so, we first generate a mean encoding of a group of
source images that share a visual trait. We compute the mean of the 4 discrete features over the
samples (i.e. DNA categories) and take the ones with values over a defined threshold. Notice that
since they are produced by a softmax we can not have two values over 0.5. If none of the values is
over the threshold we would have new category “none” which the DNA-decoder will ignore. With
this encoding we generate the mean image. The parts of the mean encoding that are not “none” will
substitute corresponding parts of target image encoding.

Results in Fig. 6 show some interesting properties of the embedding. The lack of several features in
the mean encoding causes no perturbation in the common traits and usually also provides a reasonable

7



Under review as a conference paper at ICLR 2021

Target

CE-SYN
16-512

DNA-SYN
16-512

Figure 7: CIFAR-10 results using the best methods: Continuous and DNA Encoding with Syn-
cronous update and baseline dimensionalities.

solution for the uncommon. The transfer process does not disrupt other common traits in target
images. If the traits transferred collide with existing traits, they produce mixed shapes. We can
observe that some traits that are not common in the source images are also transferred, suggesting
some kind of trait dominance.

CIFAR-10 results. Finally, we report results on CIFAR-10 dataset (Krizhevsky et al., 2009). Note
that in this case, our NCAM model is capable to generate up to 50K different images. In Fig. 1
we show an example of image formation for this case. On this dataset we only experimented with
the synchronous update (best solution) since it is difficult to appreciate the level of detail required
to visually evaluate the quality of the results (see Fig. 7). However, MSE values obtained are CE:
0.00717 DNA: 0.00720, perfectly comparable with those of NotoColorEmoji.

4 CONCLUSIONS

Machine learning techniques are already considered critical for the study of epigenetic processes,
meddling between genetic information and their expression, which hold immense promise for
medical applications Holder et al. (2017). The model proposed here successfully simulates the main
components of developmental biology, from DNA encoding to morphogenesis, at a high conceptual
level. In our experiments, it is capable of reproducing almost 3.000 different emoji images, with
a great level of detail, and up to 50.000 real images of the CIFAR-10 dataset. Given its unique
structure, capable of combining DNA-encoded and environment information, demonstrated scalability
and robustness to noise, we consider it has an good potential in modeling genetic expression problems.

It is important to notice that the properties of the manifold learnt by the proposed Auto-Encoder will
depend on the loss function used for training. In our work, we use MSE loss to learn to reproduce
original images with high fidelity. If we were to use an adversarial loss Goodfellow et al. (2014), we
likely would obtain visually plausible images of the same class but not an exact replica. We consider
that the application of a reinforcement learning loss Mnih et al. (2015) could allow to produce a
model driven by a fitness metric, such model would then be similar to genetic evolution. These simple
adaptations open unfathomable use possibilities for the NCAM.

As stated in the introduction, CA models are widespread in biology and we consider that the general-
ization capabilities shown by the proposed method can be of interest in many different fields, specially
where the model needs to be universal and able to fit noisy data. Cellular automata models have
been proposed to obtain predictions on disease spreading Zhong et al. (2009); González et al. (2013);
Slimi & El Yacoubi (2006) and, more recently, on the COVID 19 pandemic evolution Pokkuluri &
Nedunuri (2020); Fang et al. (2020). We consider our model could also be of special interest for these
tasks due to the capabilities shown and the ease to adapt it to different problems.

This work is a first step on creating embedding spaces to represent not only static information but
behavioural patterns, effectively programs. Moreover, our experiments generate programs for multiple
agents that, interacting through the environment, achieve the desired collective outcome. Given that
our model is capable of dealing with any kind of vectorial data, we do not foresee any theoretical
limitation to learn complex programs, to perform all sorts of different tasks, only from data and an
approximate loss function. Finally, thanks to the NCAM embedding space, we can generate programs
that produce new sensible novel behaviours unseen in the data.

8



Under review as a conference paper at ICLR 2021

REFERENCES

Matthew Cook. Universality in elementary cellular automata. Complex systems, 15(1):1–40, 2004.

Vincent Dumoulin, Ethan Perez, Nathan Schucher, Florian Strub, Harm de Vries, Aaron Courville,
and Yoshua Bengio. Feature-wise transformations. Distill, 2018. doi: 10.23915/distill.00011.
https://distill.pub/2018/feature-wise-transformations.

Zhiming Fang, Zhongyi Huang, Xiaolian Li, Jun Zhang, Wei Lv, Lei Zhuang, Xingpeng Xu, and Nan Huang.
How many infections of covid-19 there will be in the" diamond princess"-predicted by a virus transmission
model based on the simulation of crowd flow. arXiv preprint arXiv:2002.10616, 2020.

Ramón ER González, Sérgio Coutinho, Rita Maria Zorzenon dos Santos, and Pedro Hugo de Figueirêdo.
Dynamics of the hiv infection under antiretroviral therapy: A cellular automata approach. Physica A:
Statistical Mechanics and its Applications, 392(19):4701–4716, 2013.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. Generative adversarial nets. In Advances in neural information processing
systems, pp. 2672–2680, 2014.

Google. Noto emoji distribution, 2020. URL https://github.com/googlefonts/noto-emoji.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 770–778, 2016.

Lawrence B Holder, M Muksitul Haque, and Michael K Skinner. Machine learning for epigenetics and future
medical applications. Epigenetics, 12(7):505–514, 2017.

Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation networks. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pp. 7132–7141, 2018.

Xu Jia, Bert De Brabandere, Tinne Tuytelaars, and Luc V Gool. Dynamic filter networks. In Advances in Neural
Information Processing Systems, pp. 667–675, 2016.

Yang Jiao and Salvatore Torquato. Emergent behaviors from a cellular automaton model for invasive tumor
growth in heterogeneous microenvironments. PLoS computational biology, 7(12), 2011.

Tero Karras, Samuli Laine, and Timo Aila. A style-based generator architecture for generative adversarial
networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4401–
4410, 2019.

Benjamin Klein, Lior Wolf, and Yehuda Afek. A dynamic convolutional layer for short range weather prediction.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4840–4848, 2015.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. Technical
Report, 2009.

Yann LeCun. Modeles connexionnistes de l’apprentissage (connectionist learning models). Doctoral dissertation,
1987.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G Bellemare, Alex
Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al. Human-level control through deep
reinforcement learning. Nature, 518(7540):529–533, 2015.

Alexander Mordvintsev, Ettore Randazzo, Eyvind Niklasson, and Michael Levin. Growing neural cellular
automata. Distill, 2020. doi: 10.23915/distill.00023. https://distill.pub/2020/growing-ca.

Michael W Nachman and Susan L Crowell. Estimate of the mutation rate per nucleotide in humans. Genetics,
156(1):297–304, 2000.

David Peak, Jevin D West, Susanna M Messinger, and Keith A Mott. Evidence for complex, collective dynamics
and emergent, distributed computation in plants. Proceedings of the National Academy of Sciences, 101(4):
918–922, 2004.

Kiran Sree Pokkuluri and SSSN Usha Devi Nedunuri. A novel cellular automata classifier for covid-19 prediction.
Journal of Health Sciences, 10(1):34–38, 2020.

Redouane Slimi and Samira El Yacoubi. Spreadable probabilistic cellular automata models: an application in
epidemiology. In International Conference on Cellular Automata, pp. 330–336. Springer, 2006.

9

https://github.com/googlefonts/noto-emoji


Under review as a conference paper at ICLR 2021

Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alexander A Alemi. Inception-v4, inception-resnet
and the impact of residual connections on learning. In Thirty-first AAAI conference on artificial intelligence,
2017.

Alan Turing. The chemical basis of morphogenesis. Sciences, 237(641):37–72, 1952.

Dmitry Ulyanov, Andrea Vedaldi, and Victor Lempitsky. Instance normalization: The missing ingredient for fast
stylization. arXiv preprint arXiv:1607.08022, 2016.

Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. Non-local neural networks. In Proceedings of
the IEEE conference on computer vision and pattern recognition, pp. 7794–7803, 2018.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual transformations
for deep neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 1492–1500, 2017.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho, Aaron Courville, Ruslan Salakhudinov, Rich Zemel, and
Yoshua Bengio. Show, attend and tell: Neural image caption generation with visual attention. In International
conference on machine learning, pp. 2048–2057, 2015.

ShaoBo Zhong, QuanYi Huang, and DunJiang Song. Simulation of the spread of infectious diseases in a
geographical environment. Science in China Series D: Earth Sciences, 52(4):550–561, 2009.

10


	Introduction
	Neural Cellular Automata Manifold
	Architecture Details
	DNA-encoding
	Dynamic Convolutions
	Neural Cellular Automata Architecture

	Experiments
	Conclusions

