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Abstract

Point cloud data is ubiquitous in scientific fields. Recently, geometric deep learning
(GDL) has been widely applied to solve prediction tasks with such data. However,
GDL models are often complicated and hardly interpretable, which poses concerns
to scientists when deploying these models in scientific analysis and experiments.
This work proposes a general mechanism named learnable randomness injection
(LRI), which allows building inherently interpretable models based on general GDL
backbones. LRI-induced models, once being trained, can detect the points in the
point cloud data that carry information indicative of the prediction label. We also
propose four datasets from real scientific applications that cover the domains of high
energy physics and biochemistry to evaluate the LRI mechanism. Compared with
previous post-hoc interpretation methods, the points detected by LRI align much
better and stabler with the ground-truth patterns that have actual scientific meanings.
LRI is grounded by the information bottleneck principle. LRI-induced models also
show more robustness to the distribution shifts between training and test scenarios.
Our code and datasets are available at https://github.com/Graph-COM/LRI.

1 Introduction

The measurement of many scientific research objects can be represented as a point cloud, i.e., a set
of featured points in some geometric space. For example, in high energy physics (HEP), particles
generated from collision experiments leave spacial signals on the detectors they pass through [1];
In biology, a protein is often measured and represented as a collection of amino acids with spacial
locations [2, 3]. Geometric quantities of such point cloud data often encode important properties of the
research object, analyzing which researchers may expect to achieve new scientific discoveries [4, 5].

Recently, machine learning techniques have been employed to accelerate the procedure of scientific
discovery [6, 7]. For geometric data as above, geometric deep learning (GDL) [8, 9] has shown great
promise and has been applied to the fields such as HEP [10, 11], biochemistry [12, 13] and so on.
However, geometric data in practice is often irregular and high-dimensional. Think about a collision
event in HEP that generates hundreds to thousands of particles, or a protein that consists of tens to
hundreds of amino acids. Although each particle or each amino acid is located in a low-dimensional
space, the whole set of points eventually is extremely irregular and high-dimensional. So, current
research on GDL primarily focuses on designing neural network (NN) architectures for GDL models
to deal with the above data challenge. GDL models have to preserve some symmetries of the system
and incorporate the inductive biases reflected by geometric principles to guarantee their prediction
quality [14, 15], and therefore often involve dedicated-designed complex NN architectures.
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Figure 1: Illustrations of the four scientific datasets in this work to study interpretable GDL models.

Albeit with outstanding prediction performance, the complication behind GDL models makes them
hardly interpretable. However, in many scientific applications, interpretable models are in need [16]:
For example, in drug discovery, compared with just predicting the binding affinity of a protein-ligand
pair, it is more useful to know which groups of amino acids determine the affinity and where can be
the binding site, as the obtained knowledge may guide future research directions [17–19]. Moreover,
scientists tend to only trust interpretable models in many scenarios, e.g., most applications in HEP,
where data from real experiments lack labels and models have to be trained on simulation data [20].
Here, model interpretation is used to verify if a model indeed captures the patterns that match
scientific principles instead of some spurious correlation between the simulation environment and
labels. Unfortunately, to the best of our knowledge, there have been no studies on interpretable GDL
models let alone their applications in scientific problems. Some previous post-hoc methods may
be extended to interpret a pre-trained GDL model while they suffer from some limitations as to be
reviewed in Appendix A. Moreover, recent works [21–24] have shown that the data patterns detected
by post-hoc methods are often inconsistent across interpretation methods and pre-trained models, and
may hardly offer reliable scientific insights.

To fill the gap, this work proposes to study interpretable GDL models. Inspired by the recent
work [24], we first propose a general mechanism named Learnable Randomness Injection (LRI) that
allows building inherently interpretable GDL models based on a broad range of GDL backbones.
We then propose four datasets from real-world scientific applications in HEP and biochemistry
and provide an extensive comparison between LRI-induced GDL models and previous post-hoc
interpretation approaches (after being adapted to GDL models) over these datasets.

Our LRI mechanism provides model interpretation by detecting a subset of points from the point cloud
that is most likely to determine the label of interest. The idea of LRI is to inject learnable randomness
to each point, where, along with training the model for label prediction, injected randomness on
the points that are important to prediction gets reduced. The convergent amounts of randomness on
points essentially reveal the importance of the corresponding points for prediction. Specifically in
GDL, as the importance of a point may be indicated by either the existence of this point in the system
or its geometric location, we propose to inject two types of randomness, Bernoulli randomness, with
the framework name LRI-Bernoulli to test existence importance of points and Gaussian randomness
on geometric features, with the framework name LRI-Gaussian to test location importance of points.
Moreover, by properly parameterized such Gaussian randomness, we may tell for a point, how in
different directions perturbing its location affects the prediction result more. With such fine-grained
geometric information, we may estimate the direction of the particle velocity when analyzing particle
collision data in HEP. LRI is theoretically sound as it essentially uses a variational objective derived
from the information bottleneck principle [25]. LRI-induced models also show better robustness to
the distribution shifts between training and test scenarios, which gives scientists more confidence in
applying them in practice.

We note that one obstacle to studying interpretable GDL models is the lack of valid datasets that
consist of both classification labels and scientifically meaningful patterns to verify the quality of
interpretation. Therefore, another significant contribution of this work is to prepare four benchmark
datasets grounded on real-world scientific applications to facilitate interpretable GDL research. These
datasets cover important applications in HEP and biochemistry. We briefly illustrate these four
datasets in Fig. 1 and introduce them as follows.

• ActsTrack is a particle tracking dataset in HEP that is used to reconstruct the properties, such as
the kinematics of a charged particle given a set of position measurements from a tracking detector.
Tracking is an indispensable step in analyzing HEP experimental data as well as particle tracking
used in medical applications such as proton therapy [26–28]. Our task is formulated differently

2



from traditional track reconstruction tasks: We predict the existence of a z → µµ decay and use
the set of points from the µ’s to verify model interpretation, which can be used to reconstruct µ
tracks. ActsTrack also provides a controllable environment (e.g., magnetic field strength) to
study fine-grained geometric patterns.

• Tau3Mu, another application in HEP, is to detect a challenging signature of charged lepton
flavor violating decays, i.e., the τ → µµµ decay, given simulated muon detector hits in proton-
proton collisions. Such decays are greatly suppressed in the Standard Model (SM) of particle
physics [29, 30], therefore, any detection of them is a clear signal of new physics beyond the
Standard Model [31, 32]. Unfortunately, τ → µµµ contains particles of extremely low momentum,
thus technologically impossible to trigger with traditional human-engineered algorithms. Hence,
online detection with advanced models that explores the correlations between signal hits on top
of background hits is required to capture such decays at the Large Hadron Collider. Our task
is to predict the existence of τ → µµµ and use the detector hits left by the µ’s to verify model
interpretation.

• SynMol is a molecular property prediction task. Although some works have studied model
interpretability in such tasks [33, 34], they limit their focus on the chemical-bond-graph represen-
tations of molecules, and largely ignore their geometric features. In this work, we put focus on
3D molecular representations. Our task is to predict the property given by two functional groups
carbonyl and unbranched alkane [33] and use atoms in these functional groups to verify model
interpretation.

• PLBind is to predict protein-ligand binding affinities given the 3D structures of proteins and
ligands, which is a crucial step in drug discovery, because a high affinity is one of the major
drug selecting criteria [35, 18]. Accurately predicting their affinities with interpretable models
is useful for rational drug design and may help the understanding of the underlying biophysical
mechanism that enables protein-ligand binding [36–38]. Our task is to predict whether the affinity
is above a given threshold and use amino acids in the binding site of the test protein to verify
model interpretation.

We evaluate LRI with three popular GDL backbone models DGCNN [39], Point Transformer [40],
and EGNN [41] over the above datasets. We also extend five baseline interpretation methods to GDL
for comparison. We find that interpretation results given by LRI align much better with the scientific
facts than those of the baselines. Also, we observe over some datasets, LRI-Gaussian outperforms
LRI-Bernoulli while on others vice versa. This implies different GDL applications may have different
interpretation requirements. Effective data patterns may vary regarding how the task depends on the
geometric features of the points. Interestingly, we find LRI-Gaussian can discover some fine-grained
geometric patterns, such as providing high-quality estimations of the directions of particle velocities
in ActsTrack, and a high-quality estimation of the strength of the used magnetic field. Moreover,
neither of LRI mechanisms degrades the prediction performance of the used backbone models. LRI
mechanisms even improve model generalization when there exist some distribution shifts from the
training to test scenarios.

2 Preliminaries and Problem Formulation

In this section, we define some useful concepts and notations, while detailed review of related works
can be found in Appendix A.

GDL Tasks. We consider a data sample is a point cloud C = (V,X, r), where V = {v1, v2, ..., vn}
is a set of n points, X ∈ Rn×d includes d-dimensional features for all points, and r ∈ Rn×3 denotes
3D spacial coordinates of points. In this work, we introduce our notations by assuming the points are
in 3D euclidean space while our method can be generalized. We focus on building a classification
model ŷ = f(C) to predict the class label y of C. Regression tasks are left for future studies.

GDL Models. The first class of DGL models view each sample of points as an unordered set. It
learns a dense representation zv for each v ∈ V , and then applies a permutation invariant function,
e.g., sum/mean/max pooling, to aggregate all point representations so that they can handle irregular
data [42, 43]. The second class of methods can better utilize geometric features and local information.
These methods first construct a k-nn graph G over the points in each sample based on their distances,
e.g., ∥rv − ru∥, and iteratively update the representation of point v via aggregation AGG({zu | u ∈
N (v)}), where N (v) is the neighbours of point v in graph G and AGG is a permutation invariant
function. Then, another function is used to aggregate all point representations to make predictions.
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Figure 2: The architectures of LRI-Bernoulli (top) and LRI-Gaussian (bottom).

Compared with graph neural networks (GNNs) [44–46] that encode graph-structured data without
geometric features, GDL models often process geometric features carefully: Typically, these features
are transformed into some scalars such as distances, angles and used as features so that some group
(e.g., E(3), SO(3)) invariances of the prediction can be kept [47–49, 41, 50]. Some models that
perform 3D convolution over 3D data also belong to the second class because the convolution kernels
can be viewed as one way to define the distance scalars for graph construction and neighborhood
aggregation [51–53]. The third class will dynamically construct the k-nn graphs based on the hidden
representations of points [39, 11, 40]. In this work, we focus on using the second class of models’
architectures as the backbones because most scientific applications adopt this class of models.

Interpretable Patterns in GDL. Given a sample C = (V,X, r), our goal of building an inherently
interpretable model is that the model by itself can identify a subset of points Cs = (Vs,Xs, rs) that
best indicates the label y. Mostly, Cs will have a scientific meaning. For example, in the task to detect
τ → µµµ decay, our model should identify the detector hits left by the three µ’s but not the hits
from other particles. We consider two types of indications of the label given by a point: existence
importance, i.e., whether the point exists in the cloud is important to determine the label, and location
importance, i.e. whether the geometric location of the point is important to determine the label. In the
above example, the existence of the detector hits left by the three µ’s is of course important. On the
other hand, the locations of these hits are also crucial because location features reflect the momentum
of these particles when they pass through detectors, which should satisfy equations regarding certain
invariant mass if they are indeed generated from a τ → µµµ decay.

3 Methodology

In this section, we introduce our method Learnable Randomness Injection (LRI). In the high-level
framework of LRI, we have an interpreter g and a classifier f . g is used to encode the original data and
generate randomness to perturb the data. f is used to encode the perturbed data and make predictions.
g and f are trained together to make accurate predictions while providing interpretability. LRI can be
applied to a large class of GDL models to make them interpretable. We may choose a GDL model
architecture as the backbone to build the data encoders in g and f . These encoders could share or
not share parameters. Below, we will introduce specifics about this procedure. We first describe
LRI-Bernoulli, where Bernoulli randomness is injected to measure the existence important of points.
Then, we introduce LRI-Gaussian, which injects Gaussian randomness into geometric features to test
the location importance of points. Finally, we connect our objectives with the information bottleneck
principle [25].

3.1 LRI-Bernoulli to Test Existence Importance

Pipeline. Given a sample C = (V,X, r), we first construct a k-nn graph G based on the euclidean
distance ∥rv − ru∥ between every pair of points v, u ∈ V . As shown in the top of Fig. 2, the
interpreter g encodes C, generates a representation zv for each point v and uses the last component h
to map zv to pv ∈ [0, 1]. Here, h consists of an MLP plus a sigmoid layer, and samples a Bernoulli
mask for each point via mv ∼ Bern(pv). The sampling is based on a reparameterization trick [54, 55]
to make dmv

dpv
computable. The perturbed data C̃ is yielded by removing the points with mv = 0 in

C. The edges in G connected to these points are also masked and removed, which gives a graph G̃.
Finally, the classifier f takes as inputs C̃ and G̃ to make predictions.

Objective. Eq. 1 shows our objective for each sample C, where the first term is a cross-entropy
loss for classification and the second term is a KL divergence regularizer. β is the regularization
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Table 1: Statistics of the four datasets.
# Classes # Features in X # Dimensions in r # Samples Avg. # Points/Sample Avg. # Important Points/Sample Class Ratio Split Scheme Split Ratio

ActsTrack 2 0 3 3241 109.1 22.8 39/61 Random 70/15/15
Tau3Mu 2 1 2 129687 16.9 5.5 24/76 Random 70/15/15
SynMol 2 1 3 8663 21.9 6.6 18/82 Patterns 78/11/11
PLBind 2 3 3 10891 339.8 132.2 29/71 Time 92/6/2

coefficient and Bern(α) is a predefined Bernoulli distribution with hyperparameter α < 1.

minLCE(f(C̃, G̃), y) + β
∑
v∈V

DKL(Bern(pv)∥Bern(α)). (1)

Here, f is optimized via the first term. The interpreter g is optimized via the gradients that pass
through the masks {mv}v∈V contained in C̃ and G̃ in the first term, and {pv}v∈V in the second term.

Interpretation Rationale. The interpretation is given by the competition between the two terms in
Eq. 1. The first term is to achieve good classification performance so it tends to denoise the data C̃ by
reducing the randomness generated by g, i.e., pv → 1. The second term, on the other hand, tends to
keep the level of randomness, i.e., pv → α. After training, pv will converge to some value. If the
existence of a point v is important to the label y, then pv should be close to 1. Otherwise, pv is close
to α. We use pv’s to rank the points v ∈ V according to their existence importance.

3.2 LRI-Gaussian to Test Location Importance

Pipeline. We start from the same graph G as LRI-Bernoulli. As shown in the bottom of Fig. 2,
here, the interpreter g will encode the data and map it to a covariance matrix Σv ∈ R3×3 for each
point v. Gaussian randomness ϵv ∼ N (0,Σv) is then sampled to perturb the geometric features
r̃v = rv + ϵv of v. Note that, to test location importance, a new k-nn graph G̃ is constructed based on
perturbed distances ∥r̃v − r̃u∥. Reconstructing G̃ is necessary because using the original graph G
will leak information from the original geometric features r. Finally, the classifier f takes as inputs
the location-perturbed data C̃ = (V,X, r̃) and G̃ to make predictions.

Objective. Eq. 2 shows the objective of LRI-Gaussian for each sample C. Different from Eq. 1, here
the regularization is given by a predefined Gaussian distribution N (0, σI), where I is an identity
matrix and σ is a hyperparameter.

minLCE(f(C̃, G̃), y) + β
∑
v∈V

DKL(N (0,Σv)∥N (0, σI)). (2)

Again, the classifier f will be optimized via the first term. The interpreter g will be optimized via the
gradients that pass through the perturbation {ϵv}v∈V implicitly contained in C̃ and G̃ in the first term,
and {Σv}v∈V in the second term. However, there are two technical difficulties to be addressed.

First, how to parameterize Σv as it should be positive definite, and then how to make dϵv
dΣv

computable?
Our solution is to let the last component h in g map representation zv not to Σv directly but to a
dense matrix Uv ∈ R3×3 via an MLP and two scalars a1, a2 ∈ R+ via a softplus layer. Then,
the covariance matrix is computed by Σv = a1UvU

T
v + a2I. Moreover, we find using Σv and

the reparameterization trick for multivariate Gaussian implemented by PyTorch is numerically
unstable as it includes Cholesky decomposition. So, instead, we use the reparameterization trick
ϵv =

√
a1Uvs1 +

√
a2Is2, where s1, s2 ∼ N (0, I). It is not hard to show that E[ϵvϵTv ] = Σv .

Second, the construction of the k-nn graph G̃ based on r̃v is not differentiable, which makes the
gradients of {ϵv}v∈V that pass through the structure of G̃ not computable. We address this issue by
associating each edge v, u in G̃ with a weight wvu ∈ (0, 1) that monotonically decreases w.r.t. the
distance, wvu = ϕ(∥r̃v − r̃u∥). These weights are used in the neighborhood aggregation procedure
in f . Specifically, for the central point v, f adopts aggregation AGG({wvuzu | u ∈ N (v)}), where
zu is the representation of the neighbor point u in the current layer. This design makes the structure
of G̃ differentiable. Moreover, because we set wuv < 1, the number of used nearest neighbors to
construct G̃ is “conceptually” smaller than k. So, in practice, we choose a slightly larger number (say
1.5k) of nearest neighbors to construct G̃ and adopt the above strategy.

Interpretation Rationale. The interpretation rationale is similar to that of LRI-Bernoulli, i.e., given
by the competition between the two terms in Eq. 1. The first term is to achieve good classification
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Table 2: Interpretation performance on the four datasets. The Bold†, Bold, and Underline highlight
the first, second, and third best results, respectively. All results are reported with mean ± std.

ActsTrack DGCNN Point Transformer EGNN

ROC AUC Prec@12 Prec@24 ROC AUC Prec@12 Prec@24 ROC AUC Prec@12 Prec@24

Random 50 21 21 50 21 21 50 21 21
GradGeo 65.92± 1.55 30.71± 1.46 30.20± 1.07 65.92± 1.61 31.76± 1.04 30.06± 1.32 67.57± 0.65 31.09± 1.37 30.87± 1.24
BernMask 68.85± 4.72 45.90± 7.14 42.72± 7.91 76.94± 1.99 71.17± 1.66 57.10± 3.22 50.94± 3.86 18.67± 2.06 20.00± 3.13
BernMask-P 88.16± 3.22 76.94± 11.30 66.71± 6.99 84.36± 2.64 73.24± 6.60 60.41± 5.44 30.81± 27.63 17.38± 32.08 13.92± 21.22
PointMask 49.85± 6.11 21.05± 4.67 21.54± 4.16 50.66± 0.91 22.43± 5.78 20.63± 3.63 49.55± 1.40 20.35± 1.14 20.06± 1.01
GradGAM 82.96± 2.42 84.29± 2.25 66.34± 2.56 83.07± 2.28 82.13± 0.92 64.64± 1.89 79.44± 2.62 78.38± 1.96 52.55± 3.38

LRI-Bernoulli 90.29± 1.39 89.36± 1.20 74.59± 1.28 87.06± 2.49 85.71± 0.99 67.65± 1.22 78.57± 3.34 81.56± 1.13 55.29± 1.99
LRI-Gaussian 95.49† ± 0.34 92.40† ± 0.64 79.87† ± 0.72 93.11† ± 1.50 88.39† ± 4.36 74.71† ± 1.99 94.34† ± 0.70 91.54† ± 1.49 76.78† ± 0.81

Tau3Mu DGCNN Point Transformer EGNN

ROC AUC Prec@3 Prec@7 ROC AUC Prec@3 Prec@7 ROC AUC Prec@3 Prec@7

Random 50 35 35 50 35 35 50 35 35
GradGeo 80.76± 0.31 68.86± 0.37 56.05± 0.34 79.62± 0.33 67.96± 0.49 55.13± 0.24 78.05± 1.13 64.75± 2.09 54.28± 0.78
BernMask 54.28± 1.15 50.88± 1.64 42.21± 0.94 30.00± 0.40 12.48± 0.58 18.81± 0.27 72.27± 2.66 61.27± 3.68 51.91± 1.63
BernMask-P 54.99± 14.06 43.56± 13.59 39.23± 9.49 76.46± 4.05 59.39± 4.78 53.41± 3.30 70.99± 5.59 56.36± 6.04 50.06± 4.44
PointMask 52.92± 2.56 39.55± 2.27 36.71± 1.48 57.33± 2.28 44.00± 1.91 38.53± 2.41 55.90± 5.39 39.92± 8.20 37.05± 4.74
GradGAM 68.42± 4.04 51.82± 6.02 45.78± 3.60 80.91† ± 0.35 61.14± 1.46 54.36± 0.67 75.84± 1.45 62.03± 2.41 53.19± 1.32

LRI-Bernoulli 77.88± 1.03 70.66± 0.90 55.94± 0.77 77.72± 1.52 67.73± 2.59 55.74± 1.15 78.71± 0.66 65.99± 0.84 55.98± 0.57
LRI-Gaussian 81.38† ± 0.62 73.13† ± 1.10 58.28† ± 0.59 79.58± 0.66 70.32† ± 0.76 57.05† ± 0.53 80.02† ± 0.39 71.20† ± 0.93 57.07± 0.41

SynMol DGCNN Point Transformer EGNN

ROC AUC Prec@5 Prec@8 ROC AUC Prec@5 Prec@8 ROC AUC Prec@5 Prec@8

Random 50 31 31 50 31 31 50 31 31
GradGeo 72.10± 9.66 59.59± 11.05 50.30± 8.70 76.94± 1.43 62.30± 0.78 55.29± 0.87 73.49± 5.23 61.85± 5.26 50.46± 3.95
BernMask 49.69± 9.22 34.37± 9.32 32.15± 7.64 25.28± 3.52 6.85± 1.57 8.65± 1.14 59.76± 9.09 49.96± 7.56 40.72± 7.25
BernMask-P 70.51± 39.52 63.02± 36.13 52.93± 30.14 87.23± 6.07 75.39± 9.74 63.00± 7.31 90.00± 7.85 85.52± 5.75 68.94± 6.37
PointMask 74.22± 3.31 71.54± 4.27 55.18± 2.86 72.03± 2.10 60.13± 2.57 51.11± 1.43 65.43± 6.63 53.89± 2.25 48.11± 3.05
GradGAM 81.98± 5.54 78.80± 6.67 59.86± 5.86 85.54± 1.19 80.24± 1.98 64.38± 1.49 57.00± 5.52 48.07± 8.56 41.30± 5.08

LRI-Bernoulli 96.03± 1.54 87.11± 4.51 74.57± 1.57 91.69± 1.52 82.72± 2.20 68.37± 1.11 90.64± 3.30 71.96± 5.97 68.08± 4.18
LRI-Gaussian 99.02† ± 0.36 97.72† ± 0.94 77.04† ± 0.43 95.35† ± 1.02 87.09† ± 1.97 72.26† ± 1.40 97.28† ± 0.65 91.52† ± 1.28 74.05† ± 1.18

PLBind DGCNN Point Transformer EGNN

ROC AUC Prec@20 Prec@40 ROC AUC Prec@20 Prec@40 ROC AUC Prec@20 Prec@40

Random 50 45 45 50 45 45 50 45 45
GradGeo 52.83± 4.63 55.68± 2.47 53.79± 1.83 58.68± 2.83 59.30± 3.13 57.85± 3.57 57.78† ± 2.61 61.00± 2.24 60.11± 1.76
BernMask 48.18± 4.14 48.36± 3.32 48.00± 3.40 59.73† ± 2.33 59.30± 3.09 58.73± 2.90 49.83± 2.17 40.34± 3.96 41.99± 2.32
BernMask-P 48.88± 5.66 42.70± 8.37 42.46± 7.88 56.47± 2.77 56.86± 3.79 54.53± 4.64 51.96± 6.80 60.68± 7.95 57.69± 6.41
PointMask 51.38± 3.12 45.36± 1.91 45.22± 1.52 52.92± 3.83 44.34± 3.50 44.50± 4.52 50.00± 0.00 45.10± 0.00 45.00± 0.00
GradGAM 53.76± 3.38 55.50± 4.83 54.23± 4.42 56.51± 3.32 56.54± 6.59 54.46± 5.65 49.73± 2.18 56.92± 6.63 53.96± 3.53

LRI-Bernoulli 55.47† ± 2.06 67.56† ± 5.38 61.02† ± 5.68 59.53± 1.94 72.98† ± 3.85 67.33† ± 2.08 57.07± 3.09 73.22† ± 2.32 66.89± 2.07
LRI-Gaussian 51.81± 3.24 63.88± 3.18 60.37± 3.09 54.05± 2.94 62.76± 5.93 60.44± 5.62 50.32± 3.80 72.64± 2.04 69.40† ± 1.44

performance by reducing the randomness generated by g. The second term, on the other hand, tends
to keep the level of randomness, i.e., Σv → σI. After training, the convergent determinant |Σv|
which characterizes the entropy of injected Gaussian randomness, indicates the location importance
of point v. We use |Σv|’s to rank the points v ∈ V according to their location importance.

A
B

Fine-grained Interpretation on Location Importance. Interestingly, the con-
vergent Σv implies more fine-grained geometric information, i.e., how different
directions of perturbations on point v affect the prediction. This can be analyzed
by checking the eigenvectors of Σv. As illustrated in the figure on the right, Σv of point v at A
is represented by the ellipses {x : xTΣvx < θ} for different θ’s. It tells perturbing v towards the
direction B affects the prediction less than perturbing v towards the orthogonal direction. As a
showcase, later, we use such fine-grained information to conduct an in-depth analysis of HEP data.

3.3 Connecting LRI and the Information Bottleneck Principle.

Our objectives Eq. 1 and Eq. 2 are essentially variational upper bounds of the information bottleneck
(IB) principle [25, 56] whose goal is to reduce the mutual information between C and C̃ while
keeping the mutual information between C̃ and the label, i.e., min−I(C̃;Y ) + βI(C̃; C). We provide
derivations in Appendix B. Grounded on the IB principle, LRI tends to extract minimal sufficient
information to make predictions and can be more robust to distribution shifts between training and
test datasets [57, 58, 24].

4 Benchmarking Interpretable GDL

In this section, we will evaluate LRI-Bernoulli, LRI-Gaussian and some baseline methods extended to
GDL over the proposed four datasets. Here, we briefly describe our setup and put more details on the
datasets, hyperparameter tuning, and method implementations, in Appendix C, D, and E, respectively.
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Table 3: The angle (◦, mean±std) between the velocity and the first principal component of Σv v.s.
between the velocity and the gradient of rv in x-y space under different magnetic field strengths (T).

2T 4T 6T 8T 10T 12T 14T 16T 18T 20T

Random 45 45 45 45 45 45 45 45 45 45
GradGeo 67.11± 2.45 71.15± 1.29 55.21± 2.12 59.43± 2.82 59.73± 2.54 52.78± 3.18 51.99± 3.24 50.77± 1.60 51.99± 3.89 53.74± 5.34
LRI-Gaussian 5.09± 0.97 5.17± 0.42 5.65± 1.05 6.67± 1.17 5.99± 1.71 6.66± 1.25 7.50± 2.37 7.19± 1.00 7.57± 1.20 7.89± 1.03

We also report generalization performance and ablation studies of LRI in Appendix F. A summary of
dataset statistics is shown in Table 1.

Backbone Models include DGCNN [39], Point Transformer [40], and EGNN [41] which have been
widely used for scientific GDL [11, 59, 60].

Baseline interpretation methods include three masking-based methods BernMask, BernMask-P
and PointMask, and two gradient-based methods GradGeo and GradGAM. Masking-based methods
attempt to learn a mask ∈ [0, 1] for each point and may help with testing existence importance of
points. Among them, BernMask and BernMask-P are post-hoc methods extended from two previous
methods on graph-structured data, i.e., from [61] and [62], respectively. BernMask and BernMask-P
differ in the way they generate the masks, where BernMask-P utilizes a parameterized mask generator
while BernMask optimizes a randomly initialized mask with no other parameterization. PointMask is
an inherently interpretable model adopted from [63]. Thus, they are the baselines of LRI-Bernoulli.
GradGeo is extended from [64] and checks the gradients w.r.t. geometric features, which may help
with testing location importance, and thus is a baseline of LRI-Gaussian. GradGAM is extended from
[65] and leverages the gradients w.r.t. the learned representations of points, which also reflects the
importance of points to the prediction.

Metrics. On each dataset, the model is trained based on the prediction (binary classification) task.
And all hyperparameters are tuned based on validation prediction performance for a fair comparison,
because tuning on interpretation performance is impossible in a real-world setting. We compare
interpretation labels (∈ {0, 1}) of points with the learned point importance scores to measure
interpretation performance. We report two metrics: interpretation ROC AUC and precision@m.
Beyond interpretation, the model prediction performance is also measured in ROC AUC and reported
in Sec. F.1, which is to make sure that all models are pre-trained well for those post-hoc baselines
and to verify that LRI-induced models also have good prediction accuracy.

4.1 ActsTrack: End-to-end Pattern Recognition and Track Reconstruction

Here, we are to predict whether a collision event contains a z → µµ decay. Each point in a point
cloud sample is a detector hit where a particle passes through. We use the hits from the decay to
test interpretation performance. We evaluate all methods on the data generated with a magnetic
field B = 2T parallel to the z axis (see Fig. 1a). Table 2 shows the results, where LRI-Gaussian
works consistently the best on all backbones and metrics, and LRI-Bernoulli achieves the second best
performance. This indicates that both the existence and locations of those detector hits left by the
µ’s are important to predictions. GradGAM is also a competitive baseline, which even outperforms
both BernMask and BernMask-P. While BernMask-P performs decently on two backbones, it fails to
provide interpretability for EGNN and its results have high variances, probably due to the unstable
issue of post-hoc interpretations, as described in [24]. BernMask, PointMask, and GradGeo seem
unable to provide valid interpretability for ActsTrack.
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Figure 3: Eigen-ratio of Σv v.s.
magnetic field strength B (T).

Fine-grained Geometric Patterns. We find LRI-Gaussian can
discover fine-grained geometric patterns. Intuitively, slight per-
turbation of each point along the underlying track direction will
affects the model prediction less than the same level of perturba-
tion orthogonal to the track. Therefore, the principal component
of Σv in x-y space, i.e., the space orthogonal to the direction
of the background magnetic field, can give an estimation of the
track direction at v. Table 3 provides the evaluation of track
direction (velocity direction) estimation based on analyzing Σv.
Here, we test the background magnetic field changing from 2T to
20T. LRI-Gaussian is far more accurate than GradGeo. The latter
uses the gradients of different coordinates to compute the most
sensitive direction. Moreover, the ratio between the lengths of two principal components of Σv in x-y
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space gives an estimation of the curvature of the track at v, which is proportion to the strength of the
magnetic field B up to a constant multiplier (due to the law – Lorentz force F ∝ B). Therefore, we
can estimate B by analyzing Σv . Fig. 3 shows this approach provides an almost accurate estimation
of B up to a constant multiplier.

4.2 Tau3Mu: τ → µµµ Decay Detection in Proton-Proton Collisions

This task is to predict whether a proton-proton collision event contains a τ → µµµ decay, which
is similar to ActsTrack, while in Tau3Mu the µ’s are a lot softer, and only the hits from the first
layer of detectors are used. Each point in a point cloud sample is a detector hit associated with a
local bending angle and a 2D coordinate in the pseudorapidity-azimuth (η-ϕ) space. We use the hits
generated from this decay to test interpretation performance. As shown in Table 2, LRI-Gaussian still
works the best. LRI-Bernoulli and GradGeo are close, and both are the second best. While GradGAM
still works well on some backbones, all masking-based methods do not perform well.

4.3 SynMol: Molecular Property Prediction with Synthetic Properties

This task is to predict whether a molecule contains both functional groups branched alkanes and
carbonyl, which together give certain synthetic properties [33, 34]. Each point in a point cloud sample
is an atom associated with a 3D coordinate and a categorical feature indicating the atom type. We use
the atoms in these two functional groups to test interpretation performance. As shown in Table 2,
LRI-Gaussian performs consistently the best by only perturbing geometric features in molecules, and
LRI-Bernoulli works the second best and achieves comparable performance with LRI-Gaussian on
Point Transformer. This shows that both the existence and locations of atoms are critical and further
validates the benefit of using 3D representations of molecules in the tasks like molecular property
prediction. Among other methods, GradGAM, BernMask-P and PointMask are unstable and can only
provide some interpretability for one or two backbones, while GradGeo and BernMask seem to fail
to perform well on SynMol.

4.4 PLBind: Protein-ligand Binding Affinity Prediction

This task is to predict whether a protein-ligand pair is of affinity KD < 10 nM. Each point in a
protein is an amino acid associated with a 3D coordinate, a categorical feature indicating the amino
acid type, and two scalar features. Each point in a ligand is an atom associated with a 3D coordinate,
a categorical feature indicating the atom type, and a scalar feature. Different from other datasets,
each sample in PLBind contains two sets of points. So, for each sample, two encoders will be used to
encode the ligand and the protein separately, and the obtained two embeddings will be added to make
a prediction. As shown in Table 2, LRI-Bernoulli outperforms all other methods, while LRI-Gaussian
achieves comparable performance on EGNN. This might indicate that to make good predictions on
PLBind, the existence of certain groups of amino acids is more important than their exact locations.
Interestingly, all other methods do not seem to perform well on PLBind. Moreover, all methods have
low ROC AUC, which suggests only a part of but not the entire binding site is important to decide the
binding affinity.

5 Conclusion

This work systematically studies interpretable GDL models by proposing a framework Learnable
Randomness Injection (LRI) and four datasets with ground-truth interpretation labels from real-
world scientific applications. We have studied interpretability in GDL from the perspectives of
existence importance and location importance of points, and instantiated LRI with LRI-Bernoulli
and LRI-Gaussian to test the two types of importance, respectively. We observe LRI-induced models
provide interpretation best aligning with scientific facts, especially LRI-Gaussian that tests location
importance. Grounded on the IB principle, LRI never degrades model prediction performance, and
may often improve it when there exist distribution shifts between the training and test scenarios.
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A Related Work

We review two categories of methods that can provide interpretability in the following.

Post-hoc Interpretation Methods. Interpretation methods falling into this category assume a
pre-trained model is given and attempts to further analyze it to provide post-hoc interpretation.
Among them, gradient-based methods [66, 65, 67, 64, 68] may be extended to interpret geometric
data by checking the gradients w.r.t. the input features or intermediate embeddings of each point.
Some methods to interpret graph neural networks can be applied to geometric data [61, 62, 69, 70].
However, these methods need to mask graph structures pre-constructed by geometric features and
cannot fully evaluate the effectiveness of geometric features. Among other methods, [71, 72] study
pattern selection for regular data, [73–75] utilize a local surrogate model, and [74, 76–78] leverage
the shapley value to evaluate feature importance. These methods either cannot utilize geometric
features or cannot be easily applied to irregular geometric data.

Inherently Interpretable Models. Although vanilla attention mechanisms [79, 80] were widely
used for inherent interpretability, multiple recent studies show that they cannot provide reliable
interpretation, especially for data with irregular structures [81, 82, 61, 62]. So, some works focusing
on improving the attention mechanism for better interpretability [83, 24], some propose to identify
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representative prototypes during training [84, 85], and some methods [63, 86, 87] adopt the infor-
mation bottleneck principle [25]. However, all these methods cannot analyze geometric features in
GDL. Along another line, although invariant learning methods [88–91] based on causality analysis
may also provide some interpretability, these methods are typically of great complexity and seem to
provide subpar interpretability even on graph-structured data without geometric features [24].

B Variational Bounds of the IB Principle

Let’s assume the sample with its label (C, Y ) ∼ PC×Y. We ignore the G̃ in our objectives to keep the
notation simple, then, the IB objective is:

min−I(C̃;Y ) + βI(C̃; C), (3)

where C̃ is the perturbed sample, and I(.; .) denotes the mutual information between two random
variables.

For the first term −I(C̃;Y ), by definition we have:

−I(C̃;Y ) = −EC̃,Y

[
log

P(Y | C̃)
P(Y )

]
. (4)

We introduce a variational approximation Pθ(Y | C̃) for P(Y | C̃) as it is intractable. Then, we yield
a variational upper bound:

−I(C̃;Y ) = −EC̃,Y

[
log

Pθ(Y | C̃)
P(Y )

]
− EC̃

[
DKL(P(Y | C̃)∥Pθ(Y | C̃))

]
≤ −EC̃,Y

[
log

Pθ(Y | C̃)
P(Y )

]
= −EC̃,Y

[
logPθ(Y | C̃)

]
−H(Y ), (5)

where H(Y ) is the entropy of Y which is a constant. We use the prediction model f paired with
the cross-entropy loss LCE(f(C̃), Y ) to represent −EC̃,Y

[
logPθ(Y | C̃)

]
, minimizing which is thus

equivalent to minimizing a variational upper bound of −I(C̃;Y ).

For the second term I(C̃; C), because C̃ = g(C). Suppose ϕ is the parameter of g. By definition, we
have:

I(C̃; C) = EC̃,C

[
log

Pϕ(C̃ | C)
P(C̃)

]
. (6)

As P(C̃) is intractable, we introduce a variational approximation Q(C̃). Then, we yield a variational
upper bound:

I(C̃; C) = EC̃,C

[
log

Pϕ(C̃ | C)
Q(C̃)

]
−DKL

(
P(C̃)∥Q(C̃)

)
≤ EC

[
DKL

(
Pϕ(C̃ | C)∥Q(C̃)

)]
. (7)

For LRI-Bernoulli, gϕ takes as input C = (V,X, r) and first outputs pv ∈ [0, 1] for each point v ∈ V .
Then, it samples mv ∼ Bern(pv) and yields C̃ by removing all points with mv = 0 in C. This
procedure gives Pϕ(C̃ | C) =

∏
v∈V P(mv|pv). In this case, we define Q(C̃) as follows. For every

point cloud C ∼ PC, we sample m′
v ∼ Bern(α), where α ∈ [0, 1] is a hyperparameter. We remove

all points in C and add points when their m′
v = 1. This procedure gives Q(C̃) =

∑
C P(m′ | C)P(C).

As m′ is independent from C given its size n, Q(C̃) =
∑

n P(m′|n)P(C = n) = P(n)
∏n

v=1 P(m′
v),

where P(n) is a constant. Then, we yield:

DKL

(
Pϕ(C̃ | C)∥Q(C̃)

)
=

∑
v∈V

DKL(Bern(pv)∥Bern(α)) + c(n, α), (8)
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where c(n, α) does not contain parameters to be optimized. Therefore, minimizing the second term
of LRI-Bernoulli is equivalent to minimizing a variational upper bound of I(C̃; C). Now, we can
conclude that the objective of LRI-Bernoulli is a variational upper bound of the IB principle.

For LRI-Gaussian, gϕ now takes as input C = (V,X, r) and first outputs a covariance matrix Σv ∈
R3×3 for each point v ∈ V . Then, it samples ϵv ∼ N (0,Σv) and yields C̃ = (V,X, r+ ϵ), where ϵ

is a vector containing ϵv for each point. This procedure gives Pϕ(C̃ | C) =
∏

v∈V P(ϵv|Σv). In this
case, we define Q(C̃) as follows. For every point cloud C ∼ PC, we sample ϵ′v ∼ N (0, σI) and yield
C̃ = (V,X, r + ϵ′), where σ is a hyperparameter. Similarly, we obtain Q(C̃) = P(n)

∏n
v=1 P(ϵ′v),

where P(n) is a constant. Finally, for this case, we have:

DKL

(
Pϕ(C̃ | C)∥Q(C̃)

)
=

∑
v∈V

DKL(N (0,Σv)∥N (0, σI)) + c(n, α), (9)

where c(n, α) is a constant, therefore, minimizing the second term of LRI-Gaussian is equivalent
to minimizing a variational upper bound of I(C̃; C). Hence, the objective of LRI-Gaussian is also a
variational upper bound of the IB principle.

C Dataset Collection

We describe how we collect the four datasets in this section. The statistics of the four datasets are
shown in Table 1.

Basic Settings. 1) For each sample in the four datasets, all points are centered at the origin. 2)
Only positive samples in our datasets have ground-truth interpretation labels, so we only evaluate
interpretation performance on positive samples. 3) For any pair of points v and u in the four datasets,
they have an edge feature of (∥rv − ru∥, rv−ru

∥rv−ru∥ ) if they are connected in the constructed k-nn
graph.

ActsTrack. z → µµ events are simulated with PYTHIA generator [92] overlaid with soft QCD
pileup events, and particle tracks are simulated using Acts Common Tracking Software [28]. For
all samples, ten pileup interactions are generated with a center-of-mass energy of 14TeV, and the
additional hard scatter interaction is only generated for positive samples. Particle tracks are simulated
with a magnetic field parallel to the z axis, and the default ActsTrack is simulated with B = 2T . To
make sure both µ’s from the decay are properly measured, we calculate the invariant mass mij for
every pair of µ’s in the generated data using Eq. 10 so that every positive sample in our dataset has at
least a pair of µ’ with an invariant mass close to 91.19 GeV, i.e., the mass of the z bosons.

1

2
m2

ij = m2 +
(√

m2 + p2x,i + p2y,i + p2z,i ·
√
m2 + p2x,j + p2y,j + p2z,j

)
− (px,i · px,j + py,i · py,j + pz,i · pz,j) . (10)

Then, those detector hits left by the µ’s from the z → µµ decay is labeled as ground-truth interpreta-
tion. As our focus is on model interpretation performance, we only keep 10 tracks in each sample
to train and test models to reduce classification difficulty, while raw files with all tracks are also
provided. In the future works, we will study a more extensive evaluation of different approaches over
the samples with all tracks. Each point in a sample is a detector hit left by some particle, and it is
associated with a 3D coordinate. As points in ActsTrack do not have any features in X, we use a
dummy X with all ones when training models. Momenta of particles measured by the detectors are
also provided, which can help evaluate fine-grained geometric patterns in the data, but it is not used
for model training. Because each particle on average leaves 12 hits and a model may classify samples
well if it captures the track of any one of the µ’s from the decay, we report both precision@12 and
precision@24. Finally, we randomly split the dataset into training/validation/test sets with a ratio of
70 : 15 : 15.

Tau3Mu. The τ leptons produced in decays of D and B mesons simulated by the PYTHIA genera-
tor [92] are used to generate the signal samples. The background events are generated with multiple
soft QCD interactions modeled by the PYTHIA generator with a setting that resembles the collider
environment at the High Luminosity LHC. The generated muons’ interactions with the material in
the endcap muon chambers are simulated including multiple scattering effects that resemble the CMS
detector. The signal sample is mixed with the background samples at per-event level (per point cloud),
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with the ground-truth labels preserved for the interpretation studies. The hits left by the µ’s from
the τ → µµµ decay are labeled as ground-truth interpretation. We only use hits on the first layer of
detectors to train models and make sure every sample in the dataset has at least three detector hits.
Each point in the sample contains measurements of a local bending angle and a 2D coordinate in
the pseudorapidity-azimuth (η-ϕ) space. Because in the best case the model only needs to capture
hits from each µ, we report precision@3. And because 80% of positive samples have less than 7 hits
labeled as ground-truth interpretation, we also report precision@7. Finally, we randomly split the
dataset into training/validation/test sets with a ratio of 70 : 15 : 15.

SynMol. We utilize the molecules in ZINC [93], and follow [33] and [34] to create synthetic
properties based on the existence of certain functional groups. Specifically, if a molecule contains
both the unbranched alkane and carbonyl, then we label it as a positive sample; otherwise it is labeled
as a negative sample. So, the atoms in branched alkanes and carbonyl are labeled as ground-truth
interpretation. Instead of 2D representations of molecules, we associate each atom a 3D coordinate
by generating a conformer for each molecule. To do this, we first add hydrogens to the molecule and
apply the ETKDG method [94]. After that, the generated structures are cleaned up using the MMFF94
force field [95] with a maximum iteration of 1000, and the added hydrogens are removed once it
is finished. Both ETKDG and MMFF94 are implemented using RDKit. Besides a 3D coordinate,
each point in a sample also has a categorical feature indicating the atom type. Even though the
two functional groups may only have five atoms in total, some molecules may contain multiple
such functional groups. So, we report both precision@5 and precision@8 (80% of positive samples
have less than 8 atoms labeled as ground-truth interpretation). Finally, we split the dataset into
training/validation/test sets in a way that the number of molecules with or without either of these
functional groups is uniformly distributed following [33] so that the dataset bias is minimized.

PLBind. We utilize protein-ligand complexes from PDBBind [96], which annotates binding affinities
for a subset of complexes in the Protein Data Bank (PDB) [97]. In PDBBind, each protein-ligand
pair is annotated with a dissociation constant Kd, which measures the binding affinity between a
pair of protein and ligand. We use a threshold of 10 nM on Kd to obtain a binary classification task,
and the model interpretability is studied on the protein-ligand pairs with high affinities. To augment
negative data, during training, there is a 10% change of switching the ligand of a complex to a random
ligand, and the new protein-ligand pair will be labeled as a negative sample, i.e., low affinity. The
ground-truth interpretation labels consist of two parts. First, as shown in previous studies [98], using
the part of the protein that is within 15Å of the ligand is enough to even learn to generate ligands that
bind to a certain protein, so, we define the amino acids that are within 15Å of the ligand to be the
binding site and label them as ground-truth interpretation. Second, we retrieve all atomic contacts
(hydrogen bond and hydrophobic contact) for every protein-ligand pair from PDBsum [99] and label
the corresponding amino acids in the protein as the ground-truth interpretation. Each amino acid in
a protein is associated with a 3D coordinate, the amono acid type, solvent accessible surface area
(SASA), and the B-factor. Each atom in a ligand is associated with a 3D coordinate, the atom type,
and Gasteiger charges. Finally, we split the dataset into training/validation/test sets according to the
year the complexes are discovered following [100].

D Details on Hyperparameter Tuning

All hyperparameters are tuned based on validation classification AUC for a fair comparison. All
settings are trained with 5 different seeds and the average performance on the 5 seeds are reported.

Basic Settings. We use a batch size of 128 on all datasets, except on Tau3Mu we use a batch size of
256 due to its large dataset size. The Adam [101] optimizer with a learning rate of 1.0× 10−3 and a
weight decay of 1.0× 10−5 are used. ActsTrack, SynMol, and PLBind construct k-nn graphs with
k being 5; Tau3Mu constructs the graph by drawing edges for any pair of points with a distance less
than 1. For a fair comparison, all models will be trained with 300 epochs on ActsTrack and SynMol
and will be trained with 100 epochs on Tau3Mu and PLBind, so that all models are converged. For
post-hoc methods, a classifier will be first pretrained with the epochs mentioned above, and those
methods will further work on the model from the epoch with the best validation classification AUC
during pretraining.

LRI-Bernoulli. β is tuned from {1.0, 0.1, 0.01} after normalizing the summation of the KL diver-
gence by the total number of points. α is tuned from {0.5, 0.7}. Note that α should not be less than
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Table 4: Generalization performance of LRI. Classification AUC on test sets are reported with
mean±std for all backbones on the four datasets.

ActsTrack Tau3Mu SynMol PLBind

DGCNN Point Transformer EGNN DGCNN Point Transformer EGNN DGCNN Point Transformer EGNN DGCNN Point Transformer EGNN

ERM 97.99± 0.38 96.75± 0.21 97.45± 0.52 87.38± 0.08 86.20± 0.13 86.45± 0.09 99.95± 0.03 98.14± 0.42 99.87± 0.05 80.17± 5.23 83.13± 1.19 86.80± 3.52
LRI-Bernoulli 98.11± 0.09 97.39± 0.27 98.52± 0.35 87.45± 0.06 86.44± 0.08 86.56± 0.11 99.82± 0.15 97.93± 0.46 99.81± 0.05 81.25± 2.01 86.83± 2.06 86.93± 3.91
LRI-Gaussian 98.17± 0.24 98.04± 0.54 98.85± 0.14 87.74± 0.15 86.03± 0.37 86.67± 0.08 99.98± 0.01 98.80± 0.31 99.88± 0.05 84.34± 5.32 86.71± 0.64 87.53± 0.95

Table 5: Generalization performance of LRI with distribution shifts. The column name d1-d2 denotes
the models are validated and tested on samples with d1 and d2 tracks, respectively.
ActsTrack 10-10 15-20 20-30 25-40 30-50 35-60 40-70

ERM 96.33± 0.65 93.83± 0.34 91.14± 1.07 87.85± 1.12 85.96± 1.74 84.19± 1.54 82.87± 0.74
LRI-Bernoulli 97.05± 0.71 94.66± 0.75 93.08± 0.94 90.93± 0.76 89.95± 1.31 86.11± 1.43 86.95± 1.46
LRI-Gaussian 97.51± 0.76 95.69± 0.80 93.64± 1.39 91.42± 2.97 89.89± 1.15 87.45± 1.47 88.13± 0.63

0.5, because Bern(0.5) injects the most randomness from an information-theoretic perspective. For
ActsTrack and SynMol, we either train LRI-Bernoulli 300 epochs from scratch or first pre-train
f with 200 epochs and then train both f and g with 100 epochs (also based on the best validation
prediction performance). Similarly, for Tau3Mu and PLBind, we either train it 100 epochs from
scratch or first pre-train f by 50 epochs and then train both f and g by 50 epochs. The temperature in
the Gumbel-softmax trick is not tuned and is set to 1.

LRI-Gaussian. β and the training time is tuned in the same way as for LRI-Bernoulli. Instead
of directly tuning σ, we tune it by rescaling the magnitude of the geometric features to make sure
the KL divergence is stable for optimization, because the magnitude of r may vary significantly
across different datasets, e.g., extremely small or large. Specifically, we keep σ = 1 and rescale r by
multiplying a constant c on it so that 1 would be roughly the 5th or 10th percentile of the entries in
abs(c · r). In this way, c is tuned from {200, 300} for ActsTrack, {10, 15} for SynMol, {7, 11} for
Tau3Mu, and {0.9, 1.2} for PLBind.

BernMask. This approach generalizes GNNExplainer [61] and learns a node mask m ∈ [0, 1]n

for each sample C. Similar to GNNExplainer, there are two regularizers in its loss function, that is,
mask size and entropy constraints. Specifically, the coefficient of the ℓ1 penalty on the normalized
mask size, i.e., ∥m∥1

n , is tuned from {1.0, 0.1, 0.01}. Element-wise entropy of m is applied, i.e.,
1
n

∑
i −mi logmi − (1 −mi) log(1 −mi) and mi is the ith entry of m, to encourage generating

discrete masks, and the coefficient of this entropy constraint is tuned from {1.0, 0.1, 0.01}. After
pretraining the classifier, we set the number of iterations to learn masks per sample as 500 and tune
the learning rate for each iteration from {0.1, 0.001}.

BernMask-P. This approach generalizes PGExplainer [62] and learns a node mask m ∈ [0, 1]n for
each sample C. Similar to BernMask, it also has mask size and entropy constraints in its loss function,
and their coefficients are both tuned from {1.0, 0.1, 0.01} as well. After pretraining the classifier, the
explainer module in BernMask-P will be trained with extra 100 epochs on ActsTrack and SynMol
and with extra 50 epochs on Tau3Mu and PLBind. The temperature in the Gumbel-softmax trick is
set to 1.

PointMask [63]. It is trained with 300 epochs on ActsTrack and SynMol, and with 100 epochs on
Tau3Mu and PLBind. It has two hyperparameters as specified in their paper, i.e., α and t, where α is
tuned from {1.0, 0.1, 0.01} and t is tuned from {0.2, 0.5, 0.8}.

E Implementation Details

Backbone Models. All backbone models have 4 layers with a hidden size of 64. Batch normal-
ization [102] and ReLU activation [103] are used. All MLP layers use a dropout [104] ratio of 0.2.
SUM pooling is used to generate point cloud embeddings to make predictions. All backbone models
utilize implementations available in Pytorch-Geometric (PyG) [105].

LRI-Bernoulli. Directly removing points from C to yield C̃ makes it non-differentiable. We provide
two differentiable ways to approximate this step. The first way is to use another MLP to map the
raw point features X to a latent feature space H, and yield C̃ = (V, (m1T ) ⊙H, r). Here m is a
vector containing mv for each point v ∈ V , 1 is a vector of all ones, and ⊙ denotes element-wise
product. This is because masking on X or r is inappropriate as values in them have specific physical
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Table 6: Ablation studies on the effect of the differentiable graph reconstruction module in LRI-
Gaussian on ActsTrack and SynMol.

ActsTrack DGCNN Point Transformer EGNN

ROC AUC Prec@12 Prec@24 ROC AUC Prec@12 Prec@24 ROC AUC Prec@12 Prec@24

w/ Graph Recons. 94.74± 0.48 91.01± 1.02 78.47± 0.83 91.89± 2.07 88.05± 2.74 74.09± 3.61 94.43± 0.75 90.85± 0.69 76.42± 0.80
w/o Graph Recons. 67.03± 1.82 56.09± 2.11 41.52± 0.79 60.64± 1.93 39.16± 2.67 32.34± 1.42 82.50± 0.54 78.71± 3.84 59.02± 1.37

SynMol DGCNN Point Transformer EGNN

ROC AUC Prec@5 Prec@8 ROC AUC Prec@5 Prec@8 ROC AUC Prec@5 Prec@8

w/ Graph Recons. 98.83± 0.63 95.91± 1.73 76.86± 0.62 95.81± 1.42 89.61± 3.30 72.84± 2.12 96.88± 1.25 89.17± 5.03 74.47± 1.05
w/o Graph Recons. 98.65± 0.39 95.98± 1.43 76.58± 0.33 90.06± 1.51 79.80± 0.80 64.25± 1.31 78.39± 36.27 66.26± 35.52 58.79± 30.07

meanings. When the backbone model is implemented by using a message passing scheme, e.g., using
PyG, another possible way is to use m to mask the message sent by the points to be removed. We
find both ways can work well and we adopt the second way in our experiments.

LRI-Gaussian. We use a softplus layer to output a1 and a2 to parameterize the Gaussian distribution.
To make it numerically stable we clip the results of the softplus layer to [1.0× 10−6, 1.0× 106]. For
ϕ in the differentiable graph reconstruction module, we find it empirically a simple MLP can work
well enough and thus we adopt it to implement ϕ.

Baseline Methods. BernMask is extended from [61] based the authors’ code and the implementation
available in PyG. BernMask-P is extended from [62] based on the authors’ code and a recent PR in
PyG. PointMask is reproduced based on the authors’ code. GradGAM and GradGeo are extended
based on the code from [106].

Discussions on LRI. We note that both f and g in LRI needs a permutation equivariant encoder to
learn point representations, and we find for simple tasks these two encoders can share parameters to
reduce model size without degrading interpretation performance, while for challenging tasks using
two different encoders is beneficial. In our experiments we use the same encoder for ActsTrack,
Tau3Mu, and SynMol, and use two different encoders for PLBind. If the model size is not a concern,
using two encoders is generally recommended. The other thing is that one of the key components
in LRI is the perturbation function h, as shown in Fig. 2, and we have shown two ways to design
h, i.e., Bernoulli perturbation and Gaussian perturbation. Nonetheless, h can be generalized in
many different ways. For example, h is where one can incorporate domain knowledge and provide
contextualized interpretation results, i.e., human understandable results. For instance, instead of
perturbing molecules in the atom level, it is possible to perturb molecules in the functional group
level, e.g., by averaging the learned perturbation in each functional group, so that the interpretation
results can be more contextualized and more human understandable. In this work, we experiment this
feature on PLBind by replacing the learned {pu}u∈N (v)

⋃
v or {Σu}u∈N (v)

⋃
v in a neighbourhood

with the minimum p or with the Σ having the maximum determinant in that neighbourhood, which
encourages either aggressively perturbing all amino acids in a neighborhood or not perturbing any
amino acids in the neighborhood, and we find this can better help discover binding sites for PLBind.

F Supplementary Experiments

F.1 Generalization Performance of LRI

LRI-induced models can generalize better while being interpretable. As shown in Table 4, both LRI-
induced models never degrade prediction performance and sometimes may even boost it compared
with models trained without LRI, i.e., using empirical risk minimization (ERM). Moreover, LRI-
induced models are more robust to distribution shifts as LRI is grounded on the IB principle. Table 5
shows a study with shifts on the numbers of particle tracks, where all models are trained on samples
with 10 particle tracks, and tested on samples with a different number of (from 10 to 70) particle
tracks. We observe LRI-induced models work consistently better than models naively trained without
LRI.

F.2 Ablation Studies

We also conduct ablation studies on the differentiable graph reconstruction module proposed specif-
ically for geometric data in LRI-Gaussian, we find that without this module the interpretation
performance of LRI-Gaussian may be reduced up to 49% on ActsTrack and up to 23% on SynMol,
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as shown in Table 6, which matches our expectations and validates the necessity of the proposed
module. In this study, c is set to 200 on ActsTrack and to 5 on SynMol so that large perturbations
are encouraged to better show the significance of this module, β is set to 0.01, and f is first trained
by 200 epochs and then f and g are trained together by 100 epochs.

F.3 Fine-grained Geometric Pattern Learning

To discover fine-grained geometric information in ActsTrack using LRI-Gaussian as shown in
Table 3, we conduct experiments based on DGCNN, where f is first trained with 100 epochs, and
then g is further trained with 500 epochs while f is finetuned with a learning rate of 1e-8. f and g
use two different encoders, β is set to 10, c is 100, all dropout ratio is set to 0, and rv

∥rv∥ is used as
point features. Finally, we let g directly output covariance matrix Σv ∈ R2×2, i.e., in x-y space, to
only perturb the first two dimensions of r.
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