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Abstract

Large-scale pre-training and instruction tuning have been successful at creating
general-purpose language models with broad competence. However, building
general-purpose vision-language models is challenging due to the rich input dis-
tributions and task diversity resulting from the additional visual input. Although
vision-language pretraining has been widely studied, vision-language instruction
tuning remains under-explored. In this paper, we conduct a systematic and compre-
hensive study on vision-language instruction tuning based on the pretrained BLIP-2
models. We gather 26 publicly available datasets, covering a wide variety of tasks
and capabilities, and transform them into instruction tuning format. Additionally,
we introduce an instruction-aware Query Transformer, which extracts informative
features tailored to the given instruction. Trained on 13 held-in datasets, Instruct-
BLIP attains state-of-the-art zero-shot performance across all 13 held-out datasets,
substantially outperforming BLIP-2 and larger Flamingo models. Our models
also lead to state-of-the-art performance when finetuned on individual downstream
tasks (e.g., 90.7% accuracy on ScienceQA questions with image contexts). Further-
more, we qualitatively demonstrate the advantages of InstructBLIP over concurrent
multimodal models. All InstructBLIP models are open-source.

1 Introduction

A longstanding aspiration of Artificial Intelligence (AI) research is to build a single model that
can solve arbitrary tasks specified by the user. In natural language processing (NLP), instruction
tuning [1, 2] proves to be a promising approach toward that goal. By finetuning a large language
model (LLM) on a wide range of tasks described by natural language instructions, instruction tuning
enables the model to follow arbitrary instructions. Recently, instruction-tuned LLMs have also been
leveraged for vision-language tasks. For example, BLIP-2 [3] effectively adapts frozen instruction-
tuned LLMs to understand visual inputs and exhibits preliminary capabilities to follow instructions in
image-to-text generation.

Compared to NLP tasks, vision-language tasks are more diverse in nature due to the additional visual
inputs from various domains. This poses a greater challenge to a unified model that is supposed to
generalize to diverse vision-language tasks, many unseen during training. Most previous work can
be grouped into two approaches. The first approach, multitask learning [4, 5], formulates various
vision-language tasks into the same input-output format. However, we empirically find multitask
learning without instructions (Table 4) does not generalize well to unseen datasets and tasks. The
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What could have happened based on the
current scene?

Based on the current scene in the image, it is
possible that a hurricane or severe weather event
caused significant damage to the buildings and
infrastructure in the area. The person walking
through the debris-covered area suggests that they
are inspecting the damage caused by the disaster.
The presence of palm trees indicates that the
location may be in a tropical or sub-tropical region,
which can be more susceptible to hurricanes and
other natural disasters.

Introduce me this painting
in detail.

The painting depicts a young girl with a pearl earring,
also known as "The Girl with the Pearl Earring" or
"Girl with a Pearl Earring". She is wearing a blue
dress and has a pearl earring on her left ear. Her hair
is pulled back into a bun, and she is looking directly
at the viewer. This painting is a famous work of art
by Dutch painter Johannes Vermeer, created in 1665.
It is considered one of his masterpieces and is widely
recognized for its intricate details and realistic
portrayal of the young girl’s facial expression.

Can you tell me about this image in detail?

The image depicts a collection of various
vegetables including carrots, cucumbers,
tomatoes, and nuts arranged on a stone surface.
There are several jars filled with different types of
ingredients, such as peanuts, cashews, sunflower
seeds, and pumpkin seeds. These ingredients are
likely to be part of a healthy meal or snack.

Can you give me an example of such meal?

An example of a healthy meal or snack that
incorporates some of the ingredients in the image
could be a salad made with mixed greens, carrots,
cucumbers, tomatoes, and nuts. The salad can be
dressed with a homemade vinaigrette made with
olive oil, lemon juice, salt, and pepper.
Additionally, the salad can be topped with
pumpkin seeds or sunflower seeds for added
crunch and nutritional value.

Sounds good! Show me steps of making this salad.

Sure! Here are the steps to make this healthy salad:
1. Wash and chop the mixed greens, carrots,
cucumbers, and tomatoes into bite-sized pieces.
2. In a small bowl, whisk together olive oil, lemon
juice, salt, and pepper to create a homemade
vinaigrette dressing.
3. Place the chopped vegetables in a large bowl and
toss them with the vinaigrette dressing.
4. Sprinkle pumpkin seeds or sunflower seeds on top
of the salad for added crunch and nutritional value.
5. Serve the salad immediately or store it in the
refrigerator until ready to enjoy.

Can you describe this image
in detail?

The image depicts a person standing in front of an
open doorway, looking out into space. They are
wearing a jacket and appears to be contemplating the
vastness of the universe beyond the doorway. In the
background, there are multiple stars visible, creating
a stunning celestial scene. The person's gaze is
directed towards the center of the image, where a
bright star can be seen shining brightly. There are
also smaller stars scattered throughout the scene,
adding to the overall cosmic atmosphere.

What if they jump over the doorway?

If the person were to jump over the doorway, they
would be leaving the confines of their current location
and venturing into the vastness of space. This could be
a metaphorical representation of stepping out of one’s
comfort zone or embarking on a new adventure.
However, it is important to note that such an action
would be extremely dangerous and potentially life-
threatening due to the harsh conditions of space.

What makes this dog special?

The dog in the image is wearing futuristic armor and
has a glowing green eye, giving it a unique and
futuristic appearance. This combination of elements
makes the dog stand out from other dogs and adds an
element of fantasy or sci-fi to the image.
Additionally, the dog's posture and facial expression
convey a sense of confidence and determination,
further emphasizing its unique features.

Figure 1: A few qualitative examples generated by our InstructBLIP-Vicuna model. Here, we
demonstrate a diverse range of capabilities, including complex visual scene understanding and
reasoning, knowledge-grounded image description, multi-turn visual conversation, etc.
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second approach [3, 6] extends a pre-trained LLM with additional visual components, and trains the
visual components with image caption data. Nevertheless, such data are too limited to allow broad
generalization to vision-language tasks that require more than visual descriptions.

To address the aforementioned challenges, this paper presents InstructBLIP, a vision-language
instruction tuning framework that enables general-purpose models to solve a wide range of visual-
language tasks through a unified natural language interface. InstructBLIP uses a diverse set of
instruction data to train a multimodal LLM. Specifically, we initialize training with a pre-trained
BLIP-2 model consisting of an image encoder, an LLM, and a Query Transformer (Q-Former) to
bridge the two. During instruction tuning, we finetune the Q-Former while keeping the image encoder
and LLM frozen. Our paper makes the following key contributions:

• We perform a comprehensive and systematic study on vision-language instruction tuning. We
transform 26 datasets into the instruction tuning format and group them into 11 task categories.
We use 13 held-in datasets for instruction tuning and 13 held-out datasets for zero-shot evaluation.
Moreover, we withhold four entire task categories for zero-shot evaluation at the task level.
Exhaustive quantitative and qualitative results demonstrate the effectiveness of InstructBLIP on
vision-language zero-shot generalization.

• We propose instruction-aware visual feature extraction, a novel mechanism that enables flexible
and informative feature extraction according to the given instructions. Specifically, the textual
instruction is given not only to the frozen LLM, but also to the Q-Former, so that it can extract
instruction-aware visual features from the frozen image encoder. Also, we propose a balanced
sampling strategy to synchronize learning progress across datasets.

• We evaluate and open-source a suite of InstructBLIP models using two families of LLMs: 1)
FlanT5 [2], an encoder-decoder LLM finetuned from T5 [7]; 2) Vicuna [8], a decoder-only
LLM finetuned from LLaMA [9]. The InstructBLIP models achieve state-of-the-art zero-shot
performance on a wide range of vision-language tasks. Furthermore, InstructBLIP models lead
to state-of-the-art finetuning performance when used as the model initialization on individual
downstream tasks.

2 Vision-Language Instruction Tuning

InstructBLIP aims to address the unique challenges in vision-language instruction tuning and provide
a systematic study on the models’ improved generalization ability to unseen data and tasks. In this
section, we first introduce the construction of instruction-tuning data, followed by the training and
evaluation protocols. Next, we delineate two techniques to improve instruction-tuning performance
from the model and data perspectives, respectively. Lastly, we present the implementation details.

2.1 Tasks and Datasets

To ensure the diversity of instruction tuning data while considering their accessibility, we gather
comprehensive set of publicly available vision-language datasets, and transform them into the
instruction tuning format. As shown in Figure 2, the final collection covers 11 task categories and 26
datasets, including image captioning [10, 11, 12], image captioning with reading comprehension [13],
visual reasoning [14, 15, 16], image question answering [17, 18], knowledge-grounded image
question answering [19, 20, 21], image question answering with reading comprehension [22, 23],
image question generation (adapted from the QA datasets), video question answering [24, 25], visual
conversational question answering [26], image classification [27], and LLaVA-Instruct-150K [28].
We include detailed descriptions and statistics of each dataset in Appendix C.

For every task, we meticulously craft 10 to 15 distinct instruction templates in natural language.
These templates serve as the foundation for constructing instruction tuning data, which articulates
the task and the objective. For public datasets inherently favoring short responses, we use terms
such as short and briefly into some of their corresponding instruction templates to reduce the risk of
the model overfitting to always generating short outputs. For the LLaVA-Instruct-150K dataset, we
do not incorporate additional instruction templates since it is naturally structured in the instruction
format. The full list of instruction templates can be found in Appendix D.
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Figure 2: Tasks and their corresponding datasets used for vision-language instruction tuning. The
held-in datasets are indicated by yellow and the held-out datasets by white.

2.2 Training and Evaluation Protocols

To ensure sufficient data and tasks for training and zero-shot evaluation, we divide the 26 datasets into
13 held-in datasets and 13 held-out datasets, indicated by yellow and white respectively in Figure 2.
We employ the training sets of the held-in datasets for instruction tuning and their validation or test
sets for held-in evaluation.

For held-out evaluation, our aim is to understand how instruction tuning improves the model’s
zero-shot performance on unseen data. We define two types of held-out data: 1) datasets not exposed
to the model during training, but whose tasks are present in the held-in cluster; 2) datasets and their
associated tasks that remain entirely unseen during training. Addressing the first type of held-out
evaluation is nontrivial due to the data distribution shift between held-in and held-out datasets. For
the second type, we hold out several tasks completely, including visual reasoning, video question
answering, visual conversational QA, and image classification.

To avoid data contamination, datasets are selected carefully so that no evaluation data appear in the
held-in training cluster across different datasets. One exception is the Visual Dialog [26] dataset,
which has overlap of images with some held-in data. The Visual Dialog [26] dataset is an exception,
as it has an overlap of images with some training data. Nevertheless, since it’s virtually the only
high-quality visual dialog dataset available for quantitative evaluation, we still incorporated it in our
evaluation as a reference. During instruction tuning, we mix all the held-in training sets and sample
instruction templates uniformly for each dataset. The models are trained with the standard language
modeling loss to directly generate the response given the instruction. Furthermore, for datasets that
involve scene texts, we add OCR tokens in the instruction as supplementary information.

2.3 Instruction-aware Visual Feature Extraction

Existing zero-shot image-to-text generation methods, including BLIP-2, take an instruction-agnostic
approach when extracting visual features. That results in a set of static visual representations being
fed into the LLM, regardless of the task. In contrast, an instruction-aware vision model can adapt to
the task instruction and produce visual representations most conducive to the task at hand. This is
clearly advantageous if we expect the task instructions to vary considerably for the same input image.

We show the architecture of InstructBLIP in Figure 3. Similarly to BLIP-2 [3], InstructBLIP utilizes
a Query Transformer, or Q-Former, to extract visual features from a frozen image encoder. The
input to the Q-Former contains a set of K learnable query embeddings, which interact with the
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Figure 3: Model architecture of InstructBLIP. The Q-Former extracts instruction-aware visual features
from the output embeddings of the frozen image encoder, and feeds the visual features as soft prompt
input to the frozen LLM. We instruction-tune the model with the language modeling loss to generate
the response.

image encoder’s output through cross attention. The output of the Q-Former consists of K encoded
visual vectors, one per query embedding, which then go through a linear projection and are fed to
the frozen LLM. As in BLIP-2, the Q-Former is pretrained in two stages using image-caption data
before instruction tuning. The first stage pretrains the Q-Former with the frozen image encoder for
vision-language representation learning. The second stage adapts the output of Q-Former as soft
visual prompts for text generation with a frozen LLM . After pretraining, we finetune the Q-Former
with instruction tuning, where the LLM receives as input the visual encodings from the Q-Former
and the task instruction.

Extending BLIP-2, InstructBLIP proposes an instruction-aware Q-former module, which takes in
the instruction text tokens as additional input. The instruction interacts with the query embeddings
through self-attention layers of the Q-Former, and encourages the extraction of task-relevant image
features. As a result, the LLM receives visual information conducive to instruction following. We
demonstrate empirically (Table 2) that instruction-aware visual feature extraction provides substantial
performance improvements for both held-in and held-out evaluations.

2.4 Balancing Training Datasets

Due to the large number of training datasets and the significant differences in the size of each dataset,
mixing them uniformly could cause the model to overfit smaller datasets and underfit larger datasets.
To mitigate the problem, we propose to sample datasets with probabilities proportional to the square
root of their sizes, or the numbers of training samples. Generally, given D datasets with sizes
{S1, S2, . . . , SD}, the probability of a data sample being selected from a dataset d during training
is pd =

√
Sd∑D

i=1

√
Si

. On top of this formula, we make manual adjustments to the weights of certain
datasets based on their individual convergence time to improve optimization. This is warranted
by inherent differences in the datasets and tasks that require varying levels of training intensity
despite similar sizes. Specifically, we lower the weight of A-OKVQA, which features multiple-choice
questions, and increase the weight of OKVQA, which requires open-ended text generation. In Table 2,
we show that the balanced dataset sampling strategy improves overall performance for both held-in
evaluation and held-out generalization.

2.5 Inference Methods

During inference time, we adopt two slightly different generation approaches for evaluation on
different datasets. For the majority of datasets, such as image captioning and open-ended VQA, the
instruction-tuned model is directly prompted to generate responses, which are subsequently compared
to the ground truth to calculate metrics. On the other hand, for classification and multi-choice VQA
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tasks, we employ a vocabulary ranking method following previous works [1, 29, 30]. Specifically,
we still prompt the model to generate answers, but restrict its vocabulary to a list of candidates. Then,
we calculate log-likelihood for each candidate and select the one with the highest value as the final
prediction. This ranking method is applied to ScienceQA, IconQA, A-OKVQA (multiple-choice),
HatefulMemes, Visual Dialog, MSVD, and MSRVTT datasets. Furthermore, for binary classification,
we expand the positive and negative labels into a slightly broader set of verbalizers to exploit word
frequencies in natural text (e.g., yes and true for the positive class; no and false for the negative class).

For the video question-answering task, we utilize four uniformly-sampled frames per video. Each
frame is processed by the image encoder and Q-Former individually, and the extracted visual features
are concatenated before being fed into the LLM.

2.6 Implementation Details

Architecture. Thanks to the flexibility enabled by the modular architectural design of BLIP-2, we
can quickly adapt the model to a wide range of LLMs. In our experiments, we adopt four variations
of BLIP-2 with the same image encoder (ViT-g/14 [31]) but different frozen LLMs, including FlanT5-
XL (3B), FlanT5-XXL (11B), Vicuna-7B and Vicuna-13B. FlanT5 [2] is an instruction-tuned model
based on the encoder-decoder Transformer T5 [7]. Vicuna [8], on the other hand, is a recently
released decoder-only Transformer instruction-tuned from LLaMA [9]. During vision-language
instruction tuning, we initialize the model from pre-trained BLIP-2 checkpoints, and only finetune
the parameters of Q-Former while keeping both the image encoder and the LLM frozen. Since
the original BLIP-2 models do not include checkpoints for Vicuna, we perform pre-training with
Vicuna using the same procedure as BLIP-2. We set the number of query embeddings to 32 and do
not observe any improvement when increasing it in our settings. However, it could potentially be
beneficial for future tasks with more complex visual inputs.

Training and Hyper-parameters. We use the LAVIS library [32] for implementation, training,
and evaluation. All models are instruction-tuned with a maximum of 60K steps and we validate
model’s performance every 3K steps. For each model, a single optimal checkpoint is selected and
used for evaluations on all datasets. We employ a batch size of 192, 128, and 64 for the 3B, 7B, and
11/13B models, respectively. The AdamW [33] optimizer is used, with β1 = 0.9, β2 = 0.999, and a
weight decay of 0.05. Additionally, we apply a linear warmup of the learning rate during the initial
1,000 steps, increasing from 10−8 to 10−5, followed by a cosine decay with a minimum learning
rate of 0. For decoding, we adopt beam search with a beam size of 1 for HatefulMemes, VSR, and
OCR-VQA, 3 for NoCaps, and 5 for the other tasks. All models are trained utilizing 16 Nvidia A100
(40G) GPUs and are completed within 1.5 days.

3 Experimental Results and Analysis

3.1 Zero-shot Evaluation

We first evaluate InstructBLIP models on the set of 13 held-out datasets with instructions provided
in Appendix E. We compare InstructBLIP with the previous SOTA models BLIP-2 and Flamingo.
As demonstrated in Table 1, we achieve new zero-shot SOTA results on all datasets. InstructBLIP
consistently surpasses its original backbone, BLIP-2, by a significant margin across all LLMs,
demonstrating the effectiveness of vision-language instruction tuning. For instance, InstructBLIP
FlanT5XL yields an average relative improvement of 15.0% when compared to BLIP-2 FlanT5XL.
Furthermore, instruction tuning boosts zero-shot generalization on unseen task categories such as
video QA. InstructBLIP achieves up to 47.1% relative improvement on MSRVTT-QA over the
previous SOTA despite having never been trained with temporal video data. Finally, our smallest
InstructBLIP FlanT5XL with 4B parameters outperforms Flamingo-80B on all six shared evaluation
datasets with an average relative improvement of 24.8%.

For the Visual Dialog dataset, we choose to report the Mean Reciprocal Rank (MRR) over the
Normalized Discounted Cumulative Gain (NDCG) metric. This is because NDCG favors generic and
uncertain answers while MRR prefers certain responses [34], making MRR better aligned with the
zero-shot evaluation scenario.
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NoCaps Flickr
30K GQA VSR IconQA TextVQA Visdial HM VizWiz SciQA

image
MSVD

QA
MSRVTT

QA iVQA

Flamingo-3B [6] - 60.6 - - - 30.1 - 53.7 28.9 - 27.5 11.0 32.7

Flamingo-9B [6] - 61.5 - - - 31.8 - 57.0 28.8 - 30.2 13.7 35.2

Flamingo-80B [6] - 67.2 - - - 35.0 - 46.4 31.6 - 35.6 17.4 40.7

BLIP-2 (FlanT5XL) [3] 104.5 76.1 44.0 60.5 45.5 43.1 45.7 53.0 29.8 54.9 33.7 16.2 40.4

BLIP-2 (FlanT5XXL) [3] 98.4 73.7 44.6 68.2 45.4 44.1 46.9 52.0 29.4 64.5 34.4 17.4 45.8

BLIP-2 (Vicuna-7B) 107.5 74.9 38.6 50.0 39.7 40.1 44.9 50.6 25.3 53.8 18.3 9.2 27.5

BLIP-2 (Vicuna-13B) 103.9 71.6 41.0 50.9 40.6 42.5 45.1 53.7 19.6 61.0 20.3 10.3 23.5

InstructBLIP (FlanT5XL) 119.9 84.5 48.4 64.8 50.0 46.6 46.6 56.6 32.7 70.4 43.4 25.0 53.1

InstructBLIP (FlanT5XXL) 120.0 83.5 47.9 65.6 51.2 46.6 48.5 54.1 30.9 70.6 44.3 25.6 53.8
InstructBLIP (Vicuna-7B) 123.1 82.4 49.2 54.3 43.1 50.1 45.2 59.6 34.5 60.5 41.8 22.1 52.2

InstructBLIP (Vicuna-13B) 121.9 82.8 49.5 52.1 44.8 50.7 45.4 57.5 33.4 63.1 41.2 24.8 51.0

Table 1: Zero-shot results on the held-out datasets. Here, Visdial, HM and SciQA denote the Visual
Dialog, HatefulMemes and ScienceQA datasets, respectively. For ScienceQA, we only evaluate on
the set with image context. Following previous works [6, 25, 34], we report the CIDEr score [35]
for NoCaps and Flickr30K, iVQA accuracy for iVQA, AUC score for HatefulMemes, and Mean
Reciprocal Rank (MRR) for Visual Dialog. For all other datasets, we report the top-1 accuracy (%).

Model Held-in Avg. GQA ScienceQA
(image-context) IconQA VizWiz iVQA

InstructBLIP (FlanT5XL) 94.1 48.4 70.4 50.0 32.7 53.1

w/o Instruction-aware Visual Features 89.8 45.9 (↓2.5) 63.4 (↓7.0) 45.8 (↓4.2) 25.1 (↓7.6) 47.5 (↓5.6)

w/o Data Balancing 92.6 46.8 (↓1.6) 66.0 (↓4.4) 49.9 (↓0.1) 31.8 (↓0.9) 51.1 (↓2.0)

InstructBLIP (Vicuna-7B) 100.8 49.2 60.5 43.1 34.5 52.2

w/o Instruction-aware Visual Features 98.9 48.2 (↓1.0) 55.2 (↓5.3) 41.2 (↓1.9) 32.4 (↓2.1) 36.8 (↓15.4)

w/o Data Balancing 98.8 47.8 (↓1.4) 59.4 (↓1.1) 43.5 (↑0.4) 32.3 (↓2.2) 50.3 (↓1.9)

Table 2: Results of ablation studies that remove the instruction-aware Visual Features (Section 2.3)
and the balanced data sampling strategy (Section 2.4). For held-in evaluation, we compute the average
score of four datasets, including COCO Caption, OKVQA, A-OKVQA, and TextCaps. For held-out
evaluation, we show five datasets from different tasks.

3.2 Ablation Study on Instruction Tuning Techniques

To investigate the impact of the instruction-aware visual feature extraction (Section 2.3) and the
balanced dataset sampling strategy (Section 2.4), we conduct ablation studies during the instruction
tuning process. As illustrated in Table 2, the removal of instruction awareness in visual features
downgrades performance significantly across all datasets. The performance drop is more severe
in datasets that involve spatial visual reasoning (e.g., ScienceQA) or temporal visual reasoning
(e.g., iVQA), where the instruction input to the Q-Former can guide visual features to attend to
informative image regions. The removal of the data balancing strategy causes unstable and uneven
training, as different datasets achieve peak performance at drastically different training steps. The
lack of synchronized progress over multiple datasets harms the overall performance.

3.3 Qualitative Evaluation

Besides the systematic evaluation on public benchmarks, we further qualitatively examine Instruct-
BLIP with more diverse images and instructions. As illustrated in Figure 1, InstructBLIP demonstrates
its capacity for complex visual reasoning. For example, it can reasonably infer from the visual scene
what could have happened and deduce the type of disaster from the location of the scene, which
it extrapolates based on visual evidence like the palm trees. Moreover, InstructBLIP is capable
of connecting visual input with embedded textual knowledge and generate informative responses,
such as intruducing a famous painting. Furthermore, in descriptions of the overall atmosphere,
InstructBLIP exhibits the ability to comprehend metaphorical implications of the visual imagery.
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Figure 4: Comparison of instruction tuning and multitask training based on BLIP-2 FlanT5XL
backbone. For held-in evaluation, we compute the average score across all held-in datasets. For
held-out evaluation, we compute the average score across GQA, TextVQA, VSR, HatefulMemes,
IconQA, ScienceQA, iVQA, VizWiz.

Finally, we show that InstructBLIP can engage in multi-turn conversations, effectively considering
the dialog history when making new responses.

In Appendix B, we qualitatively compare InstructBLIP with concurrent multimodal models (GPT-
4 [36], LLaVA [28], MiniGPT-4 [37]). Although all models are capable of generating long-form
responses, InstructBLIP’s outputs generally contains more proper visual details and exhibits logically
coherent reasoning steps. Importantly, we argue that long-form responses are not always preferable.
For example, in Figure 2 of the Appendix, InstructBLIP directly addresses the user’s intent by
adaptively adjusting the response length, while LLaVA and MiniGPT-4 generate long and less
relevant sentences. These advantages of InstructBLIP are a result of the diverse instruction tuning
data and an effective architectural design.

3.4 Instruction Tuning vs. Multitask Learning

A direct analogue to instruction tuning is multitask learning, a widely used method that involves
the simultaneous training of multiple datasets with the goal of improving the performance of each
individual dataset. To investigate whether the improvement in zero-shot generalization mainly comes
from the instruction format or merely from multi-task learning, we conduct a comparative analysis.

Following [1], we consider two multitask training approaches. In the first approach, the model is
trained using the vanilla input-output format of the training datasets without instructions. During
evaluation, instructions are still provided to the model to specify which task to perform. However,
an exception is made for image captioning, as the model performs better when receiving the image
as the only input. For the second approach, we take a step toward instruction tuning by prepending
a [Task:Dataset] identifier to the text input during training. For example, we prepend [Visual
question answering:VQAv2] for the VQAv2 dataset. During evaluation, we explore both instruc-
tions and the identifier. Particularly, for held-out datasets, we only use the task name as the identifier
since the model never sees the dataset name.

In Figure 4, we show the results for zero-shot, multitask training, and instruction tuning. All models
are based on the BLIP-2 FlanT5XL backbone and adhere to the identical training configurations in
Section 2. Overall, we make two observations. First, instruction tuning and multitask learning exhibit
similar performance on the held-in datasets. This suggests that the model can fit these two different
input patterns comparably well, as long as it has been trained with such data. Second, instruction
tuning yields a significant improvement over multitask learning on unseen held-out datasets, whereas
multitask learning performs on par with the original BLIP-2. This indicates that instruction tuning is
the key to zero-shot generalization.

8



ScienceQA
(image-context) OCR-VQA OKVQA

A-OKVQA
Direct Answer Multi-choice
Val Test Val Test

Previous SOTA
LLaVA [28]

89.0
GIT [39]

70.3
PaLM-E (562B) [38]

66.1
[40]
56.3

[41]
61.6

[40]
73.2

[41]
73.6

BLIP-2 (FlanT5XXL) 89.5 72.7 54.7 57.6 53.7 80.2 76.2

InstructBLIP (FlanT5XXL) 90.7 73.3 55.5 57.1 54.8 81.0 76.7

BLIP-2 (Vicuna-7B) 77.3 69.1 59.3 60.0 58.7 72.1 69.0

InstructBLIP (Vicuna-7B) 79.5 72.8 62.1 64.0 62.1 75.7 73.4

Table 3: Results of finetuning BLIP-2 and InstructBLIP on downstream datasets. Compared to
BLIP-2, InstructBLIP provides a better weight initialization model and achieves SOTA performance
on three out of four datasets.

3.5 Finetuning InstructBLIP on Downstream Tasks

We further finetune the InstructBLIP models to investigate its performance on learning a specific
dataset. Compared to most previous methods (e.g., Flamingo, BLIP-2) which increase the input
image resolution and finetune the visual encoder on downstream tasks, InstructBLIP maintains the
same image resolution (224×224) as used in instruction tuning and keeps the visual encoder frozen
during finetuning. This significantly reduces the number of trainable parameters from 1.2B to 188M,
thus greatly improves finetuning efficiency.

The results are in Table 3. Compared to BLIP-2, InstructBLIP leads to better finetuning performance
on all datasets, validating InstructBLIP as the better initialization for task-specific finetuning. Instruct-
BLIP sets new state-of-the-art finetuning performance on ScienceQA (image-context), OCR-VQA,
A-OKVQA, but is outperformed on OKVQA by PaLM-E [38] with 562B parameters.

Additionally, we observe that the FlanT5-based InstructBLIP is superior at multi-choice tasks,
whereas Vicuna-based InstructBLIP is generally better at open-ended generation tasks. This disparity
can be primarily attributed to the capabilities of their frozen LLMs, as they both employ the same
image encoder. Although FlanT5 and Vicuna are both instruction-tuned LLMs, their instruction data
significantly differ. FlanT5 is mainly finetuned on NLP benchmarks containing many multi-choice
QA and classification datasets, while Vicuna is finetuned on open-ended instruction-following data.

4 Related Work

Instruction tuning aims to teach language models to follow natural language instructions, which
has been shown to improve their generalization performance to unseen tasks. Some methods
collect instruction tuning data by converting existing NLP datasets into instruction format using
templates [1, 2, 42, 43]. Others use LLMs (e.g., GPT-3 [44]) to generate instruction data [8, 45, 46, 47]
with improved diversity.

Instruction-tuned LLMs have been adapted for vision-to-language generation tasks by injecting
visual information to the LLMs. BLIP-2 [3] uses frozen FlanT5 models, and trains a Q-Former
to extract visual features as input to the LLMs. MiniGPT-4 [37] uses the same pretrained visual
encoder and Q-Former from BLIP-2, but uses Vicuna [8] as the LLM and performs training using
ChatGPT [48]-generated image captions longer than the BLIP-2 training data. LLaVA [28] directly
projects the output of a visual encoder as input to a LLaMA/Vinuca LLM, and finetunes the LLM on
vision-language conversational data generated by GPT-4 [36]. mPLUG-owl [49] performs low-rank
adaption [50] to a LLaMA [9] model using both text instruction data and vision-language instruction
data from LLaVA. A separate work is MultiInstruct [51], which performs vision-language instruction
tuning without a pretrained LLM, leading to less competitive performance.

Compared to existing methods, InstructBLIP uses a much wider range of vision-language instruction
data, covering both template-based converted data and LLM-generated data. Architecture wise,
InstructBLIP proposes an instruction-aware visual feature extraction mechanism. Furthermore, our
paper provides a comprehensive analysis on various aspects of vision-language instruction tuning,
validating its advantages on generalizing to unseen tasks.

9



5 Conclusion

In this paper, we present InstructBLIP, a simple yet novel instruction tuning framework towards gen-
eralized vision-language models. We perform a comprehensive study on vision-language instruction
tuning and demonstrate the capability of InstructBLIP models to generalize to a wide range of unseen
tasks with state-of-the-art performance. Qualitative examples also exhibit InstructBLIP’s various
capabilities on instruction following, such as complex visual reasoning, knowledge-grounded image
description, and multi-turn conversations. Furthermore, we show that InstructBLIP can serve as an
enhanced model initialization for downstream task finetuning, achieving state-of-the-art results. We
hope that InstructBLIP can spur new research in general-purpose multimodal AI and its applications.
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A Broader Impact

InstructBLIP utilizes off-the-shelf frozen LLMs. Therefore it inherits some of the shortcomings of the
original LLMs, such as hallucinating ungrounded text or generating outputs with biases. We mitigate
such shortcomings by improving the model’s grounding on the vision and instruction input, and
performing vision-language instruction tuning on a diverse set of high-quality datasets. Nevertheless,
we do not recommend applying InstructBLIP models to any downstream applications without a prior
assessment on safety and fairness specific to that application. Additionally, since we did not finetune
the parameters of the LLM, InstructBLIP may not always precisely follow given instructions. We
believe that employing a more advanced LLM and meticulously finetuning its parameters during
instruction tuning could address this concern. We reserve this for future work.

B More Case Studies

[Input Image]

What is unusual about this image?

[Model Response]

InstructBLIP The unusual aspect of this image is that a man is ironing clothes on the
back of a yellow taxi cab while it is driving down a bus city street. He is
standing on top of the car's trunk, holding an iron and using it to press his
clothing items. This situation is not only unconventional but also
potentially hazardous, as the man could be at risk of falling off the vehicle
or causing an accident due to his actions.

LLaVA The unusual aspect of this image is a man ironing clothes on the back of a
minivan or van. This is not a typical place to perform this activity, as one
would usually iron clothes in a more stationary and safe location, such as
a home, using a regular ironing board. The scene depicted in the image is
peculiar as it involves a makeshift ironing setup on a vehicle, which can
be both unsafe and unconventional. Additionally, it is not clear how the
man is able to maintain balance and stability while ironing clothes in such
an unstable environment.

MiniGPT-4 The image shows a man standing on the back of a yellow taxi, with a
yellow shirt and black pants, and a blue backpack on his back. The taxi is
driving on a city street with othr cars and taxis in the background.

GPT-4 The unusual thing about this image is that a man is ironing clothes on an
ironing board attached to the roof of a moving taxi.

[Input Instruction]

Figure 5: The response from InstructBLIP is more comprehensive than GPT-4, more visually-
grounded than LLaVA, and more logical than MiniGPT-4. The responses of GPT-4 and LLaVA
are obtained from their respective papers, while the official demo is used for MiniGPT-4. Source:
https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg

14

https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures.jpg


[Input Image]

Do you know who drew this painting?

[Model Response]

InstructBLIP

LLaVA

MiniGPT-4

The painting depicts a woman, commonly believed to be Mona Lisa, the
famous artwork by Leonardo da Vinci. It is a portrait painting that
showcases the woman's enigmatic smile and has become one of the most
famous and iconic art pieces in the world. The original work is displayed
in the Louvre Museum in Paris, and it is known for its intricate details,
use of oil paint, and the artist's innovative techniques that contributed to
its enduring appeal and mystery.

The painting is the Mona Lisa, also known as the Mona Lisa, by Leonardo
da Vinci. It is one of the most famous paintings in the world and is known
for its enigmatic smile and the mysterious identity of the sitter. The
painting is housed in the Louvre Museum in Paris, France.

Leonardo da Vinci.

[Input Instruction]

Figure 6: In this example, we illustrate that long-form responses are not always preferable. Instruct-
BLIP can directly address the user’s intent by adaptively adjusting the response length, while other
models tend to generate lengthy paragraphs with less-relevant sentences. The response from LLaVA
is taken from the paper, and for MiniGPT-4, we utilize its official demo.
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[Input Image]

[Input Instruction] Introduce me this painting in detail.

[Model Response]

InstructBLIP

LLaVA

MiniGPT-4

The painting features a woman with a headscarf, possibly of Dutch origin,
dressed in blue and white clothing. She is wearing a large blue hat and has
a red mouth, which adds a vibrant touch to the portrait. The woman is
looking directly at the viewer, creating a sense of connection. The
background of the painting is predominantly blue, further emphasizing the
color theme of the piece. The overall composition and attire of the woman
suggest that the painting might be inspired by the style of Rembrandt.

The painting depicts a young woman with a pearl earring, wearing a blue
dress and a white apron. She is shown with a serious expression, looking
directly at the viewer. The background is a dark, neutral tone, with no
visible objects or elements. The overall mood of the painting is somber
and contemplative.
The painting is well-executed, with a high level of detail and realism in
the depiction of the woman’s features and clothing. The use of shading
and lighting creates a sense of depth and dimension, making the woman
appear three-dimensional. The artist has used a limited color palette, with
the woman’s dress and apron providing the only sources of color in the
painting.
The painting is well-composed, with the woman’s head and shoulders
positioned in the center of the canvas, creating a sense of balance and
symmetry. The use of negative space around the woman’s figure adds to
the overall somber mood of the painting.
Overall, this is a well-executed and thought-provoking painting that
effectively conveys a sense of contemplation and introspection.

The painting depicts a young girl with a pearl earring, also known as "The
Girl with the Pearl Earring" or "Girl with a Pearl Earring". She is wearing
a blue dress and has a pearl earring on her left ear. Her hair is pulled back
into a bun, and she is looking directly at the viewer. This painting is a
famous work of art by Dutch painter Johannes Vermeer, created in 1665.
It is considered one of his masterpieces and is widely recognized for its
intricate details and realistic portrayal of the young girl’s facial
expression.

Figure 7: InstructBLIP shows the ability to connect textual knowledge with visual input, while the
other models depict the picture plainly. MiniGPT-4 exhibits poorer results, which may be due to its
training with only long captions. Responses of LLaVA and MiniGPT-4 are generated by their official
demos.
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C Instruction Tuning Datasets

Dataset Name Held-out Dataset Description

COCO Caption [10] ✗ We use the large-scale COCO dataset for the image captioning task. Specifically, Karpathy
split [52] is used, which divides the data into 82K/5K/5K images for the train/val/test sets.

Web CapFilt ✗ 14M image-text pairs collected from the web with additional BLIP-generated synthetic
captions, used in BLIP [30] and BLIP-2 [3].

NoCaps [11] ✓ (val) NoCaps contains 15,100 images with 166,100 human-written captions for novel object
image captioning.

Flickr30K [12] ✓ (test) The Flickr30k dataset consists of 31K images collected from Flickr, each image has five
ground truth captions. We use the test split as the held-out which contains 1K images.

TextCaps [13] ✗ TextCaps is an image captioning dataset that requires the model to comprehend and reason
the text in images. Its train/val/test sets contain 21K/3K/3K images, respectively.

VQAv2 [17] ✗ VQAv2 is dataset for open-ended image question answering. It is split into 82K/40K/81K
for train/val/test.

VizWiz [18] ✓ (test-dev) A dataset contains visual questions asked by people who are blind. 8K images are used for
the held-out evaluation.

GQA [14] ✓ (test-dev) GQA contains image questions for scene understanding and reasoning. We use the balanced
test-dev set as held-out.

Visual Spatial Reasoning ✓ (test) VSR is a collection of image-text pairs, in which the text describes the spatial relation of
two objects in the image. Models are required to classify true/false for the description. We
use the zero-shot data split given in its official github repository.

IconQA [16] ✓ (test) IconQA measures the abstract diagram understanding and comprehensive cognitive rea-
soning abilities of models. We use the test set of its multi-text-choice task for held-out
evaluation.

OKVQA [19] ✗ OKVQA contains visual questions that require outside knowledge to answer. It has been
split into 9K/5K for train and test.

A-OKVQA [20] ✗ A-OKVQA is a successor of OKVQA with more challenging and diverse questions. It has
17K/1K/6K questions for train/val/test.

ScienceQA [21] ✓ (test) ScienceQA covers diverse science topics with corresponding lectures and explanations. In
out settings, we only use the part with image context (IMG).

Visual Dialog [26] ✓ (val) Visual dialog is a conversational question answering dataset. We use the val split as the
held-out, which contains 2,064 images and each has 10 rounds.

OCR-VQA [22] ✗ OCR-VQA contains visual questions that require models to read text in the image. It has
800K/100K/100K for train/val/test, respectively.

TextVQA [23] ✓ (val) TextVQA requires models to comprehend visual text to answer questions.

HatefulMemes [27] ✓ (val) A binary classification dataset to justify whether a meme contains hateful content.

LLaVA-Instruct-150K [28] ✗ An instruction tuning dataset which has three parts: detailed caption (23K), reasoning
(77K), conversation (58K).

MSVD-QA [24] ✓ (test) We use the test set (13K video QA pairs) of MSVD-QA for held-out testing.

MSRVTT-QA [24] ✓ (test) MSRVTT-QA has more complex scenes than MSVD, with 72K video QA pairs as the test
set.

iVQA [25] ✓ (test) iVQA is a video QA dataset with mitigated language biases. It has 6K/2K/2K samples for
train/val/test.

Table 4: Description of datasets in our held-in instruction tuning and held-out zero-shot evaluations.
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D Instruction Templates

Task Instruction Template

Image
Captioning

<Image>A short image caption:
<Image>A short image description:
<Image>A photo of
<Image>An image that shows
<Image>Write a short description for the image.
<Image>Write a description for the photo.
<Image>Provide a description of what is presented in the photo.
<Image>Briefly describe the content of the image.
<Image>Can you briefly explain what you see in the image?
<Image>Could you use a few words to describe what you perceive in the photo?
<Image>Please provide a short depiction of the picture.
<Image>Using language, provide a short account of the image.
<Image>Use a few words to illustrate what is happening in the picture.

VQA

<Image>{Question}
<Image>Question: {Question}
<Image>{Question} A short answer to the question is
<Image>Q: {Question} A:
<Image>Question: {Question} Short answer:
<Image>Given the image, answer the following question with no more than three words. {Question}
<Image>Based on the image, respond to this question with a short answer: {Question}. Answer:
<Image>Use the provided image to answer the question: {Question} Provide your answer as short as possible:
<Image>What is the answer to the following question? "{Question}"
<Image>The question "{Question}" can be answered using the image. A short answer is

VQG

<Image>Given the image, generate a question whose answer is: {Answer}. Question:
<Image>Based on the image, provide a question with the answer: {Answer}. Question:
<Image>Given the visual representation, create a question for which the answer is "{Answer}".
<Image>From the image provided, craft a question that leads to the reply: {Answer}. Question:
<Image>Considering the picture, come up with a question where the answer is: {Answer}.
<Image>Taking the image into account, generate an question that has the answer: {Answer}. Question:

Table 5: Instruction templates used for transforming held-in datasets into instruction tuning data. For
datasets with OCR tokens, we simply add “OCR tokens:” after the image query embeddings.

E Instructions for Zero-shot Inference

We provide instructions used for zero-shot inference. Note that for instructions with options, we
separate options with the alphabetical order, e.g. (a) blue (b) yellow (c) pink (d) black.

GQA, VizWiz, iVQA, MSVD, MSRVTT <Image> Question: {} Short answer:

NoCaps, Flickr30k <Image> A short image description:

TextVQA <Image> OCR tokens: {}. Question: {} Short answer:

IconQA <Image> Question: {} Options: {}. Short answer:

ScienceQA <Image> Context: {} Question: {} Options: {}. Answer:

HatefulMemes <Image> This is an image with: "{}" written on it. Is it hateful? Answer:

VSR <Image> Based on the image, is this statement true or false? "{}" Answer:

Visual Dialog <Image> Dialog history: {}\n Question: {} Short answer:
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