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Abstract

Federated Learning (FL) is a prevalent machine learning paradigm designed to
address challenges posed by heterogeneous client data while preserving data privacy.
Unlike distributed training, it typically orchestrates resource-constrained edge
devices to communicate via a low-bandwidth communication network with a
central server. This urges the development of more computation and communication
efficient training algorithms. In this paper, we propose an efficient FL paradigm,
where the local models in the clients are trained with low-precision operations
and communicated with the server in low precision format, while only the model
aggregation in the server is performed with high-precision computation. We
surprisingly find that high precision models can be recovered from the low precision
local models with proper aggregation in the server. In this way, both the workload
in the client-side and the communication cost can be significantly reduced. We
theoretically show that our proposed paradigm can converge to the optimal solution
as the training goes on, which demonstrates that low precision local training
is enough for FL. Our paradigm can be integrated with existing FL algorithms
flexibly. Experiments across extensive benchmarks are conducted to showcase the
effectiveness of our proposed method. Notably, the models trained by our method
with the precision as low as 8 bits are comparable to those from the full precision
training. As a by-product, we show that low precision local training can relieve
the over-fitting issue in local training, which under heterogeneous client data can
cause the client models drift further away from each other and lead to the failure in
model aggregation.

1 Introduction

Federated learning (FL) [3, 15, 22, 36] is a popular privacy preserving machine learning paradigm
to collaboratively learn a global model over the decentralized data. In FL paradigm, the clients
are responsible for local training and only have access to their private datasets, while the server
plays an essential role in aggregating the clients’ updates into a global model. Unlike large-scaled
distributed training, FL typically orchestrates resource-constrained edge devices to communicate
via a low-bandwidth communication network with a central server. This urges the development
of more computation and communication efficient optimization algorithms. The most prevalent
approach in FL is developed based on local-SGD [26], which is referred to as FedAvg. In each
communication round, the clients individually train their local models for multiple steps and then
send them to the server for aggregation. It can be expected that if longer local training process one
uses, the greater communication cost saving one can achieve. However, long time local training
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could cause the local models drift further away from each other and degrades the aggregated global
model’s performance or even make the training diverge, especially when the data on the clients are
heterogeneous. Therefore, in order to prolong local training processes in FL, extensive efforts have
been made in the recent years. For example, the studies [1, 16, 21, 22] modify the local training
process by imposing regularization on the client models to enforce them not to drift away from the
previous global model. Another line of research [5, 6, 24, 31, 35, 38] focuses on refining the global
model in the server aggregation process. These methods typically require a large proxy dataset on
the server. Some of them [5, 6, 24] use it to align the outputs of the global model with that of the
client ensemble by knowledge distillation. Others develop handcrafted aggregation rules to reweight
the updates based on the statistics of updates or performance on proxy data [31, 35, 38] or further
tune the global model with proxy data in every communication round [5, 24]. Although promising
experimental results have been reported in the literature, it is still unclear that whether there exists
more concise and effective FL paradigm, which can reduce both the workload in the client-side and
the communication cost.

In this paper, we propose a concise and efficient federated learning paradigm, where the local
models in the clients are trained with low precision operations and communicated with the server in
low precision format, while only the server-side information integration maintains high-precision
computation to ensure the accuracy. Our basic idea is inspired from the Kolmogorov’s law [10], that
is, the sample average can converge almost surely to the expected value although the samples always
contain noise. Therefore, in the server side, we perform the simple moving average on the received
low precision models from the clients to recover a high precision global model. In this way, both the
workload in the client-side and the communication cost can be significantly reduced. We theoretically
proved that our proposed paradigm integrated with FedAVG can converge to the optimal solution as
the training goes on, which indicates that low precision local training is enough for federated learning.
We extend our method to various existing FL method to show its flexibility. Experiments across
extensive benchmarks are conducted to showcase the effectiveness of our proposed method. Notably,
the models trained by our method with the precision as low as 8 bits are comparable to those from the
full precision federated learning. Compared with some efficient FL designs, our method can achieve
significant savings in training memory overhead, and what is more attractive is that our accuracy
performance is even better. Our method exhibits another appealing feature in relieving the over-fitting
issue in local training. To be precise, in the local training steps, the models can be easily trained
to over-fit the local training data as the local dataset is always insufficient. Under heterogeneous
client data, it would further cause the client models drift further away from each other and lead to the
failure in model aggregation. The experimental results show that our approach can effectively relieve
the over-fitting issue since the local training is performed with low precision computation and the
expressiveness of the local model is restricted.

Our main contributions are as follows:

• We propose an efficient federated learning paradigm that performs low precision computation
during local training, saving computational overhead and communication costs, while being
able to restore accuracy through high-precision aggregation on the server side.

• We theoretically proved that the efficient federated learning algorithm we proposed can
achieve convergence at a rated of O(1/T ) under certain assumptions for non-iid situations.

• Since the expressiveness of the local model is restricted due to the low precision local
training, our approach can relieve the over-fitting issue, which would cause the client models
drift further away from each other and lead to the failure in model aggregation when the
local dataset are heterogeneous.

• The extensive experimental results demonstrate the effectiveness of our approach. Notably,
the models trained by our method with the precision as low as 8 bits are comparable to those
from the full precision federated learning.

2 Related Work

Federated Learning. Fedrated Learning is first proposed by [26] to realize model training without
sharing client device data. Many works have continued to solve some challenges of FL such as
heterogeneity [16, 22, 25], privacy [2], communication efficiency [11, 18]. Also, some works
proposes new FL methods to alleviate data heterogeneity. The vanilla FL method was FedAvg [26].
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FedProx [22] utilizes a regularization term while Scaffold [16] sets a control variate to reduce the
drift in local training. FedGen [42] and FedFTG [40] maintain a generator, the former is used for
local data augmentation, while the latter is used for fine-tuning the server.

Efficient Federated Learning. One challenge of FL is the limitation of low bandwidth and computing
resources of client devices. [4, 20] assign each client a block mask, resulting in sparse local
models. [28] took the transmission speed into consideration and chose the same method as [12]
for uploading, uploading compressed gradients. [13] adopts boost training to client-side training
overhead. [7, 28] only transmit the trained head to reduce transmission cost. [33] adopts the idea of
Network Architecture Searching, e.g., each client selects a sub-network. [14] maintains a series of
streamlined models in the server, from which the client selects a tiny model for training. In [9], the
client selects a sub-model of the global model for training. In this paper, we address this issue by
using low precision local training.

3 Preliminary

3.1 Federated Learning

Given N clients with their private datasets Dk = {(xk,j , yk,j)}|Dk|
j=1 , k = 1, . . . , N , the optimization

objective of FL is always defined as follows:

min
w

F (w) ≜
∑N

k=1
pkFk(w), (1)

where w ∈ Rd represents the model parameters, Fk is denoted to be the empirical risk function of
client k, i.e., Fk(w) =

∑
ξ∈Dk

1
|Dk|ℓ(w; ξ) with ℓ(·, ·) being the loss function and pk = |Dk|∑N

k=1 |Dk|
denotes the proportion of data contained in client k.

FL emphasizes data privacy protection and thus the server is not allowed to access these datasets Dk

directly in model training. The standard method to solve the above training problem of FL is FedAvg
[26], which is developed based on local SGD. It is comprised by two steps, i.e., local training on the
clients and model aggregation in the server side. The details are presented below.

• In local training, the central server would first randomly select partial clients and broadcasts
the latest global model wt to them. We denote the selected clients set as St and let K = |St|
be the number of selected clients. Then the client k with k ∈ St would initialize its local
model to be wk

t = wt and then performs local training with E(≥ 1) iterations as follows:

wk
t+1 ← wk

t − ηt∇Fk(w
k
t ; ξ

k
t ), k ∈ St, (2)

where wk
t is the weights of the k-th client in step t, ξkt is a mini-batch of samples uniformly

chosen from Dk, ηt is the step size.

• In model aggregation, FedAvg updates the global model to be the weighted average of the
received local models, i.e.,

wt+E ←
∑

k∈St

pk
qt

wk
t+E , (3)

where qt =
∑

k∈St
pk normalize the coefficients.

3.2 Block Floating Point Quantization

Fixed point quantization is a standard quantization technique. It uses stochastic rounding to round
the numbers up or down at random such that E[Q(x)] = x, where Q : R → R is the quantization
function defined as

Q(x) =

{
clip(δ⌊xδ ⌋, l, u) w.p. ⌈xδ ⌉ −

x
δ ,

clip(δ⌈xδ ⌉, l, u) w.p. 1− (⌈xδ ⌉ −
x
δ ),

(4)

here clip(x, a, b) = max(min(x, b), a), δ = 2−F is the quantization gap represents the distance
between successive representable fixed point numbers, u = 2W−F−1 − 2−F and l = −2W−F−1

represent the upper and lower limits of the representable numbers, respectively. W is the bit width
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of quantized numbers, and F is the bit width of quantized numbers’ fractional part. In order to
improve the utilization efficiency of the bit width and better maintain numerical accuracy when data
is unevenly distributed, we choose block floating point quantization. Given a block of numbers X , it
replaces δ = 2−F in fixed point quantization to be δ = 2−E(X)+W−2, where

E(X) = clip(⌊log2(max
i
|Xi|)⌋,−2W−F−1, 2W−F−1 − 1). (5)

The shared exponent E(X) is usually set to be the largest exponent in X to avoid overflow [37].

4 Method

In this section, we introduce our low precision federated learning paradigm. It is comprised of two
modules,i.e., one is the low precision local training to reduce the computation and communication
cost, the other is the high precision aggregation with moving average to maintain the model accuracy.

4.1 Low Precision Local Training

In order to reduce the computation and communication cost, we apply block floating point quantization
to all clients’ device of local training. The simple version of low precision local training is to convert
the local training step in Eqn.(2) into

wk
t+1 = Q

(
wk

t − ηt∇Fk(w
k
t ; ξ

k
t )
)
. (6)

Note that in the above version, we only quantize the updated parameters. We give this version just
for the convenience of the theoretical analysis in Section 5. In practice, we quantize the gradient,
the activation of each layer, the back-propagation signals, and the momentum in SGD when SGD is
adopted as the optimizer. The details are given in Algorithm 1.

Algorithm 1 Low Precision Local Training with All Numbers Quantized

Input: Quantization functions QA, QE , QG, QM , QW ; Momentum coefficient ρ; L layers DNN
{f1, f2, . . . , fL}; Loss function ℓ.

1: ClientUpdate(t, k, wk
t ):

2: Get batch (xk,jt , yk,jt ) from Dk

3: Forward Propagation:
4: (akt )

(0) = xk,jt

5: (akt )
(l) = QA(fl((a

k
t )

(l−1), (wk
t )

(l))),∀l ∈ [1, L]
6: Backward Propagation:
7: (ekt )

(L) = ∇(ak
t )

(L)ℓ((akt )
(L), yk,jt)

8: (ekt )
(l−1) = QE(

∂fl((a
k
t )

(l−1),(wk
t )

(l))

∂(ak
t )

(l−1) (ekt )
(l)),∀l ∈ [1, L]

9: (gkt )
(l) = QG(

∂fl((a
k
t )

(l−1),(wk
t )

(l))

∂(wk
t )

(l) (ekt )
(l)),∀l ∈ [1, L]

10: Low Precision SGD Update:
11: (vkt+1)

(l) ← QM (ρ(vkt )
(l) + (gkt )

(l)),∀l ∈ [1, L]

12: (wk
t+1)

(l) ← QW ((wk
t )

(l) − ηt · (vkt+1)
(l)),∀l ∈ [1, L]

13: Return: wk
t+1

4.2 High Precision Aggregation

Although low precision training can reduce communication and training overhead, it would lead to
a degradation in training accuracy. Inspired from the Kolmogorov’s law [10], that is, the sample
average can converge almost surely to the expected value although the samples always contain noise,
we try to recover high-precision solution from the low-precision local model with a full precision
aggregation process. It is implemented with the following two steps:

• Calculate the weighted average of the local models to partially reconvert the precision, i.e.,

wt+E ←
∑

k∈St

pk
qt

wk
t+E . (7)
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• Since in most cases clients’ data is non-iid and quantization causes error, federated learning
is harder to converge, however maintaining a moving average in the server can significantly
alleviate the problem. Formally, we denote w̄t as the moving average stored in the server,
then after aggregation, we update w̄t as follow

w̄t ← Q(λw̄t−E + (1− λ)wt), (8)

where λ is a coefficient controlling the influence of current weight. This procedure can
further compensate the accuracy degradation due to the low precision local training.

In the next round of local training, the quantized model Q(w̄t) will be distributed to the clients
to intilize the local models. Our pseudocode in Algorithm 2 depicts the process of low precision
local training on the client device and high precision aggregation on the server. In Algorithm 2,
t′ = t− E + 1 and IE = {nE|n = 1, 2, · · · } represents the set of global synchronization steps.

Algorithm 2 Federated Learning with Low Precision Local Training

1: Initialize: w0, w̄0 ← w0

2: for t = 0, 1, . . . , T − 1 do
3: if t ≡ 0 (mod E) then
4: Select K clients from [N ] to be St
5: wk

t ← Q(w̄t), k ∈ St
6: end if
7: for k ∈ St do
8: wk

t+1 ← Q(wk
t − ηt∇Fk(w

k
t ; ξ

k
t )) ▷ Client update

9: end for
10: if t+ 1 ∈ IE then
11: wt+1 ←

∑
k∈St′

pk

qt′
wk

t+1 ▷ Server update
12: w̄t+1 ← λw̄t′ + (1− λ)wt+1

13: end if
14: end for
15: Return: w̄T

5 Theoretical Analysis

In this section, we give the detailed theoretical results for our low precision FL paradigm. We will first
introduce the convergence analysis in the full participation case where all client devices participate
(i.e., K = N ) and then we generalize the results of the analysis to scenarios that are more in line
with reality. (i.e., K < N ). The results demonstrate that we will explore aggregation strategies
represented by the FederatedAveraging Algorithm (or FedAvg) and demonstrate that our proposed
low precision FL framework can converge to the global optimal solution at a rate of O(1/T ) for
non-iid datasets based on strong convexity and smoothness assumptions.

5.1 Assumptions and Notations

We need to make necessary assumptions about the objective function on the clients Fk, k = 1, . . . , N .
Assumption 1 is about the smoothness and strong convexity of the loss function and Assumption 2
is about the boundness of the gradients. These assumptions are standard and widely adopted in the
related studies [41, 29, 30, 39].

Assumption 1. F1, F2, ..., FN are L-smooth and µ-strongly functions, which means that for all v
and w, the following inequalities hold:

Fk(v) ≤ Fk(w) + (v −w)
T∇Fk(w) +

L

2
∥v −w∥22, (L− smooth) (9)

Fk(v) ≥ Fk(w) + (v −w)
T∇Fk(w) +

µ

2
∥v −w∥22, (µ− strong) (10)

where ∥·∥2 represents the square of two norms and k = 1, . . . , N .
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Assumption 2. Let ξkt be sample that randomly and uniformly sampled from the local data of the
k-th client device. For k = 1, 2, · · · , N and t = 0, 1, · · · , the variance of stochastic gradients in
each client device and the expectation of squared two norm of stochastic gradients is bounded:

E
∥∥∇Fk(w

k
t ; ξ

k
t )−∇Fk(w

k
t )
∥∥2
2
≤ σk

2, (11)

E
∥∥∇Fk(w

k
t ; ξ

k
t )
∥∥2
2
≤ G2. (12)

Degree of Data Heterogeneity. Let F ∗ denote the global minimum of the objective function F , and
let F ∗

k represent the minimum of the local objective function Fk specific to the k-th client. We use
the metric Γ [23] taking the form of

Γ = F ∗ −
∑N

k=1
pkF

∗
k ,

to measure the degree of heterogeneity of all clients’ data distribution. When the data on each client
device is iid, as the number of samples increase, Γ evidently tends towards zero. However, when
faced with non-iid situation, Γ tends towards a positive constant and thus it can be used to measure
the degree of heterogeneity in the data distribution of each client device.

5.2 Convergence Analysis: Full Client Device Participation

First we analyze the convergence of the participation of all clients’ device in this section. We integrate
our low precision FL framework with FedAvg and train the model for T iterations to obtain the w̄T ,
and we expect T to be divided by E so that w̄T is the weight after aggregation.

Theorem 1. Under the Assumptions 1 and 2, we set κ = L
µ , γ = max{8κ,E} − 1 and ηt =

µ
2(t+γ) .

When t satisfying δ2 ≤ η2tG
2, low precision FedAvg with full device participation satisfies:

E[F (w̄T )]− F ∗ ≤ κ

T + γ

(
2B

µ
+

µ(γ + 1)

2
∥w1 −w∗∥22

)
, (13)

where
B = 2(

√
dδ + 1 +

d

2
)G2 + 16E2G2(2

√
dδ + 3) +

1

N2

∑N

k=1
σk

2 + 6LΓ. (14)

5.3 Convergence Analysis: Partial Client Device Participation

Compared to full participation situation, the partial participation situation is more in line with the
reality. We need to make more assumption on how to choose St.
Assumption 3. Assume St contains a subset of K indices uniformly sampled from [N ] without
replacement. In addition, the data is balanced in the sence that p1 = · · · = pN = 1

N . The
aggregation step of FedAvg performs wt+E ← 1

K

∑
k∈St

wk
t+E

Theorem 2. Under the Assumptions 1 to 3, we choose κ = L
µ , γ = max{8κ,E}−1, ηt = µ

2(t+γ) and

B = 2(
√
dδ+1+ d

2 )G
2+16E2G2(2

√
dδ+3)+ 1

N2

∑N
k=1 σk

2+6LΓ, C = N−K
N−1

8
KE2G2(2

√
dδ+

3)+dG2. When t satisfying δ2 ≤ η2tG
2, low precision FedAvg with partial client device participation

satisfies:

E[F (w̄T )]− F ∗ ≤ κ

T + γ

(
2(B + C)

µ
+

µ(γ + 1)

2
∥w1 −w∗∥22

)
. (15)

6 Experiments

In this section, we conduct extensive experiments to verify the effectiveness of our methods in the
following five aspects:

• When integrated with FedAvg, the models trained by our method with the low precision are
comparable to (if not better than) those from the full precision training. This would also
verify our theoretical results (Section 6.1).

• Our method can effectively relieve the over-fitting issue in FL. See Section (Section 6.2).
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• Our paradigm can be integrated with existing FL methods flexibly and preserve the perfor-
mance even with a low precision local training (Section 6.3).

• Ablation studies on the effectiveness of moving average in model aggregation and the
transferability over various neural networks (Section 6.4).

• Comparison with other efficient FL techniques (Section 6.5).

Remark 1. Similar with the existing low precision training studies [32], We do not give the results on
the running time to show the real acceleration. The reason is that to achieve real acceleration, we need
to implement our method integrated with the professional hardware. Moreover, such implementation
is standard for the professional hardware platforms.

Benchmark Datasets and Baseline. We conduct experiments over four commonly used datasets:
FashionMnist [34], CIFAR10 [19], CIFAR100 [19] and CINIC10 [8]. Four commonly used FL
methods: 1) FedAvg [26]; 2) regularization-based strategy FedProx [22]; 3) data-dependent knowl-
edge distillation strategy ABAvg [35] 4) data-free knowledge distillation strategy FedFTG [40] and
FedGen [42] are adopted as the baselines.

Configurations. We follow the configurations in the recent studies [26, 42, 27] for fair comparison.
To be precise, for FashionMNIST, CIFAR10, CINIC10 and CIFAR100, we run 200 communication
rounds with local epoch set to 1. There are 80 clients in total, and the participation ratio in each
round is set to 40%. We use Dirichlet distribution to simulate non-iid data distribution and set α to
0.01, 0.04, and 0.16. The smaller α is, the more serious the data heterogeneity is. For the network
choice, we use ConvNet following with 3 layers, and the hidden dimension is set to 128. The local
learning rate is set to 10−3 with Adam optimizer [17]. We report the last 5 round global model’s
average performance evaluated using the test split of the datasets. For quantization method, we adopt
the Block FLoating Point Quantization with the number of bits used set to 6, 8 and 32 (without
quantization). Some of the other hyperparameter settings are included in the Appendix C.

6.1 Results on FedAvg

We demonstrate the superior performance of our Low Precision FL method with FedAvg by conduct-
ing experiments over comprehensive datasets, various precision and heterogeneity values α.

Heterogeneity. As shown in Table 1, it is as expected that when the heterogeneity goes higher,
that is, when α decreases, the server performance worsens. Nevertheless, our proposed method can
always maintain or improve the performance of the original case (bits = 32, w/o. avg) when using 8
quantizaiton bits with moving average, which empirically validates the effectiveness of our proposed
method.

Quantization Bits. We conduct experiments on 3 quantization bits: 32, 8, 6 (shown in Table 1,
Figure 1), as we observe that in most cases 8 bits is enough to hold the performance of full-precision
and when the used bits is 6, the server performance begins to decrease due to the low precision level.

Table 1: Results of our method integrated with FedAvg over various levels of heterogeneity and
precision. The results with moving average demonstrate that our method can match the performance
of full-precision federated learning even with all numbers quantized down to 8 bits. The results in the
bottom three rows indicates the without moving average, training with low precision would lead to
performance degradation.

α = 0.01 α = 0.04 α = 0.16

Averaging Prec. FMNIST CIFAR10 CINIC10 CIFAR100 FMNIST CIFAR10 CINIC10 CIFAR100 FMNIST CIFAR10 CINIC10 CIFAR100

w avg
8 bit 80.1± 0.7 53.3± 2.7 43.3± 1.2 15.2± 0.2 83.8± 0.1 57.4± 0.6 50.8± 2.2 34.1± 0.4 90.6± 0.3 72.4± 0.7 58.2± 1.5 42.9± 0.1
6 bit 78.0± 1.4 49.3± 0.9 39.2± 1.5 12.4± 0.0 81.8± 0.1 53.6± 0.6 46.8± 1.6 22.4± 0.3 89.7± 0.5 69.6± 0.7 56.8± 0.3 33.8± 0.0
32 bit 80.7± 0.6 52.7± 0.6 41.0± 0.8 15.6± 0.0 83.6± 0.0 58.6± 0.3 49.7± 1.8 30.7± 0.3 90.7± 0.2 73.0± 0.9 58.6± 0.9 41.7± 0.3

w/o avg
8 bit 72.2± 2.0 25.6± 1.4 20.0± 1.2 7.32± 0.4 79.3± 1.2 45.5± 1.6 38.3± 1.9 14.7± 2.1 87.4± 2.2 63.6± 0.8 47.5± 1.9 25.6± 0.4
6 bit 41.5± 4.8 20.8± 0.8 18.1± 1.0 3.16± 0.7 72.5± 1.7 30.8± 1.3 28.8± 1.5 6.75± 0.1 83.0± 1.3 44.6± 1.1 39.3± 1.4 9.62± 0.2
32 bit 79.5± 2.7 41.1± 2.4 35.4± 4.1 12.5± 0.4 83.1± 2.1 54.4± 2.0 43.2± 3.6 28.2± 0.5 90.2± 0.5 71.9± 1.5 57.0± 1.3 39.1± 0.4

6.2 Quantization Relieves Overfitting

We present the averaged local training loss and the global testing loss over training in Figure 2. It
can be seen that our method can effectively reduce testing losses on the server. The commonality
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(a) FMNIST (b) CIFAR10 (c) CINIC10 (d) CIFAR100

Figure 1: Accuracy and loss of FedAvg with full precision (origin), our method with precsion levels
of 8 bit and 6 bit. We set α = 0.01 on all the four datasets. Our method exhibits an effective reduction
in fluctuation variance and improves the stability of training. The reason is that compared with the
full precision training, our low precision local training can prevent the client models to drift further
away from each other and overfit the local datasets, making the aggregation stable.

with the original method is that when each round of communication starts retraining, the training loss
of the client will be greatly increased due to the heterogeneity of the data Dk. Subsequently, due to
the highly imbalanced local data categories, the model quickly reached an overfitting state. It can
be seen that at the beginning of each training round, under our method, the customer’s training loss
will not exceed the original training loss. At the same time, with some training steps, our training
loss remains above the original training loss, which means our method can alleviate the overfitting
problem of local training.

Figure 2: Effectiveness of our method in relieving the over-fitting issue. We present the averaged
local training loss and the global test loss over training. We select a part of the training procedure
(iteration 1000 to 1400) for display, and enlarge a part of the picture in the upper right corner to show
more details. We can observe that the local training loss of FedAvg (full precision) is siginificantly
lower than our method, however its global test loss is much higher than us and fluctuates dramatically.

6.3 Results on Other FL Methods

The four FL methods we used are each representative. ABAvg and FedFTG are similar to FedAvg in
local training, but the former only performs weight adjustment on the server side, while the latter
uses knowledge distillation to fine-tune the server. FedProx and FedGen are similar to FedAvg in
the server side, but the former only has regularization constraints on local training, while the latter
uses the generator for regularization adjustment in local training. As is demonstrated in Table 2, we
can see that, regardless of the FL method chosen, our low precision FL algorithm has a significant
improvement in prediction accuracy compared to the original FL method, especially in dataset
CIFAR10, CINIC10 and CIFAR100.
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Table 2: The results of our method when integrated with existing FL methods ABAvg, FedProx,
FedGen and FedFTG. Our method can improve the effectiveness of FL with a certain training cost,
and can be applied in both regularization and distillation. The complete result is given in Table 4.
It shows that integrated with our low precision training technique, these existing methods with the
precision of 8 bits can match (or even better than) the performance with full precision.

α = 0.01 α = 0.04 α = 0.16

Method Averaging Prec. FMNIST CIFAR10 CINIC10 CIFAR100 FMNIST CIFAR10 CINIC10 CIFAR100 FMNIST CIFAR10 CINIC10 CIFAR100

ABAvg w avg 8 bit 80.7± 0.4 51.1± 1.4 41.4± 0.8 22.4± 0.9 88.4± 1.2 55.8± 0.5 50.9± 2.7 34.3± 0.2 90.2± 0.6 72.3± 1.0 58.2± 1.4 42.5± 0.3
w/o avg 32 bit 78.4± 2.8 44.5± 4.2 26.4± 3.8 16.0± 0.4 83.5± 2.3 56.1± 3.1 42.1± 3.8 27.3± 0.6 90.3± 1.0 71.3± 1.3 58.1± 1.6 39.9± 0.7

FedProx w avg 8 bit 83.0± 0.6 51.4± 0.5 42.2± 1.4 18.2± 0.1 86.5± 1.2 63.2± 0.3 48.4± 2.4 35.5± 0.5 88.8± 0.7 71.9± 1.0 57.6± 0.6 43.7± 0.1
w/o avg 32 bit 81.1± 3.8 45.1± 3.4 32.2± 3.6 16.8± 0.7 86.3± 1.5 57.0± 2.1 46.0± 2.0 29.3± 1.3 89.1± 0.4 72.5± 0.5 58.0± 0.7 43.2± 0.7

FedGen w avg 8 bit 79.9± 2.2 45.5± 1.9 34.7± 2.1 20.1± 1.1 86.2± 0.7 60.5± 1.4 47.4± 1.3 32.9± 0.7 91.1± 0.3 74.0± 0.9 58.4± 1.0 43.2± 0.2
w/o avg 32 bit 80.2± 2.6 43.1± 4.3 30.0± 4.8 15.6± 1.3 83.7± 0.8 54.1± 2.3 45.3± 2.3 29.8± 0.3 90.3± 0.3 72.4± 1.0 57.3± 0.3 40.7± 0.6

FedFTG w avg 8 bit 82.0± 1.1 52.8± 0.7 39.6± 0.9 22.9± 0.8 87.7± 0.2 59.1± 0.2 51.2± 0.3 35.8± 0.2 90.9± 0.3 73.7± 0.9 58.7± 1.7 42.9± 0.3
w/o avg 32 bit 80.6± 2.2 46.1± 7.3 32.4± 1.0 15.9± 1.9 84.6± 1.7 58.9± 4.1 47.3± 1.9 28.3± 0.4 90.7± 0.4 73.8± 1.0 57.9± 0.3 41.6± 0.6

6.4 Ablation Study

Moving Average. We conduct ablation study to validate the effectiveness of the moving average for
the server, from Table 1, the average operation has a significant effect on the server performance over
various settings. It is consistent of our expectation that averaging can alleviate the error introduced by
quantization and the error by heterogeneity.

Architecture Generalization. We use another network structure, MLP, to verify that our method can
be applied to other networks. The MLP was set to 3 layers, with the hidden dimension of each layer
being 128, and experiments were conducted on FashionMNIST with α of 0.01 and 0.04. From Table
3, our method can still maintain the accuracy, which also demonstrates its generalization ability on
other network structures.

Table 3: To display our method can generalize to other architectures, the same experiments were
also performed on the MLP, using the FashionMNIST, setting α = 0.01 and α = 0.04. Through
comparison, it is found that the accuracy under MLP is slightly lower than that of ConvNet. However,
our method can still maintain or improve the accuracy on MLP.

8 bit w avg 6 bit w avg 32 bit w avg 32 bit w/o avg

Method MLP ConvNet MLP ConvNet MLP ConvNet MLP ConvNet

α = 0.01

FedAvg 73.4± 1.2 80.1± 0.7 72.5± 0.2 78.0± 1.4 74.1± 1.0 80.7± 0.6 62.1± 4.1 79.5± 2.7
ABAvg 75.1± 0.4 80.7± 0.4 69.7± 1.9 78.0± 0.7 75.8± 0.7 79.5± 1.1 58.6± 6.9 78.4± 2.8
FedProx 74.6± 0.5 83.0± 0.6 73.6± 0.4 78.1± 0.4 74.7± 0.4 82.9± 0.9 70.9± 4.3 81.1± 3.8
FedGen 73.3± 1.1 79.9± 2.2 70.9± 0.4 78.5± 1.3 73.4± 1.5 78.9± 1.5 72.2± 3.8 80.2± 2.6
FedFTG 78.1± 0.8 82.0± 1.1 74.8± 1.2 80.0± 0.4 77.1± 1.9 82.0± 0.7 63.1± 1.3 80.6± 2.2

α = 0.04

FedAvg 79.5± 0.1 83.8± 0.2 78.4± 0.3 81.8± 0.1 79.1± 0.2 83.6± 0.0 78.8± 1.7 83.1± 2.1
ABAvg 79.2± 0.2 88.4± 1.2 78.6± 0.1 86.1± 0.5 79.1± 0.2 88.4± 0.8 77.2± 3.7 83.5± 2.3
FedProx 81.7± 0.4 86.5± 1.2 79.9± 0.3 79.9± 0.2 81.9± 0.5 86.9± 0.6 80.8± 2.4 86.3± 1.5
FedGen 79.0± 0.5 86.2± 0.7 76.7± 0.7 81.9± 1.3 79.5± 1.0 83.6± 1.2 80.0± 0.6 83.7± 0.8
FedFTG 83.5± 0.5 87.7± 0.2 79.2± 0.6 81.9± 0.3 84.0± 0.6 87.6± 0.6 75.5± 4.9 84.6± 1.7

6.5 Versus Efficient FL Method

In order to demonstrate that our method can effectively reduce computational costs and memory
consumption, we compared it with two personalized model compression FL algorithms. HeteroFL
[9] and Split-Mix [14] can both achieve the purpose of reducing training overhead by using smaller
models for local training. We use the ConvNet with the same hidden dimension to conduct experi-
ments, using CIFAR10 in the process, α = 0.01. SplitMix uses a split ratio of 1/8 by default. We
re-tested at a split ratio of 1/16 to achieve the same compression ratio as HeteroFL. In Figure 3a, the
vertical dotted line indicates the compression ratio of HeteroFL, more details are in the Appendix E.
Compared with methods that directly compress model parameters, our method can achieve higher
accuracy with lower memory consumption. Because quantization does not bring about the deletion
of model parameters, there will be no aggregation problems when the model compression rate is too
high.
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(a) Training cost Versus Acc.

Method Type Acc Communication cost Train cost

HeteroFL
(1) 41.1± 2.4 39.1 205.4
(1/2) 36.4± 0.5 19.6 83.7

(1/4, 1/8) 29.2± 2.1 7.3 31.1

SplitMix
(1) 41.0± 2.3 39.1 178.4
(1/2) 40.4± 3.6 19.6 89.2

(1/4, 1/8) 38.9± 3.5 7.3 33.4

FedAVG
8 bit 53.3± 2.8 9.8 51.3
6 bit 49.4± 1.0 7.3 38.5
5 bit 44.7± 1.0 6.1 32.1

(b) Results on CIFAR10 with α = 0.01.

Figure 3: Results on CIFAR10 with α = 0.01. ( ) denotes the percentage of models on the clients.
We use the number of weights, activation, and gradients of local training to approximate the training
cost (MB / client) and communication cost (MB / round).

7 Conclusion

In this paper, we propose an efficient FL paradigm, where the local models in the clients are trained
with low-precision operations and communicated with the server in low precision format, while only
the model aggregation in the server is performed with high-precision computation. We theoretically
show that our proposed paradigm can converge to the optimal solution as the training goes on, which
demonstrates that low precision local training is enough for FL. Our paradigm can be integrated with
existing FL algorithms flexibly. Experiments across extensive benchmarks are conducted to showcase
the effectiveness of our proposed method. As a by-product, we show that low precision local training
can relieve the over-fitting issue in local training.
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This appendix can be divided into several parts. To be precise:

• Section A gives the detailed proof for Theorem 1.

• Section B gives the detailed proof for Theorem 2. Compared to Theorem 1, Theorem 2
assumes that only a subset of client devices participate in the training, which is more in line
with real-world scenarios.

• Section C introduce four FL methods’(ABAvg, FedProx, FedGen, FedFTG) hyperparameters
setting in our experiments.

• Section D provides detailed experiment results of four FL methods(ABAvg, FedProx,
FedGen, FedFTG).

• Section E presents the comparsion between our low precision FL method and two efficient
FL method in training overhead.

• Section F gives Limitation of this paper.

• Section G gives Broader Impacts of this paper.

A Proofs of Theorem 1

We analyze our low-precision federated learning algorithm in the setting of full device participation
in this section. For the sake of convenience in proving, let’s take the value of pk to be 1

N , disregard
the moving average, assume that quantization is only applied to model parameters and quantization
gap is always δ. Let IE be a set composed of the sequence number of global aggregation steps, i.e.,
IE = {nE|n = 1, 2, · · · }. Suppose the model weights are updated as follows:

vk
t+1 = Q(wk

t − ηt∇Fk(w
k
t ; ξ

k
t )).

wk
t+1 =

{
vk
t+1 if t+ 1 /∈ IE ,

Q(
∑N

k=1 vk
t+1

N ) if t+ 1 ∈ IE .

where wk
t is an d-dimensional vector, which represents the weight of the k-th client device in step

t. Fk represents the objective function of the k-th device. N is the total number of clients device
participating in the training, and T is the total number of steps trained, ξkt represents a batch of data
randomly sampled from the k-th client device’s local dataset Dk in step t, ∇Fk(w

k
t ; ξ

k
t ) is stochastic

gradient, ηt represents learning rate, Q represents the quantization function, and its formula has
already been given in (4).

Notations. To further simplify our proof process, we introduce the following additional definitions:

w̄0 = w0, w̄t =
1

N

N∑
k=1

wk
t , v̄t =

1

N

N∑
k=1

vk
t , ḡt =

1

N

N∑
k=1

∇Fk(w
k
t ),gt =

1

N

N∑
k=1

∇Fk(w
k
t , ξ

k
t ).

wt represents the weight of the global model in step t. Obviously, we can deduce Egt = ḡt and
v̄t+1 = w̄t − ηtgt.
Lemma 1. If w is a scalar and can be written as w = w̃ + bδ, satisfying −δ < w̃ < δ, δ is the
quantization gap, represents the distance between successive representable fixed-point numbers, then
we have:

Q(w)− w =

{
−w̃, w.p. 1− sign(w̃) w̃δ ,

sign(w̃)δ − w̃, w.p. sign(w̃) w̃δ .

where Q(·) is quantization function. And we always can find a suitable w̃ that satisfies |w̃| ≤ |w| .

Proof. The quantization function is:

Q(w) =

{
clip(δ⌊wδ ⌋, l, u), w.p. ⌈wδ ⌉ −

w
δ ,

clip(δ⌈wδ ⌉, l, u), w.p. 1− ⌈wδ ⌉+
w
δ .
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When w̃ > 0:

Q(w)− w =

{
−w̃, w.p. 1− w̃

δ ,

δw̃, w.p. w̃
δ .

When w̃ < 0:

Q(w)− w =

{
−δ − w̃, w.p. − w̃

δ ,

−w̃, w.p. 1− w̃
δ .

So we have:

Q(w)− w =

{
−w̃, w.p. 1− sign(w̃) w̃δ ,

sign(w̃)δ − w̃, w.p. sign(w̃) w̃δ .

Next we prove that we always can find a suitable w̃ that satisfies |w̃| ≤ |w|. When w ≥ δ,we can
choose a w̃ satisfying w̃ ≥ 0, then we can have |w̃| ≤ |w|. When w ≤ −δ, we can choose a w̃
satisfying w̃ ≤ 0, then we also can have |w̃| ≤ |w|. When−δ < w < δ, we can choose a w̃ satisfying
w̃ = w, then we also can have |w̃| ≤ |w|. In summary, we always can find a suitable w̃ that satisfies
|w̃| ≤ |w|.

Discussion. In the lemma 2 below, we analyze the convergence of the algorithm under the condition
that δ2 ≤ η2tG

2, where G2 is given in assumption 2 and represents the constraint on the expected
value of the squared two-norm of the stochastic gradient. The right side of the inequality indicates
the change in the iterative parameters during the gradient descent process, that is, the size of the
gradient multiplied by the size of the learning rate. If the magnitude of this value is already less
than the quantization precision, it will cause the gradient descent to fail, and the model parameters
will not continue to change. In this case, it makes no sense to continue optimization, so analyzing
convergence under this condition is practical.

Lemma 2. We assume that ηt ≤ 1
4L , based on assumption 1 and 2, when t satisfying δ2 ≤ η2tG

2 we
have:

E ∥w̄t+1 −w∗∥22 ≤ 2(
√
dδ + 1 +

d

2
)η2tG

2 + (1− ηtµ)E ∥w̄t −w∗∥22 + 6Lη2tΓ

+
2

N

N∑
K=1

∥∥w̄t −wk
t

∥∥2
2
+ Eη2t ∥gt − ḡt∥22 .

Proof. When t+ 1 /∈ IE , we can easily derive that w̄t+1 = v̄t+1. So we have:

∥w̄t+1 −w∗∥22
= ∥v̄t+1 −w∗∥22

=

∥∥∥∥∥ 1

N

N∑
k=1

Q(wk
t − ηt∇Fk(w

k
t , ξ

k
t ))−w∗

∥∥∥∥∥
2

2

=

∥∥∥∥∥w̄t − ηtgt −w∗ +
1

N

N∑
k=1

Q(wk
t − ηt∇Fk(w

k
t , ξ

k
t ))−

1

N

N∑
k=1

(wk
t − ηt∇Fk(w

k
t , ξ

k
t ))

∥∥∥∥∥
2

2

= ∥w̄t − ηtgt −w∗∥22︸ ︷︷ ︸
A1

+

∥∥∥∥∥ 1

N

N∑
k=1

(Q(wk
t − ηt∇Fk(w

k
t , ξ

k
t ))− (wk

t − ηt∇Fk(w
k
t , ξ

k
t )))

∥∥∥∥∥
2

2︸ ︷︷ ︸
A2

+ 2⟨w̄t − ηtgt −w∗,
1

N

N∑
k=1

(Q(wk
t − ηt∇Fk(w

k
t , ξ

k
t ))− (wk

t − ηt∇Fk(w
k
t , ξ

k
t )))⟩︸ ︷︷ ︸

A3

.
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⟨·⟩represents inner product operation. Due to EQ(x) = x, according to the Law of iterated expecta-
tions, EA3 = 0. Next we aim to bound A2. EA2 is:

E

∥∥∥∥∥ 1

N

N∑
k=1

(Q(wk
t − ηt∇Fk(w

k
t , ξ

k
t ))− (wk

t − ηt∇Fk(w
k
t , ξ

k
t )))

∥∥∥∥∥
2

2

=
1

N2

N∑
k=1

E(
∥∥Q(wk

t − ηt∇Fk(w
k
t , ξ

k
t ))− (wk

t − ηt∇Fk(w
k
t , ξ

k
t ))

∥∥2
2

+
1

N2

∑
k1 ̸=k2

E⟨Q(wk1
t − ηt∇Fk1

(wk1
t , ξk1

t ))− (wk1
t − ηt∇Fk1

(wk1
t , ξk1

t )),

Q(wk2
t − ηt∇Fk2

(wk2
t , ξk2

t ))− (wk2
t − ηt∇Fk2

(wk2
t , ξk2

t ))⟩

=
1

N2

N∑
k=1

E
∥∥Q(wk

t − ηt∇Fk(w
k
t , ξ

k
t ))− (wk

t − ηt∇Fk(w
k
t , ξ

k
t ))

∥∥2
2
.

In the above equation, we used the law of iterated expectations.

The quantization function is:

Q(w) =

{
clip(δ⌊wδ ⌋, l, u), w.p. ⌈wδ ⌉ −

w
δ ,

clip(δ⌈wδ ⌉, l, u), w.p. 1− ⌈wδ ⌉+
w
δ .

wk
t is a quantified vector, therefore, its p-th component (wk

t )p = c δ, c is an integer. We rewrite[
ηt∇Fk(w

k
t , ξ

k
t )
]
p
= bδ + w̃. Where b is an integer and |w̃| ≤ |w|. So that we can have:

[Q(wk
t − ηt∇Fk(w

k
t , ξ

k
t ))− (wk

t − ηt∇Fk(w
k
t , ξ

k
t ))]p

=

{
−sign(w̃)δ + w̃ w.p. sign(w̃)w̃

δ ,

w̃ w.p. 1− sign(w̃)w̃
δ .

The expectation after the square is:

E[Q(wk
t − ηt∇Fk(w

k
t , ξ

k
t ))− (wk

t − ηt∇Fk(w
k
t , ξ

k
t ))]

2
p

= w̃2

[
1− sign(w̃)w̃

δ

]
+ [−sign(w̃)δ + w̃]

2 sign(w̃)w̃

δ

≤ 2w̃2 + 2δ |w̃|

≤ 2
[
ηt∇Fk(w

k
t , ξ

k
t )
]2
p
+ 2δ

∣∣∣[ηt∇Fk(w
k
t , ξ

k
t )
]
p

∣∣∣ .
The expectation of

∥∥Q(wk
t − ηt∇Fk(w

k
t , ξ

k
t ))− (wk

t − ηt∇Fk(w
k
t , ξ

k
t ))

∥∥2
2

is:

E
∥∥Q(wk

t − ηt∇Fk(w
k
t , ξ

k
t ))− (wk

t − ηt∇Fk(w
k
t , ξ

k
t ))

∥∥2
2

= E(E
∥∥Q(wk

t − ηt∇Fk(w
k
t , ξ

k
t ))− (wk

t − ηt∇Fk(w
k
t , ξ

k
t ))

∥∥2
2
)

≤ 2ηtδE
∥∥∇Fk(w

k
t , ξ

k
t ))

∥∥
1
+ 2ηt

2E
∥∥∇Fk(w

k
t , ξ

k
t ))

∥∥2
2

= 2δE
∥∥ηt∇Fk(w

k
t , ξ

k
t ))

∥∥
1
+ 2ηt

2E
∥∥∇Fk(w

k
t , ξ

k
t ))

∥∥2
2

≤ 2
√
dδηt

2E
∥∥∇Fk(w

k
t , ξ

k
t ))

∥∥2
2
+ 2ηt

2E
∥∥∇Fk(w

k
t , ξ

k
t ))

∥∥2
2

= 2(
√
dδ + 1)ηt

2E
∥∥∇Fk(w

k
t , ξ

k
t ))

∥∥2
2
.

In the above inequality, we use the inequality ∥·∥1 ≤
√
d ∥·∥22, d is the dimension of the vector.

According to assumption 2 we can get:

E∥w̄t+1 −w∗∥22 ≤ 2(
√
dδ + 1)ηt

2G2 + E∥w̄t − ηtgt −w∗∥22.
We next aim to bound A1:

∥w̄t − ηtgt −w∗∥22
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= ∥w̄t − ηtgt −w∗ − ηtḡt + ηtḡt∥22
= ∥w̄t − ηtḡt −w∗∥22︸ ︷︷ ︸

B1

+ ηt
2∥gt − ḡt∥22︸ ︷︷ ︸

B2

+2 ηt⟨w̄t − ηtḡt −w∗,gt − ḡt⟩︸ ︷︷ ︸
B3

.

Obviously EB3 = 0 , so we can get:

E∥w̄t − ηtgt −w∗∥22 = E∥w̄t − ηtḡt −w∗∥22 + Eηt2∥gt − ḡt∥22.
We next aim to bound B1:

∥w̄t − ηtḡt −w∗∥22
= ∥w̄t −w∗∥22 + ηt

2∥ḡt∥22 − 2ηt⟨w̄t −w∗, ḡt⟩

= ∥w̄t −w∗∥22 + ηt
2∥ḡt∥22︸ ︷︷ ︸
C1

−2ηt
1

N

N∑
k=1

⟨w̄t −wt
k,∇Fk(w

k
t )⟩︸ ︷︷ ︸

C2

−2ηt
1

N

N∑
k=1

⟨wt
k −w∗,∇Fk(w

k
t )⟩︸ ︷︷ ︸

C3

.

To bound C1, C2, C3, we need to derive several inequalities using the properties of F1, F2, · · · , FN .
First of all, for k = 1, 2, · · · , N , Fk is a L-smooth function, we can get:

Fk
∗ ≤ Fk(x) ≤ Fk(w

k
t ) +

〈
∇Fk(w

k
t ), x−wk

t

〉
+

L

2

∥∥x−wk
t

∥∥2
2
.

Specifically, when x = wk
t − a∇Fk(w

k
t ), we can get:

Fk
∗ ≤ Fk(w

k
t ) + (

L

2
a2 − a)

∥∥∇Fk(w
k
t )−∇F ∗

k

∥∥2
2
.

when a = 1
L , we can get: ∥∥∇Fk(w

k
t )−∇Fk

∗∥∥2
2
≤ 2L(Fk(w

k
t )− Fk

∗). (16)

According to the above equation, we can get:

ηt
2∥ḡt∥22 = ηt

2

∥∥∥∥∥
N∑

k=1

pk∇Fk(w
k
t )

∥∥∥∥∥
2

2

≤ ηt
2

N∑
k=1

pk
∥∥∇Fk(w

k
t )
∥∥2
2
≤ 2Lηt

2
N∑

k=1

pk(Fk(w
k
t )− Fk

∗).

(17)

In the inequality above, we have utilized inequality (16) and the property that ∥·∥22 is a convex
function.

For k = 1, 2, · · · , N, Fk is a µ-strong function, so we can get:

−⟨wk
t −w∗,∇Fk(w

k
t )⟩ ≤ −(Fk(w

k
t )− Fk(w

∗))− µ

2

∥∥wk
t −w∗∥∥2

2
. (18)

By the inequality:
2 ⟨a, b⟩ ≤ γ∥a∥22 + γ−1∥b∥22, (γ > 0). (19)

we can get:

−2
〈
w̄t −wk

t ,∇Fk(w
k
t )
〉
≤ 1

ηt

∥∥w̄t −wk
t

∥∥2
2
+ ηt

∥∥∇Fk(w
k
t )
∥∥2
2

(20)

≤ 1

ηt

∥∥w̄t −wk
t

∥∥2
2
+ 2L(Fk(w

k
t )− F ∗

k ). (21)

In the inequality above, we have utilized inequality (16) again. Now, we can use inequality (16), (17),
(18), (20) to bound C1, C2, C3 to bound B1:

∥w̄t − ηtḡt −w∗∥22

17



= ∥w̄t −w∗∥22 + ηt
2∥ḡt∥22 − 2ηt ⟨w̄t −w∗, ḡt⟩

= ∥w̄t −w∗∥22 + ηt
2∥ḡt∥22 − 2ηt

1

N

N∑
k=1

〈
w̄t −wt

k +wt
k −w∗,∇Fk(w

k
t )
〉

≤ ∥w̄t −w∗∥22 + 2Lηt
2

N∑
k=1

pk(Fk(w
k
t )− Fk

∗)

− 2ηt
1

N

N∑
k=1

〈
w̄t −wt

k,∇Fk(w
k
t )
〉
+ 2ηt

N∑
k=1

− 1

N

〈
wt

k −w∗,∇Fk(w
k
t )
〉

= ∥w̄t −w∗∥22 + 4Lηt
2

N∑
k=1

pk(Fk(w
k
t )− Fk

∗) +
1

N

N∑
k=1

∥∥w̄t −wk
t

∥∥2
2

− 2ηt
1

N

N∑
k=1

(Fk(w
k
t )− Fk(w

∗))− ηtµ
1

N

N∑
k=1

∥∥wk
t −w∗∥∥2

2

≤ ∥w̄t −w∗∥22 + 4Lηt
2

N∑
k=1

pk(Fk(w
k
t )− Fk

∗) +
1

N

N∑
k=1

∥∥w̄t −wk
t

∥∥2
2

− 2ηt
1

N

N∑
k=1

(Fk(w
k
t )− Fk(w

∗))− ηtµ

∥∥∥∥∥ 1

N

N∑
k=1

(wk
t −w∗)

∥∥∥∥∥
2

2

= (1− ηtµ)∥w̄t −w∗∥22 +
1

N

N∑
k=1

∥∥w̄t −wk
t

∥∥2
2

+ 4Lηt
2

N∑
k=1

pk(Fk(w
k
t )− Fk

∗)− 2ηt
1

N

N∑
k=1

(Fk(w
k
t )− Fk(w

∗))︸ ︷︷ ︸
D

.

We set γt = 2ηt(1− 2Lηt), because ηt ≤ 1
4L , so ηt ≤ γt ≤ 2ηt. Decompose D we can get:

D = 4Lηt
2

N∑
k=1

pk(Fk(w
k
t )− Fk

∗)− 2ηt
1

N

N∑
k=1

(Fk(w
k
t )− Fk(w

∗))

= (4Lηt
2 − 2ηt)

N∑
k=1

pkFk(w
k
t ) + 4Lηt

2
N∑

k=1

pkFk
∗ + 2ηt

1

N

N∑
k=1

Fk(w
∗)

= −γt
N∑

k=1

pkFk(w
k
t ) + 4Lηt

2
N∑

k=1

pkFk
∗ + 2ηtF

∗

= −γt
N∑

k=1

pk(Fk(w
k
t )− F ∗) + (2ηt − γt)

N∑
k=1

pk(F
∗ − Fk

∗)

= −γt
N∑

k=1

pk(Fk(w
k
t )− F ∗) + 4Lηt

2Γ.

It should be noted that Γ =
N∑

k=1

pk(F
∗ − Fk

∗) = F ∗ −
N∑

k=1

1
N Fk

∗, and it measures the degree of

data heterogeneity between different client devices.We can bound the first term in D:
N∑

k=1

pk(Fk(w
k
t )− F ∗)

=

N∑
k=1

pk(Fk(w
k
t )− Fk(w̄t)) +

N∑
k=1

pk(Fk(w̄t)− F ∗)

18



≥
N∑

k=1

pk
〈
∇Fk(w̄t),w

k
t − w̄t

〉
+ F (w̄t)− F ∗

≥ −1

2

N∑
k=1

pk[ηt∥∇Fk(w̄t)∥22 +
1

ηt

∥∥wk
t − w̄t

∥∥2
2
] + F (w̄t)− F ∗

≥ −
N∑

k=1

pk[ηtL(Fk(w̄t)− Fk
∗) +

1

2ηt

∥∥wk
t − w̄t

∥∥2
2
] + F (w̄t)− F ∗.

In the above inequation, we use the inequations (16),(19) and the convexity of Fk(·).
So we can bound D and get:

D = −γt
N∑

k=1

pk(Fk(w
k
t )− F ∗) + 4Lηt

2Γ

≤ γt

N∑
k=1

pk[ηtL(Fk(w̄t)− Fk
∗) +

1

2ηt

∥∥wk
t − w̄t

∥∥2
2
]− γt(F (w̄t)− F ∗) + 4Lηt

2Γ

= γtηtL

N∑
k=1

pk(Fk(w̄t)− Fk
∗) +

γt
2ηt

N∑
k=1

pk
∥∥wk

t − w̄t

∥∥2
2
− γt(F (w̄t)− F ∗) + 4Lηt

2Γ

= γtηtL

N∑
k=1

pk(Fk(w̄t)− F ∗ + F ∗ − Fk
∗) +

γt
2ηt

N∑
k=1

pk
∥∥wk

t − w̄t

∥∥2
2

− γt(

N∑
k=1

pkFk(w̄t)− F ∗) + 4Lηt
2Γ

= γt(ηtL− 1)

N∑
k=1

pk(Fk(w̄t)− F ∗) + (γtηtL+ 4Lηt
2)Γ +

γt
2ηt

N∑
k=1

pk
∥∥wk

t − w̄t

∥∥2
2

≤ 6Lηt
2Γ +

N∑
k=1

pk
∥∥wk

t − w̄t

∥∥2
2
.

When t+ 1 /∈ IE , we can conclude that:
E ∥w̄t+1 −w∗∥22 ≤ 2(

√
dδ + 1)η2tG

2 + (1− ηtµ)E ∥w̄t −w∗∥22

+
2

N

N∑
K=1

∥∥w̄t −wk
t

∥∥2
2
+ 6Lη2tΓ + Eη2t ∥gt − ḡt∥22 .

When t+ 1 ∈ IE , we have wk
t+1 = Q(

N∑
k=1

vk
t+1

N ) :

E ∥w̄t+1 −w∗∥22

= E

∥∥∥∥∥Q(
1

N

N∑
k=1

vk
t+1)−w∗

∥∥∥∥∥
2

2

= E

∥∥∥∥∥Q(
1

N

N∑
k=1

vk
t+1)−

1

N

N∑
k=1

vk
t+1 +

1

N

N∑
k=1

vk
t+1 −w∗

∥∥∥∥∥
2

2

= E

∥∥∥∥∥Q(
1

N

N∑
k=1

vk
t+1)−

1

N

N∑
k=1

vk
t+1 +

1

N

N∑
k=1

Q(wk
t − ηt∇Fk(w

k
t , ξ

k
t ))−w∗

∥∥∥∥∥
2

2

≤ E

∥∥∥∥∥Q(
1

N

N∑
k=1

vk
t+1)−

1

N

N∑
k=1

vk
t+1

∥∥∥∥∥
2

2︸ ︷︷ ︸
E1

+E

∥∥∥∥∥ 1

N

N∑
k=1

Q(wk
t − ηt∇Fk(w

k
t , ξ

k
t ))−w∗

∥∥∥∥∥
2

2︸ ︷︷ ︸
E2
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+ 2E⟨Q(
1

N

N∑
k=1

vk
t+1)−

1

N

N∑
k=1

vk
t+1,

1

N

N∑
k=1

Q(wk
t − ηt∇Fk(w

k
t , ξ

k
t ))−w∗⟩︸ ︷︷ ︸

E3

E2 has been given constraints in the text above that:

E2 ≤ 2(
√
dδ + 1)η2tG

2 + (1− ηtµ)E ∥w̄t −w∗∥22

+
2

N

N∑
K=1

∥∥w̄t −wk
t

∥∥2
2
+ 6Lη2tΓ + Eη2t ∥gt − ḡt∥22 .

According to the law of iterated expectations, E3 is 0. We next constrain E1. According to our
assumption before Lemma 2, we have:

E1 = EE1 ≤ Edδ2 ≤ Edη2t
∥∥∇Fk(w

k
t , ξ

k
t )
∥∥2
2
= dη2tG

2.

So when t+ 1 ∈ IE we have:

E ∥w̄t+1 −w∗∥22 ≤ 2(
√
dδ + 1 +

d

2
)η2tG

2 + (1− ηtµ)E ∥w̄t −w∗∥22 + 6Lη2tΓ

+
2

N

N∑
K=1

∥∥w̄t −wk
t

∥∥2
2
+ Eη2t ∥gt − ḡt∥22 .

In summary, whether t+ 1 ∈ IE or t+ 1 /∈ IE , we have:

E ∥w̄t+1 −w∗∥22 ≤ 2(
√
dδ + 1 +

d

2
)η2tG

2 + (1− ηtµ)E ∥w̄t −w∗∥22 + 6Lη2tΓ

+
2

N

N∑
K=1

∥∥w̄t −wk
t

∥∥2
2
+ Eη2t ∥gt − ḡt∥22

Lemma 3. Based on assumption 2, we can get:

E∥gt − ḡt∥22 ≤
1

N2

N∑
k=1

σk
2.

Proof.

E∥gt − ḡt∥22 = E

∥∥∥∥∥ 1

N

N∑
k=1

(∇Fk(w
k
t , ξ

k
t )−∇Fk(w

k
t ))

∥∥∥∥∥
2

2

=

N∑
k=1

1

N2
E
∥∥∇Fk(w

k
t , ξ

k
t )−∇Fk(w

k
t )
∥∥2
2

≤ 1

N2

N∑
k=1

σk
2.

Lemma 4. If ηt is non-increasing and ηt ≤ 2ηt+E , (t ≥ 0),based on assumption 2, we can get:

1

N

N∑
k=1

E
∥∥w̄t −wk

t

∥∥2
2
≤ 8E2η2tG

2(2
√
dδ + 3).
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Proof. Since FedAvg requires a communication each E steps. Therefore, for any t ≥ 0, there exists
a t0 ≤ t, such that t − t0 ≤ E − 1 and w̄t0 = wk

t0 for all k. Also, we use the fact that ηt is
non-increasing and ηt ≤ 2ηt+E , (t ≥ 0), then:

1

N

N∑
k=1

E
∥∥w̄t −wk

t

∥∥2
2

=
1

N
E

N∑
k=1

∥∥wk
t − w̄t0 − (w̄t − w̄t0)

∥∥2
2

≤ 1

N

N∑
k=1

E
∥∥wk

t − w̄t0

∥∥2
2

=
1

N

N∑
k=1

E
∥∥wk

t −wt0

∥∥2
2

=
1

N

N∑
k=1

E
∥∥wk

t −wk
t−1 +wk

t−1 −wk
t−2 + . . .+wk

t0+1 −wk
t0

∥∥2
2

≤ 1

N

N∑
k=1

E

t−1∑
h=t0

E
∥∥wk

h+1 −wk
h

∥∥2
2

=
1

N

N∑
k=1

E

t−1∑
h=t0

E
∥∥Q(wk

h − ηh∇Fh(w
k
h, ξ

k
h))− (wk

h − ηh∇Fh(w
k
h, ξ

k
h))− ηh∇Fh(w

k
h, ξ

k
h)
∥∥2
2

≤ 1

N

N∑
k=1

2E2(E
∥∥Q(wk

h − ηh∇Fh(w
k
h, ξ

k
h))− (wk

h − ηh∇Fh(w
k
h, ξ

k
h))

∥∥2
2

+ E
∥∥ηh∇Fh(w

k
h, ξ

k
h)
∥∥2
2
).

Inequalities
∥∥∥∥ E∑
i=1

ai

∥∥∥∥2
2

≤ E
E∑
i=1

∥ai∥22 and E ∥X − EX∥22 ≤ E ∥X∥22 are used in the above proof.

We have already proofed in lemma 2 that:

E
∥∥Q(wk

h − ηh∇Fh(w
k
h, ξ

k
h))− (wk

h − ηh∇Fh(w
k
h, ξ

k
h))

∥∥2
2
≤ 2(
√
dδ + 1)η2hG

2.

So we can have:

1

N

N∑
k=1

E
∥∥w̄t −wk

t

∥∥2
2
≤ 8E2ηt

2G2(2
√
dδ + 3).

Theorem 1. Under the condition that assumptions 1, 2, we choose κ = L
µ , γ = max{8κ,E} − 1

and ηt =
µ

2(t+γ) . When t satisfying δ2 ≤ η2tG
2 our low precision federated learning algorihm with

full device participation satisfies:

EF (w̄t)− F ∗ ≤ L

2

v

t+ γ
≤ κ

t+ γ
(
2B

µ
+

µ(γ + 1)

2
∥w1 −w∗∥2).

where

B = 2(
√
dδ + 1 +

d

2
)G2 + 16E2G2(2

√
dδ + 3) +

1

N2

N∑
k=1

σk
2 + 6LΓ.

Proof. Set ∆t = E∥w̄t −w∗∥22, according to lemma 1, 2, 3, we can have:

∆t+1 ≤ (1− µηt)∆t + ηt
2B.
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Set ηt = β
t+γ , we can choose appropriate β and γ so that ηt ≤ min{ 1µ ,

1
4L} and ηt ≤ 2ηt+E . Set

v = max{ β2B
βµ−1 , (γ + 1)∆1}, we will prove ∆t ≤ v

t+γ by mathematical induction.

When t = 1, obviously it holds. Assume the conclusion holds for some t, it follows that:

∆t+1 ≤ (1− µηt)∆t + ηt
2B

≤ (1− βµ

t+ γ
)

v

t+ γ
+

β2B

(t+ γ)
2

=
t+ γ − 1

(t+ γ)
2 v + [

β2B

(t+ γ)
2 −

βµ− 1

(t+ γ)
2 v]

≤ v

t+ γ + 1
.

Then by the L-smoothness of F (·),we have:

EF (w̄t)− F ∗ ≤ L

2
∆t ≤

L

2

v

t+ γ
.

We choose β = 2
µ , γ = max{8κ,E} − 1 and denote κ = L

µ , then we have:

v = max{ β2B

βµ− 1
, (γ + 1)∆1} ≤

β2B

βµ− 1
+ (γ + 1)∆1 ≤

4B

µ2
+ (γ + 1)∆1.

and

EF (w̄t)− F ∗ ≤ L

2

v

t+ γ
≤ κ

t+ γ
(
2B

µ
+

µ(γ + 1)

2
∆1).

B Proofs of Theorem 2

We analyze our low precision federated learning algorithm in the setting of partial device participation
in this section.

Updating scheme In real world application scenarios, constrained by communication efficiency and
low straggler effect, FedAvg initiates by selecting a random subset St which length is set to K, and
subsequently carries out updates exclusively on this subset.The analysis becomes somewhat complex
due to the variability of St every E steps. Nevertheless, we can employ a thought trick to address
this challenge. We envision that FedAvg initiates each epoch by engaging all devices and then relies
solely on the parameters updated on a subset of these devices to generate the parameters for the
subsequent round. It is evident that this method of parameter update is equivalent to the original
approach. Then the update of FedAvg with partial devices active can be described as: for all k ∈ [N ],

vk
t+1 = Q(wk

t − ηt∇Fk(w
k
t , ξ

k
t )).

wk
t+1 =

{
vk
t+1 if t+ 1 /∈ St,

Q(
∑

k∈St

1
Kvk

t+1) if t+ 1 ∈ St.

We use ESt
(·) to eliminate the error caused by St. Unless otherwise specified, the meanings and

assumptions of the symbols used in this section are the same as in the previous section.
Lemma 5. If t+ 1 ∈ IE , we have:

ESt
(w̄t+1) = v̄t+1.

Proof. According to the selection method of St, there is a function:

Ii =
{

1, P(i ∈ St) = K
N

0, P(i /∈ St) = N−K
N .
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According to the aggregation process, we have:

w̄t+1 = Q(
1

K

N∑
i=1

Iivi
t+1).

So we have:

ESt
(w̄t+1) = ESt

(
1

K

N∑
i=1

Iivi
t+1)

=
1

K

N∑
i=1

Piv
i
t+1 =

1

K

N∑
i=1

K

N
vi
t+1 =

N∑
i=1

1

N
vi
t+1 = v̄t+1.

Lemma 6. For t+ 1 ∈ IE we have:

ESt
∥v̄t+1 − w̄t+1∥22 ≤

N −K

N − 1

8

K
E2ηt

2G2(2
√
dδ + 3) + dG2η2t .

Proof. According to the aggregation process,we have w̄t+1 = Q( 1
K

∑
i∈St

vi
t+1).

ESt ∥w̄t+1 − v̄t+1∥22

= ESt

∥∥∥∥∥Q(
1

K

∑
i∈St

vi
t+1)−

1

K

∑
i∈St

vi
t+1 +

1

K

∑
i∈St

vi
t+1 − v̄t+1

∥∥∥∥∥
2

2

= ESt

∥∥∥∥∥Q(
1

K

∑
i∈St

vi
t+1)−

1

K

∑
i∈St

vi
t+1

∥∥∥∥∥
2

2︸ ︷︷ ︸
F1

+
1

K2
ESt

∥∥∥∥∥
N∑
i=1

I(i ∈ St)(vi
t+1 − v̄t+1)

∥∥∥∥∥
2

2︸ ︷︷ ︸
F2

+ 2⟨Q(
1

K

∑
i∈St

vi
t+1)−

1

K

∑
i∈St

vi
t+1,

1

K

∑
i∈St

vi
t+1 − v̄t+1⟩︸ ︷︷ ︸

F3

In the lemma 2, we have proven F1 ≤ dG2η2t . And obviously we have F3 = 0, we next aim to bound
F2.

1

K2
ESt

∥∥∥∥∥
N∑
i=1

I(i ∈ St)(vi
t+1 − v̄t+1)

∥∥∥∥∥
2

2

=
1

K2

N∑
i=1

P (i ∈ St)
∥∥vi

t+1 − v̄t+1

∥∥2
2

+
1

K2

∑
i ̸=j

P (i, j ∈ St)
〈
vi
t+1 − v̄t+1,v

j
t+1 − v̄t+1

〉

=
1

KN

N∑
i=1

∥∥vi
t+1 − v̄t+1

∥∥2
2
+

∑
i ̸=j

K − 1

KN(N − 1)
⟨vi

t+1 − v̄t+1,v
j
t+1 − v̄t+1⟩

=
1

K(N − 1)

(
1− K

N

) N∑
i=1

∥∥vi
t+1 − v̄t+1

∥∥2
2
.

The last step in the above equation uses:
N∑
i=1

∥∥vi
t+1 − v̄t+1

∥∥2
2
+

∑
i̸=j

⟨vi
t+1 − v̄t+1,v

j
t+1 − v̄t+1⟩ = 0.
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Therefore:

E ∥w̄t+1 − v̄t+1∥22 =
N

K(N − 1)

(
1− K

N

)
E

[
1

N

N∑
i=1

∥∥vi
t+1 − w̄t0 + w̄t0 − v̄t+1

∥∥2
2

]
+ F1

≤ N

K(N − 1)

(
1− K

N

)
E

[
1

N

N∑
i=1

∥∥vi
t+1 − w̄t0

∥∥2
2

]
+ F1

≤ N

K(N − 1)

(
1− K

N

)
8E2ηt

2G2(2
√
dδ + 3) + dG2η2t .

We used E ∥X− EX∥22 ≤ E ∥X∥22 in the inequality above.

Theorem 2. Under the condition that assumptions 1, 2, 3, we choose κ = L
µ , γ = max{8κ,E} −

1, ηt =
µ

2(t+γ) and B = 2(
√
dδ + 1 + d

2 )G
2 + 16E2G2(2

√
dδ + 3) + 1

N2

∑K
k=1 σ

2
k + 6LΓ, C =

N−K
N−1

8
KE2G2(2

√
dδ + 3) + dG2. When t satisfying δ2 ≤ η2tG

2, FedAvg with quantization and
partial device participation satisfies:

E[F (w̄t)]− F ∗ ≤ κ

γ + t

(
2(B + C)

µ
+

µ(γ + 1)

2
∥w1 −w∗∥2

)
.

Proof. We have:

E ∥w̄t+1 −w∗∥22 = E ∥w̄t+1 − v̄t+1 + v̄t+1 −w∗∥22
= E ∥w̄t+1 − v̄t+1∥22︸ ︷︷ ︸

G1

+E ∥v̄t+1 −w∗∥22︸ ︷︷ ︸
G2

+2E⟨w̄t+1 − v̄t+1, v̄t+1 −w∗⟩︸ ︷︷ ︸
G3

.

We take the expectation for the above formula, G3 vanishes according to lemma 5.

If t+ 1 /∈ IE , according to our parameter update settings, G1 vanishes. We use lemma 1, 2, 3, 4 to
bound G2:

E ∥v̄t+1 −w∗∥22 = E ∥w̄t+1 −w∗∥22 ≤ (1− ηtµ)E ∥w̄t −w⋆∥22 + η2tB.

If t+ 1 ∈ IE , We use lemma 6 to bound G1, lemma 1, 2, 3, 4 to bound G2, then we have :

E ∥w̄t+1 −w∗∥22 = E ∥w̄t+1 − v̄t+1∥22 + E ∥v̄t+1 −w∗∥22
≤ (1− ηtµ)E ∥w̄t −w⋆∥22 + η2t (B + C).

We use exactly the same method as in Theorem 1 and then we have:

E[F (w̄t)]− F ∗ ≤ κ

γ + t

(
2(B + C)

µ
+

µ(γ + 1)

2
∥w1 − w∗∥2

)
.

C Hyperparameters Setting

We will introduce the four FL methods, ABAvg, FedProx, FedGen, FedFTG, and their hyperparame-
ters setting in our experiments to prove our method’s effectiveness.

• ABAvg [35] is a data-dependent distillation FL method, which uses a validation dataset
Dv to reweight each collected devices. In our experiment, we set the test dataset as the
validation dataset. For FashionMNIST, CIFAR10, CIFAR100, we use the whole test dataset,
and for CINIC10, we choose the 20% data of each label.

• FedProx [22] is an FL method with regularization when training locally. We set the FedProx
proximal term µ = 0.1 in our experiment.
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• FedGen [42] is a data-free distillation FL method, which maintain a generator in the server to
generate hidden variables, and transfer the generator to the device side for data enhancement.
We set the generator learning rate to 3e−4, hidden dimension to 32. The generator’s training
epoch is 5.

• FedFTG [40] is a data-free distillation FL method, which maintain a generator on the server
for fine-tuning aggregated server parameters. We set the generator learning rate to 1e− 2,
the fine-tuning learning rate to 1e− 4. The totally fine-tune epoch is set to 10, inner epoch
for generator is 1, inner epoch for server parameter is 5.

All of our models are trained on s GeForce RTX 4090. We found only very small differences when
evaluating on these other hardware platforms.

D Low Precision Training with Other FL Methods

We put the four algorithms used here together with Efficient FL. Judging from the Table 4, low-
precision local training is sufficient in FL system. We put more emphasis on showing the case
of α = 0.01, because this case is more consistent with the actual situation of FL, that is, the data
heterogeneity of edge devices. Combining four FL methods and four datasets, in the case of α = 0.01,
Figure 4, we can find the fact that our algorithm can maintain or even surpass the accuracy of the
original algorithm on 8 bit, and at the same time, it can do the same on 6 bit to maintain accuracy.

Table 4: Low precision FL on ABAvg, FedProx, FedGen, FedFTG. Our method is universal, whether
it is regularized locally to constrain updates or finetuned on the server. Our method can maintain
the effectiveness of various FL methods with a certain training cost, and can be applied in both
regularization and distillation.

α = 0.01 α = 0.04 α = 0.16

Method Avaging Prec. FMNIST CIFAR10 CINIC10 CIFAR100 FMNIST CIFAR10 CINIC10 CIFAR100 FMNIST CIFAR10 CINIC10 CIFAR100

ABAvg

w avg
8 bit 80.7± 0.4 51.1± 1.4 41.4± 0.8 22.4± 0.9 88.4± 1.2 55.8± 0.5 50.9± 2.7 34.3± 0.2 90.2± 0.6 72.3± 1.0 58.2± 1.4 42.5± 0.3
6 bit 78.0± 0.7 46.8± 0.6 39.1± 1.3 14.4± 0.2 86.1± 0.5 53.6± 0.6 42.6± 0.5 22.0± 0.7 89.9± 0.4 70.2± 1.3 47.3± 0.3 33.2± 0.1
32 bit 79.5± 1.1 50.2± 1.0 40.4± 2.0 20.3± 0.7 88.4± 0.8 56.5± 0.9 49.9± 2.1 31.4± 0.3 90.8± 0.5 72.7± 1.1 58.4± 0.9 41.7± 0.4

w/o avg
8 bit 68.1± 5.5 30.5± 1.2 22.6± 2.6 7.45± 0.6 79.4± 1.6 40.2± 4.1 35.8± 1.3 14.0± 2.9 89.1± 0.8 63.8± 1.7 48.2± 2.2 25.2± 0.3
6 bit 60.5± 2.8 25.5± 1.0 18.4± 0.8 3.42± 0.6 71.2± 0.5 33.2± 2.1 27.3± 1.1 7.01± 0.1 83.3± 0.6 41.8± 2.5 40.1± 1.3 9.85± 0.2
32 bit 78.4± 2.8 44.5± 4.2 26.4± 3.8 16.0± 0.4 83.5± 2.3 56.1± 3.1 42.1± 3.8 27.3± 0.6 90.3± 1.0 71.3± 1.3 58.1± 1.6 39.9± 0.7

FedProx

w avg
8 bit 83.0± 0.6 51.4± 0.5 42.2± 1.4 18.2± 0.1 86.5± 1.2 63.2± 0.3 48.4± 2.4 35.5± 0.5 88.8± 0.7 71.9± 1.0 57.6± 0.6 43.7± 0.1
6 bit 78.1± 0.4 48.3± 1.0 37.9± 0.2 17.4± 0.4 79.9± 0.2 52.0± 0.4 38.1± 0.1 21.3± 0.2 82.8± 0.2 56.2± 0.2 44.6± 0.2 25.3± 0.1
32 bit 82.9± 0.9 52.6± 0.5 42.4± 1.0 18.8± 0.1 86.9± 0.6 64.9± 0.9 49.2± 1.9 36.2± 0.6 89.3± 0.6 71.3± 0.5 57.2± 1.3 43.9± 0.1

w/o avg
8 bit 72.6± 1.0 27.0± 3.9 25.7± 2.2 6.01± 0.3 81.5± 1.9 33.6± 3.9 33.0± 1.5 14.2± 0.5 86.4± 0.6 59.8± 2.3 50.0± 2.3 27.8± 0.3
6 bit 60.8± 2.7 18.2± 1.4 15.9± 1.2 2.71± 0.1 71.8± 1.7 27.4± 1.5 22.4± 0.9 6.62± 0.2 81.3± 0.5 40.3± 6.6 38.3± 0.7 10.9± 0.3
32 bit 81.1± 3.8 45.1± 3.4 32.2± 3.6 16.8± 0.7 86.3± 1.5 57.0± 2.1 46.0± 2.0 29.3± 1.3 89.1± 0.4 72.5± 0.5 58.0± 0.7 43.2± 0.7

FedGen

w avg
8 bit 79.9± 2.2 45.5± 1.9 34.7± 2.1 20.1± 1.1 86.2± 0.7 60.5± 1.4 47.4± 1.3 32.9± 0.7 91.1± 0.3 74.0± 0.9 58.4± 1.0 43.2± 0.2
6 bit 78.5± 1.3 44.8± 2.0 30.1± 0.4 15.4± 0.2 81.9± 1.3 41.4± 0.3 34.0± 0.2 9.20± 0.1 85.8± 0.7 62.6± 0.7 55.3± 0.7 14.0± 0.1
32 bit 78.9± 1.5 47.6± 2.2 35.3± 2.6 16.1± 0.8 83.6± 1.2 56.9± 2.9 48.2± 1.3 32.7± 1.0 91.0± 0.6 74.2± 0.6 58.8± 0.5 42.6± 0.4

w/o avg
8 bit 71.1± 3.2 31.0± 2.4 25.2± 1.5 2.37± 0.2 80.7± 1.5 49.3± 3.0 33.0± 2.7 4.24± 0.1 86.7± 0.6 63.4± 1.5 52.3± 1.3 19.6± 0.7
6 bit 56.5± 0.4 15.3± 0.5 15.2± 0.2 1.30± 0.1 64.0± 3.8 26.6± 1.1 18.7± 0.5 1.71± 0.3 84.2± 1.0 51.4± 2.2 40.0± 3.0 4.89± 0.2
32 bit 80.2± 2.6 43.1± 4.3 30.0± 4.8 15.6± 1.3 83.7± 0.8 54.1± 2.3 45.3± 2.3 29.8± 0.3 90.3± 0.3 72.4± 1.0 57.3± 0.3 40.7± 0.6

FedFTG

w avg
8 bit 82.0± 1.1 52.8± 0.7 39.6± 0.9 22.9± 0.8 87.7± 0.2 59.1± 0.2 51.2± 0.3 35.8± 0.2 90.9± 0.3 73.7± 0.9 58.7± 1.7 42.9± 0.3
6 bit 80.0± 0.4 50.6± 0.5 39.6± 0.4 14.3± 0.2 81.9± 0.3 55.7± 0.4 45.0± 0.3 17.5± 0.2 85.2± 0.1 60.5± 0.1 48.6± 0.1 25.8± 0.1
32 bit 82.0± 0.7 52.3± 0.7 43.0± 0.5 21.0± 1.4 87.6± 0.6 57.7± 0.4 51.3± 0.1 31.9± 0.3 91.0± 0.2 73.0± 1.1 59.3± 0.9 42.1± 0.3

w/o avg
8 bit 74.4± 1.4 26.7± 1.4 22.2± 1.9 6.5± 0.6 79.6± 1.1 37.8± 1.3 37.1± 3.0 11.2± 0.5 89.1± 0.8 63.0± 1.1 48.5± 1.5 24.7± 0.4
6 bit 65.2± 2.9 24.9± 1.4 17.0± 1.5 2.3± 0.7 73.5± 2.1 31.0± 2.1 25.8± 2.3 6.2± 0.2 83.1± 0.9 48.2± 0.9 39.1± 2.5 10.2± 0.4
32 bit 80.6± 2.2 46.1± 7.3 32.4± 1.0 15.9± 1.9 84.6± 1.7 58.9± 4.1 47.3± 1.9 28.3± 0.4 90.7± 0.4 73.8± 1.0 57.9± 0.3 41.6± 0.6

We also place the algorithms used here, and these pseudocodes are added to our methods. When
we conduct experiments, we also follow the algorithm flow from Algorithm 3 to Algorithm 6. We
found that although different FL methods will behave differently when the client updates or the server
updates, our method can be easily applied to them.

E Efficient FL Detail

We list the detailed results of the Efficient FL used in experiments. We use the same network structure
ConvNet and the CIFAR10 split in α = 0.01 to conduct experiments. In HeteroFL, a, b, c, d, and
e respectively represent 100%, 50%, 25%, 12.5%, and 6.25% channel proportions. In Table 5, for
example, a1-b1-c1 means that during local training, a, b, c, the three models account for 1:1:1. In
SplitMix, a, b, c, d, e, have the same representation. 1/8 and 1/16 of SplitMix represent the minimum
model channel ratio after segmentation. We conducted experiments on 1/8 and 1/16 respectively.

We calculated the average memory consumption of a single device during each communication round,
for each compression method, and also for our method. For memory consumption statistics, we
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record model size, gradient storage, and intermediate activation storage. Table 5 to Table 8 contains
all our experimental results comparing memory savings.

(a) FMNIST (b) CIFAR10 (c) CINIC10 (d) CIFAR100

Figure 4: Visualization of the accuracy of ABAvg, FedProx, FedGen, FedFTG FL methods when
α = 0.01 on 4 datasets. The picture from top to bottom is ABAvg, FedProx, FedGen, FedFTG.

Table 5: HeteroFL. a1, b1, c1, d1, e1 represent the percentage of the number of model channels to the
original number: 1, 0.5, 0.25, 0.125, 0.625. For example, a1-b1-c1 means that the a, b, and c models
exist in a 1:1:1 ratio.

Model Sparsity Accuracy (%) Memory (MB)

a1 0.00 37.63± 1.37 205.4
a1-b1 0.25 26.53± 2.34 144.5

a1-b1-c1 0.41 28.78± 1.44 109.6
a1-b1-c1-d1 0.53 34.45± 0.98 87.8

a1-b1-c1-d1-e1 0.61 25.92± 1.79 73.1
b1 0.50 36.36± 0.47 83.7

b1-c1 0.62 37.84± 1.85 61.8
b1-c1-d1 0.70 21.78± 1.53 48.6

b1-c1-d1-e1 0.76 26.35± 1.60 40.1
c1 0.75 33.05± 1.24 39.9

c1-d1 0.81 29.19± 2.12 31.1
c1-d1-e1 0.85 31.55± 1.56 25.5

d1 0.87 19.61± 1.35 22.3
d1-e1 0.90 27.95± 0.77 18.4

e1 0.93 26.20± 0.22 14.5
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Table 6: SplitMix 1/8. Set the smallest model to 1/8 of the original model, which is the d model. By
setting the client’s resource limit, for example, a1-b1-c1, the client’s resource limit is 1, 1/2, 1/4, then
8, 4, and 2 d models can be trained in parallel respectively.

Model Sparsity Accuracy (%) Memory (MB)

a1 0.00 41.04± 2.31 178.4
a1-b1 0.25 35.24± 5.35 133.8

a1-b1-c1 0.41 32.84± 2.50 104.1
a1-b1-c1-d1 0.53 31.19± 3.17 83.6

b1 0.50 40.36± 3.56 89.2
b1-c1 0.62 38.31± 2.76 66.9

b1-c1-d1 0.70 30.25± 4.48 52.0
c1 0.75 39.18± 4.98 44.6

c1-d1 0.81 38.89± 3.50 33.4
d1 0.87 41.80± 2.40 22.3

Table 7: SplitMix 1/16. Set the smallest model to 1/16 of the original model, which is the e model.
By setting the client’s resource limit, for example, a1-b1-c1, the client’s resource limit is 1, 1/2, 1/4,
then 16, 8, and 4 e models can be trained in parallel respectively.

Model Sparsity Accuracy (%) Memory (MB)

a1 0.00 30.72± 3.61 232.0
a1-b1 0.25 29.62± 2.01 174.0

a1-b1-c1 0.41 27.75± 2.92 135.3
a1-b1-c1-d1 0.53 32.08± 4.14 108.8

a1-b1-c1-d1-e1 0.61 27.09± 5.31 89.9
b1 0.50 33.73± 3.52 116.0

b1-c1 0.62 32.77± 4.44 87.0
b1-c1-d1 0.70 25.60± 2.81 67.7

b1-c1-d1-e1 0.76 26.93± 2.70 54.4
c1 0.75 35.12± 2.00 58.0

c1-d1 0.81 32.53± 2.29 43.5
c1-d1-e1 0.85 27.33± 2.53 33.8

d1 0.87 37.33± 2.27 29.0
d1-e1 0.90 34.04± 2.68 21.8

e1 0.93 31.72± 2.15 14.5

Table 8: Low precision FL. We tested the accuracy at different precisions and calculated the memory
usage during local training.

Precision Accuracy (%) Memory (MB)

8 bit 53.32± 2.78 51.3
6 bit 49.37± 0.95 38.5
5 bit 44.67± 1.04 32.1

F Limitations

In fact, what we performed in the experiment was fake quantization, that is, simulated quantization,
which means we only focused on the impact of quantization on accuracy. The actual quantization
operation requires the cooperation of hardware, and the hardware GPU we used was GeForce RTX
4090, which could not directly perform low precision training, and could not reflect the acceleration
effect of our method.
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G Broader Impacts

FL, while having a positive impact in areas such as data privacy protection and cross-domain
collaboration, also faces some potential negative impacts and challenges.

First, in FL, attackers might attempt to implant backdoors during the model training process. By
introducing specific triggers into the training data, attackers can activate the backdoor after the model
is deployed, causing the model to output results that the attacker desires. This type of attack poses a
serious threat to the model’s security and needs to be guarded against with strict security measures
and auditing processes.

Second, attackers could disrupt the performance of the model by injecting incorrect information into
the training data. This data poisoning can occur at the client side or during the model aggregation
process. Data poisoning attacks may lead to the model behaving abnormally under certain conditions,
affecting the model’s reliability and accuracy.

Last, although FL is designed to protect user privacy by training models locally and sharing only
model updates rather than raw data, this method is not foolproof. Attackers might infer sensitive
information about the training data by analyzing the model’s update information, such as gradients
or weight changes. This kind of privacy leakage can be mitigated with techniques like differential
privacy, which may impact the model’s performance.

Algorithm 3 Low Precision FL with ABAvg

Input: Quantization functions QA, QE , QG, QM , QW ; Momentum coefficient ρ; L layers DNN
{f1, f2, . . . , fL}; Loss function ℓ; Validation dataset Dv .

1: Initialize: w0, w̄0 ← w0

2: for t = 0, 1, . . . , T − 1 do
3: if t ≡ 0 (mod E) then
4: Select K clients from [N ] to be St
5: wk

t ← Q(w̄t), k ∈ St
6: end if
7: for k ∈ St do
8: wk

t+1 ← ClientUpdate(t, k,wk
t )

9: end for
10: if t+ 1 ∈ IE then
11: Get ak from testing accuracy of each client k ∈ St′ on Dv

12: pk = ak∑
i∈S

t′
ai

13: wt+1 ←
∑

k∈St′
pkw

k
t+1

14: w̄t+1 ← λw̄t′ + (1− λ)wt+1

15: end if
16: end for
17: Return: w̄T

18:
19: ClientUpdate(t, k, wk

t ):
20: Get batch (xk,jt , yk,jt ) from Dk

21: Forward Propagation:
22: (akt )

(0) = xk,jt

23: (akt )
(l) = QA(fl((a

k
t )

(l−1), (wk
t )

(l))),∀l ∈ [1, L]
24: Backward Propagation:
25: (ekt )

(L) = ∇(ak
t )

(L)ℓ((akt )
(L), yk,jt)

26: (ekt )
(l−1) = QE(

∂fl((a
k
t )

(l−1),(wk
t )

(l))

∂(ak
t )

(l−1) (ekt )
(l)),∀l ∈ [1, L]

27: (gkt )
(l) = QG(

∂fl((a
k
t )

(l−1),(wk
t )

(l))

∂(wk
t )

(l) (ekt )
(l)),∀l ∈ [1, L]

28: Low Precision SGD Update:
29: (vkt+1)

(l) ← QM (ρ(vkt )
(l) + (gkt )

(l)),∀l ∈ [1, L]

30: (wk
t+1)

(l) ← QW ((wk
t )

(l) − ηt · (vkt+1)
(l)),∀l ∈ [1, L]

31: Return: wk
t+1
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Algorithm 4 Low Precision FL with FedProx

Input: Quantization functions QA, QE , QG, QM , QW ; Momentum coefficient ρ; L layers DNN
{f1, f2, . . . , fL}; Loss function ℓ; FedProx proximal term µ.

1: Initialize: w0, w̄0 ← w0

2: for t = 0, 1, . . . , T − 1 do
3: if t ≡ 0 (mod E) then
4: Select K clients from [N ] to be St
5: wk

t ← Q(w̄t), k ∈ St
6: end if
7: for k ∈ St do
8: wk

t+1 ← ClientUpdate(t, k,wk
⌊ t
E ⌋E ,w

k
t )

9: end for
10: if t+ 1 ∈ IE then
11: wt+1 ←

∑
k∈St′

pk

qt′
wk

t+1

12: w̄t+1 ← λw̄t′ + (1− λ)wt+1

13: end if
14: end for
15: Return: w̄T

16:
17: ClientUpdate(t, k, wk

⌊ t
E ⌋E , w

k
t ):

18: FedProx loss functionH = ℓ+ µ
2 ||w

k
⌊ t
E ⌋E − wk

t ||2

19: Get batch (xk,jt , yk,jt ) from Dk

20: Forward Propagation:
21: (akt )

(0) = xk,jt

22: (akt )
(l) = QA(fl((a

k
t )

(l−1), (wk
t )

(l))),∀l ∈ [1, L]
23: Backward Propagation:
24: (ekt )

(L) = ∇(ak
t )

(L)ℓ((akt )
(L), yk,jt)

25: (ekt )
(l−1) = QE(

∂fl((a
k
t )

(l−1),(wk
t )

(l))

∂(ak
t )

(l−1) (ekt )
(l)),∀l ∈ [1, L]

26: (gkt )
(l) = QG(

∂fl((a
k
t )

(l−1),(wk
t )

(l))

∂(wk
t )

(l) (ekt )
(l) + µ((wk

t )
(l) − (wk

⌊ t
E ⌋E)

(l))),∀l ∈ [1, L]

27: Low Precision SGD Update:
28: (vkt+1)

(l) ← QM (ρ(vkt )
(l) + (gkt )

(l)),∀l ∈ [1, L]

29: (wk
t+1)

(l) ← QW ((wk
t )

(l) − ηt · (vkt+1)
(l)),∀l ∈ [1, L]

30: Return: wk
t+1
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Algorithm 5 Low Precision FL with FedGen

Input: Quantization functions QA, QE , QG, QM , QW ; Momentum coefficient ρ; L layers DNN
{f1, f2, . . . , fL}; Loss function ℓ; Generator parameter θ; p̂(y) uniformly initialized; local label
counter ck.

1: Initialize: w0, w̄0 ← w0

2: for t = 0, 1, . . . , T − 1 do
3: if t ≡ 0 (mod E) then
4: Select K clients from [N ] to be St
5: Update ck, k ∈ St
6: wk

t ← Q(w̄t), k ∈ St
7: end if
8: for k ∈ St do
9: wk

t+1 ← ClientUpdate(t, k,wk
t , p̂(y), θ)

10: end for
11: if t+ 1 ∈ IE then
12: wt+1 ←

∑
k∈St′

pk

qt′
wk

t+1

13: w̄t+1 ← λw̄t′ + (1− λ)wt+1

14: Server updates p̂(y) based on {ck}k∈St′

15: Generator updates θ = argmin
θ

Ey∼p̂(y)Ez∼Gθ(z|y)[ℓ(
1
K

∑
k∈St′

fL(z, (wt+1)
(L)), y)]

16: end if
17: end for
18: Return: w̄T

19:
20: ClientUpdate(t, k, wk

t , p̂(y), θ):
21: Get batch (xk,jt , yk,jt ) from Dk, ŷ

k
t ∼ p̂(y), ẑkt ∼ Gθ(·|ŷkt )

22: Forward Propagation:
23: (akt )

(0) = xk,jt

24: (akt )
(l) = QA(fl((a

k
t )

(l−1), (wk
t )

(l))),∀l ∈ [1, L]
25: Backward Propagation:
26: (ekt )

(L) = ∇(ak
t )

(L)ℓ((akt )
(L), yk,jt)

27: (ekt )
(l−1) = QE(

∂fl((a
k
t )

(l−1),(wk
t )

(l))

∂(ak
t )

(l−1) (ekt )
(l)),∀l ∈ [1, L]

28: (gkt )
(l) = QG(

∂fl((a
k
t )

(l−1),(wk
t )

(l))

∂(wk
t )

(l) (ekt )
(l) +

∂ℓ(fL(ẑk
t ,(w

k
t )

(L)),ŷk
t )

∂(wk
t )

(L) ),∀l ∈ [1, L]

29: Low Precision SGD Update:
30: (vkt+1)

(l) ← QM (ρ(vkt )
(l) + (gkt )

(l)),∀l ∈ [1, L]

31: (wk
t+1)

(l) ← QW ((wk
t )

(l) − ηt · (vkt+1)
(l)),∀l ∈ [1, L]

32: Return: wk
t+1
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Algorithm 6 Low Precision FL with FedFTG

Input: Quantization functions QA, QE , QG, QM , QW ; Momentum coefficient ρ; L layers DNN
{f1, f2, . . . , fL}; Loss function ℓ; Generator parameter θ; Server training iteration I; Inner
training iteration of the generator and the server Ig, Id; ℓmd, ℓcls, ℓdis is the loss used in ([40]).

1: Initialize: w0, w̄0 ← w0

2: for t = 0, 1, . . . , T − 1 do
3: if t ≡ 0 (mod E) then
4: Select K clients from [N ] to be St
5: wk

t ← Q(w̄t), k ∈ St
6: end if
7: for k ∈ St do
8: wk

t+1 ← ClientUpdate(t, k,wk
t )

9: end for
10: if t+ 1 ∈ IE then
11: wt+1 ← ServerUpdate(θ, {wk

t+1}k∈St′ )
12: w̄t+1 ← λw̄t′ + (1− λ)wt+1

13: end if
14: end for
15: Return: w̄T

16:
17: ClientUpdate(t, k, wk

t ):
18: Get batch (xk,jt , yk,jt ) from Dk

19: Forward Propagation:
20: (akt )

(0) = xk,jt

21: (akt )
(l) = QA(fl((a

k
t )

(l−1), (wk
t )

(l))),∀l ∈ [1, L]
22: Backward Propagation:
23: (ekt )

(L) = ∇(ak
t )

(L)ℓ((akt )
(L), yk,jt)

24: (ekt )
(l−1) = QE(

∂fl((a
k
t )

(l−1),(wk
t )

(l))

∂(ak
t )

(l−1) (ekt )
(l)),∀l ∈ [1, L]

25: (gkt )
(l) = QG(

∂fl((a
k
t )

(l−1),(wk
t )

(l))

∂(wk
t )

(l) (ekt )
(l)),∀l ∈ [1, L]

26: Low Precision SGD Update:
27: (vkt+1)

(l) ← QM (ρ(vkt )
(l) + (gkt )

(l)),∀l ∈ [1, L]

28: (wk
t+1)

(l) ← QW ((wk
t )

(l) − ηt · (vkt+1)
(l)),∀l ∈ [1, L]

29: Return wk
t+1

30:
31: ServerUpdate(θ, {wk

t+1}k∈St′ ):
32: wt+1 =

∑
k∈St′

pk

qt′
wk

t+1

33: Compute pt′(y) ∝
∑

k∈St′

∑|Dk|
j=1 E(xk,j ,yk,j)∼Dk

[
1yk,j=y

]
=

∑
k∈St′

ny
k

34: for i = 1, 2, . . . , I do
35: Get batch (Z, Y ) from z ∼ N (0, 1) and y ∼ pt′(y)
36: for j = 1, 2, . . . , Ig do
37: Update θ according to min

wt+1

max
θ

Ez∼N (0,1),y∼pt′ (y)
[ℓmd − λclsℓcls − λdisℓdis]

38: end for
39: for j = 1, 2, . . . , Id do
40: Update wt+1 according to min

wt+1

max θEz∼N (0,1),y∼pt′ (y)
[ℓmd − λclsℓcls − λdisℓdis]

41: end for
42: end for
43: Return wt+1
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The algorithms mentioned in the introduction and abstract can be found in
Section 4 of the article. Theoretical result can be founded in section 5. The convergence
proof of our algorithm is located in appendix A and B.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations can be found in appendix F.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: Theoretical result and its assumptions can be founded in section 5. The proof
of theoretical result located in appendix A and B.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have showed the detail hyperparameters configurations in Section 6 and
Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have added the code to the supplementary materials.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: In the configuration of Section 6, we introduced the hyperparameters and
model settings, most of which are adopted from previous work.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: In Section 6, we specified that the average of the last five rounds was used as
the accuracy, and the standard deviation was calculated. When calculating the training loss
of the clients, we also introduced the use of 9 clients for separate experiments to calculate
the mean and standard deviation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The hardware we use is mentioned in Appendix C.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We have reviewed the Code of Ethics carefully and we preserve anonymity.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Broader Impacts can be founded in appendix G.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
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• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our study does not carry these risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We used public data and models properly under the license and terms, which
were also properly cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
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• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: We didn’t release some new assets in this work.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our experiments didn’t include the crowdsourcing and research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our experiments didn’t include the crowdsourcing and research with human
subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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