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Abstract

We present the first release of SmartWilds, a multimodal wildlife monitoring1

dataset. SmartWilds is a synchronized collection of drone imagery, camera trap2

photographs and videos, and bioacoustic recordings collected during summer3

2025 at The Wilds safari park in Ohio. This dataset supports multimodal AI4

research for comprehensive environmental monitoring, addressing critical needs5

in endangered species research, conservation ecology, and habitat management.6

Our pilot deployment captured four days of synchronized monitoring across three7

modalities in a 220-acre pasture containing Pere David’s deer, Sichuan takin,8

Przewalski’s horses, as well as species native to Ohio, including bald eagles, white-9

tailed deer, and coyotes. We provide a comparative analysis of sensor modality10

performance, demonstrating complementary strengths for landuse patterns, species11

detection, behavioral analysis, and habitat monitoring. This work establishes12

reproducible protocols for multimodal wildlife monitoring while contributing open13

datasets to advance conservation computer vision research. Future releases will14

include synchronized GPS tracking data from tagged individuals, citizen science15

data, and expanded temporal coverage across multiple seasons.16

1 Introduction17

Conservation biology requires comprehensive ecosystem monitoring to inform evidence-based18

management decisions, yet traditional approaches provide fragmented views of wildlife activity19

and habitat use. The integration of multiple sensing modalities, powered by edge AI and computer20

vision approaches offers transformative opportunities for automated environmental monitoring at21

unprecedented scales (Besson et al., 2022; Tuia et al., 2022; Pringle et al., 2025; Kline et al., 2025).22

Our research advances multimodal AI for wildlife monitoring by creating datasets and models that23

enable object detection and tracking across environmental conditions, support fine-grained species24

classification from multi-sensor data, and facilitate behavioral analysis from long video sequences.25

We present a multimodal dataset from sensor deployments at The Wilds Conservation Center (The26

Wilds, 2025). Our dataset was curated to evaluate multi-sensor fusion techniques and benchmark27

machine learning approaches for conservation applications across visual, acoustic, and environmental28

data streams. This dataset poses challenges to existing computer vision methods through its combina-29

tion of rare species detection, variable conditions, and the need for behavioral state recognition over30

extended time periods. This work supports research areas including endangered species monitoring,31

conservation and restoration ecology, and habitat assessment for both exotic endangered species and32

native biodiversity conservation. Our contributions include: (1) a synchronized multimodal ecological33

dataset with comprehensive metadata, (2) reproducible protocols for environmental monitoring sensor34

networks, and (3) support for sensor fusion to advance multimodal learning research in environmental35

contexts.36

The rest of the paper is organized as follows: Section 2 reviews related works on multi-modal sensor37

fusion for ecological research; Section 3 describes the study site and sensor network design; Section38
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Figure 1: Representative images and data study design. GPS and time-stamp metadata allow for
cross-referencing between modalities. (a) Diagram of dataset modalities, citizen science images, GPS
tags, acoutic data, camera trap and drone images, joined via location and time-stamp metadata. (b)
Example of multi-modal data cross-referencing using metadata. Camera trap view (TW02) of Pere
David’s deer synchronized with drone image of Pere David’s deer wading in lake.

4 details the dataset, including camera trap, bioacoustic, drone, and metadata. Section 5 includes field39

observation, discusses the strengths and weaknesses of the sensing modalities and how the pilot study40

informed additional data collection; Section 6 includes details about future data releases and work in41

progress.42

2 Related Work43

Recent advances have introduced multimodal wildlife monitoring datasets addressing diverse con-44

servation challenges (Smith and Pinter-Wollman, 2021; Buxton et al., 2018; Besson et al., 2022).45

MammAlps (Gabeff et al., 2025) combines multi-view video with synchronized audio data to analyze46

wild mammal behaviors in alpine environments, demonstrating the power of multimodal approaches47

for detailed behavioral analysis. BuckTales (Naik et al., 2024) provides multi-UAV tracking data for48

wild antelope identification and re-identification, advancing techniques for individual animal moni-49

toring. The PanAf-FGBG dataset (Brookes et al., 2025) explores how environmental backgrounds50

impact wildlife behavior recognition, while YOLO-Behaviour (Chan et al., 2025) demonstrates51

automated behavior quantification frameworks. KABR (Kholiavchenko et al., 2024) focuses on52

Kenyan wildlife behavior recognition from drone footage, contributing to conservation AI in African53

ecosystems. However, most existing datasets focus on specific taxonomic groups or behavioral54

tasks rather than comprehensive ecosystem monitoring. Our work contributes synchronized multi-55

sensor data collection protocols designed specifically for conservation digital twin development, with56

planned integration of GPS tracking data for individual-level behavioral analysis.57

3 Field Deployment and Data Collection58

3.1 Study Site59

The Wilds is a 10,000-acre conservation center in southeastern Ohio, home to endangered species60

conservation programs and native wildlife restoration efforts (The Wilds, 2025). Our pilot deploy-61

ment focused on a single 220-acre enclosure containing a breeding population of GPS-tagged Pere62

David’s deer (Elaphurus davidianus), chosen specifically to enable future integration with individual63

tracking data. Sensor sites were selected chronologically based on observed wildlife activity patterns64

and strategic coverage of diverse habitat types within the study pasture, illustrated in Fig. 2 and65

described in Table 3. Camera trap sites prioritized high deer activity areas, particularly around water66

sources, while bioacoustic monitors targeted diverse acoustic environments from open grasslands to67

woodland edges. Where possible, existing structures were utilized for sensor mounting to minimize68

environmental impact and maximize equipment protection.69
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Figure 2: Map of sensor placements created with Google Earth. Camera trap locations in orange,
bioacoustics sensors in blue, drone flight paths in red. See Table 3 for site details.

3.2 Sensor Network Design70

The multimodal sensor network consisted of three complementary sensing technologies deployed71

for four days of continuous monitoring (June 30 - July 3 2025). Four camera traps, including72

GardePro T5NG and comparable trail camera models, were strategically positioned around lakes73

and wildlife congregation areas using motion-triggered photo/video hybrid mode to capture animal74

activity at key locations. See Table 3 for details on site selection. Four bioacoustic monitors (Song75

Meter Mini devices) recorded high-quality 48kHz, 16-bit mono audios. Multiple drone missions76

using Parrot ANAFI quadcopters provided flexible aerial coverage through systematic surveys and77

opportunistic behavioral tracking, with dedicated synchronization flights conducted within view78

of camera traps to enable precise cross-modal timestamp calibration. This integrated sensor array79

enabled comprehensive multimodal data collection across fixed monitoring locations and dynamic80

aerial observations.81

4 Dataset82

The multi-modal dataset is summarized in Table 4. The initial dataset release totals 101GB and83

over 20K files. The dataset is organized by sensor type and deployment location, with standardized84

metadata for each component.85

4.1 Camera trap data86

Camera trap data consists of motion-triggered images and videos organized by deployment site87

(TW01-TW04), providing comprehensive visual documentation specifically structured for object88

detection, tracking, and fine-grained classification of wildlife species. The systematic capture of ani-89

mal behaviors and interactions across multiple camera locations enables localization and recognition90

tasks in naturalistic settings with varying environmental conditions and species compositions.91
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Table 1: The Wilds Multimodal Initial Release Dataset Summary. Initial release includes photos,
videos, and acoustic data. Future releases will include GPS tag data, citizen science images, and
weather and satellite data.

Modality Data Type Total Files GB

Camera Traps Visual monitoring (photos and videos) 20,014 49
Bioacoustic Audio recordings 311 6
Drone Aerial video 20 video files + metadata 46

Total All modalities ∼20K 101

4.2 Bioacoustic data92

Bioacoustic recordings from continuous and scheduled monitoring (TW05-TW08) were collected to93

enable multi-sensor fusion research that combines acoustic representations with visual data streams.94

Half of the monitors were configured to record 5 minutes every hour to capture ungulate vocalizations95

throughout the day, and half were configured to record bird song at dusk and dawn to capture local96

diversity.97

4.3 Drone data98

Drone mission data includes video footage with flight telemetry and detailed mission objectives,99

designed to support 3D modeling, temporal and behavioral reasoning from video sequences. The100

extended drone video captures are particularly valuable for recognition of complex behavioral states101

in long video sequences, including territorial displays, social interactions, and habitat use patterns102

that unfold over extended observation periods.103

4.4 Metadata104

All deployments include comprehensive metadata with GPS coordinates, habitat descriptions, tech-105

nical sensor specifications, deployment timestamps, environmental conditions, and detailed field106

observations from researchers. This structured field note documentation, combined with visual107

and acoustic data streams, creates a rich foundation for multi-sensor fusion studies that integrate108

images, sounds, and contextual field observations. The standardized metadata framework supports109

human-in-the-loop and citizen-science annotation efforts by providing the contextual information110

necessary for active-learning pipelines that balance annotation cost and data quality.111

5 Discussion112

5.1 Field Observations113

Field deployment revealed important insights about multimodal monitoring in conservation settings.114

Animal responses varied by sensor type. The deer initially showed curiosity toward drone flights115

but exhibited minimal behavioral disruption overall. Breeding season activity patterns were clearly116

observable, with territorial males vocalizing frequently and herds congregating around water sources117

during warm weather. Technical challenges included GPS signal limitations in remote areas affecting118

some sensor synchronization, weather impacts on acoustic recording quality, and the need for creative119

mounting solutions in areas lacking suitable structures. Despite these challenges, the sensor network120

successfully captured multimodal data across all target areas.121

5.2 Comparison of Sensor Modalities122

We summarize the relative performance each sensing modality across eight key performance dimen-123

sions relevant to conservation monitoring applications (Table 2). These metrics were selected based124

on established frameworks for conservation technology evaluation and practical deployment consider-125

ations in wildlife monitoring contexts. Spatial range and resolution determines monitoring coverage126

and detection capabilities across different habitat scales (Tuia et al., 2022; Pringle et al., 2025).127

Temporal range and resolution captures both short-term behavioral events and long-term ecological128
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Table 2: Comparative analysis of sensor modality performance across key conservation monitoring
metrics. Metrics selected based on established frameworks for wildlife monitoring technology evalu-
ation (Tuia et al., 2022; Besson et al., 2022) and practical deployment considerations in conservation
settings. Performance rating: Poor, Moderate, Good.
*GPS tag data will be added in a future data release.

Metric Camera Traps Bioacoustics Drones GPS Tags*

Spatial
Range

Fixed location,
∼30 m radius

Fixed location,
∼100 m radius

Mobile; battery-
limited (∼2 km)

Entire home range

Spatial
Resolution

High within field-of-
view

Moderate directional Sub-meter aerial
resolution

∼1–10 m accuracy

Temporal
Range

Weeks to months Weeks to months Hours per mission Months to years

Temporal
Resolution

Event-triggered;
<1 s

Continuous or
scheduled

30–60 fps video Hourly locations

Species
Detectability

Large ungulates,
visible species

Cryptic/vocal
species, birds

Large mammals,
aerial view

Tagged individuals
only

Behavior
Detail

Limited to frame
interactions

Vocalizations, acous-
tic behaviors

High detail: posture,
interactions

Movement patterns
only

Deployment
Effort

Low–medium (site
visits)

Low–medium (site
visits)

High (active pilot-
ing)

Low once deployed

Data
Volume

Moderate Moderate–high High Low

patterns Besson et al. (2022). Species detectability captures different sensor modalities ability to129

sense specific taxonomic groups, especially more cryptic species such as birds or insects,(Smith and130

Pinter-Wollman, 2021). Behavioral detail is important for understanding complex social interactions131

of group-living animals and individual to group-level responses to environmental changes (Kline et al.,132

2025). Deployment effort and data volume captures practical considerations affecting scalability and133

cost of long-term monitoring efforts (Besson et al., 2022).134

6 Future Directions135

Building on pilot deployment insights, upcoming releases will address identified limitations and136

leverage demonstrated multimodal strengths. The pilot revealed minimal useful data from camera137

trap videos compared to drone footage, leading to modified protocols with co-located bioacoustic138

monitors and camera traps at three additional sites for direct detection capability comparison. Future139

releases will integrate synchronized GPS tracking from ear-tagged Pere David’s deer with visual140

and acoustic data, enabling analysis of individual movement patterns and behaviors across the four141

additional weeks of planned data collection to capture seasonal variation.142

The demonstrated complementary strengths across modalities—where camera traps excel at species143

identification, bioacoustic monitors provide continuous temporal coverage, and drones offer landscape-144

scale perspectives. These complementary strengths will inform machine learning research directions145

focused on multimodal fusion architectures. Development will prioritize real-time adaptive sampling146

through edge computing capabilities and AI-assisted management systems that leverage integrated147

sensor networks’ superior performance over single-modality approaches. Extension to multiple habitat148

types, replication at additional conservation sites, and integration of citizen science observations will149

expand data collection while validating multimodal AI frameworks that can operate autonomously150

across diverse ecosystems and transform global environmental monitoring practices.151

7 Data Availability Statement152

The complete multimodal wildlife monitoring dataset will be made publicly available on Hugging153

Face upon publication of this manuscript under a CC0-1.0 license. Dataset cards with representative154

samples and comprehensive metadata are currently available for review. All code for data processing155

and analysis will be released alongside the dataset to ensure reproducibility.156
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A Supplemental Material207

Table 3: Sensor deployment sites with selection rationale and habitat characteristics.
CT = camera trap. SM = SongMeter bioacoustic recording device).

Site ID Sensor
Type

Site Name Habitat Type Selection Rationale

TW01 CT Nomad Ridge Shel-
ter (East)

Elevated structure
above lake

High Pere David’s deer activity at lake;
protected mounting location

TW02 CT Nomad Ridge Shel-
ter (West)

Elevated structure
above lake

Complementary lake coverage; high
deer activity observed

TW03 CT Old Giraffe Feeder
(Pasture D)

Feeding structure
near lake with salt
lick

High deer activity around salt lick; arti-
ficial congregation point

TW04 CT Lake Trail (North-
west facing)

Tree-mounted over-
looking lake

High deer activity along lake trail; natu-
ral travel corridor

TW05 SM Lake Trail Gate O Gate structure with
vegetation

Easy maintenance access; high bird ac-
tivity; sunrise/sunset recording

TW06 SM Zebra Shelter Open plains struc-
ture

Ungulate activity around shelter; day-
time recording schedule

TW07 SM Zipline Tower Open field structure Maintenance accessibility; diverse bird
activity; sunrise/sunset recording

TW08 SM Fence with Dense
Vegetation

Pasture edge near
lake

Capture different acoustic environment;
hourly recording
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