
Under review as submission to TMLR

Spaced Scheduling for
Large Language Model Training

Anonymous authors
Paper under double-blind review

Abstract

Recent breakthroughs in deep learning have accelerated progress toward increasingly capable
large language models (LLMs), even sparking discussions about the path to Artificial Gen-
eral Intelligence (AGI). Yet, current LLM training pipelines continue to depend on heuristics
and human-driven empirical analysis to curate data. In practice, more sophisticated data
selection methods often incur high costs, show limited adaptability, or fail to surpass simple
random baselines consistently across models and datasets. In this work, we propose Spaced
Scheduled Training (Sst), a novel adaptive data selection strategy that prioritizes train-
ing examples based on per-example perplexity computed from the model’s own evolving
parameters. By obviating the need for external reference models, Sst customizes data se-
lection to the model’s unique characteristics—including its pre-training data composition—
and eliminates biases introduced by these external models. Extensive experiments on eight
LLMs (0.5B to 32B parameters) show that Sst consistently outperforms state-of-the-art
selection approaches like Deita and InsTag on the Open LLM Leaderboard. For instance,
with Qwen2.5-32B and a 30k examples data budget, Sst achieves a 42.75% Open LLM
Leaderboard score, surpassing both the top data-selection baseline (38.21%) and a baseline
using 70% more data (39.58%). We further present a theoretical framework to assess com-
putational overhead induced by a model-based selection method, showing that Sst remains
efficient in practical scenarios, and propose strategies to mitigate the overhead in worst-case
scenarios. Our findings underscore the potential of model-informed dynamic data selection,
offering an efficient, adaptable, and cost-effective approach. We release our training code,
trained models, and data mixes in our public repository.1

1 Introduction

Recent advances in large language models (LLMs) have transformed natural language processing, enabling
breakthroughs in applications ranging from artificial agents to scientific discovery. While scaling model size
and the training data has driven much of this progress, data quality is increasingly recognized as a bottleneck,
particularly when hardware and computational budgets constrain further scaling. Data selection methods
can be broadly categorized into two approaches: static and dynamic. Static approaches pre-select data offline
using heuristics or external “oracle” models, often at substantial computational cost from training specialized
evaluation models (Liu et al., 2024; Lu et al., 2023) or using costly commercial LLMs for data scoring (Chen
et al., 2024). Moreover, oracles can introduce biases in the evaluation, such as the documented verbosity bias
in ChatGPT (Saito et al., 2023). This bias is particularly problematic when the same oracle is also used for
benchmarking like in MT-bench (Zheng et al., 2023). While these methods can yield reasonable performance,
they lack adaptability: the dataset remains fixed regardless of the trained model’s characteristics, such as
size, or pre-training data composition. Dynamic approaches, in contrast, integrate data selection during
training (Mindermann et al., 2022; Jiang et al., 2019; Loshchilov & Hutter, 2015), which can, in principle,
adapt the curation to the model’s evolving state. Yet many of these techniques are expensive to run at scale or
fail to provide consistent performance. For instance, RHO-LOSS (Mindermann et al., 2022) requires training
a proxy model, performing a forward pass on the entire training data using the proxy model, and requires

1Available after double-blind review.

1

Under review as submission to TMLR

additional forward passes for the batch selection. Further, studies have shown that many dynamic methods
fail to consistently outperform simple random selection baselines (Kaddour et al., 2023; Liu et al., 2024). As a
result, recent works like Tülu 3 (Lambert et al., 2024) still rely on heuristics and large-scale empirical analysis
to refine data. Recent research highlights additional challenges in data selection, especially when dealing
with diverse data sources. Determining the optimal ratio is difficult and depends on the trained model.
Further, relying on external oracle models can introduce unintended biases, where they can overemphasize
data that aligns well with their own output. For instance, Deita (Liu et al., 2024) sampled a 6K subset from
a pool of three sources (ShareGPT (Chiang et al., 2023), UltraChat (Cui et al., 2024), and WizardLM (Xu
et al., 2023)) totaling 300K examples, but this subset contains examples only from ShareGPT. Recent LLM
pre-training work, such as, Llama (Dubey et al., 2024) suggest that mixing ratios benefit from being adjusted
multiple times during training, highlighting the importance of dynamic approaches, reinforcing the need for
more adaptive methods.

0 100 200 300 400
Training Iteration

34

36

38

40

42

A
ve

ra
ge

O
p

en
L

L
M

L
ea

d
er

b
oa

rd
S

co
re

Sst (ours)

Random Per-Dataset

InsTag

Deita

Figure 1: Sst significantly outperforms both a strong random baseline and competitive ChatGPT-based
methods (InsTag, Deita), on Qwen2.5-32B—a large model often considered less sensitive to sampling
approaches—trained on 30k instructions for 2 epochs, Sst achieves higher Open LLM leaderboard2scores
throughout training with less variance. The late-stage uptrend suggests further training may extend Sst’s
lead. All methods draw 30k examples from the same 100k-instruction pool.

To address these challenges, we propose a novel adaptive and efficient data selection strategy called Spaced
Scheduled Training (Sst) that dynamically adjusts the training dataset based on a model’s evolving learning
state. Unlike approaches that rely on external scoring models, Sst prioritizes training examples based on
per-example perplexity, a computationally efficient and reliable proxy for example difficulty. Our work builds
on prior work in static selection (Marion et al., 2023)but incorporating incorporates dynamic scheduling to
continuously adjust the dataset mix throughout training. Sst also differs from existing work in that it:
(i) eliminates the need for costly external oracle models; (ii) tailors selection to the target model’s unique
characteristics (e.g., size and pre-training data composition), avoiding biases from external scoring models;
and (iii) adapts the dataset mix continuously through its “spaced scheduling” mechanism, allowing different
models to emphasize data that is most beneficial at each stage of training. We evaluate Sst across eight
LLMs with sizes ranging from 0.5B to 32B parameters from four distinct model families, including
Llama 3.1 (Grattafiori et al., 2024), Llama 3.2 (Dubey et al., 2024), Gemma 2 (Team et al., 2024), and
Qwen 2.5 (Yang et al., 2024). Our empirical analysis using the recent Open LLM Leaderboard (Fourrier
et al., 2024) demonstrates that Sst delivers consistent performance across architectures and model size
spectrum, outperforming all selection baselines including the ones relying on ChatGPT-based selection (Liu
et al., 2024; Lu et al., 2023). Further, we introduce a theoretical framework grounded in LLM scaling
laws (Kaplan et al., 2020) to quantify how the overhead of data selection methods—including SST—scales,
allowing for a more principled comparison of different methods. Through this framework, we show how
inference-optimized backends allows Sst to maintain low computational overhead, enabling large-scale use.
We summarize our key contributions as follows:

• Novel Dynamic Data Selection Algorithm (Sst): We introduce Spaced Scheduled Training (Sst),
a novel approach relying on per-example perplexity to prioritize training examples and dynamically ad-
justing the data mix throughout training (§ 4).

2

Under review as submission to TMLR

• Comprehensive Empirical Evaluation: We demonstrate SST’s effectiveness across eight models rang-
ing from 0.5B to 32B parameters. Sst outperforms all baselines on 5 out of 7 models, including those
trained on 70% more data and achieves performance within 1.14% of the best-performing approach on
the remaining models (§ 5).

• Scalability and Theoretical Overhead Analysis: We introduce a framework based on LLM scaling
laws work to analyze the overhead scaling of data selection methods, including SST. We show how to
implement Sst efficiently for large-scale training (§ 4.2).

• Practical Insights for LLM Data Selection: We analyze perplexity-based signals to provide founda-
tional insights and guidelines for future work in data selection. Our findings show that perplexity sampling
is influenced by factors like subset size and pre-training data composition, it beneficial to delay perplexity
sampling until training stabilizes, and a dynamic policy for selecting data leads to better results (§ 3).

2 Related Work

Data selection plays a crucial role in training large language models (LLMs), aiming to remove non-useful
or noisy data that may degrade performance. Data selection approaches fall into two main categories: static
and dynamic methods. This section reviews key research in data selection, highlighting their strengths and
limitations, and motivating our proposed Sst approach.

Static methods pre-selects the training data offline before training independent of the specific model being
trained. Marion et al. (2023) proposed a static pruning method relying on perplexity (PPL) scores computed
with an external reference model. They demonstrated that PPL is more effective than more complex metrics,
such as Error L2-Norm (EL2N). By pruning examples with low PPL, they achieved similar performance using
only 30 % of the data. Sorscher et al. (2022) explored pruning in computer vision, using proximity to the
decision boundary as a difficulty measure in a teacher-student perceptron setup. They showed that the
examples chosen for pruning depend on the initial dataset size and identified the conditions for aggressive
pruning. They emphasized that the success of pruning methods relies on the quality of the pruning metric,
noting that most metrics they tested are are costly to compute, making them impractical for large-scale use.
Sachdeva et al. (2024) explored pruning for pre-training T5 models (Raffel et al., 2020), introducing two
scoring methods: (1) the Density method estimates whether similar examples have been sampled, and tries
to maximize coverage; (2) Ask-LLM evaluates example quality by prompting an instruction-tuned LLM
(FLAN-T5; see Chung et al. (2022)) to predict whether it contains informative signals (a yes/no question).
The study demonstrated that Density performs comparably to using the full dataset. In contrast, Ask-LLM
outperforms full-data training by rejecting 90 % of the data and converging 70 % faster. Recent instruction
fine-tuning (IFT) work leverages state-of-the-art commercial models to score and select examples (Chen
et al., 2024; Liu et al., 2024; Zhao et al., 2023; Xu et al., 2023). AlpaGasus Chen et al. (2024) uses
ChatGPT with a handcrafted prompt to predict scores from 0 to 5, pruning the examples below a certain
threshold. Deita (Liu et al., 2024), building on Xu et al. (2023), adds diversity as a selection criterion
and proposes a two-level scoring system: Evolve Complexity c and Evolve Quality q, to compute a single
score s = c × q. Initially, ChatGPT is used for scoring, but Liu et al. (2024) later trains a model to
replicate ChatGPT’s scoring, substantially reducing the cost. Deita shows that a mere 10,000 examples
can outperform models trained on ten times as many. Similarly, InsTag (Lu et al., 2023) uses intention
tags as metrics for instruction diversity and complexity. It utilize ChatGPT to assigns one or more tags to
each instruction example. To ensure high-quality tags, the tags are normalized using frequency filtering and
aggregation (e.g., semantic aggregation). InsTag prioritizes complex queries with the highest number of tags,
while maintaining diversity by selecting examples that expand tag coverage. To reduce the computational
cost of tag assignment, the authors created InsTagger, a distilled LLM that mimics ChatGPT annotation
capabilities. We will compare our approach with Deita and InsTagger in our experimental work.

Model-based static approaches currently produce the best results. However, despite reducing manual effort
of empirical approaches requiring extensive human intervention, they often incur high computational costs.
When training specialized evaluation models, the cost of these models can be offset by repeated use, but
this advantage diminishes in practice. For instance, Deita (Liu et al., 2024) require training two specialized
scoring models that have a maximum sequence length of 2,048; handling longer sequences requires re-training
a new evaluation model. API-based methods, like AlpaGasus (Chen et al., 2024), are susceptible to

3

Under review as submission to TMLR

prompt design issues and biases such as the verbosity bias inherent in GPT models (Saito et al., 2023),
leading to imbalanced data selection, as illustrated by the over-representation of a single source dataset in
Deita’s curated 6,000 subsets that contains 100% of the examples from ShareGPT dataset. These issues
are particularly problematic when the same models are used for both data curation and benchmarking
(e.g., MT-bench; Zheng et al. (2023)) as performance can be artificially inflated. Beyond computational
overhead, static dataset selection methods suffer from a fundamental limitation: they fail to account for the
model’s unique pre-training data composition. For instance, if a model is pre-trained on 70% code-related
data, an effective selection strategy would need to down-weight code-related tasks. This also applies to the
data complexity categorization, where an example requiring 10 steps chain-of-thought reasoning may be
considered easy for a 70B model but intractable for a 1B model.

Dynamic methods integrate data refinement directly into the training process. For instance, online batch
selection aims to optimize training by selecting examples at each batch, often by scoring and ranking a large
batch to select the top-k examples (Loshchilov & Hutter, 2015). Jiang et al. (2019) proposed Selective-
Backprop, which prioritizes examples with high loss. However, Mindermann et al. (2022) challenged this
approach, arguing that high-loss examples can be noisy or mislabeled. They introduced the Reducible
Holdout loss selection (RHO-LOSS) (Mindermann et al., 2022) which reduces the impact of noisy data by
weighing down their losses. RHO-LOSS uses a proxy model trained on a holdout set to select examples that
minimize the holdout loss by approximating the reducible holdout loss objective. While RHO-LOSS improved
accuracy and training speed, it incurs significant overhead due to the cost of training the proxy model, a
forward pass on the entire training data using the proxy model, and the additional forward passes for the
batch selection. Dynamic methods attempt to overcome the rigidity of static approaches by selecting during
training. However, despite their adaptability, these methods often fall short of state-of-the-art static model-
based approaches. For instance, Kaddour et al. (2023), found that RHO-LOSS (Mindermann et al., 2022)
fails to outperform simple random selection baselines consistently. Moreover, dynamic methods also suffer
from algorithmic complexity that prohibit their use at scale. RHO-LOSS, for example, requires training a
proxy model, performing a forward pass on the entire training data using the proxy model, and the additional
forward passes for the batch selection, making it impractical at scale.

In both categories, when the initial data pool contains multiple sources or categories, determining the
optimal mix ratio creates an additional complexity for any data selection method. Finding the optimal
mixture remain underexplored and currently rely heavily on heuristics and extensive empirical analysis to
select the mixing ratio. Further, recent work in Llama models (Dubey et al., 2024) show that adjusting
the mix ratio multiple times during pre-training can be beneficial, as it enables the model to better adapt
to its evolving needs. Together with the shortcomings discussed above underscore the necessity for an
adaptive data selection strategy that dynamically tailors the training data to the evolving needs of the
model while preserving computational efficiency at scale, forming the foundation for our proposed method,
Spaced Scheduled Training (Sst), detailed in §4. Sst leverages the target model itself to guide the data
selection process. By eliminating the need for costly external models, Sst adapts both data categorization
and selection criteria to the characteristics of the trained model. Our approach uses per-example perplexity
as a computationally efficient and reliable proxy for example difficulty, a premise we rigorously examine in
§3 and Appendix D, with its overhead further analyzed in §4.2. By extending the static selection method
of Marion et al. (2023) with a dynamic mechanism that continuously adjusts the dataset mix throughout
training, Sst overcomes the limitations of previous methods and better aligns the training data with the
model’s evolving state. These improvements enable Sst to outperform the best existing methods (InsTag
and Deita) and even baselines utilizing significantly more training data, as shown in §5.

3 Preliminary Analysis

This sections presents the key findings of our preliminary analysis of perplexity-based data selection in the
IFT setting. These insights motivate and lay the groundwork our proposed adaptive method in §4.

We analyze perplexity-based data selection within the Instruction Fine-Tuning (IFT) setting, extending the
approach of Marion et al. (2023) with several key distinctions. IFT Setting: We investigate perplexity-
based data selection in the context of IFT rather than pre-training. Target Model as Reference: We

4

Under review as submission to TMLR

don’t rely on external reference models and use the target model to guide the selection of its training data.
Broad Analysis Scope: We evaluated models ranging from 0.5B to 32B parameters across state-of-the-art
architectures (Llama3.1 (Grattafiori et al., 2024), Llama3.2 (Grattafiori et al., 2024), Qwen2.5 (Yang et al.,
2024), and Gemma2 (Team et al., 2024)), offering a significantly broader evaluation than the two models
used in Marion et al. (2023), totaling 248 training runs across different sampling settings and seeds. We
compare static perplexity-based sampling and random selection (using 10%, 30%, and 50% of a pool of
100,000 examples) against a baseline trained on the full dataset, with performance measured using the Open
LLM Leaderboard benchmarks. We sample from a dataset collection D = {Di} where Di is an instruction
dataset. The collection consists of 15 datasets from the Tülu 3 mixture (Lambert et al., 2024). We compute
the per-example perplexity values PPL(e) on the target tokens only, to align with the IFT setting as follows:

PPL(e) = exp
(

1
|e|
∑
tj∈e

NLL(tj)
)

= exp(Le), (1)

where NLL(tj) denotes the negative log likelihood of output token tj , and Le is the target loss of the example
e. Detailed experimental settings and further analysis are provided in Appendix D. The key findings of our
analysis are threefold. First, heuristic-based curation is not sufficient: as illustrated in Figure 6,
simple random sampling can sometimes outperform training on all 100,000 examples, suggesting that even
a carefully curated data mix (Lambert et al., 2024) contains redundant or less beneficial examples. Second,
the best-performing perplexity sampling criteria varies with model size and subset size: smaller
models (< 8B) tend to benefit from “middle” perplexity ranges, while larger models (> 14B) often gain more
from high-perplexity examples (Figure 6).

0% 25% 50% 75% 100%
0%

20%

40%

60%

R
el

at
iv

e
Pe

rf
or

m
an

ce
 C

ha
ng

e
R

(%
)

Keep Bottom Per-Dataset
Keep Middle Per-Dataset

Llama3.1-8BLlama3.1-8B

0% 25% 50% 75% 100%

Keep Top Per-Dataset
Keep Middle Per-Dataset

Qwen2.5-32BQwen2.5-32B

Train Iteration Fraction of a 2 Epoch Training (%)

Figure 2: Effect of Perplexity Segments on Training Performance. Both models benefit from starting with
easier examples (lower perplexity segments) before transitioning to more challenging examples (higher per-
plexity segments), mirroring curriculum learning principles (Bengio et al., 2009) and motivating the useful-
ness of a data selection strategy that modulates the selection window dynamically. ∆R (Equation 7) is the
relative performance change percentage compared to the base pre-trained model (no IFT). Both figures show
mean Open LLM Leaderboard scores and standard error across two runs with different seeds.

Further, this criteria varies with subset size. Figure 6 shows that using examples from the bottom segment
is not beneficial across models. When choosing 50% of the examples for a model that favors mid-perplexity
examples, it is better to select from the top segment rather than the middle, since the latter would include
too many easy examples that negatively impact performance. This issue is applicable when selecting 10%
of the examples. Finally, aligning data complexity with training progress proves beneficial. Our
experiments show that different perplexity segments are most useful at various training stages, where the
models benefits from beginning with easier examples and then transitioning to more challenging ones (Fig-
ure 2), which mirrors curriculum learning principles (Bengio et al., 2009). Further, we found it beneficial
to start training with randomly selected data per dataset until a set training iteration threshold. After this
point, we compute the perplexity values once and initiate perplexity sampling. This delay ensures that per-
plexity sampling starts after the model’s data shift adaptation in early training, ensuring that the sampling
uses more meaningful perplexity values. As shown in Figure 3, the delay varies across models and decreases
as model size increases and that delaying beyond this threshold harms performance due to changes in the
perplexity distribution, as we describe in more detail in Appendix D.3.

5

Under review as submission to TMLR

0% 15% 25% 50% 75%

-20%

-10%

0%

10%

20%
R

el
at

iv
e

Pe
rf

or
m

an
ce

 C
ha

ng
e

R
(%

)

Qwen2.5-0.5B

0% 15% 25% 50% 75%

Llama3.1-8B

0% 15% 25% 50% 75%

Qwen2.5-32B

Perplexity Sampling Start Iteration (%)

Figure 3: Effect of delaying perplexity-based data selection. Delaying perplexity sampling improves per-
formance up to a threshold that varies by model and generally decreases with model size. Smaller model
(e.g., Qwen2.5-0.5B) benefit from a longer delay (25% of training), while larger models (e.g., Qwen2.5-32B)
degrade as early as 10%. ∆R (Equation 7) is the relative performance change percentage compared to using
no delay (using the pre-trained model for data selection). Results show mean scores and standard error
across two runs with different random seeds.

Together, these results motivate our dynamic data selection strategy that delays perplexity sampling until
the model starts producing meaningful and reliable perplexity values and refines which perplexity segments
are most beneficial as training progresses, rather than relying on a single static approach.

4 Spaced Scheduling Training

We propose Spaced Scheduling Training (Sst), an efficient and adaptive method for selecting and scheduling
training examples based on their perplexity. Sstbuilds on insights presented in §3, where we show that static
selection strategies often fail to deliver consistent improvements.

...

(a) Initial selection window

Dataset Collection Sampled Collection

Train

Target Model

...

(b) Selection window shifts left
(towards easier examples)

...

(c) Selection window shifts right
(towards harder examples)

...

Loss increasing Loss decreasing

Figure 4: A visualization of the adaptive phase of our Sstalgorithm, using a dataset collection D = {Di},
composed of i = 1 . . . n datasets. (a) Sstinitializes the reference perplexity percentiles P ref

d to the 50th
percentile and selects the collection D′ using subsets of size ρs based on P ref

d . Then Ssttrains the model
on D′ and monitors the loss curve. (b) If the loss starts increasing significantly, the selection window shifts
towards easier examples (bottom segment), suggesting that the current data configuration is difficult for the
current state of the model. (c) If the loss starts decreasing significantly, indicating that the target model is
likely able to learn from more complex examples, Sstshifts the selection window toward difficult examples
(top segment). If the loss curve is stable, Sstcontinues training without changes. At each shift, Sstadjusts
the dataset ratios using βd (Equation 2), giving priority to those with higher average dataset loss. This
process continues until the end of training.

6

Under review as submission to TMLR

In contrast, Sstoffers a dynamic approach for perplexity-based data selection that tailors perplexity-based
data selection to the characteristics of the target model (i.e., the model being trained), such as its size, and
its unique—and often obscure—pre-training configuration. Further, Sstutilizes a dataset-aware selection,
unlike methods such as Deita (Liu et al., 2024) or InsTag (Lu et al., 2023), which disregard implicit dataset
categorizations during the selection process. By concentrating on examples most likely to improve the
model’s learning, Sstnot only enhances performance but also optimizes resource utilization. It consistently
outperforms static and heuristic-based methods, offering a scalable and practical solution for efficient data
selection. Moreover, Sstavoids reliance on external reference models that are costly and/or with restrictive
data licenses (ChatGPT), additional scoring models that become outdated (Lu et al., 2023; Liu et al., 2024),
or complex selection techniques that are impractical at scale (Mindermann et al., 2022; Liu et al., 2024),
making it a simple drop-in change to existing training pipelines.

4.1 Method

Sstdynamically selects and schedules training examples at each stage of training using the per-example
perplexity as a signal of usefulness. Sstoperates on two levels: (1) adjusting dataset ratios to prioritize
datasets and (2) filtering examples to focus on the most impactful training examples within each dataset.
This dual-level approach allows Sstto continuously optimize the training process, enhancing convergence
speed and improving generalization for the target model. The algorithm is composed of two main phases: a
warm-up phase and an adaptive scheduling phase.

Warm-up phase: The warm-up phase aims to stabilize training dynamics and ensure the model generates
meaningful perplexity values before transitioning to adaptive scheduling. During this phase, the model trains
on uniformly sampled data across all datasets, while Sstmonitors the training loss curve using a rolling
window of size kw · tmax, where tmax is the maximum training iterations and kw ∈ [0, 1) is a hyperparameter
controlling the window’s proportion relative to the training duration. The warm-up ends when one of
following conditions is met: (1) the loss curve stabilizes, indicated by a nearly constant slope after the
initial sharp decline in loss typical of early training; (2) a maximum retry count rw is reached, which
acts as a safeguard to limit the duration of the warm-up phase. The hyper-parameter rw is particularly
useful for smaller models (fewer than 8B parameters), as they largely do not exhibit a clearly identifiable
loss stabilization point. Choosing appropriate values for kw and rw is critical: kw should allow sufficient
iterations to detect changes in the loss trend, while rw prevents the warm-up from taking a significant
proportion of the overall training, reducing the benefits of SST. Based on empirical observations (§3), we
found setting kw ≤ 0.25 and rw so that the warm-up phase takes no more than 30% of the total training
duration to be effective. In our experimentation, we set kw = 0.1 and rw = 3. This phase helps Sstconverge
more rapidly toward a better selection window by deferring the start of adaptive scheduling until the model
starts producing reliable perplexity values that characterize early stages of training due to data distribution
shifts or model adaptation to a new chat template in the context of IFT.

Adaptive Scheduling Phase: Sstperforms the following during its adaptive scheduling phase: (1) Com-
pute the examples perplexity values PPL(e) (Equation 1) once. (2) Compute the dataset mix ratios βd

using:

βd = {ρs × PPLp50(d)∑|D|
j PPLp50(j)

, ∀d ∈ D} and
|D|∑
d

βd = ρs, (2)

where PPLp50(d) is the 50th percentile (median) of the perplexity distribution of dataset d, and ρs is the
global subset ratio. βd initializes sampling with equal dataset proportions. As training progresses, it increases
the ratio of datasets with higher PPLp50(d), focusing more on harder tasks. (3) Set the reference perplexity
percentiles P ref

d to the 50th percentile for all datasets. This means that the selection window initially covers
the middle segment of the perplexity distribution of each dataset. (4) Set k = tw/tmax, where tw is warm-up
iteration count. If the warm-up phase ends early, tw is typically sufficient to detect trends in the loss curve;
otherwise, k = kw which we found effective in our experiments. (5) Select a subset collection D′ from D using
βd and the reference perplexity percentiles P ref

d . The main training loop runs for the remaining tmax − tw

iterations, ensuring that the total number of training iterations is tmax which also allows for a fair comparison
with other methods and baselines. During this loop, Ssttracks the training loss using a rolling window of

7

Under review as submission to TMLR

size k · tmax and updates the perplexity values of the examples in the current batch. Then at each k · tmax

steps, Sstcarries out: (1) Recalculate βd (Equation 2). (2) Adjust the selection window based on the slope of
the training loss curve. If the slope is negative (decreasing loss), suggesting that current data configuration
is not challenging and that the model is likely able to learn from more complex examples, Sstincreases P ref

d

by a fraction τ , focusing on harder examples. Conversely, the slope is positive (increasing loss), suggesting
that the model is struggling to learn from the current examples, Sstdecreases P ref

d by a fraction τ , focusing
on easier examples. Otherwise, Sstcontinues training without making any changes. (3) When P ref

d and βd

change, Sstsamples D′ using the updated values. When evaluating the slope, Sstuses a small ε = 10−3 to
account for numerical instability. Further, Sstcaps P ref

d to ensure it remains within valid ranges. The value
τ balances adaptability and stability. It is similar to a learning rate in optimization algorithms, controlling
the rate of change in the selection window. In our experiments, we find τ = 0.1 effective. We use a weighted
sampler to dynamically prune examples by assigning a their weight to 0. This approach enables the efficient
exclusion and reintegration of examples into the training pool without incurring additional overhead from
data loading. We show SST’s detailed algorithm in Algorithm 1, and a hyper-parameter summary in Table 4.

4.2 Overhead Analysis and Mitigation

As any model-based data selection method, Sstintroduces a computational overhead required to score the
data. This overhead is often a concern in practice, especially at scale, since it shrinks any method’s real-world
usefulness. Training time alone is insufficient when comparing overhead across methods since it depends on
hardware and implementation details and fails to capture scaling behavior due to the measurement cost.
Here, we propose a theoretical framework based on LLM scaling laws (Kaplan et al., 2020) to quantify the
scaling of the overhead with the data and model sizes as a principled way to compare model-based data
selection methods, and provide time measurement to provide a practical guideline for using SST.

Following (Kaplan et al., 2020), given a dataset D, the computational cost C(Πrand) of training a model
under a random sampling policy Πrand for N epochs can be approximated as

C(Πrand) ≈ N · |D| · (Cforward + Cbackward) ≈ N · |D| · 3 Cforward, where Cbackward ≈ 2 Cforward, (3)

with Cforward and Cbackward being respectively the computational costs of a single forward and backward pass.
Next, consider a model-based data selection method Πselect requiring a single forward pass to evaluate the
data for filtering (e.g., static pruning or Sst). Its training cost C(Πselect) can be written as:

C(Πselect) ≈
(
|D| · C′forward + C′misc

)︸ ︷︷ ︸
selection cost

+
(
ρs N · |D| · 3 Cforward

)︸ ︷︷ ︸
training cost on filtered data

≈ C′(Πselect) + ρs C(Πrand), (4)

where ρs ∈ [0, 1) is the subset ratio, C′forward is the forward-pass cost of the reference model used for evaluation,
C′misc covers any additional overhead such as adjusting selection windows when using SST, and C′(Πselect)
is the overhead cost when using a model-based method Πselect. A data selection method is considered
computationally efficient if its overhead (the first term in Equation 4) is offset by the reduced training cost
from using only ρs|D| examples. Contrasting Equations 3 and 4, we conclude that Πselect is efficient if
C(Πselect) ≤ C(Πrand). Therefore, Sstis computationally efficient provided that

C′(Πselect) + ρs C(Πrand) ≤ C(Πrand) ⇐⇒ ρs ≤ 1 − 1
3N

with C′misc ≈ 0. (5)

Sstuses the same model for reference and training, so C′forward = Cforward. For simplicity, we assume C′misc ≈ 0
since C′misc ≪ |D| ·Cforward (i.e., perplexity calculations are negligible compared to the forward pass of a mod-
ern LLM). Equation 5 also incorporates the warmup phase (§ 4), since Sststops when the training iteration
reaches tmax − tw (cf. Algorithm 1). Under these assumptions, we choose ρs = 0.3 for the experiments in § 5,
comfortably satisfying Equation 5 for N = 2, ensuring Sstis computationally efficient. In SST, the selection
cost C′(ΠSST) representing the overhead of the method, scales with the target model size, unlike methods
relying on a constant-sized reference model (Πconst), such as InsTag (Lu et al., 2023), where the selection
cost C′(Πconst) is constant regardless of the target model size. To mitigate this overhead, inference-optimized
frameworks can be used to accelerate perplexity computation.

8

Under review as submission to TMLR

0.5B 3B 7B 14B 32B
Model Size (B) (log scale)

0

1

2

3

4
Se

le
ct

io
n

C
os

t R
el

at
iv

e
to

 In
sT

ag
InsTag (Reference)
SST Bf16
SST + vLLM Bf16
SST + vLLM 8-bit
SST + vLLM 4-bit

0.5B 3B 7B 14B 32B
Model Size (B) (log scale)

0

1.25

0.94

0.78

Pe
rf

or
m

an
ce

 R
el

at
iv

e
to

 In
sT

ag

Figure 5: Overhead and performance analysis of Sstusing vLLM at different precision Sstcompared to
InsTag using a fixed 8B parameters reference model: Sstintroduces significantly lower overhead for models
smaller than 8B parameters even without vLLM (green region). For larger models (orange region), vLLM ef-
fectively offsets SST’s overhead, with 8-bit precision (in red) providing the best balance between overhead re-
duction and performance retention. (Left) Shows the scaling of the selection cost ratio (C′(ΠSST)/C′(ΠInsTag),
defined above) with the model size. (Right) Shows the performance ratio of Sstwith vLLM at different pre-
cision levels relative to InsTag.

To evaluate the potential speedup, we experimented with vLLM (Kwon et al., 2023) which provides a
1.8× to 2.7× speedup with Bfloat16, and further speedups with 8-bit or 4-bit quantization using model
sizes from 0.5B to 32B and contrast the speedup to InsTag using an 8B reference model using the ratio
C′(ΠSST)/C′(ΠInsTag). Since the downstream performance is likely to be affected when using lower precision,
we also evaluate the performance using the evaluation setup described in §3 and contrasted each to the
performance when using Bfloat16 precision without vLLM. We provide the details of the experimental setup
in Appendix C.2. The restuls of this study in Figure 5 shows that using an optimized inference framework
like vLLM is able to offset the overhead introduced by Sstat larger model sizes. Specifically, we observe
that when C′(ΠSST)/C′(ΠInsTag) ≥ 1 it becomes beneficial to use vLLM with 8-bit precision (Sst+ vLLM
8-bit) as it balances the overhead and performance trade-off. In contrast, using 4-bit precision (Sst+ vLLM
4-bit) introduces a non negligible performance degradation. The main experimental results use a baseline
environment (no vLLM) for fairness since some of the performance speed up in vLLM are highly dependent
on the hardware configuration, but Figure 5 is an additional ablation. Finally, we compare wall-clock times
for training with and without Sstacross three runs on three different model sizes (Appendix C). For instance,
training the Q2.5-32B model on 100k examples takes about 36 hours, whereas using Sstto evaluate the 100k
then train on only 30k examples takes about 17 hours, an overhead of roughly 34% (i.e., 34% of the 17 hours
accounts for the overhead introduced by Sst) yet the total training-time reduction is significant of around
50%. While these numbers depend strongly on hardware configuration and implementation details, they
provide a rough estimate of the overhead introduced by Sstin practice. Moreover, the overhead is acceptable
when ρs satisfies the condition in Equation 5 and the performance Q(θΠSST

) is either significantly better
than Q(θΠrand

) (as shown in §5) or remains comparable if compute resources are limited. In addition to
the computational overhead, Sstrequires storage for perplexity values over the dataset, i.e. O(|D|), which
is reduced to O(1) since the dataset size remains constant during training. In our experimental setup (100k
examples, Bfloat16 precision), the memory overhead is under 0.2MB.

5 Experiments

This sections shows the experimental design used to assess SST’s effectiveness in the IFT setting. We describe
the experimental setup (§5.1), report the results and discussions (§5.2), and conclude with limitations (§5.3).

5.1 Experimental Setup

We use the data, training setting, and evaluation procedure described in §3, consistent with the methodology
of Lambert et al. (2024) (see Appendix A for details).Each method selects 30k examples from a 100k data

9

Under review as submission to TMLR

Table 1: Performance comparison of SST30k with baseline methods across various model sizes and bench-
marks. Results demonstrate that SST consistently outperforms baseline methods, including those using
significantly more training data (Full100k), in most scenarios. Notably, SST achieves superior performance
on larger models (e.g., Qwen2.5-32B) and challenging benchmarks (e.g., MMLU-PRO), while maintaining
competitive results on smaller models and diverse tasks.

Method Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Qwen2.5-32B

Full100k 39.58 34.67 73.9 48.03 16.33 16.52 48.06
Uniform30k 40.84 35.8 74.02 49.24 19.35 19.14 47.51
InsTag30k 38.21 35.42 70.01 46.51 17.11 15.43 44.74
Deita30k 36.49 34.44 71.78 48.29 9.06 20.7 34.67
Sst30k (ours) 42.75 36.1 75.03 53.25 18.46 24.79 48.85

G2-27b

Full100k 32.34 21.68 72.26 32.18 11.41 16.84 39.68
Uniform30k 30.63 19.86 70.16 28.8 12.08 15.24 37.63
InsTag30k 31.24 22.66 68.01 31.38 10.63 17.77 36.98
Deita30k 32.07 23.11 71.93 35.97 8.5 16.78 36.11
Sst30k (ours) 32.89 20.92 70.28 34.28 12.64 19.66 39.55

G2-9b

Full100k 28.43 15.26 66.74 29.52 8.95 18.58 31.56
Uniform30k 28.85 11.93 65.36 30.8 9.96 21.56 33.47
InsTag30k 28.58 12.39 66.97 29.14 10.85 17.59 34.54
Deita30k 28.08 14.27 67.58 28.3 8.95 17.26 32.11
Sst30k (ours) 29.17 11.48 66.39 30.5 10.29 23.33 33.02

Llama3.1-8B

Full100k 23.59 5.44 62.41 23.39 4.81 15.97 29.53
Uniform30k 21.11 5.29 61.85 21.8 5.7 15.32 16.71
InsTag30k 21.61 5.06 55.54 24.75 4.81 14.31 25.2
Deita30k 18.02 4.91 59.27 20.77 0.0 9.0 14.15
Sst30k (ours) 22.45 4.53 59.28 23.84 4.25 14.63 28.19

Llama3.2-3B

Full100k 14.88 1.44 46.93 15.58 2.01 6.5 16.8
Uniform30k 15.52 1.89 49.95 14.33 3.91 9.03 13.99
InsTag30k 13.08 1.81 43.43 13.24 1.23 9.16 9.62
Deita30k 11.73 1.66 46.54 12.08 0.0 2.73 7.36
Sst30k (ours) 16.33 1.59 49.13 16.26 3.58 11.24 16.2

Llama3.2-1B

Full100k 7.45 0.45 34.96 1.66 0.0 3.62 4.01
Uniform30k 6.59 0.08 33.56 1.0 0.0 2.38 2.55
InsTag30k 6.8 0.23 31.61 1.52 0.0 3.17 4.3
Deita30k 6.46 0.38 29.51 1.22 0.0 2.93 4.76
Sst30k (ours) 6.56 0.15 29.18 1.49 0.0 3.52 5.01

Qwen2.5-0.5B

Full100k 7.32 0.91 31.07 5.88 0.22 1.27 4.56
Uniform30k 7.05 0.91 29.09 6.65 0.11 1.43 4.14
InsTag30k 6.94 1.21 28.88 6.37 0.45 1.11 3.66
Deita30k 6.81 1.21 28.61 6.83 0.0 1.43 2.76
Sst30k (ours) 7.52 0.98 29.18 6.56 3.02 1.27 4.12

pool, as our findings in §3 indicate that it is sufficient to match the performance of using the full dataset. We
contrast our performance to Deita and InsTag–the current best performing methods. We don’t compared
to methods like AlpaGasus that required commercial models that prohibits rigorous experimentation due to
the cost. Further, we don’t contrast to any dynamic method since prior work (Liu et al., 2024; Lu et al., 2023;
Kaddour et al., 2023) showed that LLM-based static methods outperform existing dynamic methods in the
IFT setting we explore here. We restrict the pool to examples with fewer than 2048 tokens to ensure fairness
for Deita and InsTag baselines, which rely on external tagging models with a similar token limit. We
compare our method (Sst30k) against: (1) Uniform30k, which samples data uniformly across the dataset;
(2) InsTag30k using the instruction-tagging method of Lu et al. (2023); (3) Deita30k following Liu et al.
(2024) with complexity and quality scoring, and embedding-based diversity selection; (4) Full100k which
uses the entire pool (no selection). For Sst30k, we set ρw = 0.25, ρs = 0.3, τ = 0.1, and k = 0.1 in all

10

Under review as submission to TMLR

experiments, and compute perplexity only on target tokens to align with the IFT setting. for InsTag30k

and Deita30k, we use original scoring models from the respective work. We report all results in Table 1.

5.2 Results and Discussions

The results in Table 1 demonstrate the clear advantages of our proposed method over baseline approaches.
Using only 30% of the training, SST30k achieves significant performance improvements across different
models. It surpasses other baselines, including the one trained on the full 100k dataset in six out of seven
tested models and closely match the performance on the remaining model (Llama3.2-1B) compared to
methods utilizing the same amount of data. These results highlights SST’s effectiveness in optimizing
computational resources. Our dynamic data scheduling approach ensures a balanced exposure to examples
of varying complexity tailored to the target model, enabling robust generalization across diverse tasks and
models. In contrast, methods like Deita30k, which involve an elaborate data selection process or InsTag30k,
which tries to replicated state-of-the-art models filtering behavior, fail to adapt to the model’s evolving needs
during training. These methods produce inconsistent results across the different model sizes and families.

SST shows significant improvement using large models: In §3, we showed that models with more than
20B parameters are less sensitive to static data selection methods. In contrast, our results shows the efficacy
of Sst in leveraging smaller, carefully scheduled data subsets to maximize performance even for larger models.
Using Qwen2.5-32B, SST30k delivers an average performance of 42.75%, surpassing all baselines including
the one using more than 3 folds the amount of data (Full100k). Notably, the method improves results on
challenging tasks such as MMLU-PRO, where it achieves a score of 53.25%, outperforming the Full100k

baseline by 5.22%. The G2-27B model further illustrates the benefits of our method, where SST30k achieves
an average performance of 32.89%, outperforming Deita30k and InsTag30k while maintaining competitive
results against Full100k. This trend persists across multiple tasks, with SST30k showing resilience and
adaptability in both general benchmarks like GPQA and domain-specific tasks such as MATH LvL 5. Using
Llama3.1-8B, SST30k outperforms all baselines with comparable data sizes but falls behind Full100k. This
gap may be due to the model’s weaker instruction-following abilities, as seen in its lower IFEval benchmark
scores. The earlier Llama3.1 likely lacked sufficient exposure to instruction-like examples during late-stage
pre-training—a strategy used in newer models like Llama3.2 and Qwen2.5. To test this hypothesis, we
increased the sample size from 30k to 50k examples. As shown in Table 2, SST50k outperforms all methods,
including Full100k. This suggests that Llama3.1-8B benefits from additional data for optimal performance.
While increasing the subset size improves results, an ideal approach would determine the optimal subset size
rather than treating it as a fixed hyperparameter. We leave this exploration for future work.

Table 2: Performance comparison of SST50k with the same baselines as in Table 1 on Llama3.1-8B using
50k examples instead of 30k. SST50k outperforms all baselines, including Full100k. This suggests that, for
some models, the subset size is a critical hyper-parameter for data selection.

Method Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Full100k 23.59 5.44 62.41 23.39 4.81 15.97 29.53
Uniform50k 21.35 5.37 61.23 22.22 5.70 15.00 18.55
InsTag50k 22.08 5.00 57.90 24.12 4.41 14.96 26.10
Deita50k 18.07 4.76 60.12 21.78 0.00 8.00 13.77
Sst50k (ours) 23.85 5.37 62.71 24.82 5.64 14.97 29.60

Using intermediate tagger models can be detrimental: Both Deita and InsTag rely on tagger models
to select data to replicate the behavior of much larger models (e.g., ChatGPT). While this reduces evaluation
costs, our results reveal significant performance drawbacks. For instance, Deita30k and InsTag30k lag
behind the simple Uniform30k baseline on Qwen2.5-32B, because their tagger models struggle with with
highly complex examples (e.g., NuminaMath datasets) or sequences approaching the 2048-token limit—the
limit of all tagging models proposed by Deita and InsTag. This limitation is more noticeable for Deita30k

with Qwen2.5-32B, likely because it relies on two taggers and an embedding model as opposed to a single
tagger used by InsTag, which can further exacerbate the issue. On G2-27B, both methods show a comparable
performance to other baselines, however, our results in §3 show that this model is particularly less sensitive to

11

Under review as submission to TMLR

data selection methods, suggesting, in this setup, that the performance decreases with complexity of the data
selection approach, matching the findings of Marion et al. (2023) in the context of pre-training. This effect
is also noticeable on smaller models such as Llama3.2-3B, where Uniform30k outperforms Deita30k and
InsTag30k by 2.44 and 3.79 points, respectively. Our analysis suggests that the data selected by Deita30k

and InsTag30k contains a significant number of complex examples for such models when contrasting their
selection to perplexity-based categorization. Further, tagger models face other limitations, like, their context
window limitation, or when the tagger training data distribution differs from the distribution of the data
that needs to be selected. The latter is particularly problematic in our experiment when evaluating multi-
lingual data, as shown in Table 3. In both cases, the tagger weaknesses introduce additional noise in the
data selection process, leading to suboptimal performance. Solving the issues would require training newer
tagging models, inducing a significant cost, questioning the practicality of such methods.

Table 3: FLAN V2 example in Malayalam selected by Deita. While the example is of a good quality, it may
be detrimental for models not exposed to Malayalam data during pre-training, where such example within
the high-perplexity range. SST dynamically adjusts the selection window away from these examples.

Inst: You are given a statement written in Malayalam. (...) Output the word from the correct option.

5.3 Limitations and Future Work

Sst remains effective as long as each dataset’s perplexity distribution has a nontrivial overlap with the
selection window. However, if the data is extremely unbalanced, simpler approaches (e.g., per-dataset
random sampling) may perform better. Observations in § 3 show that a skewed perplexity distribution can
lead to many noisy examples in the selection, and excluding them improved performance. Therefore, one
could develop an Sst variant that ignores these outliers or uses a different usefulness metric along with our
modulation method. We did not explore such variations, leaving them for future research. Although we
focused on IFT, Sst could benefit pre-training as well. In this context, two challenges arise: (1) it is unclear
if our warm-up triggers are suitable for pre-training, and (2) the overhead may be prohibitive with larger
datasets. A potential solution is to pre-compute perplexities offline using an external model—a standard
approach in pre-training data cleaning (Penedo et al., 2023)—and then apply adaptive selection after a
warm-up phase. Using 4-bit precision for perplexity evaluation could further reduce scoring costs, but its
impact on selection quality in pre-training remains unclear. Nonetheless, the results of Marion et al. (2023) in
pre-training, alongside our own findings in IFT, suggest that a Sst may offer significant gains in pre-training
as well. We leave an in-depth investigation of these trade-offs to future work. In § 4.2, we assumed Cmisc ≈ 0
since we found this term negligible in our single-node experiments by syncing the gathering of perplexity
values with gradient updates, to avoid additional inter-GPU synchronization. However, communication and
synchronization overhead can grow significantly especially if high-speed interconnects like InfiniBand are not
available or if the implementation does not take into account these factors.

6 Conclusion

Our proposed Spaced Scheduled Training (Sst) framework offers an adaptive, efficient, and model-specific
approach to data selection, eliminating the need for external oracle models. We show that continuously
adjusting the dataset mix based on real-time perplexity signals yields better perfomance. With extensive
evaluations on eight LLMs (0.5B–32B) and a theoretical overhead analysis grounded in scaling laws, Sst
demonstrates consistent performance gains across architectures and efficiently scales to large training regimes,
providing both robust empirical results and practical insights for improving data quality in LLM instruction
fine-tuning.

12

Under review as submission to TMLR

References
Edward Beeching, Clémentine Fourrier, Nathan Habib, Sheon Han, Nathan Lambert, Nazneen Rajani, Omar

Sanseviero, Lewis Tunstall, and Thomas Wolf. Open llm leaderboard (2023-2024). https://huggingface.
co/spaces/open-llm-leaderboard-old/open_llm_leaderboard, 2023.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In Proceedings
of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Lichang Chen, Shiyang Li, Jun Yan, Hai Wang, Kalpa Gunaratna, Vikas Yadav, Zheng Tang, Vi-
jay Srinivasan, Tianyi Zhou, Heng Huang, and Hongxia Jin. Alpagasus: Training a better alpaca
with fewer data. In The Twelfth International Conference on Learning Representations, 2024. URL
https://openreview.net/forum?id=FdVXgSJhvz.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An open-source
chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https://lmsys.org/blog/
2023-03-30-vicuna/.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret Zoph, Yi Tay, William Fedus, Yunxuan Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, Albert Webson, Shixiang Shane Gu, Zhuyun Dai, Mirac
Suzgun, Xinyun Chen, Aakanksha Chowdhery, Alex Castro-Ros, Marie Pellat, Kevin Robinson, Dasha
Valter, Sharan Narang, Gaurav Mishra, Adams Yu, Vincent Zhao, Yanping Huang, Andrew Dai, Hongkun
Yu, Slav Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam Roberts, Denny Zhou, Quoc V. Le, and Jason
Wei. Scaling instruction-finetuned language models, 2022. URL https://arxiv.org/abs/2210.11416.

Ganqu Cui, Lifan Yuan, Ning Ding, Guanming Yao, Wei Zhu, Yuan Ni, Guotong Xie, Zhiyuan Liu, and
Maosong Sun. Ultrafeedback: Boosting language models with high-quality feedback, 2024. URL https:
//openreview.net/forum?id=pNkOx3IVWI.

Tri Dao. FlashAttention-2: Faster attention with better parallelism and work partitioning. In International
Conference on Learning Representations (ICLR), 2024.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv preprint
arXiv:2407.21783, 2024.

Clémentine Fourrier, Nathan Habib, Alina Lozovskaya, Konrad Szafer, and Thomas Wolf. Open llm leader-
board v2. https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard, 2024.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence Golding,
Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, Jason Phang, Laria Reynolds, Eric Tang, Anish Thite,
Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot language model evaluation, September
2021. URL https://doi.org/10.5281/zenodo.5371628.

Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-
Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela Fan, Anirudh
Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur
Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra,
Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt,
David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic,
Francisco Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind
Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar,
Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan Misra, Ivan Evti-
mov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet

13

https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://huggingface.co/spaces/open-llm-leaderboard-old/open_llm_leaderboard
https://openreview.net/forum?id=FdVXgSJhvz
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2210.11416
https://openreview.net/forum?id=pNkOx3IVWI
https://openreview.net/forum?id=pNkOx3IVWI
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard
https://doi.org/10.5281/zenodo.5371628

Under review as submission to TMLR

Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi, Jianyu
Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua
Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Karthik Prasad, Kartikeya Upasani, Kate
Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley
Chiu, Kunal Bhalla, Kushal Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen,
Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke
de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin Kardas, Maria
Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kambadur, Mike Lewis, Min Si,
Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev,
Niladri Chatterji, Ning Zhang, Olivier Duchenne, Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Peng-
wei Li, Petar Vasic, Peter Weng, Prajjwal Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura,
Puxin Xu, Qing He, Qingxiao Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Sil-
veira Cabral, Robert Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain
Sauvestre, Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hos-
seini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov, Shaoliang
Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale, Shun Zhang, Simon
Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane Collot, Suchin Gururangan, Syd-
ney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha, Thomas Georgiou, Thomas Scialom, Tobias
Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ra-
manathan, Viktor Kerkez, Vincent Gonguet, Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic,
Weiwei Chu, Wenhan Xiong, Wenyin Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang
Wang, Xiaoqing Ellen Tan, Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh
Gaur, Yasmine Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre
Coudert, Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain,
Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay Menon, Ajay
Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit Sangani, Amos Teo,
Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu, Andrew Ho, Andrew Poulton,
Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco, Anuj Goyal, Aparajita Saraf, Arka-
bandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe, Assaf Eisenman, Azadeh Yazdan, Beau James,
Ben Maurer, Benjamin Leonhardi, Bernie Huang, Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing
Liu, Bo Wu, Boyu Ni, Braden Hancock, Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido,
Britt Montalvo, Carl Parker, Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim,
Chao Zhou, Chester Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia
Gao, Damon Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine,
Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin Holland, Ed-
ward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn, Emily Wood, Eric-Tuan
Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers, Fei Sun, Felix Kreuk, Feng Tian,
Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank Kanayet, Frank Seide, Gabriela Medina Flo-
rez, Gabriella Schwarz, Gada Badeer, Georgia Swee, Gil Halpern, Grant Herman, Grigory Sizov, Guangyi,
Zhang, Guna Lakshminarayanan, Hakan Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen
Zha, Haroun Habeeb, Harrison Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan,
Ibrahim Damlaj, Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weiss-
man, James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff Tang,
Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin, Jingyi Yang, Joe
Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh Ginsburg, Junjie Wang,
Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun Zand, Kathy Matosich, Kaushik
Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh, Kun Huang, Kunal Chawla, Kyle Huang,
Lailin Chen, Lakshya Garg, Lavender A, Leandro Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu,
Liron Moshkovich, Luca Wehrstedt, Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus,
Matan Hasson, Matthew Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan
Keneally, Miao Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov,
Mikayel Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat, Moham-
mad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White, Navyata Bawa,
Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich Laptev, Ning Dong, Nor-

14

Under review as submission to TMLR

man Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem Kalinli, Parkin Kent, Parth Parekh,
Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager, Pierre Roux, Piotr Dollar, Polina Zvyag-
ina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang, Rachad Alao, Rachel Rodriguez, Rafi Ayub,
Raghotham Murthy, Raghu Nayani, Rahul Mitra, Rangaprabhu Parthasarathy, Raymond Li, Rebekkah
Hogan, Robin Battey, Rocky Wang, Russ Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh
Bondu, Samyak Datta, Sara Chugh, Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh
Mahajan, Saurabh Verma, Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng
Feng, Shenghao Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang,
Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen Chen, Steve
Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng, Sungmin Cho, Sunny
Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez, Tamar Glaser, Tamara Best, Thilo
Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim Matthews, Timothy Chou, Tzook Shaked,
Varun Vontimitta, Victoria Ajayi, Victoria Montanez, Vijai Mohan, Vinay Satish Kumar, Vishal Mangla,
Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen
Jiang, Wes Bouaziz, Will Constable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao,
Yaniv Kleinman, Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi,
Youngjin Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary
DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3 herd of
models, 2024. URL https://arxiv.org/abs/2407.21783.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song, and
Jacob Steinhardt. Measuring mathematical problem solving with the math dataset, 2021. URL https:
//arxiv.org/abs/2103.03874.

Angela H Jiang, Daniel L-K Wong, Giulio Zhou, David G Andersen, Jeffrey Dean, Gregory R Ganger, Gauri
Joshi, Michael Kaminksy, Michael Kozuch, Zachary C Lipton, et al. Accelerating deep learning by focusing
on the biggest losers. arXiv preprint arXiv:1910.00762, 2019.

Jean Kaddour, Oscar Key, Piotr Nawrot, Pasquale Minervini, and Matt Kusner. No train no gain: Revisiting
efficient training algorithms for transformer-based language models. In Thirty-seventh Conference on
Neural Information Processing Systems, 2023. URL https://openreview.net/forum?id=thbXgJ8gNK.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott Gray,
Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361, 2020.

Andreas Köpf, Yannic Kilcher, Dimitri von Rütte, Sotiris Anagnostidis, Zhi Rui Tam, Keith Stevens, Abdul-
lah Barhoum, Duc Minh Nguyen, Oliver Stanley, Richárd Nagyfi, Shahul Es, Sameer Suri, David Alexan-
drovich Glushkov, Arnav Varma Dantuluri, Andrew Maguire, Christoph Schuhmann, Huu Nguyen, and
Alexander Julian Mattick. OpenAssistant Conversations - Democratizing Large Language Model Align-
ment. In Thirty-Seventh Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, November 2023.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph Gonza-
lez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model serving with
pagedattention. In Proceedings of the 29th Symposium on Operating Systems Principles, pp. 611–626,
2023.

Nathan Lambert, Jacob Morrison, Valentina Pyatkin, Shengyi Huang, Hamish Ivison, Faeze Brahman, Lester
James V. Miranda, Alisa Liu, Nouha Dziri, Shane Lyu, Yuling Gu, Saumya Malik, Victoria Graf, Jena D.
Hwang, Jiangjiang Yang, Ronan Le Bras, Oyvind Tafjord, Chris Wilhelm, Luca Soldaini, Noah A. Smith,
Yizhong Wang, Pradeep Dasigi, and Hannaneh Hajishirzi. Tülu 3: Pushing frontiers in open language
model post-training. 2024.

Jia LI, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang, Kashif
Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann Fleureau, Guillaume
Lample, and Stanislas Polu. Numinamath dataset and report. https://github.com/project-numina/
aimo-progress-prize/blob/main/report/numina_dataset.pdf, 2024.

15

https://arxiv.org/abs/2407.21783
https://arxiv.org/abs/2103.03874
https://arxiv.org/abs/2103.03874
https://openreview.net/forum?id=thbXgJ8gNK
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf
https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf

Under review as submission to TMLR

Peng Li, Yeye He, Dror Yashar, Weiwei Cui, Song Ge, Haidong Zhang, Danielle Rifinski Fainman, Dongmei
Zhang, and Surajit Chaudhuri. Table-GPT: Table-tuned GPT for Diverse Table Tasks, October 2023.

Wei Liu, Weihao Zeng, Keqing He, Yong Jiang, and Junxian He. What makes good data for alignment?
a comprehensive study of automatic data selection in instruction tuning. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?id=BTKAeLqLMw.

Shayne Longpre, Le Hou, Tu Vu, Albert Webson, Hyung Won Chung, Yi Tay, Denny Zhou, Quoc V. Le,
Barret Zoph, Jason Wei, and Adam Roberts. The flan collection: Designing data and methods for effective
instruction tuning, 2023.

Ilya Loshchilov and Frank Hutter. Online batch selection for faster training of neural networks. arXiv
preprint arXiv:1511.06343, 2015.

Keming Lu, Hongyi Yuan, Zheng Yuan, Runji Lin, Junyang Lin, Chuanqi Tan, Chang Zhou, and Jingren
Zhou. #InsTag: Instruction Tagging for Analyzing Supervised Fine-tuning of Large Language Models.
2023. URL https://openreview.net/forum?id=pszewhybU9.

Ziyang Luo, Can Xu, Pu Zhao, Qingfeng Sun, Xiubo Geng, Wenxiang Hu, Chongyang Tao, Jing Ma, Qingwei
Lin, and Daxin Jiang. Wizardcoder: Empowering code large language models with evol-instruct, 2023.

Max Marion, Ahmet Üstün, Luiza Pozzobon, Alex Wang, Marzieh Fadaee, and Sara Hooker. When less is
more: Investigating data pruning for pretraining llms at scale. arXiv preprint arXiv:2309.04564, 2023.

Sören Mindermann, Muhammed Razzak, Mrinank Sharma, Jan M. Brauner, Winnie Xu, Andreas Kirsch,
Aidan Gomez, Benedikt Höltgen, Sebastian Farquhar, and Yarin Gal. Prioritized training on points that
are learnable, worth learning, and not yet learned, 2022. URL https://openreview.net/forum?id=
Y0cGpgUhSvp.

Guilherme Penedo, Quentin Malartic, Daniel Hesslow, Ruxandra Cojocaru, Alessandro Cappelli, Hamza
Alobeidli, Baptiste Pannier, Ebtesam Almazrouei, and Julien Launay. The refinedweb dataset for falcon
llm: outperforming curated corpora with web data, and web data only. arXiv preprint arXiv:2306.01116,
2023.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer.
Journal of machine learning research, 21(140):1–67, 2020.

Nazneen Rajani, Lewis Tunstall, Edward Beeching, Nathan Lambert, Alexander M. Rush, and Thomas Wolf.
No robots. https://huggingface.co/datasets/HuggingFaceH4/no_robots, 2023.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimization towards
training A trillion parameter models. CoRR, abs/1910.02054, 2019. URL http://arxiv.org/abs/1910.
02054.

David Rein, Betty Li Hou, Asa Cooper Stickland, Jackson Petty, Richard Yuanzhe Pang, Julien Dirani,
Julian Michael, and Samuel R. Bowman. Gpqa: A graduate-level google-proof q&a benchmark, 2023.
URL https://arxiv.org/abs/2311.12022.

Noveen Sachdeva, Benjamin Coleman, Wang-Cheng Kang, Jianmo Ni, Lichan Hong, Ed H. Chi, James
Caverlee, Julian McAuley, and Derek Zhiyuan Cheng. How to train data-efficient llms, 2024. URL
https://arxiv.org/abs/2402.09668.

Keita Saito, Akifumi Wachi, Koki Wataoka, and Youhei Akimoto. Verbosity bias in preference labeling by
large language models. arXiv preprint arXiv:2310.10076, 2023.

Shivalika Singh, Freddie Vargus, Daniel Dsouza, Börje F. Karlsson, Abinaya Mahendiran, Wei-Yin Ko,
Herumb Shandilya, Jay Patel, Deividas Mataciunas, Laura OMahony, Mike Zhang, Ramith Hettiarachchi,
Joseph Wilson, Marina Machado, Luisa Souza Moura, Dominik Krzemiński, Hakimeh Fadaei, Irem Ergün,

16

https://openreview.net/forum?id=BTKAeLqLMw
https://openreview.net/forum?id=pszewhybU9
https://openreview.net/forum?id=Y0cGpgUhSvp
https://openreview.net/forum?id=Y0cGpgUhSvp
https://huggingface.co/datasets/HuggingFaceH4/no_robots
http://arxiv.org/abs/1910.02054
http://arxiv.org/abs/1910.02054
https://arxiv.org/abs/2311.12022
https://arxiv.org/abs/2402.09668

Under review as submission to TMLR

Ifeoma Okoh, Aisha Alaagib, Oshan Mudannayake, Zaid Alyafeai, Vu Minh Chien, Sebastian Ruder, Surya
Guthikonda, Emad A. Alghamdi, Sebastian Gehrmann, Niklas Muennighoff, Max Bartolo, Julia Kreutzer,
Ahmet Üstün, Marzieh Fadaee, and Sara Hooker. Aya dataset: An open-access collection for multilingual
instruction tuning, 2024.

Ben Sorscher, Robert Geirhos, Shashank Shekhar, Surya Ganguli, and Ari Morcos. Beyond neural scaling
laws: beating power law scaling via data pruning. Advances in Neural Information Processing Systems,
35:19523–19536, 2022.

Zayne Sprague, Xi Ye, Kaj Bostrom, Swarat Chaudhuri, and Greg Durrett. Musr: Testing the limits of
chain-of-thought with multistep soft reasoning, 2024. URL https://arxiv.org/abs/2310.16049.

Mirac Suzgun, Nathan Scales, Nathanael Schärli, Sebastian Gehrmann, Yi Tay, Hyung Won Chung,
Aakanksha Chowdhery, Quoc V. Le, Ed H. Chi, Denny Zhou, and Jason Wei. Challenging big-bench
tasks and whether chain-of-thought can solve them, 2022. URL https://arxiv.org/abs/2210.09261.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya Pathak,
Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open models based on
gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Yubo Wang, Xueguang Ma, Ge Zhang, Yuansheng Ni, Abhranil Chandra, Shiguang Guo, Weiming Ren,
Aaran Arulraj, Xuan He, Ziyan Jiang, Tianle Li, Max Ku, Kai Wang, Alex Zhuang, Rongqi Fan, Xiang
Yue, and Wenhu Chen. Mmlu-pro: A more robust and challenging multi-task language understanding
benchmark, 2024. URL https://arxiv.org/abs/2406.01574.

Can Xu, Qingfeng Sun, Kai Zheng, Xiubo Geng, Pu Zhao, Jiazhan Feng, Chongyang Tao, and Daxin
Jiang. Wizardlm: Empowering large language models to follow complex instructions. arXiv preprint
arXiv:2304.12244, 2023.

An Yang, Baosong Yang, Beichen Zhang, Binyuan Hui, Bo Zheng, Bowen Yu, Chengyuan Li, Dayiheng Liu,
Fei Huang, Haoran Wei, Huan Lin, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Yang, Jiaxi Yang,
Jingren Zhou, Junyang Lin, Kai Dang, Keming Lu, Keqin Bao, Kexin Yang, Le Yu, Mei Li, Mingfeng
Xue, Pei Zhang, Qin Zhu, Rui Men, Runji Lin, Tianhao Li, Tingyu Xia, Xingzhang Ren, Xuancheng Ren,
Yang Fan, Yang Su, Yichang Zhang, Yu Wan, Yuqiong Liu, Zeyu Cui, Zhenru Zhang, and Zihan Qiu.
Qwen2.5 technical report. arXiv preprint arXiv:2412.15115, 2024.

Wenting Zhao, Xiang Ren, Jack Hessel, Claire Cardie, Yejin Choi, and Yuntian Deng. Wildchat: 1m chatGPT
interaction logs in the wild. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=Bl8u7ZRlbM.

Yingxiu Zhao, Bowen Yu, Binyuan Hui, Haiyang Yu, Fei Huang, Yongbin Li, and Nevin L Zhang.
A preliminary study of the intrinsic relationship between complexity and alignment. arXiv preprint
arXiv:2308.05696, 2023.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric P Xing, et al. Judging llm-as-a-judge with mt-bench and chatbot arena,
arxiv abs/2306.05685 (2023). URL: https://api. semanticscholar. org/CorpusID, 259129398, 2023.

Jeffrey Zhou, Tianjian Lu, Swaroop Mishra, Siddhartha Brahma, Sujoy Basu, Yi Luan, Denny Zhou, and
Le Hou. Instruction-following evaluation for large language models, 2023. URL https://arxiv.org/abs/
2311.07911.

17

https://arxiv.org/abs/2310.16049
https://arxiv.org/abs/2210.09261
https://arxiv.org/abs/2406.01574
https://openreview.net/forum?id=Bl8u7ZRlbM
https://arxiv.org/abs/2311.07911
https://arxiv.org/abs/2311.07911

Under review as submission to TMLR

A Experimental Setup Details

Training Data Mixture: We use a stratified subsample of 100k examples from the recent Tulu 3 SFT
Mix(Lambert et al., 2024) containing 15 datasets across diverse tasks and domains. These include FLAN
v2 (Longpre et al., 2023), No Robots (Rajani et al., 2023), OpenAssistant (Köpf et al., 2023), Tulu 3 Persona
MATH, Tulu 3 Persona GSM, Tulu 3 Persona Python, Tulu 3 Persona Algebra, Tulu 3 Persona IF (Lambert
et al., 2024), NuminaMath-TIR (LI et al., 2024), Aya (Singh et al., 2024), WildChat GPT-4 (Zhao et al.,
2024), TableGPT (Li et al., 2023), SciRIFF (Köpf et al., 2023), Evol CodeAlpaca (Luo et al., 2023). Using
10% of the full mixture allows us to perform rigorous experimentation across multiple models while requiring
reasonable amount of compute, allowing for reproducibility by future research. Further, (Lambert et al.,
2024) showed minimal average performance drop even with a 5% subset of the Tulu 3 mixture.

Training and Evaluation Setup: We use the same training setup and code base proposed by (Lambert
et al., 2024). We perform full parameter training for two epochs with an effective batch size of 128, a learning
rate (LR) of 5e − 06 using a linear LR scheduler with a 3% warmup ratio. We set the maximum sequence
length to 2048. All models were trained on 8 NVIDIA H100 GPUs using FlashAttention 2 (Dao, 2024) and
DeepSpeed Zero-Stage 3 (Rajbhandari et al., 2019). For models larger than 20B we use the 32bit paged
Adam optimizer. We provide the full training setup in our public repository3. We evaluate our models
using the Open LLM Leaderboard 2 (Fourrier et al., 2024) tasks. It addresses performance saturation issues
from the earlier version (Beeching et al., 2023) by introducing harder and less contaminated benchmarks.
This update enables more meaningful evaluation result, particularly for recent LLMs which is crucial for our
experiment. It includes IFEval (Zhou et al., 2023), BBH (Suzgun et al., 2022), MATH LvL 5 (Hendrycks
et al., 2021), GPQA (Rein et al., 2023), MuSR (Sprague et al., 2024), and MMLU-PRO (Wang et al., 2024).
We ensure reproducibility by using the same lm-evaluation-harness (Gao et al., 2021) version and report the
average normalized scores across all benchmarks as in (Fourrier et al., 2024).

Methods and Baselines: Similar to Marion et al. (2023), we train models on 10%, 30%, and 50% of the
data from the bottom, middle, and top segments of the per-example perplexity distribution. For instance, to
create a 10% middle subsample, we select examples between the 45th and 55th percentiles. For each subset
size, we create two datasets one using the overall perplexity distribution of the mixture and the other using
the per-dataset perplexity distribution. To select data, we use either the pre-trained version of the target
model as a reference, or checkpoints of the same model trained on same subset at different train iteration.
Specifically, we select data using checkpoints at 0.25, 0.5, 1, and 2 epochs. When using the pre-trained model
as reference, we use a simple chat template proposed by (Lambert et al., 2024) to encode the chat data,
where we prepend each turn content with its role (e.g., “User: ”) and separate the turn with a new line. This
allows us to avoid adding special tokens to the tokenizer which will require resizing the model’s embedding
layer. We compare the methods to various baselines where we train the same pre-trained model on: (1) the
full data mixture (100%), (2) a random subset of the same size (Random), (3) and a random subset drawn
uniformly for each dataset (Uniform). For the random and uniform baselines, show the average performance
across the two random seeds (123, and 42) and report the standard error.

Models: To better study the impact of the perplexity-based data selection across different model char-
acteristics, and to ensure that our findings are generalizable, we use a diverse set of models. Specifically,
we use different model families including including Llama3.1 (L3.1), Llama3.2 (L3.2), Qwen2.5 (Q2.5), and
Gemma2 (G2). This allows us to study how pre-training factors, such as the pre-training data composition
and training setting affect the data selection performance. Further, we compare our models a cross different
models sizes ranging from 0.5B to 32B parameters, to study the influence of model size. In total, we trained
8 models each with 31 different training configurations, resulting in 248 training runs for this experiment.

3Available after double-blind review.

18

Under review as submission to TMLR

B Method Details

Algorithm 1 Spaced Scheduling Training (Sst)
Require: θ: initial model parameters; D = {D1, . . . , Dd}: collection of d datasets; tmax: maximum training iterations; kw ∈ (0, 1]:

warm-up slope window ratio; rw: maximum warm-up slop evaluation retry count. ρs ∈ (0, 1]: global subset ratio; τ ∈ (0, 1]:
window-shift ratio; ε > 0: slope threshold for loss slop evaluation;

Ensure: Updated model parameters θ.

1: Algorithm: SST(θ,D, tmax, ρs, τ, ε, rw, kw)

2: Warm-up phase
3: θ, tw ←WarmUp(θ,D, tmax, rw)

4: Adaptive Scheduling Phase
5: k ← tw/tmax
6: P ← ComputePPL(D) ▷ Compute per-example perplexities PPL(e) for each example e ∈ D
7: Compute βd for each dataset Dd using Equation 2
8: P

ref
d ← 50 for each dataset Dd ▷ Initialize window reference to the 50th percentile

9: D′ ← SelectPerDatasetSubset(D, ρs, {βd}, {P ref
d })

10: Initialize loss buffer Lbuf ← [] (capacity ⌊k · tmax⌋)
11: ▷ Main training loop
12: for t = tw + 1 to tmax do
13: θ, LB , P ← TrainStep

(
θ, SampleBatch(D′)

)
▷ Train model on a batch, and update perplexities

14: Append LB to Lbuf
15: if |Lbuf| = ⌊k · tmax⌋ then
16: slope← ComputeSlope(Lbuf) ▷ e.g., via simple linear regression
17: Clear Lbuf
18: ▷ 1) Recompute dataset mixing ratios
19: Update βd for each dataset Dd using Equation 2
20: ▷ 2) Decide if window shifts to harder or easier examples
21: if |slope| < ε then
22: P ref

d ← min
(

P ref
d × (1 + τ), 100− βd×100

2

)
▷ Loss is decreasing, shift to more complex examples

23: else if |slope| > ε then
24: P ref

d ← max
(

P ref
d × (1− τ),

βd×100
2

)
▷ Loss is increasing, shift to easier examples

25: else
26: no change to P ref

d ▷ Loss is stable, keep the current window
27: end if
28: ▷ 3) Select updated subset based on new mixing ratios and reference perplexity percentiles
29: D′ ← SelectPerDatasetSubset(D, ρs, {βd}, {P ref

d })
30: end if
31: end for
32: return θ ▷ Final trained model parameters

33: function WarmUp(θ,D, tmax, rw, kw)
34: tw ← 0
35: r ← 0
36: Initialize a loss buffer Lbuf ← [] (capacity ⌊kw · tmax⌋)
37: while retry < rw do
38: θ, LB ← TrainStep

(
θ, UniformSample(D)

)
39: Append LB to Lbuf
40: if |Lbuf| = ⌊kw · tmax⌋ then
41: slope← ComputeSlope(Lbuf)
42: Clear Lbuf
43: if −ε ≤ slope ≤ ε then ▷ Loss stabilized
44: break ▷ End warm-up early
45: end if
46: end if
47: tw ← tw + 1
48: r ← r + 1
49: end while
50: return θ, tw

51: end function

52: function SelectPerDatasetSubset(D, ρs, {βd}, {P ref
d })

53: for d = 1 to m do
54: Plow ← P ref

d − βd×100
2 , P high← P ref

d + βd×100
2

55: D′
d ← { e ∈ Dd : Plow ≤ PPL(e) ≤ Phigh} ▷ Keep examples whose perplexities fall within [low, high]-th percentile

56: end for

57: D′ ←
m⋃

d=1

D′
d

58: return D’
59: end function

19

Under review as submission to TMLR

Table 4: Overview of SST-specific hyper-parameters. Values are based on empirical observations (§3).
Generic hyper-parameters (e.g., tmax or ρs) common to data filtering methods are omitted.

Description Purpose Value

kw Slope eval window size (fraction of tmax). Balances early loss trend detection. 0.1
rw Warm-up maximum loss eval retry count. Prevents overly long warm-up phase. 3
τ Selection window shift ratio (fraction of tmax). Trades off between adaptability and stability . 0.1
ϵ Threshold to handle instability in slope evaluation. Ensures robustness to typical loss fluctuations. 10−3

C Overhead

C.1 Wall-Clock Time Comparison

In this section, we present empirical measurements of the overhead introduced by Sst compared to random
sampling. We use the 100k dataset described in Section 3. For random sampling, we train on all 100k
examples, whereas for SST, we select a 30k subset out of the same 100k examples and train on that subset
following the same training setup as in Section 3. To quantify the overhead, we define the wall-clock time
for each method as T (·) and estimate the relative overhead ratio

Toverhead = T (ΠSST30k
) − T (Πrand30k

)
T (ΠSST30k

) , (6)

where T (ΠSST30k
) is the measured time to train using Sst on the 30k subset, and T (Πrand30k

) =
0.3T (Πrand100k

) is the time taken by random sampling on 30k examples. We approximate T (Πrand30k
)

by scaling down the measured 100k run time, assuming per-example costs remain roughly constant.

Table 5: Wall-clock time comparison between Sst and random sampling on different model sizes. Although
Sst introduces evaluation overhead, the overall time reduction remains substantial because of the smaller
training subset (30k vs. 100k). The values are averaged over 3 runs, and the standard error is shown.

Time (hrs)
Method Num GPUs Random 100k Sst Sst Overhead
Q2.5-0.5B 8 2.15 ± 0.05 1.20 ± 0.07 40%
L3.1-8B 8 2.70 ± 0.06 2.10 ± 0.04 60%
Q2.5-32B 8 36.70 ± 0.01 16.80 ± 0.03 34%

Table 5 compares the training times on 100k examples (random sampling) versus Sst on a 30k subset.
Although the overhead of evaluating and filtering the data is significant, the training time reduction is
substantial: for instance, training Q2.5-32B is reduced from 36.7 hours to 16.8 hours on our hardware. These
numbers are highly dependent on hardware configuration and implementation details, but they provide a
rough estimate of SST’s overall savings. On a multi-node setup, this overhead may increase due to additional
communication costs required to synchronize tensor updates across nodes, but the exact impact will vary
based on specific infrastructure and networking capabilities (e.g., whether InfiniBand is used).

C.2 Optimized Inference

This sections describes the experimental setup used to analyze how inference-optimized backends, such as
vLLM, can reduce the overhead introduced by SST, as presented in §4.2. The experiments follow the same
setup detailed in §3. However, we restrict the models to the ones from the Qwen 2.5 family to ensure
a consistent comparison across different settings. To evaluate the improvement, we track any additional
overhead introduced by Sst during training. To use vLLM (Kwon et al., 2023), we implemented a custom
training loop based on (Lambert et al., 2024) where, we pause training, save the training state (model,
optimizer, dataloader, etc.), unload the model and optimizer to free GPU memory, and then evaluate the
100k dataset with vLLM. Once evaluation is complete, the training state is reloaded to resume training.

20

Under review as submission to TMLR

This approach introduces overhead from saving and loading the trainer state that is non-negligible for large
model states, but it is used solely for this analysis and not in the main experiments in §5. We evaluated
vLLM with Bfloat16, 8-bit, and 4-bit precision, using the results to Bfloat16 without vLLM as comparison
reference. The findings are presented in Figure 5.

D Detailed Analysis on Static Perplexity Sampling

We start by introducing results on the effectiveness and limitations of static perplexity-based data selection
in IFT. These findings motivate and lay the groundwork for our proposed adaptive method, introduced in
§4.

The work of Marion et al. (2023) demonstrates that simple perplexity-based data selection outperforms
more complex metrics. However, that analysis is limited to pre-training, with no comment on its broader
applicability to downstream tasks. Additionally, their study was limited to two models (124M and 1.5B
parameters), leaving open questions about the generality of these findings across different model sizes and
architectures (e.g., Llama vs. Gemma). Building on their methodology, we extend the analysis with several
key distinctions: IFT Setting: We investigate perplexity-based data selection in the context of IFT rather
than pre-training. Target Model as Reference: We don’t rely on external reference models and use the
target model to guide the selection of its training data. Broad Analysis Scope: We evaluated models
ranging from 0.5B to 32B parameters across three state-of-the-art architectures, offering a significantly
broader evaluation than the two models used in Marion et al. (2023). Through this analysis, we aim to
address the following key questions:

• Performance and Consistency: Does perplexity-based data selection perform well in the IFT
setting, and how does its effectiveness vary across model sizes and architectures?

• Impact of Training on Selection Performance: Does the performance of perplexity-based data
selection improve with training?

• Selection Criteria Across Training Stages: Is the criteria for selecting data based on perplexity
consistent throughout training, or does it need to be adapted to achieve consistent performance?

D.1 Experimental Setup

We conduct experiments using a stratified 100k subsample of the Tulu 3 SFT Mix dataset (Lambert et al.,
2024), which spans 15 diverse and recent datasets (e.g., No Robots (Rajani et al., 2023), Aya (Singh et al.,
2024), NuminaMath-TIR (LI et al., 2024)). We chose this subsample to allow for rigorous experimentation
given the computational resources available, while ensuring it represents the full mixture, informed by the
sampling analysis in (Lambert et al., 2024). We use models from different architectures (Llama3.1 (Grattafiori
et al., 2024), Llama3.2 (Grattafiori et al., 2024), Qwen2.5 (Yang et al., 2024), and Gemma2 (Team et al.,
2024)), ranging from 0.5B to 32B parameters to better understand the impact of different model charac-
teristics (e.g., pre-training data composition, size) on perplexity-based data selection performance. We use
full-parameter training for two epochs using the setup proposed by (Lambert et al., 2024). We assess per-
formance on the newer Open LLM Leaderboard 2 (Fourrier et al., 2024), which includes more challenging
benchmarks compared to the earlier version (Beeching et al., 2023), including IFEval (Zhou et al., 2023),
BBH (Suzgun et al., 2022), MATH LvL 5 (Hendrycks et al., 2021), GPQA (Rein et al., 2023), MuSR (Sprague
et al., 2024), and MMLU-PRO (Wang et al., 2024). We provide detailed data, training, evaluation, and data
selection setups in Appendix A, and in subsequent sections, provide the methods and baselines used to
address each key questions outlined above.

D.2 Performance and Consistency

This section investigates the effectiveness of static perplexity-based data selection for IFT across diverse
models architectures and sizes. The primary objective is to assess the effectiveness of static perplexity-based
selection for IFT and to analyze how its impact changes with model size and pre-training characteristics.

21

Under review as submission to TMLR

Methods: For this analysis we consider four data selection strategies. Random: from (1) the full 100k
mixture or (2) per-dataset (Random, Random Per-Dataset). Static perplexity-based: from the bottom,
middle, and top segments of (3) the overall mixture (Keep Bottom, Keep Middle, Keep Top) or (4) per-
dataset (Keep Bottom Per-Dataset, Keep Middle Per-Dataset, Keep Top Per-Dataset). For each method,
we select subsets of 10%, 30%, and 50% of the full 100k mixture, following (Marion et al., 2023). Given
the large-scale nature of our experiments (248 training runs), we limit the evaluation of random selection
strategies to two independent runs with different seeds (123 and 42)—shown to be effective by (Lambert
et al., 2024). This maintains computational practicality while still capturing some measure of variance. Each
method is compared against the full 100k data mixture baseline using its average score across all benchmarks
(§D.1). Baseline: We contrast the above strategies against a baseline that uses the full 100k data mixture
(100%). Models: To ensure the generalizability of our findings, we evaluate a diverse set of models varying
in size, pre-training data composition, and architectural design. Specifically, we use Qwen2.5 0.5B, Llama3.2
1B, Llama3.2 3B, Llama3.1 8B, Gemma2 9B, Qwen2.5 14B, Gemma2 27B, and Qwen2.5 32B. We selected
these models to study the impact of unique model characteristics on static perplexity-based data selection
performance. In total, we trained 8 models, each with 31 different training configurations, resulting in 248
training runs for this experiment alone.

0.5 1 14 273 328 9

-30%
-25%
-20%
-15%
-10%
-5%
0%
5%

10%
15%

R
el

at
iv

e
Pe

rf
or

m
an

ce
 C

ha
ng

e
R

(%
)

Random Per-Dataset

0.5 1 14 273 328 9

Keep Bottom Per-Dataset

0.5 1 14 273 328 9

Keep Middle Per-Dataset

0.5 1 14 273 328 9

Keep Top Per-Dataset

Subset Size
10k
30k
50k

Model Size (B)Model Size (B)Model Size (B)Model Size (B)

Figure 6: Performance of static per-dataset perplexity sampling: Middle-segment tends to improve smaller
models (<8B), while top-segment benefits larger models (e.g., Qwen2.5-32B). Only certain static perplexity-
based configurations surpass the baselines, motivating the adaptive approach we introduce later. Relative
performance change ∆R is calculated as ∆R = (Smethod −Sbaseline)/Sbaseline, where Smethod and Sbaseline are
the average Open LLM Leaderboard score of the method’s and 100% baseline. Points below the red dashed
line indicate performance drops compared to baseline. Error bars represents standard error over two seeds.

Figure 6 shows the strongest-performing baseline, Random Per-Dataset with the top-performing static
perplexity-based strategies: Keep Bottom Per-Dataset, Keep Middle Per-Dataset, and Keep Top Per-
Dataset. Full results, including all methods and baselines, and per-benchmark results, are detailed in
Appendix F. The relative performance change ∆R is calculated as:

∆R = Smethod − Sbaseline

Sbaseline
(7)

where Smethod and Sbaseline are the average Open LLM Leaderboard score of the method’s and the baseline
respectively. This metric allows consistent evaluation across models with varying baseline performance.
These results highlight several key insights:

Heuristic-based data selection is insufficient for consistent performance. Some models, even
with naive random selection, outperform the 100% baseline, indicating that while the extensive heuristic
and empirical-based approach of Lambert et al. (2024) is effective, further refinements could yield even
greater performance gains simply by optimizing training resource allocation. It also suggests opportunities
to enhance computational efficiency, reduce training costs, and improve scalability for larger models.
Dataset-aware selection produces the best results. Per-dataset selection consistently outperforms
full-mix sampling across all models for both the random baseline and perplexity-based strategies. This effect

22

Under review as submission to TMLR

0.5 1 273 328 9

-30%
-25%
-20%
-15%
-10%
-5%
0%
5%

10%
15%

R
el

at
iv

e
Pe

rf
or

m
an

ce
 C

ha
ng

e
R

(%
)

Random

0.5 1 273 328 9

Keep Bottom

0.5 1 273 328 9

Keep Middle

0.5 1 273 328 9

Keep Top

Subset Size
10k
30k
50k

Model Size (B)Model Size (B)Model Size (B)Model Size (B)

Figure 7: Performance of static perplexity sampling compared to random selection from all the mixutre.
Relative performance change ∆R is calculated as ∆R = (Smethod − Sbaseline)/Sbaseline, where Smethod and
Sbaseline are the average Open LLM Leaderboard score of the method’s and 100% baseline. Points below
the red dashed line indicate performance drops compared to the baseline, and error bars show the standard
error over two random seeds.

is particularly evident in varied-complexity datasets like ours, where FLAN v2 examples are easier than more
reasoning-intensive tasks such as NuminaMath. This issue is amplified when selecting from the overall mix
using a complexity-aware method, like DEITA, InsTag, or static perplexity-based strategies, as they skew
the subset toward harder examples. However, IFT models require exposure to a diverse range datasets or
domains, including easier ones, and dataset-aware sampling preserves this balance.
Static perplexity sampling improves on baseline but lacks consistency. In Figure 6, we observe that
keeping the bottom segment consistently underperforms naive random selection, suggesting that the most
useful data lies in the top 50% of the perplexity distribution. This is likely due to data leakage (Lambert
et al., 2024), where models may have encountered these examples during pre-training, which could explain
why the effect is more pronounced in some models (e.g., Llama3.2 1B and 3B) than others. Another possible
explanation is that modern LLMs, like those in our study, are more capable due to training on trillions of
tokens (Yang et al., 2024). In both cases, training compute is allocated inefficiently leading to suboptimal
performance. In contrast, per-dataset middle-segment selection tends to improve performance for models
smaller than 14B parameters, while keeping the top segment benefits larger models, such as, Qwen2.5-32B,
which matches the performance of the 100% baseline using only 10% of the data. However, for models smaller
than 27B, Random Per-Dataset remains a strong baseline, suggesting that static perplexity sampling alone
is insufficient for consistent performance. Moreover, the best-performing configuration varies across models
and subset sizes, highlighting the need for an adaptive data selection strategy for robust results.

D.3 Impact of Training on Selection Performance

The work of Marion et al. (2023) showed that data selection performance improves with better reference
models, either larger in size or trained on better data. In this section, we investigate whether similar behavior
occurs when using the target model as the reference as it trains on more data. Specifically, we aim to identify
when in the training process data selection performance peaks and how it evolves with additional training.

Methods: We select three models (Qwen2.5-0.5B, Llama3.1-8B, and Qwen2.5-32B) and use the perplexity
sampling configurations from the previous section: Keep Top Per-Dataset for Qwen2.5-32B and Keep Middle
Per-Dataset for the other two models. We first train each model on data randomly sampled per dataset,
following the best-performing random strategy from the previous section (Random Per-Dataset). At specific
points during the two-epoch training process (5%, 10%, 15%, 25%, 50%, and 75%), we compute the perplexity
values and apply perplexity sampling to select 30% of the 100k dataset. We then continue training the model
for the remaining iterations to complete two full epochs. For each method, we conduct two runs with different
random seeds (123, 42), and report the average score and standard error across the runs. Baseline: We

23

Under review as submission to TMLR

use results from the previous experiment, where we selected 30% of the 100k mixture using the pre-trained
model as the reference at the start of training. Figure 3 shows the results of this analysis.

0% 15% 25% 50% 75%

-20%

-10%

0%

10%

20%

R
el

at
iv

e
Pe

rf
or

m
an

ce
 C

ha
ng

e
R

(%
)

Qwen2.5-0.5B

0% 15% 25% 50% 75%

Llama3.1-8B

0% 15% 25% 50% 75%

Qwen2.5-32B

Perplexity Sampling Start Iteration (%)

Figure 8: Performance of Delaying Perplexity-Based Data Selection. Delaying perplexity sampling improves
performance up to a threshold that varies by model and generally decreases with model size. Smaller model
(e.g., Qwen2.5-0.5B) benefit from a longer delay (25% of training), while larger models (e.g., Qwen2.5-32B)
degrade as early as 10%. Relative performance change (∆R) is calculated as in the previous experiment,
but with Sbaseline representing performance without delay (using the pre-trained model for data selection).
Results show mean scores and standard error across two runs with different random seeds.

Data selection performance does not always improve with training. As shown in Figure 3, per-
formance improves when perplexity sampling is delayed to a certain point in training but degrades beyond
this threshold, which varies across models we tested and generally decreases with model size. For instance,
Qwen2.5-0.5B benefits from delaying selection until 25% of the training process, while Qwen2.5-32B starts
to degrade as early as 10%. Llama3.1-8B and Qwen2.5-32B exhibit significant performance drops after the
performance peak, with Qwen2.5-32B being particularly affected. Our analysis (Figure 10) attributes this
behavior to changes in the perplexity distribution. For Llama3.1-8B, the distribution becomes heavy-tailed
as the model trains on more data, which shifts focus toward overly challenging examples. For Qwen2.5-32B,
the distribution becomes narrower and skews toward the top segment, emphasizing overly complex (e.g.,
Table 6) and noisy examples (e.g., Table 7). In contrast, Qwen2.5-0.5B is less influenced by these distribu-
tional changes as we show in Figure 10, where the distribution remains relatively stable, explaining why it
benefits from a longer delay in perplexity-based selection. We also observe that these changes also aligns
approximately with major trends changes in the overall training loss (Figure 10) that we describe in more
details in §4. These findings suggest that an adaptive data selection strategy, which delays perplexity-based
selection to an optimal point that varies by model, is essential for achieving consistent performance.

D.4 Selection Criteria Across Training Stages

In this section, we investigate whether using different segments of the perplexity distribution at various
training stages can improve the final performance of perplexity-based data selection. The goal is to determine
if modulating the selection window is necessary to achieve consistent performance.

Methods: For this experiment, we use Llama3.1-8B and Qwen2.5-32B and compare the performance of the
best and second-best static perplexity sampling configuration from the previous section. We use Keep Middle
and Bottom Per-Dataset for Llama3.1-8B, and Keep Top and Middle Per-Dataset for Qwen2.5-32B. We omit
Qwen2.5-0.5B from this analysis, as its performance variation does not show meaningful comparisons.

The best perplexity distribution segment varies during training. Figure 2 shows that using dif-
ferent perplexity segments at different training stages affects performance. For example, both Qwen2.5-32B
and Llama3.1-8B benefit from starting with easier examples (i.e., using a lower perplexity segment) before
transitioning to more challenging examples. When contrasting this behavior in Figure 2 to the performance
peaks observed in Figure 3, we find that these transitions align approximately with the performance peaks.
Our analysis suggests that using easy examples earlier in training (i.e., lower perplexity segments) stabilizes
learning by allowing enough training iterations to adapt to the data distribution shift that occurs early in
training before handling more complex examples effectively. This aligns with early research on curriculum
learning (Bengio et al., 2009), which demonstrated that starting with easier examples can enhance learning

24

Under review as submission to TMLR

0% 25% 50% 75% 100%
0%

20%

40%

60%

R
el

at
iv

e
Pe

rf
or

m
an

ce
 C

ha
ng

e
R

(%
)

Keep Bottom Per-Dataset
Keep Middle Per-Dataset

Llama3.1-8BLlama3.1-8B

0% 25% 50% 75% 100%

Keep Top Per-Dataset
Keep Middle Per-Dataset

Qwen2.5-32BQwen2.5-32B

Train Iteration Fraction of a 2 Epoch Training (%)

Figure 9: Effect of Perplexity Segments on Training Performance. Both Qwen2.5-32B and Llama3.1-8B ben-
efit from starting with easier examples (lower perplexity segments) before transitioning to more challenging
examples (higher perplexity segments). This finding aligns with early curriculum learning work (Bengio
et al., 2009). Here we see that starting with simpler examples stabilizes early training by accommodating
the data distribution shift typical in early IFT, before learning from more complex examples effectively. The
figure compares of the best and second-best static perplexity sampling configuration from the previous ex-
periment. Relative performance change (∆R) is calculated as in the previous experiment, but with Sbaseline
representing performance of the pre-trained model (i.e., no training). Results show mean scores and standard
error across two runs with different random seeds.

efficiency. These results raise the question of whether an adaptive selection strategy, capable of modulat-
ing the selection window dynamically, can offset the initial performance drop and perhaps improve final
performance (we show in Table 1 that it does).

25

Under review as submission to TMLR

0% 15% 25% 50% 75%

-20%

-10%

0%

10%

20%

R
el

at
iv

e
Pe

rf
or

m
an

ce
 C

ha
ng

e
R

(%
)

Qwen2.5-0.5B

0% 15% 25% 50% 75%

Llama3.1-8B

0% 15% 25% 50% 75%

Qwen2.5-32B

Perplexity Sampling Start Iteration (%)

(a)

0% 15% 25% 50% 75%
Progress

0.6

0.8

1.0

1.2

1.4

Lo
ss

Q2.5-0.5B (EMA)

0% 15% 25% 50% 75%
Progress

0.6

0.8

1.0

1.2

1.4

Lo
ss

L3.1-8B (EMA)

0% 15% 25% 50% 75%
Progress

0.6

0.8

1.0

1.2

1.4

Lo
ss

Q2.5-32B (EMA)

(b)

100
0.0
0.2
0.4
0.6
0.8
1.0
1.2

De
ns

ity

Qwen2.5-0.5BQwen2.5-0.5B

100 101

Llama3.1-8BLlama3.1-8B

100 101 102

Qwen2.5-32B

0%
25%
50%
75%

0%
25%
50%
75%

Perplexity (log scale)

(c)

Figure 10: Effect of delaying perplexity sampling on model learning. Performance peaks (a) approximately
when the loss begins to flatten (b). Further delay in perplexity sampling degrades performance due to a long-
tail perplexity distribution, causing the subset to include disproportionately many complex or noisy examples
(high perplexity). (a) Repeats Figure8 for easy comparison of training loss and distribution behaviors. (b)
Displays overall training loss over time. (c) Shows perplexity distribution at different training iterations.

26

Under review as submission to TMLR

E Detailed Results

E.1 Intractable Examples

In this sections, we present examples of intractable examples that represent mislabeled or noisy data that
we identified during our analysis.

27

Under review as submission to TMLR

Table 6: First 50 out of 133 lines from an extremely hard example found during our analysis

Instruction Create a program to evaluate a postfix expression.

Output

Python program to evaluate value of a postfix expression

Class to convert the expression
class Conversion :

Constructor to initialize the class variables
def __init__ (self , capacity):

self.top = -1
self. capacity = capacity
This array is used a stack
self.array = []
Precedence setting
self. output = []
self. precedence = {’+’:1, ’-’:1, ’*’:2, ’/’:2, ’^’:3}

check if the stack is empty
def isEmpty (self):

return True if self.top == -1 else False

Return the value of the top of the stack
def peek(self):

return self.array [-1]

Pop the element from the stack
def pop(self):

if not self. isEmpty ():
self.top -= 1
return self. array.pop ()

else:
return "$"

Push the element to the stack
def push(self , op):

self.top += 1
self.array. append (op)

A utility function to check is the given character
is operand
def isOperand (self , ch):

return ch. isalpha ()

Check if the precedence of operator is strictly
less than top of stack or not
def notGreater (self , i):

try:
a = self. precedence
b = self. precedence
return True if a <= b else False

except KeyError :
return False

28

Under review as submission to TMLR

Table 7: Ambiguous example found during our analysis. The target output contains place holders (_____),
suggesting ChatGPT generated data.

Inst: Gen a summary of an article containing more than 500 words.
Out: The article is about _____. It discusses the subject in depth,
exploring various aspects of the topic. It provides a comprehensive
overview of different perspectives on the topic and presents evidence
to support its conclusions. In conclusion, the article provides a
comprehensive evaluation of _____ by offering a balanced and
unbiased assessment of the subject.

29

Under review as submission to TMLR

Table 8: Performance of static perplexity sampling compared to random selection and 100% baseline for
Qwen2.5-0.5B.

Method Seed Subset ∆R Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Random Per-Dataset 42 0.5 0.12 8.79 1.59 33.05 4.98 2.57 1.76 4.46
Keep Middle 42 0.5 0.06 8.31 1.21 30.01 4.89 4.03 1.43 3.42
Keep Middle Per-Dataset 42 0.5 0.04 8.2 0.98 29.18 6.56 3.02 1.27 4.12
Random Per-Dataset 123 0.5 0.04 8.19 1.36 30.71 7.03 0.56 1.27 4.33
Random Per-Dataset 123 0.3 0.02 8.05 1.59 30.15 5.35 0.89 2.25 5.17
Keep Top 42 0.5 0.01 7.94 0.98 29.61 5.32 1.79 2.02 4.71
Baseline 42 1.0 0.0 7.87 0.91 31.07 5.88 0.22 1.27 4.56
Random 123 0.1 0.0 7.85 1.81 26.59 7.03 1.9 1.92 3.09
Keep Middle Per-Dataset 42 0.3 −0.01 7.76 1.96 25.63 3.9 6.04 1.27 6.22
Random Per-Dataset 42 0.3 −0.03 7.64 0.91 29.09 6.65 0.11 1.43 4.14
Keep Top Per-Dataset 42 0.5 −0.03 7.64 0.91 28.86 6.55 0.45 1.43 4.6
Random 42 0.1 −0.03 7.6 2.04 24.94 6.33 1.9 2.78 3.28
Random 123 0.3 −0.06 7.36 1.28 27.03 5.03 0.56 2.9 6.04
Keep Middle 42 0.3 −0.06 7.42 1.66 26.94 3.69 2.57 2.23 5.64
Random Per-Dataset 42 0.1 −0.06 7.43 1.59 26.09 6.68 1.01 1.76 4.56
Keep Middle 42 0.1 −0.06 7.37 1.66 25.06 5.29 1.68 3.15 2.96
Keep Top Per-Dataset 42 0.3 −0.07 7.32 1.51 25.73 5.99 1.45 1.92 4.57
Keep Top 42 0.3 −0.07 7.29 1.36 27.25 5.7 0.89 1.27 4.5
Keep Bottom 42 0.5 −0.07 7.34 1.36 27.46 6.78 0.0 1.11 5.62
Random 123 0.5 −0.08 7.27 1.44 27.54 5.66 0.0 1.7 3.82
Keep Bottom 42 0.1 −0.08 7.22 2.19 24.75 6.65 0.89 1.6 3.3
Keep Bottom 42 0.3 −0.08 7.21 1.66 26.84 6.43 0.0 1.11 6.09
Keep Top Per-Dataset 42 0.1 −0.08 7.22 2.19 25.41 5.22 1.34 1.92 3.62
Keep Bottom Per-Dataset 42 0.5 −0.08 7.23 0.98 28.49 5.55 0.0 1.11 5.58
Keep Bottom Per-Dataset 42 0.1 −0.08 7.25 1.36 26.97 6.38 0.11 1.43 3.58
Random 42 0.5 −0.09 7.17 1.28 27.27 4.74 1.12 1.43 4.79
Keep Middle Per-Dataset 42 0.1 −0.09 7.19 1.59 24.6 6.67 1.34 1.76 3.97
Keep Bottom Per-Dataset 42 0.3 −0.11 7.03 1.51 26.45 6.24 0.0 0.94 4.22
Random 42 0.3 −0.14 6.79 1.06 25.08 4.75 1.45 1.6 4.23
Random Per-Dataset 123 0.1 −0.15 6.68 1.96 24.78 5.73 0.0 0.94 3.61
Keep Top 42 0.1 −0.16 6.62 0.98 25.36 4.92 0.22 1.6 3.53

Table 9: Performance of static perplexity sampling compared to random selection and 100% baseline for
Llama3.2-1B.

Method Seed Subset ∆R Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Random Per-Dataset 123 0.5 0.08 8.57 0.45 36.29 1.71 0.0 4.39 3.24
Baseline 42 1.0 0.0 7.94 0.45 33.96 1.66 0.0 3.62 4.01
Random Per-Dataset 42 0.5 0.0 7.93 0.38 34.68 1.31 0.0 3.29 4.82
Keep Middle Per-Dataset 42 0.5 0.0 7.92 0.39 34.18 1.49 0.0 3.52 5.01
Keep Bottom 42 0.5 −0.03 7.72 0.38 32.75 1.43 0.0 4.05 4.2
Random 42 0.5 −0.04 7.61 0.3 30.67 1.36 0.0 5.73 3.36
Random Per-Dataset 123 0.3 −0.04 7.65 0.3 33.5 1.45 0.0 3.0 3.13
Keep Bottom Per-Dataset 42 0.5 −0.05 7.55 0.3 34.14 2.15 0.0 1.15 4.72
Random 123 0.5 −0.06 7.43 0.08 34.51 1.68 0.0 0.89 3.3
Keep Middle 42 0.5 −0.07 7.37 0.6 31.82 1.61 0.0 2.81 5.82
Keep Top 42 0.5 −0.08 7.26 0.3 32.16 1.27 0.0 2.59 4.25
Keep Bottom 42 0.3 −0.08 7.29 0.68 30.06 2.43 0.0 3.3 4.45
Keep Top 42 0.3 −0.09 7.25 0.53 31.67 1.22 0.0 2.81 3.54
Keep Middle Per-Dataset 42 0.3 −0.09 7.22 0.43 30.91 1.41 0.0 3.34 3.48
Random Per-Dataset 42 0.3 −0.1 7.13 0.3 31.2 1.14 0.0 3.0 3.12
Random 123 0.3 −0.1 7.16 0.45 32.62 1.44 0.0 1.31 3.34
Keep Bottom Per-Dataset 42 0.3 −0.11 7.04 0.53 30.28 1.93 0.0 2.45 3.82
Keep Middle 42 0.3 −0.14 6.83 0.38 29.19 0.88 0.0 3.7 2.95
Keep Top Per-Dataset 42 0.3 −0.15 6.72 0.15 29.81 1.35 0.0 2.29 3.72
Keep Top Per-Dataset 42 0.5 −0.16 6.69 0.23 30.81 1.23 0.0 1.2 3.44
Random Per-Dataset 123 0.1 −0.17 6.58 0.53 28.14 1.91 0.0 2.32 3.05
Random 42 0.3 −0.18 6.54 0.3 29.6 1.39 0.0 1.43 3.62
Random 42 0.1 −0.19 6.42 0.45 26.66 0.92 0.0 4.05 3.16
Random Per-Dataset 42 0.1 −0.2 6.38 0.53 27.54 1.86 0.0 1.95 2.84
Random 123 0.1 −0.23 6.1 0.6 26.11 1.42 0.0 2.35 2.89
Keep Top 42 0.1 −0.24 6.02 0.53 25.26 1.26 0.0 3.06 2.57
Keep Top Per-Dataset 42 0.1 −0.24 6.07 0.6 25.29 1.38 0.0 3.09 3.44
Keep Bottom Per-Dataset 42 0.1 −0.25 5.93 0.6 26.2 2.11 0.0 0.72 3.97
Keep Bottom 42 0.1 −0.27 5.78 0.38 24.62 1.75 0.0 2.17 2.84
Keep Middle Per-Dataset 42 0.1 −0.28 5.68 0.53 23.17 1.55 0.0 3.14 3.5
Keep Middle 42 0.1 −0.32 5.38 0.38 22.35 1.53 0.0 2.66 3.13

F Additional Results for Static Perplexity Data Selection

In the section we present additional results for the static perplexity-based data selection experiment described
in §3.

30

Under review as submission to TMLR

Table 10: Performance of static perplexity sampling compared to random selection and 100% baseline for
Llama3.2-3B.

Method Seed Subset ∆R Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Keep Middle Per-Dataset 42 0.5 0.02 16.36 1.59 49.13 16.26 3.58 11.24 16.2
Baseline 42 1.0 0.0 16.08 1.44 49.93 15.58 2.01 11.42 16.8
Random Per-Dataset 123 0.3 −0.01 15.86 1.59 49.68 13.99 2.13 11.93 11.38
Random Per-Dataset 42 0.5 −0.02 15.72 1.81 47.03 16.18 2.24 11.32 17.07
Keep Top 42 0.5 −0.02 15.81 1.74 47.84 15.27 3.36 10.82 14.7
Random Per-Dataset 42 0.3 −0.03 15.55 1.5 49.23 13.12 2.13 11.78 11.64
Random Per-Dataset 123 0.5 −0.03 15.6 1.51 49.95 15.91 0.78 9.83 14.98
Keep Middle 42 0.5 −0.06 15.04 1.66 47.84 15.11 1.12 9.46 12.02
Random 42 0.3 −0.07 14.88 1.81 45.02 13.33 4.03 10.21 14.62
Keep Bottom 42 0.5 −0.07 14.93 1.44 47.7 14.44 2.8 8.28 15.6
Keep Top 42 0.3 −0.08 14.72 2.27 47.76 14.94 1.79 6.85 13.94
Keep Bottom Per-Dataset 42 0.5 −0.08 14.8 1.66 47.94 15.87 0.45 8.1 13.53
Random 42 0.5 −0.09 14.62 1.89 47.3 13.31 1.12 9.47 15.52
Keep Top Per-Dataset 42 0.5 −0.09 14.67 1.59 46.54 15.72 2.8 6.72 10.17
Random 123 0.5 −0.1 14.55 1.89 48.31 14.39 1.23 6.91 17.74
Keep Bottom Per-Dataset 42 0.3 −0.12 14.22 1.28 47.04 14.26 2.01 6.5 11.95
Keep Middle 42 0.3 −0.12 14.21 1.74 46.54 10.9 1.45 10.43 13.0
Keep Middle Per-Dataset 42 0.3 −0.13 13.92 1.36 46.1 10.29 3.02 8.85 14.02
Random Per-Dataset 123 0.1 −0.15 13.74 0.91 44.78 11.26 3.02 8.74 10.31
Keep Top Per-Dataset 42 0.3 −0.16 13.54 1.59 44.41 12.01 3.58 6.12 12.49
Keep Bottom 42 0.3 −0.17 13.39 1.51 42.54 12.97 2.24 7.67 12.47
Keep Middle 42 0.1 −0.21 12.74 1.51 39.98 11.4 3.13 7.69 9.61
Random Per-Dataset 42 0.1 −0.21 12.73 1.89 43.29 9.2 3.13 6.12 10.97
Keep Top 42 0.1 −0.22 12.47 0.83 40.67 12.72 2.8 5.33 12.24
Random 123 0.3 −0.23 12.32 1.51 43.01 9.9 3.13 4.04 11.45
Keep Top Per-Dataset 42 0.1 −0.23 12.41 2.19 38.88 12.35 2.35 6.27 12.87
Keep Middle Per-Dataset 42 0.1 −0.26 11.96 2.42 41.29 10.79 1.34 3.98 13.1
Keep Bottom 42 0.1 −0.27 11.69 1.28 37.64 9.15 2.91 7.48 9.67
Random 123 0.1 −0.3 11.22 2.04 39.02 9.56 2.24 3.22 8.03
Keep Bottom Per-Dataset 42 0.1 −0.3 11.32 1.36 38.07 9.49 2.35 5.31 8.77
Random 42 0.1 −0.31 11.09 1.44 38.65 7.56 1.9 5.92 9.53

Table 11: Performance of static perplexity sampling compared to random selection and 100% baseline for
Llama3.1-8B.

Method Seed Subset ∆R Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Keep Top Per-Dataset 42 0.3 0.03 22.72 5.06 60.74 24.52 7.38 15.91 28.61
Keep Middle Per-Dataset 42 0.5 0.03 22.9 6.23 60.28 23.84 4.25 14.63 28.19
Keep Middle 42 0.5 0.03 22.86 5.59 61.29 24.36 5.15 17.91 27.95
Keep Middle Per-Dataset 42 0.3 0.01 22.31 5.74 60.9 23.26 5.96 15.7 29.39
Keep Top 42 0.5 0.01 22.29 4.38 62.04 22.84 4.36 17.81 25.92
Baseline 42 1.0 0.0 22.14 5.44 61.11 23.39 4.81 15.97 29.53
Random 42 0.3 −0.01 22.01 5.51 57.85 22.0 3.8 20.9 28.13
Random Per-Dataset 123 0.3 −0.01 21.99 5.29 61.85 21.8 5.7 15.32 16.71
Random Per-Dataset 42 0.5 −0.01 22.03 6.19 60.78 23.08 6.6 13.48 24.25
Keep Bottom Per-Dataset 42 0.5 −0.02 21.62 5.36 61.28 21.9 4.59 14.99 24.52
Random Per-Dataset 42 0.3 −0.02 21.73 5.01 61.65 21.41 5.6 14.98 16.12
Random 42 0.5 −0.02 21.59 6.19 58.73 24.17 4.7 14.18 24.35
Keep Top 42 0.3 −0.02 21.78 4.83 60.07 24.66 5.7 13.66 24.47
Keep Bottom Per-Dataset 42 0.3 −0.03 21.46 5.21 57.03 24.4 4.25 16.42 26.57
Random 123 0.3 −0.03 21.47 6.12 60.28 22.64 3.91 14.39 28.09
Random Per-Dataset 123 0.1 −0.03 21.47 6.34 56.73 22.77 5.37 16.13 24.54
Keep Bottom 42 0.5 −0.03 21.46 7.02 58.89 21.65 4.14 15.59 25.79
Random Per-Dataset 42 0.1 −0.04 21.27 4.76 54.42 24.55 6.26 16.37 23.33
Random 123 0.5 −0.05 21.15 5.82 58.83 21.2 5.37 14.51 27.26
Keep Top 42 0.1 −0.05 21.13 5.44 51.52 24.25 6.71 17.72 20.74
Keep Top Per-Dataset 42 0.5 −0.05 21.05 4.38 58.28 21.04 6.38 15.16 22.7
Keep Top Per-Dataset 42 0.1 −0.06 20.74 5.36 55.51 21.89 6.82 14.1 23.28
Keep Middle 42 0.3 −0.06 20.85 4.53 53.17 25.43 6.6 14.51 27.32
Random Per-Dataset 123 0.5 −0.07 20.58 5.44 60.53 23.03 2.46 11.45 28.98
Random 42 0.1 −0.08 20.47 5.29 47.58 22.89 6.15 20.42 22.53
Keep Middle 42 0.1 −0.08 20.45 5.36 51.89 22.55 5.03 17.44 22.31
Keep Middle Per-Dataset 42 0.1 −0.11 19.74 6.5 50.77 22.15 2.24 17.02 22.84
Random 123 0.1 −0.12 19.46 4.46 48.21 22.77 6.6 15.25 23.25
Keep Bottom 42 0.3 −0.12 19.48 6.42 51.89 20.94 5.15 12.98 26.31
Keep Bottom 42 0.1 −0.12 19.52 5.36 45.88 23.48 8.28 14.62 26.2
Keep Bottom Per-Dataset 42 0.1 −0.13 19.16 5.29 48.67 22.08 5.15 14.62 28.08

31

Under review as submission to TMLR

Table 12: Performance of static perplexity sampling compared to random selection and 100% baseline for
Gemma2-9B.

Method Seed Subset ∆R Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Random Per-Dataset 42 0.5 0.05 29.19 12.99 66.95 29.64 10.4 25.97 35.37
Keep Top 42 0.3 0.03 28.51 10.5 69.46 33.34 11.74 17.53 36.8
Keep Top Per-Dataset 42 0.3 0.03 28.55 12.16 67.95 31.06 7.83 23.75 30.59
Random 123 0.5 0.02 28.38 13.07 69.47 30.41 10.4 18.56 35.93
Keep Middle Per-Dataset 42 0.5 0.02 28.4 11.48 66.39 30.5 10.29 23.33 33.02
Keep Bottom 42 0.3 0.02 28.44 20.17 61.43 32.15 8.95 19.49 32.54
Random 123 0.1 0.01 28.04 16.16 62.9 31.09 13.09 16.96 35.39
Keep Top Per-Dataset 42 0.1 0.0 27.86 13.44 61.84 35.27 6.71 22.06 34.09
Baseline 42 1.0 0.0 27.81 15.26 66.74 29.52 8.95 18.58 31.56
Random Per-Dataset 42 0.3 0.0 27.92 11.93 65.36 30.8 9.96 21.56 33.47
Keep Middle Per-Dataset 42 0.3 0.0 27.94 14.95 65.4 29.21 12.3 17.86 33.58
Keep Top 42 0.5 −0.01 27.54 10.5 67.61 29.42 12.64 17.55 36.71
Random Per-Dataset 123 0.5 −0.01 27.57 14.65 68.61 29.26 7.61 17.73 32.93
Random Per-Dataset 123 0.3 −0.02 27.28 14.2 66.39 30.33 9.28 16.2 33.74
Random Per-Dataset 123 0.1 −0.03 27.04 16.39 62.6 29.48 8.72 18.03 33.94
Random 42 0.3 −0.03 26.87 12.76 65.63 32.77 8.95 14.23 33.67
Keep Bottom Per-Dataset 42 0.5 −0.03 26.96 14.27 61.74 31.01 9.96 17.84 35.12
Keep Bottom Per-Dataset 42 0.3 −0.03 27.05 16.69 64.97 29.59 8.28 15.73 32.41
Random 42 0.5 −0.04 26.8 13.29 69.04 31.23 8.61 11.85 33.59
Random Per-Dataset 42 0.1 −0.04 26.58 15.48 58.72 26.05 7.72 24.92 32.42
Keep Bottom 42 0.1 −0.04 26.56 18.43 53.02 30.53 12.08 18.75 35.51
Keep Bottom Per-Dataset 42 0.1 −0.04 26.82 15.63 59.04 33.8 12.08 13.54 36.11
Keep Middle 42 0.5 −0.04 26.67 12.54 66.54 27.96 9.51 16.81 34.97
Random 42 0.1 −0.05 26.44 15.71 59.67 30.88 9.62 16.33 32.78
Keep Middle Per-Dataset 42 0.1 −0.06 26.24 12.92 60.86 31.76 8.5 17.18 33.43
Keep Top Per-Dataset 42 0.5 −0.07 25.77 10.8 68.19 26.12 7.49 16.25 31.76
Random 123 0.3 −0.08 25.52 12.54 64.38 26.71 9.28 14.68 32.33
Keep Top 42 0.1 −0.1 25.16 8.84 56.32 33.72 11.74 15.18 36.06
Keep Middle 42 0.3 −0.11 24.81 11.1 60.56 29.01 11.52 11.84 33.46
Keep Bottom 42 0.5 −0.13 24.21 17.15 57.12 28.12 4.7 13.97 33.45
Keep Middle 42 0.1 −0.15 23.64 9.52 55.29 30.86 9.4 13.15 34.31

Table 13: Performance of static perplexity sampling compared to random selection and 100% baseline for
Gemma2-9B.

Method Seed Subset ∆R Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Keep Top Per-Dataset 42 0.5 0.01 36.14 25.72 67.93 45.38 17.44 24.23 45.31
Baseline 42 1.0 0.0 35.68 24.06 70.41 45.93 14.54 23.48 42.29
Random Per-Dataset 42 0.5 0.0 35.63 24.55 68.65 44.65 16.11 24.19 42.3
Keep Top Per-Dataset 42 0.3 −0.02 34.91 23.22 67.59 44.49 17.53 21.72 42.81
Random Per-Dataset 123 0.5 −0.03 34.6 25.6 66.98 46.26 16.0 18.16 44.39
Random Per-Dataset 123 0.3 −0.03 34.75 23.79 67.03 44.64 15.1 23.21 43.58
Random Per-Dataset 42 0.3 −0.04 34.43 20.32 67.43 45.43 17.0 21.96 44.67
Random 42 0.1 −0.05 34.07 29.38 60.81 42.7 15.66 21.79 42.36
Random 42 0.3 −0.05 33.86 25.15 65.18 46.4 16.33 16.23 42.33
Random 123 0.5 −0.05 33.96 25.0 68.13 43.81 15.21 17.67 40.42
Random 123 0.1 −0.06 33.41 29.76 60.47 42.33 13.87 20.6 35.24
Random 42 0.5 −0.06 33.56 26.51 64.4 44.76 15.55 16.6 45.36
Random Per-Dataset 123 0.1 −0.07 33.18 23.19 63.89 43.73 14.21 20.9 38.05
Keep Top Per-Dataset 42 0.1 −0.07 33.36 28.1 65.77 41.82 15.55 15.57 40.52
Random Per-Dataset 42 0.1 −0.08 32.96 20.47 65.42 43.53 14.09 21.3 38.76
Random 123 0.3 −0.08 32.95 23.87 64.6 45.11 15.1 16.05 43.24
Keep Middle Per-Dataset 42 0.1 −0.08 32.98 28.02 58.48 44.53 17.56 16.29 41.78
Keep Bottom Per-Dataset 42 0.5 −0.08 32.93 28.4 63.81 44.4 17.0 11.06 42.45
Keep Bottom Per-Dataset 42 0.3 −0.1 32.29 28.4 62.78 44.98 15.1 10.19 39.77
Keep Middle Per-Dataset 42 0.5 −0.1 31.95 22.66 65.39 42.67 14.88 14.14 41.35
Keep Middle Per-Dataset 42 0.3 −0.11 31.72 27.04 62.74 41.96 14.21 12.64 42.23
Keep Bottom Per-Dataset 42 0.1 −0.11 31.68 24.85 63.05 45.36 14.77 10.38 36.06

32

Under review as submission to TMLR

Table 14: Performance of static perplexity sampling compared to random selection and 100% baseline for
Gemma2-27B.

Method Seed Subset ∆R Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Keep Top Per-Dataset 42 0.5 0.08 32.93 19.92 70.28 34.28 12.64 20.66 39.78
Random Per-Dataset 123 0.3 0.06 32.4 20.98 68.37 38.56 10.96 21.12 41.23
Random Per-Dataset 42 0.3 0.04 31.59 20.0 68.79 37.86 10.0 21.32 41.3
Keep Top Per-Dataset 42 0.3 0.03 31.27 20.97 69.7 33.58 12.21 19.89 39.55
Keep Top 42 0.5 0.02 31.09 16.47 71.53 33.99 11.41 22.06 42.13
Random Per-Dataset 123 0.5 0.02 30.95 22.43 72.51 30.89 9.51 19.43 38.11
Random Per-Dataset 123 0.1 0.01 30.69 20.62 67.58 35.16 11.19 18.92 38.98
Random 42 0.3 0.01 30.77 22.73 68.39 35.63 11.41 15.71 38.23
Keep Top Per-Dataset 42 0.1 0.0 30.51 21.3 66.3 32.41 11.52 21.0 40.05
Baseline 42 1.0 0.0 30.47 21.68 70.26 32.18 11.41 16.84 39.68
Keep Middle Per-Dataset 42 0.3 −0.01 30.05 19.18 67.85 33.64 12.53 17.06 33.95
Random 123 0.1 −0.01 30.32 20.47 69.26 32.19 12.75 16.93 38.83
Keep Bottom Per-Dataset 42 0.3 −0.01 30.26 22.51 71.04 33.32 13.53 10.92 40.86
Random 42 0.1 −0.01 30.29 21.71 68.31 32.0 12.24 17.21 39.1
Keep Bottom 42 0.5 −0.02 29.92 23.87 67.55 31.77 8.72 17.7 41.13
Keep Bottom Per-Dataset 42 0.5 −0.03 29.52 20.69 70.68 31.67 11.97 12.58 37.18
Keep Middle 42 0.5 −0.03 29.51 17.07 73.38 31.76 11.41 13.95 38.52
Random Per-Dataset 42 0.1 −0.04 29.27 20.62 61.98 32.97 12.3 18.47 38.39
Keep Bottom 42 0.1 −0.04 29.38 24.85 55.32 37.19 12.19 17.34 40.44
Keep Middle 42 0.3 −0.04 29.38 19.79 73.15 31.21 8.72 14.05 40.48
Random 123 0.3 −0.05 28.84 19.49 70.92 28.08 11.74 13.98 35.83
Keep Bottom 42 0.3 −0.05 28.98 22.89 63.5 35.45 12.98 10.1 43.08
Random 42 0.5 −0.06 28.6 20.85 68.77 30.55 10.63 12.2 33.84
Keep Bottom Per-Dataset 42 0.1 −0.07 28.34 21.22 64.38 34.54 11.07 10.5 42.87
Keep Top 42 0.1 −0.07 28.36 11.71 60.81 36.69 12.19 20.38 41.0
Keep Middle Per-Dataset 42 0.5 −0.08 28.16 19.86 67.0 27.72 13.65 12.59 31.19
Keep Middle Per-Dataset 42 0.1 −0.09 27.77 19.18 62.05 29.69 13.31 14.6 38.6
Keep Top 42 0.3 −0.11 27.18 12.24 66.64 28.82 9.4 18.82 33.47
Random 123 0.5 −0.12 26.89 21.07 65.7 25.35 9.28 13.06 32.2
Random Per-Dataset 42 0.5 −0.14 26.31 19.86 67.56 27.21 4.47 12.47 32.08
Keep Middle 42 0.1 −0.16 25.58 12.08 63.54 27.77 7.61 16.9 38.89

Table 15: Performance of static perplexity sampling compared to random selection and 100% baseline for
Qwen2.5-32B.

Method Seed Subset ∆R Avg MATH Lvl 5 IFEval MMLU-PRO GPQA MUSR BBH

Keep Top Per-Dataset 42 0.5 0.1 41.53 36.1 75.03 53.25 18.46 24.79 48.85
Random Per-Dataset 42 0.3 0.07 40.37 35.27 74.67 51.82 20.47 19.63 50.29
Random 42 0.5 0.06 40.22 36.1 74.67 51.86 18.12 20.37 52.74
Random 123 0.3 0.05 39.64 35.27 72.3 50.35 17.9 22.36 49.55
Random Per-Dataset 123 0.3 0.05 39.75 36.56 74.58 48.11 18.12 21.38 49.13
Random Per-Dataset 42 0.5 0.04 39.45 33.69 73.42 49.76 18.57 21.8 47.12
Random 42 0.3 0.04 39.26 33.91 71.25 52.15 19.02 19.98 50.24
Random 123 0.5 0.03 39.15 33.91 74.39 51.45 18.23 17.78 45.45
Keep Top 42 0.5 0.03 39.05 33.16 74.03 48.77 19.69 19.61 49.87
Random Per-Dataset 123 0.1 0.03 39.07 32.25 70.23 49.81 17.23 25.84 44.37
Random Per-Dataset 123 0.5 0.03 38.95 35.57 75.61 46.2 16.22 21.17 49.33
Random 42 0.1 0.02 38.83 35.05 68.49 47.65 17.9 25.04 46.85
Keep Middle Per-Dataset 42 0.5 0.02 38.6 33.38 71.68 49.81 18.46 19.69 50.09
Keep Top Per-Dataset 42 0.3 0.02 38.78 33.61 73.23 51.32 19.02 16.71 49.68
Random Per-Dataset 42 0.1 0.02 38.51 31.8 72.53 49.81 16.33 22.06 46.09
Keep Top Per-Dataset 42 0.1 0.01 38.32 34.52 67.64 50.59 18.57 20.28 44.01
Keep Top 42 0.3 0.01 38.43 32.18 73.06 51.77 17.45 17.69 49.51
Keep Top 42 0.1 0.0 37.73 30.29 66.01 51.61 17.79 22.94 49.85
Baseline 42 1.0 0.0 37.89 34.67 73.9 48.03 16.33 16.52 48.06
Keep Middle 42 0.5 −0.01 37.35 30.89 75.58 46.67 17.79 15.81 46.16
Keep Middle Per-Dataset 42 0.3 −0.02 37.04 33.99 69.01 47.66 18.46 16.09 45.72
Keep Middle 42 0.3 −0.02 37.14 31.34 73.57 46.94 17.56 16.31 44.67
Keep Middle Per-Dataset 42 0.1 −0.03 36.58 31.42 64.87 51.99 17.11 17.52 45.36
Keep Bottom Per-Dataset 42 0.5 −0.03 36.94 33.84 69.37 47.47 16.44 17.57 46.6
Random 123 0.1 −0.04 36.29 34.44 63.2 48.88 15.55 19.4 42.08
Keep Bottom Per-Dataset 42 0.3 −0.04 36.44 32.33 68.28 47.44 17.67 16.46 46.5
Keep Bottom Per-Dataset 42 0.1 −0.05 36.05 31.19 65.23 50.2 17.34 16.27 46.05
Keep Bottom 42 0.5 −0.05 36.05 29.46 67.3 46.39 16.78 20.34 45.78
Keep Middle 42 0.1 −0.07 35.2 31.5 65.23 45.62 17.23 16.41 40.25
Keep Bottom 42 0.1 −0.07 35.12 25.23 61.92 49.09 17.67 21.71 45.69
Keep Bottom 42 0.3 −0.14 32.52 15.94 64.65 46.37 16.67 18.96 45.24

33

	Introduction
	Related Work
	Preliminary Analysis
	Spaced Scheduling Training
	Method
	Overhead Analysis and Mitigation

	Experiments
	Experimental Setup
	Results and Discussions
	Limitations and Future Work

	Conclusion
	Experimental Setup Details
	Method Details
	Overhead
	Wall-Clock Time Comparison
	Optimized Inference

	Detailed Analysis on Static Perplexity Sampling
	Experimental Setup
	Performance and Consistency
	Impact of Training on Selection Performance
	Selection Criteria Across Training Stages

	Detailed Results
	Intractable Examples

	Additional Results for Static Perplexity Data Selection

