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Abstract

This paper identifies a transition from generaliza-
tion to memorization over the recursive training
of diffusion models, providing a novel perspec-
tive for the study of model collapse. Specifically,
the models increasingly replicate training data in-
stead of generating novel content during iterative
training on self-generated samples. This transi-
tion is directly driven by the declining entropy
of the synthetic training data produced in each
training cycle, which serves as a clear indicator of
model degradation. Motivated by this insight, we
propose an entropy-based data selection strategy
to mitigate the transition from generalization to
memorization and quality degradation. Empiri-
cal results show that our approach significantly
enhances visual quality and diversity in recursive
generation, effectively preventing model collapse.

1. Introduction
As generative models like diffusion models gain widespread
use in image and video synthesis, a growing volume of
synthetic content is appearing online. Given their realism—
often indistinguishable from real data—future training
datasets will inevitably include a substantial portion of AI-
generated samples (Dohmatob et al., 2024b; Schaeffer et al.,
2025). In this self-consuming loop, each iteration1 reuses
generated data to train the next-generation model. Recent
studies show that even a small fraction of synthetic data
can degrade performance over iterations (Dohmatob et al.,
2024b), a phenomenon known as model collapse, which
poses a serious risk to the future of generative modeling.

*Equal contribution 1Department of Electrical Engineering &
Computer Science, University of Michigan 2Georgia Institute of
Technology. Correspondence to: Qing Qu <qingqu@umich.edu>.

Published at ICML 2025 Workshop on the Impact of Memorization
on Trustworthy Foundation Models, Vancouver, Canada. PMLR
267, 2025. Copyright 2025 by the author(s).

1In this paper, “iteration” refers to a full cycle of training and
generation, not a gradient update. The pipeline illustration of the
self-consuming loop can be found in Figure 5 of Appendix A.

As surveyed by (Schaeffer et al., 2025), recent studies have
identified various collapse behaviors that depend on the
performance metrics employed. A series of papers (Shu-
mailov et al., 2024; Kazdan et al., 2024; Bertrand et al.,
2024; Suresh et al., 2024) reveal the model collapse phe-
nomenon through the variance of the learned distribution.
They empirically and theoretically show that the model
continually loses information in the distribution tail, with
variance tending towards 0. Despite significant theoreti-
cal insights regarding variance dynamics, the reduction of
variance to negligible levels typically occurs only after an
extremely large number of iterations. As noted by (Schaef-
fer et al., 2025; Kazdan et al., 2024), the collapse progresses
at such a slow pace that it is rarely a practical concern in
real-world applications. In contrast, the visual quality and
diversity of generated images deteriorate rapidly. Another
line of work (Dohmatob et al., 2024a; Gerstgrasser et al.,
2024; Bertrand et al., 2024; Dohmatob et al., 2024c; Fu
et al., 2024) investigates the issue from the perspective of
population risk or distribution shifts. These studies observe
that the generated distribution progressively deviates from
the underlying distribution, causing the model’s population
risk to increase throughout the recursive process. Although
population risk or distribution shifts offer a holistic view of
performance degradation, they do not adequately character-
ize specific collapse behaviors.

Accordingly, this paper conducts an in-depth investigation
into the collapse dynamics of diffusion models and identi-
fies a generalization-to-memorization transition occurring
across successive iterations, which provides a novel perspec-
tive for studying model collapse and highlights a practical
issue arising from training on synthetic data. Specifically,
during early iterations, the model demonstrates a strong
capability to generate novel images distinct from those in
the training set but gradually shifts towards memorization
in later iterations, merely replicating training images. This
transition significantly reduces the diversity of generated
content and results in higher FID scores. Moreover, di-
rectly reproducing images from training datasets may raise
copyright concerns (Ross et al., 2024; Zhang et al., 2024).
Furthermore, we reveal a strong linear correlation between
the generalizability of the trained model and the entropy
of its training dataset, providing an empirical explanation
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for the generalization-to-memorization transition: as itera-
tions progress, the entropy of the data distribution sharply
decreases, directly resulting in a decline in the model’s gen-
eralizability. Motivated by these empirical findings, we
propose entropy-based selection methods to construct train-
ing subsets from candidate pools. Extensive experimental
validation demonstrates that our proposed methods effec-
tively identify high-entropy subsets, thereby decelerating
the generalization-to-memorization transition. Additionally,
our approach achieves superior image quality and lower FID
scores in recursive training loops compared to the baselines.

2. Notations and Setup
In this work, we focus on the image generation task. Let X
be the d-dimensional image space, X ⊆ Rd and let P0 be a
data distribution over the space X . We use bold letters to
denote vectors in X . We assume the original training data
Dreal = {x(1)

real, . . . ,x
(N0)
real } are generated independently

and identically distributed (i.i.d.) according to P0.

Self-Consuming Loop. Following the standard setup
in model collapse studies (Alemohammad et al., 2024b;
Dohmatob et al., 2024b; Kazdan et al., 2024; Dohmatob
et al., 2024d;a; Alemohammad et al., 2024a; Feng et al.,
2024), we denote the training dataset at the n-th iteration by
Dn. A diffusion model is trained on Dn using a training al-
gorithm A(·), which outputs a generative model associated
with the distribution Pn, i.e., Pn = A(Dn). This model is
then used to sample a synthetic dataset of size Nn, denoted
by Gn ∼ PNn

n , which serves as the training data for the
next iterations. Based on the specific way of constructing
training datasets at each iteration, previous studies (Alemo-
hammad et al., 2024a; Dey & Donoho, 2024) distinguish
different iterative paradigms:

• The replaced training dataset. At each iteration, the
training dataset consists solely of synthetic data generated
by the previous diffusion model, i.e., Dn = Gn−1 for
n ≥ 2 and D1 = Dreal. Several studies (Gerstgrasser
et al., 2024; Kazdan et al., 2024; Dey & Donoho, 2024)
refer to this as the “replace” paradigm.

• The accumulated training dataset. Another paradigm
(Alemohammad et al., 2024a; Gerstgrasser et al., 2024)
maintains access to all previous data, thereby including
both real images and all synthetic images generated thus
far, i.e., Dn = (∪n−1

j=1 Gj) ∪ Dreal. However, continu-
ously increasing the training dataset size quickly demands
substantial computational resources. A practical compro-
mise is to subsample a fixed-size subset from the com-
bined pool of candidates, referred to as the “accumulate-
subsample” paradigm in (Kazdan et al., 2024).

This work focuses on the replace and accumulate-subsample
paradigms following prior studies in (Shumailov et al., 2024;

Suresh et al., 2024; Kazdan et al., 2024).

3. Model Collapses from Generalization to
Memorization

In this section, we empirically demonstrate the transition
from generalization to memorization that occurs over recur-
sive iterations and investigate the underlying factors driving
this transition. All experiments in this section are conducted
on the CIFAR-10 dataset (Krizhevsky et al., 2009), under
the replace paradigm, where each model is trained solely on
samples generated by the model from the previous iteration.

Generalization Score. To quantify generalizability (Yoon
et al., 2023; Alaa et al., 2022; Zhang et al., 2024), we adopt
the generalization score, defined as the mean distance be-
tween each generated image and its nearest training image:

GS(n) ≜ Dist(Dn,Gn) =
1

|Gn|
∑
x∈Gn

min
z∈Dn

κ(x, z), (1)

where κ(·, ·) : Rd × Rd → R denotes a distance metric be-
tween two data points. A higher generalization score GS(n)
indicates that the model generates novel images rather than
replicating training samples. Despite varying definitions in
prior studies (Zhang et al., 2024; Alaa et al., 2022), those
definitions share a common reliance on nearest neighbor.

Highlight of the Following Observations: The generated
data progressively collapses into numerous compact local
clusters over model collapse iterations, as evidenced by
both the sharp decline in entropy over iterations and SVD
visualizations. This localized concentration of data points
then facilitates memorization in subsequent models, reduc-
ing their ability to generate novel images. Our claim is
supported by the following three findings.

Finding I: Generalization-to-Memorization Transition.
Figure 1 (Left) visualizes generated samples alongside their
nearest neighbors in the training set. With a relatively large
sample size, i.e., 32,768 real samples as the starting train-
ing dataset, the model exhibits strong generalizability in
early iterations, producing high-quality novel images with
little resemblance to training samples. However, the gener-
alization deteriorates rapidly, and the model can only copy
images from the training dataset after several iterations of
training on synthetic data. Figure 1 (Right) further provides
quantitative results of the generalization score that drops
almost exponentially over successive iterations, providing
strong evidence for the generalization-to-memorization tran-
sition. We follow the protocol of (Zhang et al., 2024)
and construct six nested CIFAR-10 subsets of increasing
size: |D1| ∈ {1,024; 2,048; 4,096; 8,192; 16,384; 32,768}.
These subsets span approximately 3% to 65% of the full
training set, providing controlled start points that reflect
varying degrees of memorization and generalization. The
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Figure 1: The generalization-to-memorization transition.
Left: visualization of the generated images (Gn) and their
nearest neighbors in the training dataset (Dn). Right: quan-
titative results of the generalization score of models over
iterations. Different dataset sizes, in different colors.

decline is noticeably slower for larger training subsets, in-
dicating that larger sample sizes preserve generalization
longer and delay the onset of memorization. For the smallest
dataset of 1,024 images, the model enters the memorization
regime from the first iteration and remains there throughout.

Finding II: The Entropy of the Training Set Shrinks
Sharply over Iterations. We identify entropy as the key
evolving factor in the training data that drives the transition
from generalization to memorization. Prior work (Yoon
et al., 2023) interprets generalization in diffusion models as
a failure to memorize the entire training set. (Zhang et al.,
2024) further shows that diffusion models tend to general-
ize when trained on large datasets (e.g., > 214 images in
CIFAR-10) and to memorize when trained on small ones
(e.g., < 29 images). However, since we fix the size of the
training dataset for every iteration, the previous conclusion
(Zhang et al., 2024) that a larger dataset leads to gener-
alization cannot fully explain the phenomenon observed
in Finding I. We hypothesize that although sample size re-
mains constant, the information entropy decreases over time,
making it easier for the model to memorize. Based on this
hypothesis, we use the following Kozachenko-Leonenko
(KL) estimator (Kozachenko, 1987) to empirically estimate
the differential entropy H(X) (Cover, 1999) from a finite
set D of samples i.i.d. drawn from the distribution P :
Ĥγ(D) = ψ(|D|)−ψ(γ)+ log cd +

d
|D|

∑
x∈D log εγ(x),

where ψ : N → R is the digamma function; γ is any pos-
itive integer; cd denotes the volume of the unit ball in the
d-dimensional space; and εγ(x) = κ(x,xγ) represents the
γ-nearest neighbor distance, where xγ is the γ-th nearest
neighbor of x in the set D. We set γ = 1 in this paper.

As shown in Figure 2a, the entropy of the generated im-
age dataset—used as the training set in the next iteration—
consistently decreases over iterations. With a fixed dataset
size, the only dataset-dependent term in the KL estimator
is the sum of nearest-neighbor distances ε(x), indicating
that samples inD become increasingly concentrated and the
distribution becomes spiky. Appendix E.1 presents SVD
visualizations of the generated data points, illustrating that
the data points locally collapse into numerous clusters.

(a) Entropy (b) GS vs. entropy (c) GS vs. variance

Figure 2: Decreasing entropy (a) and scatter plots (b)-(c)
of the generalization score and properties of the training
dataset (entropy and variance).

Finding III: The Correlation between Entropy and Gen-
eralization Score. We verify that the generalization score of
the trained model is strongly correlated with the entropy of
the training dataset. In Figure 2b, we present a scatter plot of
entropy versus generalization score across different dataset
sizes and successive iterations, with the y-axis shown on
a logarithmic scale. Notably, the entropy of the training
dataset exhibits a significant linear relationship with the log-
arithm of the generalization score. Training datasets with
higher entropy consistently yield better generalization in
the diffusion model. The Pearson correlation coefficient is
0.91 with a p-value near zero, quantitatively confirming the
strength of this correlation. Furthermore, the scatter points
corresponding to different dataset sizes are all approximately
aligned along a single line, suggesting the generality of the
relationship between entropy and generalization. For com-
parison, Figure 2c shows the scatter plot of variance versus
generalization score. The correlation appears substantially
weaker than in Figure 2b, suggesting that variance in the
training dataset may not directly influence the generalization
performance of the trained model.

Conclusion. Findings I–III collectively indicate that the
generated data gradually collapses into compact clusters, as
shown by declining entropy. This concentration promotes
memorization in the model of the next iteration and reduces
their ability to generate novel images.

4. Mitigating Model Collapse with Data
Selection Methods

In this section, we propose a sample selection method that
selects a subset of training images from the candidate pool
S to mitigate model collapse. Motivated by the empirical
finding in Section 3, the selected training images should
have high entropy. This objective can be formalized as:

max
D⊂S, |D|=N

Ĥ1(D)⇔ max
D⊂S, |D|=N

∑
x∈D

log min
y∈D\x

κ(x,y).

In the accumulate-subsample setting, S includes all im-
ages generated so far; in the replace setting, it consists of
the previous model’s outputs, sized twice the target train-
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Figure 3: Metrics over iterations. Left: Generalization
score of the trained model. Middle: FID of the generated
images. Right: Estimated entropy of the training datasets.

ing set. This non-convex max-min problem is difficult to
solve globally. Instead, we propose Greedy Selection to
approximate the solution by iteratively constructing a subset
D ⊂ S of size n, adding the farthest point at each step
as follows: 1. Initialization: Randomly select an initial
point from the dataset S and add it to the set D. 2. It-
erative Selection: At each iteration, for every candidate
point x ∈ S \ D, compute the minimum distance from
x to all points currently in D. Select the point with the
maximum of these minimum distances and add it to D, i.e.,
xselect = argmaxx∈S\D miny∈D κ(x,y). 3. Termina-
tion: Repeat the selection process until |D| = N .

In practice, we first extract image features using a DINOv2
(Oquab et al., 2024) model and compute distances in the
feature space, i.e., κ(x,y) = ∥h(x)−h(y)∥2, where h(·) is
the feature extractor. See Appendix C.2 for the pseudocode.

5. Experiments
We empirically evaluate how Greedy Selection interacts
with the accumulate-subsample self-consuming paradigm.
Our method serves as a plug-in component for selecting
high-quality and diverse training images from the candidate
pool. We present some results on CIFAR-10 (Krizhevsky
et al., 2009) datasets in this section. The detailed experi-
mental setup can also be found in Appendix D. We include
more results of (1) an additional data selection method, (2)
additional datasets, and (3) an additional self-consuming
paradigm—the replace paradigm—in Appendix F.

Results. We present the results of the generalization score,
FID score, entropy, and the selected data points in Figure
Figure 3. We find that Greedy Selection consistently im-
proves generalization scores over iterations, thereby mitigat-
ing the memorization. Importantly, our selection methods
can also slow down FID degradation. For example, the
vanilla accumulate-subsample paradigm reaches an FID of
88.4 at iteration 8, whereas Greedy Selection significantly
reduces it to 52.1. See generated images in Appendix F.3.

Analysis for the Improvement. We present the estimated
entropy of the training datasets in Figure 3, which shows our
selection methods effectively maintain the entropy of the
training data at each iteration, consistent with their design.

Figure 4: Left and Middle: Generated samples at the 8-th
iteration for the vanilla CFG method and CFG augmented
with Greedy Selection, respectively. Right: The entropy of
the selected training dataset.

These more diverse, higher-entropy datasets subsequently
enable the next-iteration model to generalize better, as we
demonstrate in Section 3. We further investigate which sam-
ples are selected by Greedy Selection under the accumulate-
subsample paradigm, where a subset of candidate data is
selected for subsequent training. We show in Appendix F.2
that Greedy Selection consistently selects a significantly
higher proportion of real images compared to the vanilla
accumulate-subsample, thereby contributing to a lower FID.

Diversity Improvement on Classifier-Free Diffusion
Guidance (CFG) (Ho & Salimans, 2022). We further
validate the effectiveness of our methods in the CFG setting,
showing that they substantially improve the diversity of gen-
erated images. CFG is a widely used conditional generation
technique that consistently enhances perceptual quality but
often sacrifices diversity (Chidambaram et al., 2024; Ho &
Salimans, 2022). Prior work by (Yoon et al., 2024) identifies
the CFG scale as a key factor in model collapse and suggests
that a moderate scale can help mitigate it. Experimentally,
Figure 4 shows that the vanilla CFG indeed generates clear
MNIST images even after 8 iterations. However, the diver-
sity collapses rapidly, with samples within each class soon
becoming nearly identical. In contrast, augmenting CFG
with our data selection method greatly improves image di-
versity and yields significantly lower FID scores compared
to vanilla CFG. These results demonstrate that our approach
mitigates CFG’s diversity loss while preserving its quality
advantage throughout the self-consuming loop.

6. Conclusion
In this work, we reveal that the memorization issue natu-
rally arises under recursive training, highlighting a serious
practical concern and offering a new perspective for study-
ing model collapse. We empirically demonstrate that the
entropy of the training data decreases over iterations and is
strongly correlated with the model’s generalizability. Moti-
vated by the findings, we propose an entropy-based data se-
lection strategy that effectively alleviates the generalization-
to-memorization transition and improves image quality, thus
mitigating model collapse.
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Impact Statement
In this work, we investigate a critical failure mode of diffu-
sion models known as model collapse, which occurs when
models are recursively trained on synthetic data and gradu-
ally lose their generalization ability and generative diversity.
As AI-generated data is unintentionally or deliberately in-
corporated into the training sets of next-generation models,
understanding and mitigating model collapse is essential for
ensuring long-term model reliability and performance. Our
study identifies the generalization-to-memorization transi-
tion, demonstrates the relation between the entropy of the
training set and the generalizability of the trained model,
and proposes practical solutions to mitigate model collapse
through entropy-based data selection.

We believe our findings will contribute to the responsible de-
velopment and deployment of generative models, especially
in scenarios where data sources may be mixed or partially
synthetic. While the empirical findings in this paper may be
misused to intentionally degrade generative models through
poisoning attacks, our intent is solely to build more robust,
transparent, and self-aware AI systems. We encourage re-
searchers in generative AI to use these results to mitigate
model collapse and to build reliable models, even when
training data contains AI-generated samples—a scenario
that may become increasingly common in the future.
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Figure 5: High-level depiction of the self-consuming pipeline. Top: Collapse iteration represents the replace paradigm
where models are trained solely on synthetic images generated by the previous diffusion model. Middle: In the mitigated
iteration, original real data and previously generated data are added to train the next-generation model. Our proposed
selection methods construct a training subset and can further mitigate collapse. Bottom Right: Evolution of the generated
images.

A. Background
A.1. Self-Consuming Loop

We show the recursive process of the self-consuming training loop in Figure 5.

Based on the specific way of constructing training datasets, previous studies (Alemohammad et al., 2024a; Kazdan et al.,
2024; Dey & Donoho, 2024) distinguish two distinct iterative paradigms:

• The replaced training dataset. At each iteration, the training dataset consists solely of synthetic data generated by the
previous diffusion model, i.e., Dn = Gn−1. Several studies (Gerstgrasser et al., 2024; Kazdan et al., 2024; Dey & Donoho,
2024) refer to this as the “replace” paradigm and have demonstrated that under this setting, the variance collapses to 0 or
the population risk diverges to infinity. We show this paradigm in the top of Figure 5, i.e., the collapse iteration.

• The accumulated training dataset. A more realistic paradigm (Alemohammad et al., 2024a; Gerstgrasser et al., 2024) is
to maintain access to all previous data, thereby including both real images and all synthetic images generated thus far,
i.e., Dn = (∪n−1

j=1 Gj) ∪ Dreal. However, continuously increasing the training dataset size quickly demands substantial
computational resources. A practical compromise is to subsample a fixed-size subset from all candidate images, referred
to as the “accumulate-subsample” paradigm in (Kazdan et al., 2024). Under certain conditions, prior work (Gerstgrasser
et al., 2024; Kazdan et al., 2024) has shown that accumulating real and synthetic data mitigates model degradation,
preventing population risk from diverging. We present this accumulate-subsample paradigm augmented with our selection
method in the middle of Figure 5, i.e., the mitigated iteration.

A.2. Diffusion Models

Diffusion models are a class of generative models that synthesize data by reversing a gradual noising process, achieving
state-of-the-art results in image and video generation. For a given data distribution, diffusion models do not directly learn
the probability density function (pdf) of the distribution; instead, they define a forward process and a reverse process, and
learn the score function utilized in the reverse process. Specifically, the forward process (Ho et al., 2020) progressively adds
Gaussian noise to the image, and the conditional distribution of the noisy image is given by:

p(xt|x0) = N
(
xt;
√
ᾱtx0, (1− ᾱt)I

)
,
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where ᾱt is the scale schedule, x0 is the clean image drawn from P0, and xt is the noisy image. This forward can also be
described as a stochastic differential equation (SDE) (Song & Ermon, 2019):

dx = f(x, t)dt+ g(t)dw, (2)

where f(·, t) : Rd → Rd denotes the vector-valued drift coefficient, g(t) ∈ R is diffusion coefficient, and w is a standard
Brownian motion. This SDE has a corresponding reverse SDE as

dx = [f(x, t)− g2(t)∇x log qt]dt+ g(t)dw, (3)

where dt represents a negative infinitesimal time step, driving the process from t = T to t = 0. The reverse SDE enables us
to gradually convert a Gaussian noise to a clean image x ∼ P0.

The score function ∇x log pt is typically unknown and needs to be estimated using a neural network sθ(x, t). The training
objective can be formalized as

Et∼U(0,T )Ept(x)

[
λ(t) ∥∇x log pt(x)− sθ(x, t)∥22

]
,

and can be efficiently optimized with score match methods such as denoising score matching (Vincent, 2011).

B. Related Work
B.1. Model Collapse

As state-of-the-art generative models continually generate better and better image quality, the AI-generated images become
hard to distinguish and are inevitably mixed in the training dataset of the next-generation models. In fact, the authors of
(Alemohammad et al., 2024a) show that the LAION-5B dataset (Schuhmann et al., 2022) used to train Stable Diffusion
indeed contains synthetic data. Unfortunately, recent works (Alemohammad et al., 2024b; Dohmatob et al., 2024b; Kazdan
et al., 2024; Dohmatob et al., 2024d;a; Alemohammad et al., 2024a; Feng et al., 2024) show that the performance of the
model will degrade, and the model may eventually collapse to generate homogeneous and meaningless content. The work of
(Shumailov et al., 2024) first proposes the concept of model collapse and provides a theoretical analysis framework based on
the Gaussian model. Their results prove that if the Gaussian model is recurrently estimated based on the data generated by
the previous model, then the variance of the Gaussian model will tend towards zero, which means the distribution finally
degenerates into a delta distribution with density on only one point.

Following this important work, there has been significant research effort contributing to the model collapse phenomenon.
(Suresh et al., 2024) extends the analysis on the Gaussian model to the Bernoulli model and Poisson model. (Dohmatob et al.,
2024a) analyzes the recursive training process in the high-dimensional linear and ridge regression setting. They provide
a linear error rate in their setup and investigate how to mitigate model collapse using optimal regularization. (Dohmatob
et al., 2024d) claims that the scaling law for foundation models will change if we consider a training dataset incorporating
synthetic data. (Wyllie et al., 2024) demonstrates the bias of the model is amplified through the self-consuming loop and
further provides an algorithmic reparation method to erase the bias and negative shifts of the generated content. The work
of (Seddik et al., 2024) proposes a statistical model to characterize the process of model collapse in language models
and theoretically estimates the maximal proportion of synthetic data that can be incorporated into the training set without
inducing collapse, supported by empirical validation. (Cui et al., 2025) theoretically investigates the model collapse in
diffusion models. They consider the training dynamic of a two-layer auto-encoder, which is optimized by stochastic gradient
descent. Their results show how the neural network architecture influences the generated density and how it shapes the
collapse behavior.

To mitigate model collapse, several useful strategies have been proposed by prior work. One of the methods is to incorporate
all samples generated in previous iterations and also the real data into the training dataset, i.e., the accumulate paradigm we
refer to in the main paper. A line of studies both empirically and theoretically justifies the effectiveness of this strategy.
(Gerstgrasser et al., 2024) demonstrates that the accumulate paradigm avoids model collapse; under a linear regression setup,
the test error of the model does not diverge but is rather upper bounded. Then, the study of (Dey & Donoho, 2024) further
proves the universality of the error upper bound across a large family of canonical statistical models. (Kazdan et al., 2024)
investigates an accumulate-subsample setting, where the model is trained on a subset of the accumulated samples. They
validate that the test error also plateaus and study the interaction between real and synthetic data. (Bertrand et al., 2024)
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theoretically proves the stability of iterative training under two conditions: the generative model initially trained on real data
is good enough, and the proportion of clean data in each iteration’s training set is large enough. However, a recent paper
(Dohmatob et al., 2024c) establishes a robust negative result that shows that model collapse generally persists even when
mixing real and synthetic data. (Alemohammad et al., 2024a) also points out that the accumulate paradigm only delays but
does not prevent model collapse. To prevent model collapse, we could incorporate fresh real data in each iteration. Other
effectiveness methods include verification (Feng et al., 2024) and re-editing (Zhu et al., 2024). For instance, (Feng et al.,
2024) theoretically validates the necessity of data selection. Although they demonstrate how selection can prevent model
collapse, they do not propose new selection methods. (Zhu et al., 2024) focuses on language models and proposes a token
editing method to prevent model collapse, with a theoretical guarantee. Compared to prior work, this paper proposes a novel
entropy-based data selection method for diffusion models that improves both generalizability and image quality, thereby
mitigating model collapse.

Over the last few years, numerous research papers have studied model collapse from different perspectives and di-
mensions. An important study (Schaeffer et al., 2025) makes a thorough survey about different definitions and patterns
investigated in previous work. A series of papers (Shumailov et al., 2024; Kazdan et al., 2024; Bertrand et al., 2024; Suresh
et al., 2024) focuses on variance collapse of the learned distribution. They empirically and theoretically show that the model
continually loses information in the distribution tail, with variance tending towards 0. Another line of work (Dohmatob et al.,
2024a; Gerstgrasser et al., 2024; Bertrand et al., 2024; Dohmatob et al., 2024c; Fu et al., 2024) investigates the issue from
the perspective of population risk or distribution shifts. These studies observe that the generated distribution progressively
deviates from the underlying distribution, causing the model’s population risk to increase throughout the recursive process.
Numerous studies (Alemohammad et al., 2024a; Bohacek & Farid, 2023; Zhang et al., 2025) also report that models begin
generating hallucinated data. Additionally, (Dohmatob et al., 2024d) claims that synthetic data changes the scaling law.
(Cui et al., 2025) studies the mode collapse (Goodfellow et al., 2014) of diffusion models over iterations, i.e., the generated
distribution progressively loses modes. In this paper, we provide a novel perspective for studying model collapse in diffusion
models, revealing the generalization-to-memorization transition. We then identify the reason for the transition by showing
the relationship between the entropy of the training dataset and the generalizability of diffusion models. Our analysis further
motivates effective data selection methods based on entropy.

B.2. Generalization and Memorization

Recent studies (Yoon et al., 2023; Zhang et al., 2024) have identified two distinct learning regimes in diffusion models,
depending on the size of the training dataset and the model’s capacity: (1) Memorization regime, when models with sufficient
capacity are trained on limited datasets, they tend to memorize the training data; and (2) Generalization regime, as the
number of training samples increases, the model begins to approximate the underlying data distribution and generate novel
samples. To investigate the transition between these regimes, (Wang et al., 2024a) shows that the number of training samples
required for the transition from memorization to generalization scales linearly with the intrinsic dimension of the dataset.
In addition, the analysis of training and generation accuracies in (Wang et al., 2024b) provides a potential step toward
quantifying generalization. Meanwhile, concurrent work also explores memorization and generalization separately. To
understand generalization, studies such as (Kadkhodaie et al., 2024; An et al., 2025) attribute the generalization to implicit
bias introduced by network architectures. Other works studies the generalized distribution using Gaussian models (Wang &
Vastola, 2024; Li et al., 2024) and patch-wise optimal score functions (Niedoba et al., 2024; Kamb & Ganguli, 2024). As for
memorization, it is investigated in both unconditional and conditional (Gu et al., 2024), as well as the text-to-image diffusion
models (Carlini et al., 2023; Somepalli et al., 2023a). Additionally, methods to mitigate memorization in diffusion models
have been proposed in (Somepalli et al., 2023b; Wen et al., 2024). Distinct from prior work, our study is the first to establish
a connection between model collapse and the transition from generalization to memorization. This connection not only
offers a novel perspective to understand model collapse but also provides insights to mitigate it by mitigating memorization.

C. Algorithm Details
C.1. Threshold Decay Filter

In this section, we introduce another data selection method—Threshold Decay Filter. The Greedy Selection can efficiently
and effectively extract a subset with a large entropy. However, this greedy method carries a risk of over-optimization, which
may lead to an excessively expanded distribution and a progressively increasing variance in the selected samples. To mitigate
this, we also provide the following Threshold Decay Filter, which can control the filtration strength by a decaying threshold.
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Algorithm 1 Greedy Selection

Input: Dataset S, target size N , distance function κ(·, ·)
Output: Selected subset D of size N
Initialize D ← {random point from S}
while |D| < N do

for each x ∈ S \ D do
Compute d(x)← miny∈D κ(x, y)

end for
xselect ← argmaxx∈S\D d(x)
D ← D ∪ {xselect}

end while
return D

Threshold Decay Filter. The procedure constructs a subset D ⊂ S of size N by iteratively selecting samples that are
sufficiently distant from the current set D. The algorithm proceeds as follows:

1. Initialization: Set an initial threshold τ > 0. Randomly select one point from the dataset S and add it to the set D.

2. Threshold-based Selection: For each point x ∈ S \ D, compute the distance from x to all points in D. If all
distances are greater than the current threshold τ , add x to D.

3. Threshold Decay: If |D| < N after a complete pass through S \ D, reduce the threshold τ by multiplying it with a
decay factor α ∈ (0, 1), and repeat Step 2.

4. Termination: Repeat Steps 2–3 until |D| = N .

Threshold Decay Filter is a soft variant of Greedy Selection that provides adjustable control over the selection strength.
When the initial threshold is set sufficiently high and the decay factor is close to 1, the Threshold Decay Filter behaves
similarly to Greedy Selection. Conversely, if both the initial threshold and decay factor are set to 0, the filter does not filter
out any data point and reduces to the vanilla replace or accumulate-subsample paradigm.

There are also other possible data selection strategies to approximately optimize the entropy. However, finding the best data
selection method is beyond the scope of this paper and is an interesting question for future work. The goal of this paper is to
reveal the relationship between generalizability and the entropy, and validate the effectiveness of optimizing the entropy of
the training dataset via data selection.

C.2. Pseudocode for the Algorithms

We present the pseudocode for Greedy Selection and Threshold Decay Filter in Algorithms 1 and 2, respectively.

D. Detailed Experimental Setup
In this section, we provide a detailed experimental setup for the experiments in this paper.

D.1. Datasets

We conduct experiments on three widely used image generation benchmarks. CIFAR-10 (Krizhevsky et al., 2009) consists
of 32× 32 color images in 10 classes. Due to computational constraints, we use a subset of 32,768 training images. Our
goal is not to achieve state-of-the-art FID among large diffusion models but rather to demonstrate that our method mitigates
memorization in the self-consuming loop. As shown in Section 3, this subset is sufficient to observe the transition from
generalization to memorization. We also conduct experiments on subsets of FFHQ (Jain et al., 2004), downsampled to
32× 32 resolution, and MNIST (LeCun et al., 1998), using 8,192 and 12,000 training images, respectively.

D.2. Network Structure

For CIFAR-10 and FFHQ, we use a UNet-based backbone, taking RGB images as inputs and predicting noise residuals. Our
implementation is based on the Hugging Face Diffusers base code (von Platen et al., 2022). The architecture hyperparameters
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Algorithm 2 Threshold Decay Filter

Input: Dataset S, target size N , initial threshold τ > 0, decay factor α ∈ (0, 1), distance function κ(·, ·)
Output: Selected subset D of size N
Initialize D ← {random point from S}
while |D| < N do

added← false
for each x ∈ S \ D do

Compute dmin(x)← miny∈D κ(x, y)
if dmin(x) > τ then
D ← D ∪ {x}
added← true

end if
if |D| = N then

return D
end if

end for
if added = false then
τ ← α · τ // No point added⇒ decay threshold

end if
end while
return D

of the neural network are listed as follows:

• The numbers of in-channel and out-channel are 3.

• The number of groups for group normalization within Transformer blocks is 16.

• The number of layers per block is 2.

• The network contains 6 down-sampling blocks and 6 up-sampling blocks.

• The numbers of feature channels for the 6 blocks are 48, 48, 96, 96, 144, 144 respectively.

For MNIST, we use a similar UNet-based backbone, taking single-channel images as inputs and predicting noise residuals.
The architecture hyperparameters of the network are listed as follows:

• The numbers of in-channel and out-channel are 1.

• The number of groups for group normalization within Transformer blocks is 32.

• The number of layers per block is 2.

• The network contains 4 down-sampling blocks and 4 up-sampling blocks.

• The numbers of feature channels for the 4 blocks are 64, 128, 256, 512 respectively.

D.3. Implementation Details

In this paper, we use DDPM as our generative method. For efficiency, we use the FP-16 mixing precision to train our models,
which is inherently implemented by the Hugging Face Diffusers codebase. The batch size of training all datasets is set to be
128. A 1000-step denoising process is used as the reverse process. For CIFAR-10, the epoch number is set to be 500; for
FFHQ, the epoch number is set to be 1000. We use the Adam optimizer with a learning rate of 10−4 and a weight decay of
10−6. Other experimental hyperparameters are exactly the default values in the original Hugging Face Diffusers codebase.
We use the DINOv2 model (Oquab et al., 2024) to extract features of images and then calculate the distance between two
images in the feature space. We use the InceptionV3 model (Szegedy et al., 2016) to extract features of images to calculate
the FID score. All experiments are conducted on a single NVIDIA A-100 GPU.
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Figure 6: 2-D projection of data points onto the first two singular bases of the real dataset. The orange points represent the
generated images at the 1-st and 21-st iterations, respectively.

D.4. Evaluation Metrics

We use the generalization score and entropy to evaluate the effectiveness of our method in mitigating memorization.
Additionally, we adopt the Fréchet Inception Distance (FID) (Heusel et al., 2017) as a metric to quantify the distributional
divergence between generated images and real images.

E. Addition Results for Section 3
E.1. Generated Image Distribution Becomes Spiky

In the main paper, we show the entropy of the generated dataset decreases over iterations, indicating the data distribution
becomes spiky and the samples become increasingly concentrated. To visualize the collapse trend, we present the SVD
visualizations of the generated data points in Figure 6, which illustrates that the data points locally form numerous clusters.

To further quantitatively measure the spiky degree of the empirical image distribution, we also adopt the Mean Nearest
Neighbor Distance (MNND) (Jain et al., 2004; Abbar et al., 2013), which removes the data-independent constants and
logarithm in the KL estimator of entropy:

MNND(Dt) ≜ Dist(Dt,Dt) =
1

|Dt|
∑
x∈Dt

min
z∈Dt\x

d(x, z). (4)

A lower MNND suggests a tightly clustered and spiky distribution, while a higher distance suggests dispersion and diversity.
The KL estimator can be related to MNND through

e
Ĥ1(Dt)−B

d ≤ MNND(Dt), (5)

where Ĥ1(Dt) represents the estimated entropy of Dt with k = 1 and B is a constant offset given a fixed dataset size.

We want to clarify the nuance between MNND and variance. A spiky distribution does not imply that all data points
are concentrated in a single small region—this behavior has already been illustrated by the variance collapse behavior
(Shumailov et al., 2024; Kazdan et al., 2024; Bertrand et al., 2024). Specifically, Figure 7 shows that the variance of the
generated dataset only slightly decreases along the successive iterations and is far from complete collapse. On the contrary,
MNND decreases almost exponentially and reaches a small value after 10 iterations. Thus, the results align with the prior
claim in (Schaeffer et al., 2025; Kazdan et al., 2024) that the collapse of variance progresses at such a slow pace that
it is rarely a practical concern in real-world applications. In contrast, the collapse in MNND emerges at an early stage,
highlighting a critical memorization issue caused by training on synthetic data.
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Figure 7: The MNND and the trace of the covariance matrix over iterations.

Figure 8: Generalization Score of the trained model over iterations. We indicate the settings on top of the subfigures.
Here, “Accumulate” denotes “Accumulate-subsample”. In each subfigure, three different lines are used to represent the
vanilla paradigm and its variants augmented with the proposed selection methods.

F. Additional Results for Section 5
In this section, we provide additional results on the Threshold Decay Filter introduced in Appendix C.1 and also incorporate
more datasets, i.e., FFHQ and MNIST. The results demonstrate that the proposed data selection strategies effectively
alleviate memorization and reduce FID scores, thereby mitigating model collapse. Additionally, experiments on classifier-
free guidance (CFG) (Ho & Salimans, 2022) generation show that our method effectively mitigates diversity collapse of
CFG.

F.1. Detailed Results

We present the generalization score of models on CIFAR-10 and FFHQ in Figure 8, including two data selection methods—
Greedy Selection and Threshold Decay Filter. Greedy Selection consistently improves generalization scores across all
datasets and paradigms and is particularly effective in the accumulate-subsample setting.

Figure 9 reports the FID of generated images over successive iterations. Under the accumulate-subsample paradigm, both
methods yield notable improvements in FID, with Greedy Selection outperforming Threshold Decay Filter. For example,
the vanilla accumulate paradigm reaches an FID of 75.7 at iteration 8, whereas Greedy Selection significantly reduces it to
44.7. On the FFHQ dataset under the replace paradigm, however, the Threshold Decay Filter performs better, suggesting
that adaptive selection strength may be beneficial in certain cases.
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Figure 9: FID of the generated images over iterations. We indicate the settings on top of the subfigures. Here, “Accumulate”
denotes “Accumulate-subsample”. In each subfigure, three different lines are used to represent the vanilla paradigm and its
variants augmented with the proposed selection methods.

Figure 10: Estimated entropy of the training datasets over iterations. We indicate the settings on top of the subfigures.
Here, “Accumulate” denotes “Accumulate-subsample”. In each subfigure, three different lines are used to represent the
vanilla paradigm and its variants augmented with our selection methods.

F.2. Improvement Analysis

We present the estimated entropy of the training datasets in Figure 10. As shown in the figure, our selection methods
effectively increase the entropy of the training data at each iteration, consistent with their design. These more diverse,
higher-entropy datasets subsequently enable the next-iteration model to generalize better, as evidenced by the improved
generalization scores in Figure 8.

We further investigate which samples are selected by our methods under the accumulate-subsample paradigm, where the
model has access to all prior synthetic images and the real images but is trained on a subset of them. Figure 11 shows
the proportion of selected samples originating from different sources, with the blue bar indicating the proportion of real
images. As illustrated in the figure, both Greedy Selection and Threshold Decay Filter consistently select a significantly
higher proportion of real images compared to the 1/n reference curve. For example, on the FFHQ dataset, Greedy Selection
selects 65% real images at the 8-th iteration, while vanilla accumulate-subsample includes only 12.5%. This outcome arises
because the image distribution progressively collapses into compact clusters over iterations, and our selection methods tend
to prioritize boundary samples—namely, real images—by maximizing the nearest neighbor distance.

F.3. Visualization of the Generalization Improvement for Section 5

We provide visualization of the generated FFHQ images with their nearest training neighbors to show the model’s generaliz-
ability. Figure 12 shows some images for different training paradigms at 5-th iteration in grid format. With augmentation
from the Greedy Selection method, the model generates images that deviate more from the training set compared to the
vanilla accumulate paradigm, indicating a better generalization ability.
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Figure 11: Proportion of the selected images from previous iterations or the real dataset. We use different colors to
represent different sources. Particularly, the blue bars denote the proportion of the real images. The red line represents
the 1/n curve that indicates the proportion of the real images if we evenly select the data subset from all available images
(accumulate-subsample). We indicate the settings on top of the subfigures. Here, “Accumulate” denotes “Accumulate-
subsample”.

Figure 12: The visualization of the generated images and their nearest neighbors in the training dataset. Each pair of rows
corresponds to one group: the top row shows the generated images, and the bottom row shows their nearest training images.

G. Ablation Study
G.1. Training on More Samples

In Section 5 of the main paper, we augment the vanilla replace paradigm with our data selection methods. Specifically,
under the replace setting, the vanilla baseline generates N images and trains the next-iteration model based solely on these
N images from the previous iteration. Instead, the data selection methods generate 2N images at each iteration and select a
subset of N images from the 2N images for training the next-iteration model. One nature question is whether incorporating
all the generated 2N images to train the next-iteration model can obtain a better performance.

Next, we show that when training on the whole 2N dataset, the performance (FID score) of the model is between the vanilla
replace setting (generating N images and training on those N images) and the data selection method (generating 2N images
and training on the selected N -images subset). The results on CIFAR-10 are shown in Figure 13.

Several conclusions can be drawn by comparing the results across these settings.

• Incorporating more data into the training-sampling recursion can indeed mitigate the rate of model collapse. Compared
to the vanilla replacement paradigm (i.e., the first line), using 2N images (second line) yields improved performance.
This aligns with prior findings (Kazdan et al., 2024; Fu et al., 2024) that sample size is a key factor influencing the
collapse rate.
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Figure 13: FID score of the generated images over iterations. We add an additional setting of generating 2N images and
training the next model on the entire 2N -images data without filtering (the line in yellow).

• Further filtering the training data with our selection method leads to even better performance than training on the full
set of 2N images. The results validate the effectiveness of our selection method, achieving a lower FID score while
largely decreasing the training budget.

G.2. Different Decay Rates

The decay rate is one important hyperparameter for the Threshold Decay Filter. In this section, we use different decay rates
and show that the filter is robust to a wide range of decay rates.

Figure 14 shows the FID scores of generated CIFAR-10 images across iterations for different methods. As shown in the
figure, the data selection methods consistently outperform the vanilla accumulate paradigm, indicating strong robustness of
the hyperparameter.

H. Generated Images over Iterations
We provide additional generated images of trained models across iterations and dataset sizes to show the collapse process.

Figures 15 to 20 present the generated images of the model trained on CIFAR-10 with various dataset sizes across successive
iterations.

As shown in Figures 15 and 16, the diffusion models tend to memorize small training datasets throughout the recursive
process, exactly copying training images during generation. Because the generated samples are nearly identical to the
training data, image quality does not noticeably degrade. However, duplicated generations emerge in later iterations, and
diversity declines as the model gradually loses coverage over parts of the original images.

On the contrary, on the large dataset of 32,768 images, the models generate novel images in the beginning. As the model
collapses, the quality and diversity of the images gradually degrade over iterations.
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Figure 14: FID score of the generated images over iterations. We compare the results for different decay rates on
CIFAR-10 dataset.

Figure 15: Generated images of models trained on 1024 CIFAR-10 images over iterations.
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Figure 16: Generated images of models trained on 2048 CIFAR-10 images over iterations.
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Figure 17: Generated images of models trained on 4096 CIFAR-10 images over iterations.
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Figure 18: Generated images of models trained on 8192 CIFAR-10 images over iterations.
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Figure 19: Generated images of models trained on 16384 CIFAR-10 images over iterations.
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Figure 20: Generated images of models trained on 32768 CIFAR-10 images over iterations.
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