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ABSTRACT

Adversarial imitation learning (AIL) achieves superior expert sample efficiency
compared to behavioral cloning (BC) but requires extensive online environment
interactions. Recent empirical works have attempted to mitigate this limitation
by augmenting AIL with BC—for instance, initializing AIL algorithms with BC-
pretrained policies. Despite certain empirical successes, systematic theoretical
analysis of the provable efficiency gains remains lacking. This paper provides
rigorous theoretical guarantees and develops effective algorithms to accelerate
AlL. First, we develop a theoretical analysis for AIL with policy pretraining alone,
revealing a critical but theoretically unexplored limitation: the absence of reward
pretraining. Building on this insight, we derive a principled reward pretraining
method grounded in reward-shaping-based analysis. Crucially, our analysis reveals
a fundamental connection between the expert policy and shaping reward, naturally
giving rise to CoPT-AIL—an approach that jointly pretrains policies and rewards
through a single BC procedure. Theoretical results demonstrate that CoPT-AIL
achieves an improved imitation gap bound compared to standard AIL without
pretraining, providing the first theoretical guarantee for the benefits of pretraining
in AIL. Experimental evaluation confirms CoPT-AIL’s superior performance over
prior AIL methods.

1 INTRODUCTION

Imitation learning (IL) (Argall et al., 2009; Osa et al., 2018) is an essential technique in artificial
intelligence that enables machines to learn complex behaviors by mimicking expert demonstrations.
This approach has achieved significant success across diverse domains, including autonomous driving
(Pan et al., 2017), generalist robot learning (Brohan et al., 2023; Mees et al., 2024), and language
modeling (Brown et al., 2020).

IL comprises two primary methodological categories: behavioral cloning (BC) and adversarial
imitation learning (AIL). BC represents an offline approach that directly applies supervised learning
to learn policies from demonstrations (Pomerleau, 1991; Ross et al., 2011; Brantley et al., 2020).
While conceptually straightforward, BC is vulnerable to compounding errors (Syed & Schapire, 2010),
resulting in poor expert sample efficiency. In contrast, AIL (Abbeel & Ng, 2004; Syed & Schapire,
2007; Ho & Ermon, 2016; Kostrikov et al., 2019) seeks to match the expert’s state-action distribution
through a minimax optimization framework. The method alternates between recovering an adversarial
reward function that maximizes the policy value gap between expert and learner, and updating the
policy to minimize this gap. Since this optimization typically requires online environment interactions,
AlL is classified as an online method. Both theoretical analysis (Rajaraman et al., 2020; Xu et al.,
2020) and empirical evidence (Ho & Ermon, 2016; Kostrikov et al., 2019; Ghasemipour et al., 2019)
demonstrate that AIL effectively mitigates BC’s compounding error problem, achieving superior
expert sample efficiency.

While AIL demonstrates high sample efficiency with expert demonstrations, its reliance on extensive
online environment interactions presents a significant limitation (Ho & Ermon, 2016). To mitigate
this limitation, researchers have explored various approaches to combine AIL with BC (Jena et al.,
2021; Orsini et al., 2021; Haldar et al., 2023; Watson et al., 2023; Yue et al., 2024). The most intuitive



Under review as a conference paper at ICLR 2026

approach involves pretraining policies using BC, then finetuning them with AIL through online
interactions (Ho & Ermon, 2016). However, empirical studies consistently show that this strategy
provides minimal benefits (Sasaki et al., 2018; Jena et al., 2021; Orsini et al., 2021; Yue et al., 2024).
The pretrained policy’s performance typically degrades during early AIL training, negating most
advantages from the initial BC phase.

To overcome this limitation, several alternative integration strategies have emerged. Some approaches
augment the AIL objective with BC regularization terms (Jena et al., 2021; Haldar et al., 2023),
while others learn additional reward functions using either prior policies (Watson et al., 2023) or
supplementary datasets (Yue et al., 2024). Despite the empirical successes in certain scenarios, there
remains a notable absence of systematic theoretical studies, particularly in terms of imitation gap
(i.e., performance difference between the expert and learner), which may hinder deep understanding
and impede future algorithmic advances.

This paper aims to bridge the gap between theory and practice by providing rigorous theoretical
guarantees and developing effective algorithms to accelerate AIL. Our key contributions are threefold.

* First, we develop a theoretical analysis for AIL with policy pretraining alone, uncovering
a critical but theoretically unexplored limitation: the absence of reward pretraining. Our
analysis decomposes the imitation gap into two fundamental components: policy error and
reward error. While policy pretraining reduces policy error, we demonstrate that reward error
remains substantial due to random reward initialization. This creates a notable bottleneck
that inflates the overall imitation gap, particularly during early training phases.

* Motivated by this theoretical insight, we derive a principled reward pretraining method,
grounded in reward shaping theory (Ng et al., 1999). We prove that inferring a shaping
reward—rather than the original true reward—is already sufficient to reduce reward error,
thereby circumventing the reward ambiguity issue. Crucially, our analysis reveals a funda-
mental connection between the expert policy and shaping reward, naturally giving rise to the
approach of jointly pretraining policies and rewards through a single BC procedure. This
yields our complete algorithm CoPT-AIL, AIL with Policy-Reward Co-Pretraining.

* Finally, we provide a rigorous theoretical analysis demonstrating CoPT-AIL’s superiority
over prior AIL approaches. Our theoretical results show that CoPT-AIL can provably
reduce reward error through reward pretraining, achieving an improved imitation gap
bound compared to standard AIL without pretraining under mild assumptions. To our
best knowledge, this represents the first theoretical guarantee for the efficiency gains of
pretraining in AIL. Experimental evaluation confirms CoPT-AIL’s superior performance
over existing methods.

2 PRELIMINARIES

Markov Decision Process. We consider episodic Markov Decision Processes (MDPs) represented
by the tuple M = (S, A, P,r*, H, p), where S and A denote the state and action spaces, respectively,
H is the planning horizon, and p is the initial state distribution. The transition dynamics are
characterized by P = {Py,..., Py}, where Py(sp+1|sh,ar) gives the probability of transitioning
to state s;, 41 from state s, upon taking action ay, at step h € [H]. The reward structure is defined by
r* = {r},..., 5}, where without loss of generality, 7} : S x A — [0, 1] forall h € [H].

A policy m = {m1, ..., 7y} maps states to action distributions, with 7, : § — A(A), where A(A)

denotes the probability simplex over actions. Here, 7, (a|s) represents the probability of selecting
action a in state s at step h.

The interaction protocol proceeds as follows: each episode begins with the environment sampling an
initial state s; ~ p. At each step h, the agent observes state sy, selects action ay, ~ 7, (+|sy), receives
reward 1} (sp, ap,), and transitions to the next state sp4+1 ~ Py (+|sp, an). The episode terminates
after H steps.

We evaluate policy performance using the expected cumulative reward:
H

> rh(snran)

h=1

VT .=E ap ~ Th(-|8h), Sht1 ~ Pu(-|sh,an),Vh € [H]
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The Q-function is defined as Q7 (s,a) := E Z£{=h r;,(sh/,ah/)‘(sh,ah) = (s,a),w] We also

define the state visitation distribution dJ, (s) := P™(s;, = s) and state-action visitation distribution
di(s,a) :=P"(sp, = s,ap = a).

Imitation Learning. The goal of imitation learning (IL) is to acquire a high-quality policy without
access to the reward function r*. To achieve this, we assume access to an expert policy 7% that
generates a dataset of NV trajectories, each of length [:

DF = (' = (s}, af. sh. ... sy y) s, ~ 7ECIsh).shy ~ PaClshoal). h e [H]}Y,
The learner uses this dataset DP to learn a policy that mimics the expert’s behavior. We measure
imitation quality using the imitation gap (Abbeel & Ng, 2004; Ross & Bagnell, 2010; Rajaraman
et al., 2020), defined as v — V™, where 7 is the learned policy. Essentially, we hope that the
learned policy can perfectly mimic the expert such that the imitation gap is small.

Typical IL works (Ng & Russell, 2000; Abbeel & Ng, 2004) often assume that the expert policy is
optimal regarding the true reward r*, which suffers from the issue that degenerated constant rewards
can induce the same expert policy (Ziebart et al., 2008). Following (Ziebart et al., 2008; Bloem &
Bambos, 2014), we avoid this issue by considering that the expert is a soft-optimal policy (Haarnoja
et al., 2018; Geist et al., 2019) regarding r*. Formally, we can formulate the expert policy by

i (als) = exp (@} (s.0) = V;7"(5)) (M
Here Q}**" (s, a) and V;**"(s5) denote the soft-optimal Q-function and value function, respectively.

Behavioral Cloning. As a classical IL. method, behavioral cloning (BC) (Pomerleau, 1991) per-
forms maximum likelihood estimation (MLE) to mimic the expert.

N H
7B = argmaxz Z log (mn(ajs},)) - 2

€Il 9 =1

Here II is the set of all policies. This optimization problem can be solved entirely using pre-collected
expert data without any environment interaction, making BC a purely offline method. However, this
offline nature introduces a fundamental limitation: BC is susceptible to compounding errors (Ross &
Bagnell, 2010), resulting in poor efficiency in terms of demonstrations.

Adversarial Imitation Learning. As another prominent class of IL methods, adversarial imitation
learning (AIL) imitates expert behavior through a game-theoretic approach.

3 s 7TE

iy V-V ®
Here V™ denotes the value of policy 7 under reward » and R := {r : V(s,a,h) € S x A X
[H],mn(s,a) € [0,1]} denotes the reward class. In this minimax objective, AIL infers a reward
function that maximizes the value gap between the expert policy and the learning policy. Subsequently,
it learns a policy that minimizes this value gap using the inferred reward. Note that the outer
optimization problem concerning the policy is equivalent to a reinforcement learning (RL) problem
under the inferred reward . Solving RL problems requires online environment interactions, marking
AIL as an online approach. AIL has proven to mitigate the compounding errors issue in BC (Ho
& Ermon, 2016; Kostrikov et al., 2019; Ghasemipour et al., 2019; Xu et al., 2020; Rajaraman
et al., 2020), achieving a high expert sample efficiency. However, AIL relies on extensive online
environment interactions, presenting a significant limitation in scenarios where such interactions are
expensive.

3 THE CRITICAL ROLE OF REWARD PRETRAINING IN ADVERSARIAL
IMITATION LEARNING

A natural approach to improve the interaction efficiency of AIL involves first pretraining policies via
BC, then finetuning them through AIL with online interactions (Ho & Ermon, 2016). This intuitive
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strategy leverages BC to establish an acceptable initial policy before engaging in interaction-expensive
adversarial learning. However, numerous empirical works (Sasaki et al., 2018; Jena et al., 2021;
Orsini et al., 2021; Yue et al., 2024) have consistently found that policy pretraining alone provides
minimal benefits. In particular, they observed that policy quality deteriorates rapidly at the beginning
of AIL training, negating most advantages gained from the initial BC phase. This phenomenon
suggests fundamental limits in standard AIL with policy pretraining that have yet to be theoretically
understood.

In this section, we provide a rigorous theoretical analysis for AIL with policy pretraining, uncovering
its critical but theoretically unexplored limitation: the absence of reward pretraining. Our analysis
formally examines a standard AIL procedure with BC-pretrained policies, outlined in Algorithm 1.

Algorithm 1 Adversarial Imitation Learning with Policy Pretraining Alone

Input: Randomly initialized reward ! and demonstrations D®.
1: Pretrain a policy via BC based on Eq.(2): m! « 7BC.
2. fork=1,2,..., K —1do
k k
3:  Calculate the Q-value function {Q] "™ }ZL | for policy 7.
4:  Update the policy by KL-regularized policy optimization:

ok ok 1
i () = argmax By (077 (5,0)] = Dt (b0 (1)
p

5. Update the reward by solving the optimization problem of

H
—E; pe lz Th(Sh, ah)] :
h=1

H
pktl — argminlE k41 g Th(Sh, an)
reER h=1

6: end for
Output: 7 sampled uniformly from {7?, ... 7%},

Algorithm 1 operates in two stages. First, we pretrain policies through BC on expert demonstrations.
Second, we conduct the online AIL process, which alternates between policy and reward updates.
During policy updates, we employ KL-regularized policy optimization (Shani et al., 2020; Cai
et al., 2020) to solve the outer RL problem in Eq.(3). During reward updates, with the newly
recovered policy m¥*t1, we update the reward by minimizing the policy value difference between

k1l k41 E SeE H
kT — V7, where V' :=E, pe[> ,_, rn(sn,an)] represents an

and 7E, ie., min,eg V,*
empirical estimation of VT’TE based on demonstrations. Finally, following the standard online-to-batch
conversion technique (Orabona, 2019), Algorithm 1 outputs a policy uniformly sampled from the

recovered policies throughout training.

The following proposition provides the imitation gap bound of AIL with policy pretraining.

Proposition 1. Consider adversarial imitation learning with policy pretraining shown in Algorithm
1. For any § € (0, 1), with probability at least 1 — §, it holds that

vy < 1 (VTiE B V;il B (VT;_E _ Vﬂl)) N 2\/28||AH2 log(H/6)

K\'" v N
reward error
1 H . 4)
+ niKE };DKL(WE('l%)ﬂTi('lSh)) |+ §H3-

policy error

4
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1._

Furthermore, consider pretraining policies via BC (i.e., ™ 7BC) and choosing stepsize n =

O(/(S[A))/(H?KN)), we have that

v _Vﬂ<7<vw _yr _( WE_Vﬁl))+ |SIIA|H? log(H/)

1 Pl N
¢ ||| A[H log (HN?/6)

&)

The complete proof is provided in Appendix A.1. Eq.(4) in Proposition 1 reveals that the imitation
gap of AIL with policy pretraining decomposes into two fundamental error components: reward
error and policy error. The reward error consists of the first two terms in the RHS. Critically, the first
term quantifies the discrepancy between the true reward 7* and the initial reward ! through value
difference. Besides, the second term captures the statistical error arising from the finite number of
expert demonstrations. The policy error comprises the second and third terms, where the third term
specifically measures the KL divergence between the expert policy 7" and the initial policy 7.

By pretraining the policy via BC (i.e., 7' + 7BC), the KL divergence between 7% and 7! can be
notably reduced, as the BC policy is inherently closer to the expert than a randomly initialized policy.
Formally, we can leverage the theoretical guarantee of BC (Tiapkin et al., 2024) to upper bound this
divergence, yielding the sharper bound shown in Eq.(5). However, a critical limitation remains: the
reward error persists at a large magnitude because the reward function ! is still randomly initialized
and thus can be arbitrarily far from the true reward r*. This reward error can notably inflate the
overall imitation gap, particularly in the early stages of training when K is small.

Our analysis reveals a crucial but previously overlooked role of reward pretraining in accelerating
AlL. To effectively reduce the overall imitation gap, it is necessary to pretrain not only the policy but
also the reward function, thereby addressing both sources of error simultaneously.

4 POLICY-REWARD CO-PRETRAINING FOR ADVERSARIAL IMITATION
LEARNING

Building on the theoretical insights from the previous section, we propose a joint pretraining approach
for both policies and rewards to accelerate AIL. We first introduce a principled method for reward
pretraining, then provide rigorous theoretical analysis demonstrating its effectiveness in reducing the
imitation gap.

4.1 METHOD

Building on Proposition 1, we develop a reward pretraining method to reduce the key term (VTCEE —

Vi) — (V,TE — V) in reward error. We refer to this term as the relative policy evaluation error,
as it quantifies the discrepancy in evaluating the relative value difference between policies 7" and
. Based on the well-known simulation lemma (Kearns & Singh, 2002), a natural approach to
reducing this error would be to pretrain a reward r that closely approximates the original true reward
r*, ensuring |7 (s,a) — rp(s,a)| is small. However, reward ambiguity fundamentally prevents
recovering a reward function close to 7*, even with complete knowledge of the expert policy and
MDP (Cao et al., 2021; Metelli et al., 2021; Rolland et al., 2022).

To circumvent this limitation, we argue that learning a reward close to the original 7* is not necessary
for reducing the relative policy evaluation error. Instead, we demonstrate that learning an accurate
shaping reward (Ng et al., 1999) is already sufficient. We introduce the formal definition of the
shaping reward as follows !.

Definition 1 (Shaping Reward (Ng et al., 1999)). In an episodic MDP, for a reward function r and
potential shaping functions {®, : S — R}H+1 with @1 = 0, the shaping reward is defined as

V(s,a,h) € S x Ax [H], Th(s,a) :=1h(s,a) — Pp(s) + Egop,([s.0) [ Prs1(s)]-

'Ng et al. (1999) originally proposed shaping rewards for infinite-horizon discounted MDPs; we present the
episodic adaptation here.
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Ng et al. (1999) established that reward shaping preserves optimal policies. Crucially, the following

proposition shows that value differences V™ — V™ remain identical under both the original reward r
and its corresponding shaping reward 7.

Proposition 2. For any pair of policies m and 7', consider an arbitrary reward v and its shaping
reward 7 defined by 1,(s, a) 1= r(s,a) — ®x(s) + Egp, (s,a) [ Prr1(8")] with potential-based
shaping functions {®}, H+1 it holds that

V- VE=VE -V

The insight is that while individual policy values may differ between the original and shaping rewards,
their relative differences remain invariant. Intuitively, according to the telescoping argument, the
policy values of the original reward and the shaping reward only differ in the shaping value at the
initial state, which cancels out when computing value differences. Proposition 2 has an important
implication for our reward pretraining approach. It establishes that
E E E
(VE = V) = (7 = V) = (VA —vE) - (v - V),

where 7* is certain shaping reward of 7*. This reveals that learning a reward function close to any
shaping reward 7 is sufficient for reducing the relative policy evaluation error. As such, we do not
need to recover the original reward r* itself.

Having established that learning an accurate shaping reward is sufficient for reducing the reward
error, we now develop a principled method to infer such a reward. According to Eq.(1) and the soft
Bellman equation, we can characterize the true reward function as follows.

ri(s,@) = log(ef(als)) + Vi (5) = By, (o) [V ()]

Crucially, we observe that 77 (s, a) := log(m}'(a|s)) is exactly a shaping reward of 77 (s, a) regarding
the potential-based shaplng functions {V,*}; H +1 with V7, ; = 0. This shaping reward has an intuitive
interpretation: it assigns greater values to actlons with higher probabilities under the expert. This
characterization naturally suggests our reward pretraining method. We first learn a BC policy 72¢
and then pretrain the reward by setting 1 (s, a) = log(72%(a|s)). Since 7E€(als) approximates
7l (a|s) well based on maximum likelihood estimation, the pretrained reward r} (s, a) should be

close to the target shaping reward rﬂ,i*l (s, a). Equipping AIL with this joint pretraining of policies and
rewards yields the overall algorithm termed AIL with Policy-Reward Co-Pretraining (CoPT-AIL),
which is outlined in Algorithm 2.

The reward-shaping-based analysis reveals a fundamental connection between the expert policy and
shaping reward, enabling a unified approach to policy and reward pretraining. This integration allows
us to derive both components from a single learning procedure, eliminating the need for a separate
reward learning step. The resulting computational efficiency gains are particularly valuable when
working with large-parameter models.

4.2 THEORETICAL ANALYSIS

We now provide rigorous theoretical analysis demonstrating the effectiveness of CoPT-AIL.

Theorem 1. Consider adversarial imitation learning with policy-reward co-pretraining shown in
Algorithm 2. For any fixed 6 € (0, 1), with probability at least 1 — ¢, the relative policy evaluation
error is reduced as

1/ .® ol B ol C|S||A|H?1og® (|S||A|HN?/6)
)< S,
Here C' 1= max(, p)esx[H ( )/dr ( ). Furthermore, the imitation gap satisfies that
vy C|S||A|H2 o (S1AEN*8) | [ISTAR s 7S
N
(N

¢ SIAIH og' (N /5)
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Algorithm 2 Adversarial Imitation Learning with Policy-Reward Co-Pretraining

Input: Demonstrations DF.
1: Pretrain a policy via BC based on Eq.(2): m! « 7BC.
2: Pretrain a reward through r} (s, a) = log(72(als)).
3:fork=1,2,..., K —1do
4 Calculate the Q-value function {Q7 " | for policy 7*.
5 Update the policy by KL-regularized policy optimization:

ok ok 1
() = argmax oy (077 (5,0)] = Din (b0 (1)
p

6:  Update the reward by solving the optimization problem of

H
—E.,.NDE lz rh(sh,ah)] .

H
phtl — argminE_ k41 [ E Th(Sh, an)
h=1

rER he1

7: end for
Output: 7 sampled uniformly from {r!, ... 7%},

The complete proof is presented in Appendix A.3. Theorem 1 implies that our reward pretraining

approach can reduce the relative policy evaluation error to O(C|S||A|H2 /(K N)), which decreases
rapidly as the number of expert trajectories NV increases. This validates that our reward pretraining
approach can effectively leverage expert demonstrations to infer a good initial reward.

Furthermore, Theorem 1 indicates that CoPT-AIL achieves an overall imitation gap bound of
O((C|S||AIH?)/(KN) + VISI|AIH2/N + /|S||A|[H*/(KN)). In comparison, Shani et al.
(2021) proved that standard AIL without pretraining achieves O (/|SI|AJH2/K + +/|S||A|H3/N +
H%*/K). Our analysis reveals that CoPT-AIL achieves a better imitation gap bound when the

number of expert trajectories satisfies N = C+/|S||A|H2/K %. Intuitively, when a reasonable
number of demonstrations are available, jointly pretraining both the policy and reward can achieve
good initial performance, thereby effectively accelerating the AIL process. To our best knowledge,
Theorem 1 provides the first theoretical guarantee for the efficiency gains of pretraining in AIL.

5 RELATED WORKS

Adversarial Imitation Learning. AIL (Abbeel & Ng, 2004; Syed & Schapire, 2007; Ho & Ermon,
2016; Ghasemipour et al., 2019; Kostrikov et al., 2019; 2020) represents a prominent class of
IL methods that mimics expert behavior through a game-theoretic formulation. Although AIL
demonstrates superior expert sample efficiency compared to BC, it typically requires extensive online
environment interactions. To mitigate this limitation, recent studies have explored combining AIL
with BC to enhance interaction efficiency (Jena et al., 2021; Haldar et al., 2023; Watson et al., 2023;
Yue et al., 2024). Specifically, some approaches augment the AIL objective directly with the BC
objective (Jena et al., 2021; Haldar et al., 2023), while others leverage additional prior policies
(Watson et al., 2023) or supplementary datasets (Yue et al., 2024) to learn the reward function.
However, these methods generally lack theoretical guarantees regarding the benefits of their proposed
techniques. In contrast, this paper provides theoretical guarantees for the efficiency gains achieved by
our proposed method.

On the theoretical aspect, several studies have analyzed the theoretical convergence of AIL in the
online setting (Syed & Schapire, 2007; Shani et al., 2021; Liu et al., 2021; Xu et al., 2023; Viano
et al., 2022; 2024). In particular, Shani et al. (2021) proposes employing online optimization methods
(Shalev-Shwartz, 2007) to update the policy and reward, and provides the imitation gap bound in
the tabular setup. Furthermore, Liu et al. (2021); Viano et al. (2024) extend this idea to the linear
function approximation setting. A limitation of these works is that their algorithms use random

’The detailed comparison is provided in Appendix A.4
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initializations for the policy and reward, resulting in relatively large imitation gap bounds. Our work
differs fundamentally by introducing a joint pretraining approach for both the policy and reward. We
prove that this joint pretraining approach leads to an improved imitation gap bound, enhancing the
theoretical performance guarantees of AIL.

Inverse Reinforcement Learning. IRL (Ng & Russell, 2000; Arora & Doshi, 2021) aims to recover
the underlying reward function from expert demonstrations. Our reward pretraining method is situated
within the offline IRL literature (Garg et al., 2021; Yue et al., 2023; Zeng et al., 2023; Wei et al.,
2023). Unlike most prior approaches that require a supplementary, non-expert dataset to learn the
reward (Yue et al., 2023; Zeng et al., 2023; Wei et al., 2023), our method operates using only the
expert demonstrations. While other purely offline methods exist, such as the work of (Kostrikov
et al., 2020), which first learns a Q-function and then derives the reward function through the inverse
Bellman operator, our approach is distinct. Our reward-shaping-based analysis uncovers a connection
between the expert policy and shaping reward, enabling us to simultaneously pretrain the reward
function and policy from a single BC procedure.

6 SIMULATION STUDIES

This section validates the superiority of CoPT-AIL through simulation studies. We provide a brief
overview of the experimental setup below, with detailed information available in Appendix C.

6.1 EXPERIMENT SETUP

Environment. We conduct experiments across 6 tasks from the feature-based DMControl bench-
mark (Tassa et al., 2018), a widely adopted benchmark in imitation learning that provides diverse
continuous control tasks. For each task, we train an agent using the online RL algorithm DrQ-v2
(Yarats et al., 2021) with sufficient environment interactions and treat the resulting policy as the
expert policy. We then collect expert demonstrations by rolling out this expert policy. Each algorithm
is evaluated across three trials with different random seeds, and policy performance is assessed using
Monte Carlo approximation over 10 trajectories per evaluation.

Baselines. We compare CoPT-AIL against established deep imitation learning methods, including
BC (Pomerleau, 1991), IQLearn (Garg et al., 2021), PPIL (Viano et al., 2022), FILTER (Swamy et al.,
2023), and HyPE (Ren et al., 2024), although most lack theoretical guarantees. Notably, FILTER,
PPIL, and HyPE represent prior state-of-the-art (SOTA) deep AIL approaches. Implementation
details are provided in Appendix C.

Walker Stand Walker Run Cartpole Swingup

200k 400k 0 200k 400k 0 100k 200k
# Environment Interactions # Environment Interactions # Environment Interactions
Hopper Hop Hopper Stand Finger Spin

0 7
o 0 o
0 200k 400k 0 200k 400k 0 100k 200k
# Environment Interactions # Environment Interactions # Environment Interactions
—— CoPT-AIL(Ours) IQLearn PPIL  —— FILTER HyPE —— BC

Figure 1: Learning curves regarding online environment interactions on 6 DMControl tasks. Here the
x-axis is the number of environment interactions and the y-axis is the return.
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6.2 EXPERIMENT RESULTS

o Walker Stand Walker Run Cartpole Swingup
1000
1000 —A_
a0
o 80 \/\/
S o0
@ o0
o
a0
400
200 20
0 200k 400k 0 200k 400k 0 100k 200k
# Environment Interactions # Environment Interactions # Environment Interactions

Hopper Hop Hopper Stand Finger Spin

0 200k 400k 0 200k 400k 0 100k 200k
# Environment Interactions # Environment Interactions # Environment Interactions

—— CoPT-AIL(Ours) — AL — TPT-AIL

Figure 2: Learning curves regarding online environment interactions on 6 DMControl tasks. Here the
z-axis is the number of environment interactions and the y-axis is the return.

Overall Performance. Figure 1 presents the learning curves regarding online environment in-
teractions for different algorithms. All AIL approaches use 200k online interactions on simpler
tasks Cartpole Swingup and Finger Spin, and 500k online interactions on other tasks. The
results reveal that CoPT-AIL consistently matches or exceeds the convergence rates of prior SOTA
AIL methods across all 6 tasks. Particularly, on Cartpole Swingup, Hopper Hop, Hopper
Stand and Finger Spin, CoPT-AIL can achieve near-expert performance with significantly
fewer online interactions than existing approaches. These empirical results corroborate our theoretical
analysis that the proposed joint pretraining mechanism yields a superior imitation gap in CoPT-AIL.

Ablation Study. To validate the effectiveness of our proposed joint pretraining mechanism, we
conduct an ablation study comparing CoPT-AIL against two baselines: pure AIL without pretraining
(AIL) and AIL with policy pretraining alone (7PT-AIL). Figure 2 presents the learning curves
for these three algorithms. The results reveal that TPT-AIL achieves convergence rates similar to
standard AIL, indicating limited improvement in interaction efficiency from policy pretraining alone.
Furthermore, mPT-AIL exhibits instability, particularly on Cartpole Swingup and Finger
Spin tasks. In contrast, CoPT-AIL demonstrates faster and more stable convergence across 6 tasks,
with particularly pronounced improvements on Hopper Hop and Hopper Stand.

7 CONCLUSION

This paper proposes a principled policy-reward joint pretraining method to provably accelerate AIL.
This paper begins with a theoretical analysis of AIL using policy pretraining alone, revealing a critical
but theoretically unexplored limitation: the absence of reward pretraining. Motivated by this insight,
we derive a principled reward pretraining method grounded in reward-shaping-based analysis. The
analysis uncovers a fundamental connection between expert policy and shaping reward, naturally
giving rise to our CoPT-AIL approach that jointly pretrains policies and rewards through a single
BC procedure. Our theoretical results establish that CoPT-AIL achieves an improved imitation gap
bound compared to standard AIL without pretraining, providing the first theoretical guarantee for the
benefits of pretraining in AIL. Experimental evaluation confirms CoPT-AIL’s superior performance
over prior AIL methods.

Building on this work, there are several promising future directions deserving investigation. First, as
a first step toward understanding the theoretical benefits of pretraining in AIL, this work focuses on
the standard tabular setup. A valuable direction for future work is extending our theoretical results to
function approximation scenarios. Besides, it would also be interesting to apply CoPT-AIL in more
complex robot learning tasks, particularly in environments leveraging foundation models such as
vision-language-action architectures.
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8 ETHICS STATEMENT

This paper investigates the theoretical underpinnings of imitation learning and conforms with the
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9 REPRODUCIBILITY STATEMENT

This paper provides all the information needed to reproduce the main results. For all theoretical
results, the complete proof is provided in Appendix A and Appendix B. For experimental results, we
present all implementation details in Section 6.1 and Appendix C. Code and scripts are also provided
in the supplementary materials to reproduce experimental results.
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A  OMITTED PROOF

A.1 PROOF OF PROPOSITION 1

Proof. First, we can decompose the imitation gap into the following two terms.

E — 1 K E k
VT —V”:?Z(m —V;i)
k=1
K

= ;i (v —vr - (v v ) s = (v ). ®
k=1 k

1

We first analyze the first term in the RHS.
1 K E k E k
3 v - (- v))
k=1

(v —vE' = (va" —va)) + % i (V" —ve" = (U —va) )+ v -0

==

1 K ~ B E
tr (T -vE)

K
1 TFE 7T1 7\'E 7'r1 1 A’TTE 7Tk A‘ﬂ'E ﬂ'k
<o (Vv - (v wn)) e o (Vv - (- v))
k=2
E B
+2max |V -V |.
reR

For any reward r € R, ‘A/T”E =E, pe {Zthl 7h(Sh, ah)} denotes the empirical estimation of VT’TE

based on demonstrations DE. Furthermore, Vr € R, we have that

H —_—
VT’TE - IZ”E = Z Z (dZE(s,a) —dr" (s, a)) ri(s,a)

h=1(s,a)eSx.A
H . .

<S> | s -4 (s,0)| s, 0)
h=1 (s,a)eSx.A
H ) .

§Z Z ‘d;{ (s,a)fd;;E(s,a)’.
h=1 (s,a)eSx.A

Here dZE (s,a) = ]P”TE(sh = s,ap, = a) represents the probability of visiting (s, a) in time step h

by following . Besides, df " (s, a) := n¥(s,a)/N represents the empirical estimation based on

demonstrations DF, where nl (s, a) denotes the number of times that (s, a) is visited in time step &
in DE. The last inequality follows that rj, (s, a) € [0, 1].

Based on (Weissman et al., 2003) and union bound, for any ¢ € (0, 1), with probability at least 1 — 6,
we have that

vhelt), > |a(sa) —ﬁ(s,a)’ < \/WZ\W

(s,a)ESXA

Then it holds that

E ~_E
VremRr, (Vi VT

< 1 2STATS(T)
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Then we can obtain the following upper bound.

1i(Vﬂ_E Vﬂ_k (ﬂ_E Vﬂ_k))
7 rx T Vex T rk T Vipk
Kk:l
1 E 1 1 K ~ B k ~_E k
(6 (7)) e (0~ ()

k=2
1 o1z 2STATI])

N

- % (v vz - (Ve —vr)) HH\/?ISIAIJI\(;g(H/&)_ ©

The last inequality follows that Vk > 2, 7% = argmin, .5 Vr’rk - IA/T"E.

We proceed to analyze the second term in the RHS of Eq.(8). According to the policy difference
lemma (Kakade & Langford, 2002), we can obtain that

1 K E k 1 K A k .k
T T T, E k E
(v ) = 2 s <sh,~>,wh<-|sw—wh<-|sh>>w]
k=1 k=1 h=1
1 H K .
= B | Y@ () 7B Clsn) — 7 Clsn) wE].
h=1k=1

ﬂjc ,rk

For each (s, h) € S x [H], we analyze the error term of Z,i;l( m (s0), (o] s) — @ (+]s)). For

k .k
a simplex p € A(A), we define the linear function £% , (p) := — >, ., p(a)Q} " (s, a). Then we
can regard the above error term as the regret for the online optimization problem with loss functions

{65 n (P}

K
(@7 (5,0, 7B C1s) = 7k C1s) = D0 25wk (19)) = €5 (T (1s)).

k=1 k=1

Mw

Furthermore, performing KL-regularized policy optimization is equivalent to applying online mirror
descent (Orabona, 2019) on the loss functions {¢%  (p)}/_. According to the regret bound on online
mirror descent (e.g., (Orabona, 2019, Theorem 6.8)), we have that

K
PlRELIIC 4 35 Jor' ]

IN

Zéé h 7Th gb h(ﬂ-h( | ))

DL (B Cls) (1) | 1 e
n 2

The last inequality follows that sz’rk(s, a) € [0, H] because of 75 (s,a) € [0,1],V(s,a,h) €
S x A x [H]. Then we can obtain that

H K

K
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Combining the bounds in Eq.(9) and Eq.(10) finishes the proof of Eq.(4).

Vi —vE - (vt o)) + 2H\/2|S|A|]1\(;g(H/6)
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We proceed to prove Eq.(5) in Proposition 1. In particular, with the policy pre-trained via BC, we can
leverage the guarantee of BC to analyze the KL divergence between the expert policy and the initial
policy. Note that we have proved the following upper bound.

1 E k 1
75 V7 —[/77.)<7E
Kk_l(rk T — nK

According to (Tiapkin et al., 2024, Corollary 1), with probability at least 1 — §, we have that
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The last equation holds by choosing the step-size n = \/(48|S| |A|log?(2e4HN?/6))/(H2KN).
Finally, by union bound, we have that

VT VT < % (V;zE vy (Vf _ V;f)) N QH\/2|5|IA| 1;%(211/5)

4 3|S||A|H4 log? (4eA HN2 /5)
KN

We complete the proof.

A.2 PROOF OF PROPOSITION 2

Recall the definition of shaping reward 7 (s, a) := rp(s,a) — ®p(s) + Egwp, (|s,a)[Pry1(s")]. For
any policy 7, we have that
7T‘|
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H

§ Th 5h7ah

h=1
=V = Esnp [®(s1)]

= Esinp [2(s1)]

Here Equation (a) follows the tower property and sj,+1 ~ P}, (+|sn, ar). Equation (b) follows the
telescoping argument with boundary condition @1 = 0. Then for any pair of policies 7 and 7/, it
holds that

VI =V = (VE 4 By [B(51)]) = (VF + Egynp [B(51)]) = V= V7.
We complete the proof.

A.3 PROOF OF THEOREM 1

We first analyze the reward error of (1/K) - (VT — V7= — (VT’{E - V;{l)). Recall that 7:,%(5, a) =
log(wF(als)) is exactly a shaping reward of 77 (s, a) regarding the potential-based shaping functions
{V;r}. According to 2, we can obtain that

E
™ _VTK' _ ‘n' _VTK'

r* r* 7.*

-2 [ st

[Z log(E (an|sp))|m

Then we can obtain that
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+E

H
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Based on (Tiapkin et al., 2024, Corollary 1), we can upper bound the first term in the RHS. With
probability at least 1 — &, we have that

E Z Dy (my, (-|sn), W}?C("Sh)) WE]
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< +
- N N
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We further upper bound the second term.
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H
< C’Z Z dZE(S)DKL(WEC('|5)7W}I:]('|S))
h=1s€eS

Here C' := max(, n)csx[H] d;{BC (s)/d}{E (s). According to Lemma 1, with probability at least 1 — 6,
it holds that

H|Allog(4[S||A|H (N +1)/9)
Na(s) + | A|

Besides, with Lemma 4 and union bound, with probability at least 1 — 9,

V(s,h) € 8 x [H], Dyw(mp(-|s), m; (|s)) <

ar (s) _ 121og(2|S|H/9)

V(s,h) € S x [H], AT N

With union bound, the above two events happen with probability at least 1 — 24. Conditioned on
these two events, we have that
]

u &, |A|Hlog(4|S||A|H(N +1)/6
e

H
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h=1s€eS

7 (s)

H
= C|A|H log(4|S||AIH(N +1)/8) Y th(s)+|A|
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H E
dy (s)
< Hlog(4 H(N+1)/5 —h
< CLAH g IS +1/0) 33 o s
C|S||A|H? log(4|S||A|H(N +1)/5)log(2|S|H/6)
N

C|S||A|H? log?(4|S||A|H(N +1)/6)

N .
By union bound, with probability at least 1 — 4, it holds that

1 E 1 E 1
7 (Ve —ve = (v )
< 24/S||A|H -log® (6e*HN"/5) n 120\«’5”«4\15’2 log?(12[S||A|H(N +1)/96)
= KN KN
_ 48C|$\|A|H2 log” (6e*|S||.A|[HN?/4) .
= KN

We complete the proof of Eq.(6). Furthermore, Algorithm 2 differs from Algorithm 1 only in the
reward initialization. Therefore, by following the same analysis in the proof of Proposition 1, we can
obtain that

_ 1 3|S||A|H log?(4e* HN2/§
VﬂE_Vﬂg(‘/ﬂE_ml_(mE_Vﬁl))H\/l ||-A[H* log”(4e /6)

<12

<12

K KN
+2H\/25|A log(2H/9)
N
_ 48C|$||A|H2 log” (6¢*|S||A[HN?/5) 4 3|S||A|H* log? (4e* HN? /5)
= KN KN
+QH\/ZSM1;;(21%/6)_

We complete the proof of Eq.(7).
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A.4 BOUND COMPARISON

In this part, we compare the imitation gap bound of CoPT-AILwith that of OAL (Shani et al., 2021),
a standard AIL algorithm without pretraining. In particular, without any pretraining, OAL updates
the reward function via online projected gradient descent (Orabona, 2019) and updates the policy via
KL-regularized policy optimization. Similar to CoPT-AIL, we consider that OAL can compute the
Q-value function of the current policy. Now, we are ready to perform the bound comparison. Shani
et al. (2021) decomposes the imitation gap into the following terms.

K K
E _ 1 ~ E k ~ B k 1 E 2
A Ve A v WY 75 S v - ™y
vty _KH((VT VT> (V m))+K§ (Vrk V)

k=1
:=Term I :=Term II
~_E E
+2max |V, — VT |.
reER
:=Term III

Lemmas 4, 5, and 6 in (Shani et al., 2021) upper bound Terms I, II, and III, respectively.

Term1 </ SSIAH? o p=< A oAD < \/|S||A|H3log(1/6)
~ K I ~ K 3 ~ N .

Finally, OAL attains the imitation gap bound of

. |S||A|H? H*log(|.Al) |S||A|H?
O{mm{\/ K +\/ K +\/ N H})

Here H represents the maximum value for the imitation gap. In comparison, CoPT-AIL attains the

bound of
~ . C|S|| A H? |S||A|H* \/S||AH2
O (mln{ N + N + N ,H .

It is direct to derive that COPT-AIL can achieve an improved imitation gap bound when N =

C/[SIIATHZ/K.

B USEFUL LEMMAS

First, we provide the basic theoretical guarantee on BC. Following (Tiapkin et al., 2024), we consider
the BC algorithm formulated as

H /N
B¢ ¢ argrrﬁaxz <Z log(mn(a}, | s5)) + R (7Th)> . (11)
el =1 \i=1
Here D = {(si,ai,...,s%,a%;)}Y, denotes expert demonstrations and Ry (7,) =

2 (s,a)esx.a l0g(mn(als)) is the regularizer. Tiapkin et al. (2024) proved theoretical bounds on

the forward KL divergence between 7™ and 7B In the sequel, we provide a bound on the reverse
KL divergence, which could be of independent interest.

Lemma 1. Consider Eq.(11). With probability at least 1 — 6, it holds that
H]|Allog(4|S||A|H (N +1)/6)

V(s,h) € 8 x [H], Dxv(m;(]s), 7}, (-]s)) < Niu(s) + |A|

Here Ny, (s) := Zi\il [{si = s} denotes the number of times that states s appears in demonstrations.

Proof. The optimization problem in Eq.(11) admits the closed-form solution of

. Nh(s,a) +1

BC
T, (GIS) - Nh(S)+|A‘ (12)
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Here Nj(s,a) represents the number of times that the state-action pair (s, a) is visited in D.
We first analyze the case where Nj(s) > 0. We aim to upper bound the probability of
P(Dxr,(7BC(-|s), 7E(:|s)) > &) for each (s,h) € S x [H]. To analyze this probability, we re-
formulate 75€ as a mixture of two distributions.

PO(afs) = 28] Nulsa) AL 1
h N+ 1A M) | Mals) + 1A TA]
___Mals) -7 (als A a
= Nl - 1A el ¥ A P

Here 7 denotes the empirical distribution from D and p denotes the uniform distribution over A.
Furthermore, based on the convexity of KL divergence, we have that

Np(s)

D (77 (+]s), mh (] 9)) < WDKL(@HS)JTEHS))
| Al
+ WDKL@(')’WE("S))'

Therefore, the event of Dky,(7EC(+|s), 7E(+|s)) > e implies that

Nu(s) + 1Al (6_ A
Ni(

DraEalls) ) > L KD e ).

We define that

o Nh‘g\i})l:;)lft' _ (E _ Nh(lﬂ |ADKL(1)(~)77TE('|S))) .
Then we have that
P(Dxr(my (]s), 7y (-1s)) = €) < P(Dkw(n(als), my; (-]s)) = €).
According to Sanov’s Theorem (Lemma 2), we have that
P(Dxr(@n(als), m} (-]s)) = €) < (Na(s) + 1) exp(=Na(s)e").
Setting the term in the RHS as the failure probability § yields that
o _ [Allog(Ni(s) +1) + log(1/9)
Nh(s) ’
o _ [Alog(Ny(5) +1) +1og(1/9) + [AIDkr (p(-), 75 (-]s))
Np(s) + |A]
This implies that for Ny (s) > 0, with probability at least 1 — §,
 [Allog(Nn(s) +1) +log(1/9) + | A| Dk (p(-), 7 (-]s))
- Ni(s) + | A
@ | Allog(Nn(s) + 1) +log(1/9) + H|Allog(4|Al)
- Ny (s) + | A
_ HIA[log(4JAI(N +1)/5)
- Ni(s) + | Al '

Here inequality (a) follows Lemma 3.

Dcw(m, (]s), 7y (-1s))

When Ny, (s) = 0, we have that 72€(-|s) = p(-) according to Eq.(12). With Lemma 3, we can have
that
H]|Allog(4]A|(N +1)/9)
Dy (7RO (|s), i (|s)) = D ), TR (+]s)) < Hlog(4]A]) <
kL (m, (+[s), ™y (+]s)) = Dku(p(-), ™y, (-]s)) < Hlog(4]A]) < ACEIY]
By combining the above two cases, we can conclude that with probability at least 1 — 4,
H]|Allog(4]A|(N +1)/6)
Dy, (7B€ (- B(ls)) < .
KL(ﬂ-h ( |5)a7rh( |S)) — Nh(S) + ‘./4|

Applying the union bound over (s, h) € S x [H] finishes the proof. O
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Lemma 2 (Sanov’s Theorem). Suppose that Q) is a distribution over an alphabet X and E is a set of
distributions over X. Let D = {X1, X3, ..., XN} be i.i.d. samples drawn from the distribution P.
Then

P(Pp € E) < (N + 1)/*l exp(—=N Dy (P*,Q)),

where Pp denote the empirical distribution from D and P* = argminp. Dk, (P, Q).
Lemma 3. For any (s,h) € S x [H], consider p is an uniform distribution over A, we have that

Dxcr(p(-), 7, (+]5)) < H log(4]A]).

Proof. For any fixed (s,h) € S x [H],

114
D), ) = 32 s () = —1oA) = gy 35 st

acA

According to Eq.(1), we can further obtain that
Puea @ (5,0)

Dxw(p(-), my (-]s)) = = log(|]) — + Vi (s).

Al
Notice that
H H
Qn(s,a) =E | > rh(snoan)+ > H(mp(lsw))|sn = s,an = a,wE] >0,

h'=h h’=h+1

H
Vi(s)=E Z (%, (spryap) + H(mwl (lsn) |sn = s, an = a,wE]
h’=h

< (H —-h+1)(1+log(]A])-
Then we have that
Dir(p(-), m; (-|s)) < (H — h+1)(1+log(|A])) < H(1 +log(|A]) < H log(4|A|).
O
Lemma 4. Suppose n ~ Bin(N, p) where N > 1 and p € [0,1]. Then with probability at least

1 -6, we have
D < 121log(2/9)
max{n,1} ~ N '

Proof. According to the Chernoff bound (Wainwright, 2019), with probability at least 1 — 9,

‘% —p’ < 3p10§/§2/(5).

This implies a quadratic inequality regarding x = ,/p.

log(2
JUZ—bl‘—CSO, b= 3%(/5),62%.

Solving this inequality yields that

b+ Vb% + 4e /3log(2/90) n 3max{n, 1}log(2/)
\/ﬁ=$§f§b+ﬁ: N+\/>S2\/ N .

This directly implies that

< 12 max{n, 1} log(2/6)
— N .
Rearanging the above inequality finishes the proof. [
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C EXPERIMENT DETAILS

C.1 IMPLEMENTATION DETAILS OF COPT-AIL

In this part, we present the detailed implementation of CoPT-AIL, which is outlined in Algorithm 3.
In the pretraining stage, we first pretrain the policy via BC.

N H
Tt 7TBC, B¢ = argmax Z ZlOg(Wh(a;L | 52))
mell i1 b=t

Then, according to the analysis in Section 4.1, we pretrain the reward by setting

i (s,a) = log (ﬂ,ll(a|s)) )

After the pretraining phase, we conduct the online AIL process, which alternates between policy and
reward updates. In iteration k, for the policy update, we first learn the Q-function by minimizing the
temporal difference learning objective.

H
glellgl 5(Q) :==E,.pn Lz:l (Qh(Sh,, an) — 5 (sh,an) — @Z+1(Sh+1, Wk))ﬂ (13)
Here DF is the replay buffer consisting of all historical online trajectories and Q =
{Q1,...,Qpm} is the delayed target Q-function. Besides, we define that Q:+1(Sh+1,ﬂ-k) =
Ea’~ﬂ£+l(v\s;L+1)[@h"rl(sh"'l? a’)]. With the newly learned Q-function Q**1, we update the pol-
icy by minimizing the objective of £* () := —E, _p» [Zle QZH(sh, )].

For the reward update, the objective function is formulated by

H

H
F(r) =K,k lz rh(Sh, an) —i—ﬁexp(—rh(sh,ah))} —E. .pe [Z Th(s;“ah)] .14
h=1

h=1

Here we add a regularization term exp(—7y(sp, ap)) to improve the stability of reward training, and
B > 0 is the regularization coefficient.

Algorithm 3 Practical Implementation of CoPT-AIL

Input: Demonstrations D, replay buffer D! = .
1: Pre-train a policy via BC based on Eq.(2): m! < 7
2: Pre-train a reward through r} (s, a) = log(72(als)).
3:fork=1,2,..., K —1do
4:  Update the Q-value function by Q¥ + QF — 1o V¢*(Q) from Eq. (13).
5: Update the policy by 71 « 7% — 1 V¥ (7), where (% (r1) := B, _pe[S20, Q¥+ (s, 7).

BC

6:  Apply 7F*1 to roll out a trajectory 751 and append it to the replay buffer D**! = D* U
{rF+1},

7:  Update the reward function by r*+1 « % — 1, V% (r) from Eq. (14).

8:  Update the target Q-value by @kﬂ TR 4 (1 - T)@k

9: end for

C.2 ARCHITECTURE AND TRAINING DETAILS

The experiments are conducted on a machine with 64 CPU cores and 4 RTX4090 GPU cores. Each
experiment is replicated three times using different random seeds. For each task, we adopt online
DrQ-v2 (Yarats et al., 2021) to train an agent with sufficient environment interactions and regard the
resultant policy as the expert policy. Specifically, we use 3M environment interactions for Hopper
Hop, and Walker Run, and 1M environment interactions for other tasks. Then we roll out this
expert policy to collect expert demonstrations. We collect 50 expert trajectories for Finger Spin
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and 10 expert trajectories for other tasks. The architecture and training details of CoPT-AIL and all
baselines are listed below.

CoPT-AIL: Our codebase of CoPT-AIL extends the open-sourced framework of IQLearn. We
retain the structure and parameter design of the actor and critic from the original framework, and
employ SAC (Haarnoja et al., 2018) with a fixed temperature coefficient for policy update. Note
that CoPT-AIL pretrains the reward function using the BC policy. Therefore, we implement the
reward model with the same architecture as the actor model. A comprehensive enumeration of the
hyperparameters of CoPT-AIL is provided in Table 1.

BC: We implement BC based on our codebase. The actor model is trained using Mean Squared Error
(MSE) loss over 10k training steps.

PPIL: We use the author’s codebase, which is available at https://github.com/lviano/p2il.
IQLearn: We use the author’s codebase, which is available at https://github.com/Div99/1Q-Learn.
FILTER: We use the author’s codebase, which is available at https://github.com/gkswamy98/fast_irl.
HyPE: We use the author’s codebase, which is available at https://github.com/gkswamy98/hyper.

Table 1: CoPT-AIL Hyper-parameters.

Parameter Value
discount factor 0.99
temperature coefficient 1072
replay buffer size 5-10°
batch size 256
optimizer Adam

Reward
learning rate 1-107°
number of hidden layers 2
number of hidden units per layer | 1024
activation ReLU

Actor
learning rate 3-107°
number of hidden layers 2
number of hidden units per layer | 1024
activation ReLU

Critic
learning rate 3-1074
number of hidden layers 2
number of hidden units per layer | 256
activation ReLU

D USE OF LARGE LANGUAGE MODELS

A large language model (LLM) was utilized during the preparation of this manuscript solely to polish
the writing. The tool was used to improve grammar, clarity, and readability. The LLM was not used
for any substantive aspects of the research, such as literature retrieval, discovery, or the generation of
research ideas. All intellectual content, analysis, and conclusions are the original work of the authors.
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