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ABSTRACT

Quantization is essential for deploying Large Language Models (LLMs) by en-
hancing memory efficiency and inference speed. Existing methods for activation
quantization mainly address channel-wise outliers, often neglecting token-wise
outliers, leading to reliance on costly per-token dynamic quantization. To address
this, we introduce PrefixQuant, a novel technique that isolates outlier tokens of-
fline without re-training. Specifically, PrefixQuant identifies high-frequency out-
lier tokens and prefixes them in the KV cache, preventing the generation of outlier
tokens during inference and simplifying quantization. To our knowledge, Pre-
fixQuant is the first to enable efficient per-tensor static quantization to outper-
form expensive per-token dynamic quantization. For instance, in W4A4KV4 (4-
bit weight, 4-bit activation, and 4-bit KV cache) Llama-3-8B, PrefixQuant with
per-tensor static quantization achieves a 7.43 WikiText2 perplexity and 71.08%
average accuracy on 5 common-sense reasoning tasks, outperforming previous
per-token dynamic quantization methods like QuaRot with 0.98 perplexity im-
provement and +5.98 points accuracy. Additionally, the inference speed of W4A4
quantized models using PrefixQuant is 1.60x to 2.81x faster than FP16 models
and exceeds QuaRot models by 1.2x to 1.3 x.

1 INTRODUCTION

Recently, Large Language Models (LLMs)(Touvron et al., 2023; [Bubeck et al.| |2023) demonstrate
remarkable capabilities across various tasks, significantly improving the convenience of daily work
and life. However, their large parameters and computational demands pose significant challenges
for deployment. This makes quantization (Frantar et al., 2022} |Lin et al., 2023; [Shao et al.,|2023) a
crucial technology for reducing memory usage and speeding up inference (Yuan et al., [2024).

Despite advancements, large outliers in LLMs activations can lead to significant quantization errors
and accuracy loss. Many current methods address this by focusing on alleviating channel-wise out-
liers (Dettmers et al.l |2022) through techniques like channel-wise scaling (Xiao et al.| [2023a; Shao
et al.l 2023} |Wei et al) 2023a)), mixed-precision quantization (Dettmers et al., [2022; |Zhao et al.,
2023), Hadamard rotation (Ashkboos et al., [2024b; [Liu et al., [2024a), and channel-level assembly
(Liu et al.l 2023)). However, activations of LLMs include not only channel-wise but also token-wise
outliers. For example, Figure E] (a) shows that some tokens, can be termed as outlier tokens, have
extreme values exceeding 1,000, making it impractical to share quantization scales between outlier
and normal tokens. The current leading method, Hadamard rotation (Ashkboos et al., 2024b), redis-
tributes outlier values across all channels, reducing the maximum value in outlier tokens from over
1,000 to about 15 (see Figure(b)). Nevertheless, the magnitude of outlier tokens remains hundreds
of times greater than that of normal tokens, still suffering significant performance degradation when
sharing quantization scales across different tokens.

Due to such dramatic discrepancies between normal and outlier tokens, previous quantization meth-
ods have to rely on per-token dynamic quantization to adjust quantization scales on-the-fly for each
token. While per-token dynamic quantization adapts better to distribution changes, it faces more
computational effort (Xiao et al., [2023a) and less compatible with operator fusion (Nagel et al.,
2021) than per-tensor static quantization which use a fixed quantization parameter for all token.
This leads to an important question: Can we eliminate token-wise outliers to enhance the precision
of efficient per-tensor static quantization?



Under review as a conference paper at ICLR 2025

| Jo.07
5.0 [0.06
125 0.05
' 0.04

00
f
t f0.03 | X|
|

250

000

750 75
5.0
25 0.01
0.0 g

500
250
o > 0. 0.00
o 500 0\ 500 0 i 500
29%o0; 400 20094, 00700 200(2008 300%%
100 200°0% 199009 200%% 50000 20g jyen
e F00Q 1002%%0+ e 000, Gore /3000 ~100™%
0

10000 Toooo o 100 10000

0.02

(a) Original distribution (PPL 3024) (b) Rotation (PPL 17.95) (c) PrefixQuant(PPL 5.91)

Figure 1: Comparison of PrefixQuant with existing methods. This figure shows the input activa-
tion of the down_proj linear layer in Llama-2-7B using different methods. Perplexity is measured
with Llama-2-7B under 16-bit weight and 4-bit activation using per-tensor static quantization with-
out any re-training. The original distribution has significant outliers larger than 1,000 (left). The
previous method with Hadamard rotation (Ashkboos et al. |2024b) reduces outliers to nearly 15
(middle) but still suffers from poor perplexity due to a non-uniform distribution. We propose Pre-
fixQuant (right), which prefixes some specific tokens in KV cache to isolate outliers, reducing the
maximum to nearly 0.07, significantly improving quantization performance.

In this paper, we propose PrefixQuant, an efficient solution for static activation quantization in
LLMs. PrefixQuant is based on a key observation: outlier tokens usually appear at fixed positions
in the token sequence (such as the initial token) or in tokens with low semantic value (such as “\n”,
“”, “the”, etc). Based on this observation, PrefixQuant pre-processes the outlier tokens offline in the
KV cache to prevent generate new outlier tokens during inference. Specifically, given a LLM, Pre-
fixQuant firstly counts the number N of outlier tokens, and selects the Top-N high-frequency outlier
tokens to prefix in the KV cache. This process is efficient and does not require any retraining, unlike
previous methods (Sun et al., 2024} |Bondarenko et al.| 2024), and can be completed quickly, such
as in 12 seconds for Llama-2-7B. As illustrated in Figure [I| (c), PrefixQuant effectively eliminates
outlier tokens, achieving excellent performance with per-tensor static activation quantization. For
example, with 4-bit per-tensor static activation quantization on Llama-2-7B, PrefixQuant achieves
5.91 perplexity, significantly outperforms QuaRot which has a perplexity of 17.95. Furthermore, we
introduce a block-wise fine-tuning optimization (Shao et al., 2023} (Chen et al., 2024a) to improve
performance by simultaneously training the quantization parameters of both weight and activation.
Additionally, we also find that isolating the outlier tokens enhances the convergence stability of train-
ing through avoiding large outliers magnitude during the calculation of Mean Square Error (MSE)
loss. Thus, the proposed method of prefixed outliers can also serve as a plug-and-play enhancement
for existing optimization-based quantization methods (Shao et al.,[2023;|Chen et al.| 2024a).

Experiments demonstrate that, without any fine-tuning, PrefixQuant achieves comparable or bet-
ter performance than previous per-token dynamic quantization methods (Ashkboos et al., [2024b;
Xiao et al.| 2023a; [Lin et al.| 2024b) using coarser per-tensor static quantization. Furthermore,
fine-tuning significantly enhances PrefixQuant’s performance. For example, PrefixQuant with fine-
tuning achieves a 7.43 WikiText2 (Merity et al., 2016) perplexity and 71.08% average accuracy
across five common-sense reasoning tasks in W4A4KV4 Llama-3-8B, significantly outperforming
previous QuaRot (Ashkboos et al., [2024b)) with 0.98 perplexity benefit and +5.98 points accuracy.
To the best of our knowledge, PrefixQuant is the first to outperform previous per-token dynamic
quantization methods (Ashkboos et al., 2024b; [Xiao et al., [2023a}; [Lin et al., 2024b) using coarse
per-tensor static quantization. We also benchmark the end-to-end inference of W4A4 quantization,
where PrefixQuant achieves a 1.60x to 2.81x speedup over FP16 models, and surpasses QuaRot
models by 1.2x to 1.3 x. We hope PrefixQuant inspires future developments in LLM compression.

2 RELATED WORKS

In this section, we discuss works related to outliers in LLMs, including quantization methods that
enhance performance by eliminating activation outliers. We divide the discussion into channel-wise
and token-wise outliers.

Channel-Wise Outliers. Dettmers et al.|(2022) identifies that outliers in activation consistently oc-
cur in the same channels across different input tokens and proposes isolating these outlier channels
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with 16-bit precision. Other works, such as Atom (Zhao et al., [2023)) and QUIK (Ashkboos et al.,
2023)), follow a similar mixed-precision approach to handle outliers. Instead of introducing mixed-
precision matrix manipulation, which lacks native hardware support, another line of work addresses
outliers through mathematically equivalent transformations. For example, SmoothQuant (Xiao et al.,
2023a)), OmniQuant (Shao et al., 2023), and Outlier Suppression (Wei et al.,|2022; 2023b)) mitigate
outliers by scaling activations to weights on a channel-wise basis. QLLM (Liu et al., [2023) reduces
outlier values by dividing each outlier channel into multiple sub-channels. Recently, QuaRot (Ashk-
boos et al., [2024b) proposed a simple and effective method, random Hadamard rotation, to redis-
tribute outliers across all channels. Building on QuaRot, SpinQuant (Liu et al.l 2024a)) suggests
training the orthogonal matrix instead of using a random Hadamard matrix to further enhance per-
formance. DuQuant (Lin et al.| [2024a) leverages channel permutation to evenly distribute outlier
to each block and uses block-rotation to smoothen outliers. Although these methods significantly
improve activation quantization performance, they all rely on fine-grained per-token dynamic quan-
tization, which incurs additional overhead to manage token-wise fluctuations.

Token-Wise Outliers. The SoftMax function used in the self-attention mechanism naturally pre-
vents producing zero attention scores. As a result, the model tends to assign unnecessary scores to
special tokens, leading to token-wise outliers (or termed as massive activation) (Sun et al.| [2024;
Xiao et al.| 2023b). Based on this, Streamingl.LM (Xiao et al.| 2023b) and LM-infinite (Han et al.,
2023) support infinite sequences by retaining the initial token. Unlike Streamingl.LM and LM-
infinite, which simply preserve initial tokens in the K'V-cache for long-context generation, our Pre-
fixQuant carefully selects prefixed tokens in the KV-cache to isolate outliers for quantization. Some
studies explore eliminating outliers with training techniques. For example, Bondarenko et al.|(2024)
allows SoftMax to produce zero values, and|Sun et al.| (2024) shows that adding attention bias in the
KV cache during training can effectively reduce outliers. Our PrefixQuant efficiently isolates outlier
tokens without needing retraining. The works closest to our approach are QFeP (Yang et al., [2024)
and CushionCache (Son et al., [2024)), which also set prefixed tokens in the KV cache. However,
CushionCache (Son et al., 2024) takes 12 hours to find the prefixed tokens for Llama-3-8B through
a greedy search, while our method completes this process in 12 seconds. QFeP (Yang et al.| [2024)
fixes the outlier token number for all models at 3, which lacks flexibility. Additionally, both QFeP
and CushionCache suffer significant performance degradation when using per-tensor static quanti-
zation instead of per-token dynamic quantization. Our PrefixQuant is the first to make per-tensor
static quantization outperform per-token dynamic quantization.

3 PRELIMINARIES

Quantization in LLMs involves weight, activation, and KV cache quantization. Weight quantiza-
tion (Chen et al.| 2024a) and KV cache quantization (Liu et al., [2024b) reduce memory usage and
speed up memory-bound computations (Yuan et al.| 2024)). Combining weight and activation quan-
tization enables low-bit matrix manipulation to accelerate computation-bound tasks (Yuan et al.,
2024). Specifically, the symmetric quantization process is:

X

Xoyr = clamp(| =], —oN=1 oN=1 1), (1
X

where | -] denotes rounding operation, NNV is the target bit number, X yr and X are the quantized

integer and full-precision activation, respectively. sy is the step size. Full precision weight W can

also be quantized into W 1yt and sy similarly. Then, full-precision matrix manipulation transfer into

efficient low-bit matrix manipulation:

XW =~ (Sw . SX) - Xyt Winr (2)

Granularity. Finer granularity in quantization results in more overhead but less information loss.
Per-tensor quantization shares s across the entire tensor. Per-channel quantization of weight and
per-token quantization of activation means s is shared within each row of the tensor.

Dynamic and Static. Activation quantization divides into dynamic and static quantization based

on how quantization parameters are calculated. Specifically, dynamic quantization calculates

Sy = glix_(‘l)ill) during inference, offering better adaptability to different distributions. In contrast,

static quantization precomputes sy and (sy - sx) in Eq. offline, leading to more efficient inference
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and more feasible operator fusion (Nagel et al., |2021). Table B] shows that the overhead of static
quantization is nearly 3x lower than dynamic quantization. Additionally, we initialize both s; and
sy through grid search (Lin et al., |2023; |Gong et al., 2024) on a small calibration dataset for all
experiments with static quantization.

Hadamard Rotation. Random Hadamard rotation (Ashkboos et al. 2024b; [Liu et al.| [2024a)) ad-
dresses channel-wise outliers. Our method focus on removing token-wise outliers. Therefore, We
build our method upon the Hadamard rotation technique, and the detailed is provided in Sec. [C]
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Figure 2: Distribution of token-wise maximum values for linear layers inputs in Llama-2-7B.
Top-N indicates the N-th largest value, Min-N indicates the N-th smallest value. We also report
the maximum ratio between Top-1 value and median value, as well as the maximum ratio between
median value and Min-1 value (Ratios greater than 10 are marked with red, and the rest are green).
Lower ratio indicate similar maximum values across different tokens, leading compatibility with
per-tensor static activation quantization.

4  DIFFICULTY OF STATIC QUANTIZATION

Both channel-wise and token-wise outliers can cause information loss during quantization. While
channel-wise outliers have been thoroughly explored and addressed in prior research (Ashkboos
et al.,[2024b), this discussion focuses on token-wise outliers, which occur within specific tokens.

Let X € RT*¢ represent the token sequence, with 7" tokens and a dimension size of C'. We calculate
token-wise maximum values M € RT, indicating the maximum value of each token. Per-tensor
static quantization uses one pre-computed scale for all tokens. If the token-wise maximum values
M vary significantly across tokens, this can lead to substantial information loss after per-tensor
static quantization. To analyze the distribution of token-wise maximum values M and understand
the challenges for per-tensor static quantization, we define top-1, median, and min-1 as the largest,

median, and smallest values of M, respectively We then measure discrepancies using the ratios
0p-L apd median - ghocifically, a larger ~2-- indicates upper outliers, while a larger T ¢ med'a“ represents
medlan ‘min-1_ median

lower outliers. Both ratios highlight the variability in M. Specifically, we 1dent1fy the following
patterns that motivate our method.

1. Upper Outlier Tokens in Inputs. As shown in Figure the input activation of down_proj
layers exhibits significant outliers with [:l(e’g;;n = 4127. Although Hadamard rotation (Figure
reduces the ratio to 478, it remains impractical to share a quantization scaling factor across tokens

due to the large gap in maximum values.
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Figure 3: Distribution of token-wise maximum values for Q/K/V in Llama-2-7B. Same present
rules as Figure @ except that ratios greater than 5 are marked with red.
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Figure 4: Illustration the content and index of outlier token in the input sequence of Llama-2-
7B. (a) counts the outlier tokens except in the initial token, shows that the outliers only exit in “.”
and “\n” tokens. (b) illustrates the sequence index of outlier tokens. (c) demonstrates that prefix the
input sequence with “.\n[BOS]” can constraint the outlier token in the first three tokens.

2. Lower Outlier Tokens in Q/K/V. We also investigate the distribution of Q/K/V within the
self-attention mechanism. We only quantize the KV cache for fair comparisons with previous
works (Ashkboos et all, [2024b; [Lin et al) 2024b). However, quantization of Q is also crucial,
as used in FlashAttention-3 (Shah et al., 2024). In Figure 3] Q/K/V display a different outlier pat-
tern than the inputs of linear layers, with some tokens having extremely small magnitudes instead

of large ones. Specifically, Q/K have %L ~ 1.5, but median - 9 Additionally, as shown in

median “min-1
Figure[3b] Hadamard rotation has no effect on these outliers.

3. Outlier Tokens in Initial or Low-Semantic Tokens. Though outlier tokens occur in different
patterns, we find that they are the same tokens in inputs of linear layers and Q/K/V. Consistent with
Massive Attention (Sun et al.l[2024), we find that outlier tokens appear only in small fractions (nearly
1 to 4 tokens in the input sequence) with fixed patterns. For example, Llama-2-7B has outlier tokens
in both initial and delimiter tokens (“” or “\n” as shown in Figure . However, unlike outlier
channels that exist in some fixed channel indexes (Dettmers et al.| [2022)), the position indexes of
outlier tokens relate to the input sequence and are diverse, as shown in Figure[db] Therefore, it is not
feasible to decide offline on the outlier token to achieve mixed-precision quantization like previous
works on outlier channels (Dettmers et al.,[2022}; [Zhao et al,[2023).
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Figure 5: Comparison of Original and PrefixQuant Inference. Both methods use Hadamard ro-
tation to remove channel-wise outliers. PrefixQuant differs by setting specific prefixed tokens in the
KV cache, which eliminates token-wise outliers in linear inputs and Q/K/V, enhancing compatibil-
ity with per-tensor static quantization. Llama-2-7B serves as an example; additional prefixed tokens
for other models are listed in Table E}

Previous works (Ashkboos et al.,[2024bj Lin et al.| |2024b; Liu et al.| 2024b) take per-token dynamic
quantization for inputs of linear layers and KV cache to deal with outlier tokens. In this paper, we
focus on eliminating outlier tokens to facilitate per-tensor static quantization.

5 PREFIXQUANT

As shown in Figure 5] we propose prefixing outlier tokens in the KV cache to improve the perfor-
mance of more efficient per-tensor static quantization, instead of using costly per-token dynamic
quantization. Section[5.1]explains how to find these prefixed outliers. Section [5.2]introduces block-
wise fine-tuning to further enhance performance.

5.1 PREFIXED OUTLIERS

Definition of Outlier Token. Given that both

upper outlier tokens in the inputs of the lin- Taple 1: Prefixed tokens in KV cache across dif-
ear layer and lower outlier tokens in Q/K/V  ferent models. [BOS] indicates the special token
are same tokens, we choose to identify outlier fqp beginning of sequence(e.g. “<s>" for Llama-

tokens using the upper outliers in the inputs 7 and “|begin_of_text| for Llama-3). Note that
of the down_proj layers due to the outlier in  the following “_” represents space.

down_proj is more highlight and easier to be

detected. Given token-wise maximum values Prefixed token

M € RT, which represents the maximum val- Model

ues of each token. Then, outlier token in the Number Content
i-th index of token sequence is identified when ~ Llama-2-7B 3 .\n[BOS]
the ratio of their maximum values to the median ~ L1ama-2-13B 3 the,[BOS]
. Llama-2-70B 4 \n”[BOS]

of all maximum values exceeds a threshold 7: Llama-3-8B(-Instruct) 1 [BOS]
M. Llama-3-70B(-Instruct) 3 —[BOS]

— >, (3)  Mistral-v0.3-7B 4 \n.to[BOS]

median (M) Qwen-2-7B 1 [BOS]

where M; is the maximum value of the i-th to-
ken, median() denotes the function to find the median value from the vector, and the threshold 7 is
empirically set to 64 in our experiments.

Number of Outlier Tokens. We determine the number of outlier tokens by calculating the average
number of outlier tokens in a small calibration dataset. Specifically, we compute the average outlier
token count O € R? for each transformer block according to Eq (3), where b is the total number of
transformer blocks. Since outlier tokens are nearly consistent across layers that contain them, we set
the number of outlier tokens as 0 = [max(O)].
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PPL | FP16 W16A4KV16 (static) W16A16KV4 (static)
original + rotation + prefixed original + rotation + prefixed

Llama-2-7B 5.47 3024.77 17.95 5.91 6.46 5.95 5.56
Llama-3-8B 6.14 1816.57 22.14 7.23 7.37 8.12 6.30

Table 2: Proposed prefixed outliers in KV cache significantly improves the performance of the static
quantized models over hadamard rotation|/Ashkboos et al.|(2024b); Liu et al.|(2024a). W16A4KV 16
indicates 4-bit per-tensor static quantization of all linear layer inputs. W16A16KV4 indicates 4-bit
per-head static KV cache quantization. WikiText2 perplexity with 2048 context length is reported.

Which Tokens to Prefix? Outlier tokens act as attention sinks (Xiao et al.,|2023b)), occupying only
a few tokens (1 ~ 4) to help the attention mechanism do nothing (Bondarenko et al.||[2024;Sun et al.,
2024)). Given the outlier token number o, we find that prefixing the top-o high—frequencyE] outlier
tokens and the special ‘[BOS]‘ token can successfully constrains the outliers in prefixed tokens as
shown in Figure For special models (such as Llama-3-8B and Qwen-2-7B) with outlier tokens
only in the initial tokens, we simply set the prefix token as “[BOS]”. The detailed prefixed tokens
for different models are illustrate in Table [T} Considering the auto-regressive inference pipeline of
LLMs, we store these prefix tokens in the KV cache to prevent generating new outlier tokens during
inference. As shown in Figure [2c] and Figure [3c] prefixing outliers in the KV cache reduces the
©9p-L ratio of down_proj inputs from 476 to 2.7 and the 26420 ratio of Q/K from > 9 to < 3.5.

median min-1

Quantitative Analysis. Table [2] presents separate performance of static quantization on input ac-
tivation and KV cache quantization. We can find that the model suffers significant performance
degradation with static quantization becuase of outlier tokens. For example, in Llama-3-8B, Wiki-
Text2 perplexity increases from 6.14 to 22.14 with 4-bit per-tensor activation quantization and from
6.14 to 8.12 with 4-bit per-head static KV cache quantization even with Hadamard rotation. Af-
ter further setting prefix outliers in the KV cache, performance significantly improves: perplexity
of 4-bit per-tensor activation decreases to 7.23 and perplexity of 4-bit per-head static KV cache
quantization decreases to 6.30, demonstrating the effectiveness of prefixed outlier tokens for static
quantization.

5.2 BLOCK-WISE FINE-TUNING

Recent studies demonstrate that block-wise fine-tuning (Shao et al., 2023} |Chen et al.| |2024a) en-
hances performance by considering inter-layer interactions (Li et al., 2021). We initialize all quanti-
zation parameters using grid search (Lin et al., 2023} [2024b) and then fine-tune each transformer
block with mean square error loss sequentially. For trainable parameters, we follow Efficien-
tQAT (Chen et al.,[2024a) by activating the training of all quantization parameters and original full-
precision weights. Additionally, unlike dynamic activation quantization, the offline pre-computed
quantization parameters of static activation quantization are inherently trainable. To maintain sim-
plicity, we use block-wise quantization in this work and leave the end-to-end finr-tuning of Efficien-
tQAT (Chen et al.|[20244a) for future performance improvements.

6 EXPERIMENTS

6.1 SETUPS

Baseline. PrefixQuant is a versatile method applicable to any precision. We conduct experiments on
three precisions: W8A8KVE, W4A8KV4, and W4A4KV4. In PrefixQuant, weight uses per-channel
symmetric quantization. KV cache uses per-head symmetric static quantization for 4-bit and per-
tensor symmetric static quantization for 8-bit. Activation (inputs of linear layers) uses per-tensor
static quantization. We compare PrefixQuant with QuaRot (Ashkboos et al.l [2024b)), Atom (Zhao
et al., 2023), DuQuant (Lin et al., [2024a), QoQ (Lin et al.| [2024b), SmoothQuant (Xiao et al.|

!The frequencies are calculated without considering initial token.
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Table 3: W4A4KV4 results. Perplexity is measured with context length 2048. “Avg. Acc.” indicates
the average zero-shot accuracy on 5 common-sense reasoning tasks. “Quant Type” is used to indicate
whether the activation and kv cache quantization are dynamic or static.

Model Method Quant Type Wiki PP1 Avg. Acc.
77777 FP16 - 547 ~ __ _ 69.04
Atom dynamic 6.12 5973
Llama-2-7B QuaRot dynamic 6.19 64.69
DuQuant dynamic 6.20 66.25
SpinQuant dynamic 5.95 65.35
PrefixQuant w/o FT static 6.22 66.84
PrefixQuant static 6.01 66.37
fffff Rtom ~ =~~~ “dyiamic ~ "~ 331"l -
tom ynamic } .
Llama-2-13B QuaRot dynamic 5.45 69.01
DuQuant dynamic 5.39 69.13
SpinQuant dynamic 5.24 69.24
PrefixQuant w/o FT static 5.50 69.92
PrefixQuant static 5.32 70.36
fffff Rtom ~ "~ “dyiamic ~ " 3730 grar
tom ynamic . .
Llama-2-70B QuaRot dynamic 3.83 75.43
DuQuant dynamic 3.77 74.75
SpinQuant dynamic 3.70 75.19
PrefixQuant w/o FT static 441 73.29
PrefixQuant static 3.81 75.48
o EPJQ ,,,,,, e~ - g% ,,,,,, 7271 _
tom ynamic . -
Llama-3-8B QuaRot dynamic 8.41 65.15
DuQuant dynamic 8.14 67.13
SpinQuant dynamic 7.36 68.23
PrefixQuant w/o FT static 7.93 68.37
PrefixQuant static 7.43 71.08
____FPl6 ___ - 285 80.03 _ _
Llama-3-70B ‘QuaRot dynamic 6.82 68.39
DuQuant dynamic 5.67 74.89
PrefixQuant w/o FT static 5.23 76.40
PrefixQuant static 4.41 77.18

* Grayed results use Wikitext2 as calibaration dataset.
T Atom apply 128 group size quantization to both weight and activations.

2023a) and SpinQuant (Liu et al., [2024a)). Following QoQ, we reproduce all these methods except
SpinQuant with Pile (Gao et al.,|2020) calibration dataset to avoid over-fitting for fair comparisons.
The detailed quantization configuration and results sources of these comparison methods can be
found at Sec. |Bl Note that all comparison methods use dynamic quantization if without specific
mentioned, and would suffer dramatic performance degeneration likes “+ static quantization” in
Table[6l

Models and datasets. We evaluate PrefixQuant on the Llama-2, Llama-3, Llama-3-Instruct fam-
ilies, Mistral-7B-v0.3, and Qwen-2-7B models. Following previous literature (Shao et al.l 2023;
Lin et al.| |2024b), we assess PrefixQuant quantized models on language modeling and zero-shot
tasks. Specifically, we evaluate on WikiText2 (Merity et al.| [2016)) with a 2048 context length for
perplexity, and on PIQA (Bisk et al., 2020), ARC (Clark et al., |2018)), HellaSwag (Zellers et al.,
2019), and WinoGrande (Sakaguchi et al.,|2021) using lm_eval v0.4.2 (Gao et al.|2024). For
accuracy, we report acc for WinoGrande and acc_norm for HellaSwag, Arc_Challenge, Arc_Easy,
and PIQA, following Qserve (Lin et al., 2024b

Grid Search Setting. For all experiments with static quantization, we initialize the quantization
parameters through grid search on 8 Pile (Gao et al.,[2020) samples with a 1024 sequence length. We
minimize the layer outputs for fine-grained quantization (per-channel/per-head) and block outputs

2Some weight-only quantization works such as EfficientQAT (Chen et al., 2024a) and QuiP# (Tseng et al.,
2024) report acc for all tasks.
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Table 4: W4A8KV4 results. Refer Table 3| for the metric setting and performance of full-precision
models.

Model Method Activation Quant Wiki PPl  Avg. Acc.
QQOQ gynamic g .7% 27.22
. uaRot ynamic i 7.11
Llama-2-7B PrefixQuant w/o FT static 5.76 67.86
PrefixQuant static 5.68 68.90
QoQ dynamic 5.12 70.56
Llama-2-13B QuaRot dynamic 5.07 69.96
PrefixQuant w/o FT static 5.08 71.07
PrefixQuant static 5.07 71.25
QoQ dynamic 3.52 75.91
Llama-2-70B QuaRot dynamic 3.46 76.31
PrefixQuant w/o FT static 3.60 75.00
PrefixQuant static 3.50 76.50
QoQ dynamic 6.89 71.35
Llama-3-8B QuaRot dynamic 6.80 71.68
PrefixQuant w/o FT static 6.90 70.29
PrefixQuant static 6.62 72.46
QoQ dynamic 4.36 78.12
Llama-3-70B QuaRot dynamic 3.73 78.92
PrefixQuant w/o FT static 3.55 77.82
PrefixQuant static 3.43 78.70

for per-tensor quantization. In the performance comparison tables, “PrefixQunt w/o FT” indicates
finishing the quantization only with grid search and without fine-tuning.

Fine-Tuning Setting. During fine-tuning, we optimize block output mean square error following
existing works (Shao et al., [2023}; |[Chen et al., [2024a)). The dataset for fine-tuning consists of 512
samples from Pile with a 1024 context length. The learning rates for quantization parameters (step
sizes) and full-precision weights are set to 5e-5 and Se-6, respectively, and to 2e-5 and 2e-6 for
Llama-3-70B(-Instruct) models. The fine-tuning batch size is set to 4, and the number of epochs is
set to 10 for W4A8KV4 and 20 for W4A4KV4.

6.2 COMPARISON RESULTS

Results on W4A4KV4. Table 3| shows the comparison results for W4A4KV4. PrefixQuant with
static quantization significantly outperforms the previous state-of-the-art QuaRot, which uses dy-
namic quantization. For instance, in Llama-3-8B, PrefixQuant without fine-tuning surpasses QuaRot
by 0.48 in WikiText2 perplexity and +3.22 points in average accuracy. Fine-tuning further improves
these results to 0.98 in WikiText2 perplexity and +5.98 points in average accuracy.

Results on W4A8KYVS. Table 4| presents the comparison results for WAASKVS. Without fine-
tuning, PrefixQuant performs comparably to QoQ (Lin et al.}, 2024b)). After fine-tuning, PrefixQuant
outperforms both QoQ and QuaRot in most models. For instance, PrefixQuant surpasses QoQ (Lin
et al.| 2024b) by 0.27 perplexity and +1.11 accuracy points in Llama-3-8B.

Results on W8A8KYVS. Table [18] includes the comparison with various methods in W8A8KVSE
quantization. We can find that SmoothQuant, QuaRot, and PrefixQuant all attain near lossless per-
formance without fine-tuning. Notably, our PrefixQuant is unique in employing static quantization,
which enhances inference efficiency. Additionally, earlier methods like CushionCache (Son et al.,
2024) and QFeP (Yang et al.l 2024)), despite also using prefixed tokens in the KV cache to sup-
port coarser quantization, exhibit marked performance decline even under W8AS as illustrated in
Table[T7]

Results on more models. The results in Table [I9) demonstrate that PrefixQuant consistently
achieves excellent performance on other models such as Mistral-7b-v0.3 and Qwen-2-7B, as well as
instruction-tuned models like Llama-3-{7B,70B }-Instruct.

Results on weight-only quantization. PrefixQuant can also improve existing weight-only quantiza-
tion methods by reducing outlier noise in MSE loss calculations. As shown in Table[I6] PrefixQuant
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enhances the average accuracy by +5.05 and +4.73 points on W2A16g128 Llama-3-8B and Llama-
3-70B, respectively, based on the state-of-the-art uniform quantization method EfficientQAT (Chen
et al.,[20244a). See Sec. @]for more details.

6.3 INFERENCE SPEED

In this section, we evaluate the end-to-end inference
speed of PrefixQuant in the W4A4 quantization sce- Taple 5: Time-to-first-token (prefilling)
nario. We do not consider KV quantization here be- speedup of W4A4 Llama-3-8B model over
cause it saves memory footprint through more com-  the FP16 model. We use 2048 sequence
putation overhead and only achieves speedup with Jength with different batch size.

large batch sizes (Liu et al} [2024b)). Table E] shows
the speedup of W4A4 quantization in the prefill-

ing stage. Our PrefixQuant improves the QuaRot Barchsize 1 A

speedup from 2.30 to 2.81x on the A100-80GB - - - - - - ona RIX 300 GPU m8) r - - -
GPU, and from 1.31x ~ 1.39x to 1.60x ~ 1.82x Quarot (W4A4) 221 (2.30x; 851

on the RTX 3090 GPU. In Sec. D] we also provide PrefixQuant (W4A4) 181 (2.81x) 725
comprehensive apple-to-apple comparisons of sub- on an A100-80GB GPU (ms)
modules, such as quantization kernels and quantized ~~ ~ FPI6 172"~~~ 661

Quarot (W4A4) 130 (1.31x) 477 (1.39x

linears, demonstrating the significant superiority of PrefixQuant (W4A4) 107 (1 60x; 362 (1 82)(;
PrefixQuant over the existing dynamic quantization - -

approach QuaRot (Ashkboos et al.| [2024b)).

Table 6: Ablation study on quantization techniques used in PrefixQuant. The model used here is
Llama-3-8B, and WikiText2 perplexity with 2048 context length is reported.

Method Activation Quant. WS8ASKVS W4A8KV4 W4A4KV4
QuaRot dynamic 6.17 6.75 8.33
RTN dynamic 6.26 12.66 1282.34
+ rotation dynamic 6.17 10.88 24.98

+ grid search dynamic 6.17 8.91 16.47

+ static quantization static 7.27 29.07 141.02

+ prefixed outliers static 6.17 6.90 7.93

+ block-wise fine-tuning static 6.17 6.63 7.41

6.4 ABLATION STUDIES

We examine the impact of various quantization techniques implemented in PrefixQuant. Our anal-
ysis starts with W4A4KV4 round-to-nearest (RTN) quantization on Llama-3-8B, involving per-
channel weight quantization, per-token dynamic activation quantization, and per-head dynamic KV-
cache quantization. We apply different techniques step-by-step and report the WikiText2 perplexity
in Table[6] We find that both Hadamard rotation and grid search initialization improve performance.
Then, perplexity collapses due to static quantization of activation and KV cache, but introducing pre-
fixed outliers significantly recovers performance, even surpassing results before introducing static
quantization. These benefits arise not only by reducing information loss from outlier tokens but also
by helping to find accurate quantization parameters in grid searches through isolating extremely
large outliers (> 1e3) in activation. Additionally, block-wise fine-tuning improves performance ex-
cept on W8A8KVS, which is nearly lossless without fine-tuning. More ablation results related to
the training dataset, training epochs, dynamic quantization, the number of prefixed tokens, and the
content of prefixed tokens are in Sec. [F]in the Appendix.

7 CONCLUSION

We propose PrefixQuant, which enables static quantization to outperform dynamic quantization
by effectively handling token-wise outliers through a novel prefixing approach. This technique
also stabilizes model training, making it a plug-and-play module that enhances the performance of
other optimization-based methods. The simplicity and broad applicability of PrefixQuant make it a
promising direction for future LLM compression and optimization research.
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OVERVIEW OF APPENDIX

We detailed the content of Appendix here:

» Sec|A| gives the reproducibility statement to summarize the information related to the re-
production of our method.

* Sec[B|details the quantization configuration and data sources of comparison methods.

* Sec.|(]illustrates the detailed image of hadamaed rotation within a transformer block.

* Sec.[D]presents the apple-to-apple sub-module comparisons of PrefixQuant and QuaRot.
* Sec. [E]details the quantization time of PrefixQuant.

* Sec.[Fgives more ablation studies of PrefixQuant, including the fine-tuning dataset, training
epoch, dynamic quantiztaion and number of prefixed tokens.

* Sec. [G demonstrates that proposed PrefixQuant can also play as a plug-in to enhance the
performance of existing weight-only quantization methods.

* Sec. [H] presents the detailed accuracy number of each zero-shot task, and provide more
results of PrefixQuant on Mistral-v0.3-7B, Qwen-2-7B, and Llama-3-{8B,70B }-Instruct.

* Sec. [I] illustrate more visualization of inputs of linear layer and Q/K/V on more models,
including Llama-3-{8B,70B}, Mistral-7B-v0.3, Qwen-2-7B.

A  REPRODUCIBILITY STATEMENT

In this section, we summarize the necessary information to reproduce our results. First, PrefixQuant
is based on Hadamard rotation, as detailed in Sec[C| Our main contribution, setting prefixed out-
liers, is discussed in Sec[5.1] After configuring prefixed outliers in the KV-cache, we initialize the
quantization parameters using grid search. We also offer optional block-wise fine-tuning to enhance
performance. Detailed setups for grid search and fine-tuning are available in Sec[6.1] Additionally,
we provide the source of detailed results for each compared method in Sec/B]

B CONFIGURATION AND DATA SOURCES OF COMPARISON METHODS

Quantization Configurations. In this study, we establish the quantization granularity for each
comparison method based on the specifications provided in the original papers. Details on these
settings are given in Table

Table 7: Detailed quantization setting of comparison methods. All per-group quantization set group
size as 128.

Method Weight Activation KV Cache
SmoothQuant per-channel symmetric per-token symmetric dynamic per-tensor symmetric static
Atom per-group symmetric per-group symmetric dynamic per-group asymmetric dynamic

QoQ per-channel asymmetric per-token symmetric dynamic per-group asymmetric dynamic

QuaRot  per-channel symmetric per-token dynamic symmetric per-group asymmetric dynamic

DuQuant per-channel asymmetric per-token dynamic asymmetric per-token asymmetric dynamic
PrefixQuant per-channel symmetric per-tensor symmetric static per-head symmetric static

Data Sources. We compare our proposed PrefixQuant with several other methods: QuaRot (Ashk-
boos et al., [2024b)), Atom (Zhao et al., 2023)), QoQ (Lin et al., [2024b)), SmoothQuant (Xiao et al.,
2023a)), SpinQuant (Liu et al., [20244a)), and EfficientQAT (Chen et al.,2024a). The data for our com-
parisons either come directly from the official publications of these methods, from other papers, or
from our own reproduction of the methods. The source of the data for each method is outlined as
follows:
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* QuaRot: We present the performance of QuaRot using the Pile calibration dataset. The
results for Llama-2 models with W4A4KV4 come from QoQ (Lin et al.,[2024b)), while the
rest are reproduced using the official open-source code.

* DuQuant: We reproduce DuQuant with Pild calibration dataset through their official open-
source code. Note that we change the evaluation toolbox to Im-eval v0.4.2 for more accu-
rate evaluation.

» Atom: We present the performance of Atom using the Pile calibration dataset. The results
are sourced from QoQ (Lin et al.,[2024b).

* QoQ: We present the performance of QoQ using the Pile calibration dataset. The results
for Llama-2 come from QoQ (Lin et al., 2024b), and the Llama-3 results are reproduced
using the official open-source code.

* SmoothQuant: We present the performance of SmoothQuant using the Pile calibration
dataset. All results are reproduced using the open-source code from QoQ (Lin et al.
2024b)).

e SpinQuant: All results are reproduced using the official open-source code and the pre-
trained rotation matrix. Note that SpinQuant directly trains on the WikiText2 dataset.

* EfficientQAT: All results are reproduced using the official open-source code and the pre-
quantized models.

C DETAILS OF ROTATION

Hadamard rotation (Ashkboos et al., [2024b; [L1u et al.| [20244a) redistributes outlier channels across
all channels, achieving uniform distribution within each token. The Hadamard matrix H is an or-
thogonal matrix with HH” = I, and its entries are {+1, —1} at the same scale. Hadamard rotation
can be applied to all activations and use inverse rotation on corresponding weights to maintain com-
putational invariance (Ashkboos et al.| 2024a). Specifically, the rotation includes absorbable and
online rotations. As shown in Figure |§L we follow SpinQuant (Liu et al., [2024a) to set R1, R2, R3
and R4 rotations, details as follows.

Absorbable Rotation. Hadamard rotation of activation can be absorbed into the previous linear
layer if there is no intervening non-linear operation. Thus, the rotation of input activations for
g/k/v/gate/up_proj (R;) and head-wise rotation for o_proj input activations ([23) can be fully ab-
sorbed without adding computation during inference.

Online Rotation. Some rotations must be executed online, including output activations of q_proj
and k_proj after RoPE (Su et al.| 2024) (R3), and the input activation of down_proj (R4). These on-
line rotations are efficiently implemented using the Walsh-Hadamard transform without significant
overhead.

If not specifically mentioned, we activate all rotation (R;, R, R3 and Ry) in weight-activation
quantization scenes, and only activate absorbable rotation (R; and R5) in weight-only quantization.

. absorbable rotation C] online rotation D linear layer

Figure 6: Illustrate of hadamard rotation within a transformer block of Llama (Touvron et al., [2023))
model.

D INFERENCE EFFICIENCY DETAILS
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Table 8: Speedup of per-tensor static quantization compared to per-token dynamic quantization in
4-bit activation quantization.

(a) Nvidia RTX 3090 GPU
(Seq_len,dimension) Quantization Time (ms) Speedup
Per-token Dynamic Per-tensor static
(1,4096) 0.0127 0.0038 3.34x
(1,8192) 0.0144 0.004 3.60x
(2048,4096) 0.1073 0.0344 3.12x
(2048,8192) 0.2084 0.0652 3.19x
Average Speedup 3.31x
(b) Nvidia A100-80GB GPU
(Seq_len,dimension) Quantization Time (ms) Speedup
Per-token Dynamic  Per-tensor static
(1,4096) 0.020 0.0072 2.81x
(1,8192) 0.022 0.0075 2.88x
(2048,4096) 0.095 0.033 2.88x
(2048,8192) 0.157 0.058 2.71x
Average Speedup 2.82x

Table 9: Speedup of W4A4 quantized linear layers compared to FP16 linear layer. Numbers in
brackets indicate the speedup compared to FP16.

(a) Nvidia RTX 3090 GPU
(Seq_len,input_c, output_¢) FP16 (ms) W4A4 (ms)
Quarot + static quant ~ + improved GEMV
(1,4096,4096) 0.0512 0.0578 (0.89x) 0.0472 (1.08x)  0.0223 (2.30x)

(1,4096,14336) 0.1548 0.0641 (2.42x) 0.0549 (2.83x) 0.0475 (3.27x)

(1,8192,8192) 0.1080 0.0957 (1.77x)  0.0863 (1.97x) 0.0561 (3.02x)

(1,8192,28672) 0.5762 0.2087 (2.76x)  0.1977 (2.91x) 0.1503 (3.83x)
(2048,4096,4096) 1.0666 0.3699 (2.88x)  0.2965 (3.59x) -
(2048,4096,14336) 3.5766 0.9358 (3.93x) 0.8618 (4.27x) -
(2048,8192,8192) 3.9986 1.0211 (4.03x) 0.8718 (4.72x) -
(2048,8192,28672) 13.1607  2.8609 (4.74x) 2.7177 (4.99x) -

(b) Nvidia A100-80GB GPU
(Seq_len,input_c, output_.¢) FP16 (ms) INT4 (ms)
Quarot + static quant ~ + improved GEMV

(1,4096,4096) 0.0418 0.0588 (0.71x)  0.0455 (0.92x)  0.0235 (1.78x)

(1,4096,14336) 0.1026 0.0679 (1.51x) 0.0556 (1.85x) 0.0441 (2.33x)

(1,8192,8192) 0.1080 0.0888 (1.22x)  0.0735 (1.47x)  0.0508 (2.13x)

(1,8192,28672) 0.3036 0.1668 (1.82x) 0.1534 (1.97x) 0.1114 (2.72x)
(2048,4096,4096) 0.2762 0.2408 (1.15x)  0.1799 (1.54x) -
(2048,4096,14336) 1.0092 0.5461 (1.85x)  0.4850 (2.08x) -
(2048,8192,8192) 1.0583 0.5298 (2.00x) 0.4349 (2.43x) -
(2048,8192,28672) 3.6897 1.4686 (2.51x) 1.3857 (2.66x) -

In this section, we examine the inference efficiency of PrefixQuant. We conduct tests on Nvidia
RTX 3090 and A100-80GB GPUs, considering sequence lengths of 1 and 2048, with a batch size of
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1. We detail the speedup ratios for quantization overhead, quantized linear layers, and end-to-end
inference below.

Reduced Quantization Overhead. Activations are quantized and packed into low-bit formats for
matrix manipulations. We define the time for this process during inference as quantization overhead.
The per-token dynamic quantization kernel is sourced from QuaRot (Ashkboos et al.,|2024b). Ta-
ble [ shows the speedup of per-tensor static quantization over per-token dynamic quantization. We
can find that the per-tensor static quantization kernel achieves speedups of 3.31x on the RTX 3090
and 2.82x on the A100-80GB.

Accelerated Quantized Linear Layer. The quantized linear layer consists of quantization, low-bit
matrix multiplication, and de-quantization. The speedup for the quantization process is in Table
For low-bit matrix multiplication, we use the 4-bit GEMM kernel from CUTLASS and design a
custom kernel for W4A4 GEMV. We also integrate the de-quantization process into the GEMM and
GEMV kernels. Table 9] presents the speedup ratios of the QuaRot kernel and our kernel compared
to FP16. With a sequence length of 1, our quantized linear layer improves the QuaRot speedup from
0.89%x ~ 2.76% to 2.30x ~ 3.83x on the RTX 3090, and from 0.71x ~ 1.82x to 1.78x ~ 2.72x
on the A100-80GB. With a sequence length of 2048, our layer enhances the QuaRot speedup from
2.88x ~ 4.74% t0 3.59% ~ 4.99x on the RTX 3090, and from 1.15x ~ 2.51X to 1.54x ~ 2.66 %
on the A100-80GB.

E QUANTIZATION TIME

Table shows the quantization time for PrefixQuant. PrefixQuant identifies prefixed tokens
quickly, taking only 0.2 minutes for Llama-3-8B and 1 minute for Llama-3-70B. In contrast, the
recent CushionCache (Son et al.| [2024) requires 12 hours for the same task on Llama-3-8B. Addi-
tionally, the grid-search initialization is efficient, taking 0.7 minutes for Llama-3-8B and 12 minutes
for Llama-3-70B. Experiments in Tables [3| and |4| demonstrate that PrefixQuant, even without fine-
tuning, outperforms previous methods (Lin et al.| |2024b; |Ashkboos et al., 2024b). Fine-tuning
requires more time, taking 2.2 hours for Llama-3-8B and 17 hours for Llama-3-70B, but it can
successfully enhances the potential of low-bit quantization.

Table 10: The quantization time of PrefixQuant on single NVIDIA-A100-80GB GPU. Fine-tuning
indicates the time of 20 fine-tuning epochs of W4A4KV4.

Model Find Prefixed Outliers Grid-search initialization Fine-tuning
Llama-3-8B 0.2 m 0.7 m 22h
Llama-3-70B Im 12 m 17h

F MORE ABLATION RESULTS

Table 11: Ablation studies on calibration dataset, including (a) Dataset type, (b) Training sequence
length and (c) Total training tokens. “N” indicates number of training samples, and “S” is the length
of each samples. The model used here is Llama-3-8B with W4A4KV4 quantization. Our default
settings are marked in gray .

(a) Dataset (b) Sequence length (c) Total token number
Dataset Wiki PPL N x S Wiki PPL N xS Wiki PPL
C4 7.60 256 x2048  7.65 256 x1024  7.46
RedPajama  7.49 512x1024  7.42 512 x1024  7.42
Pile 7.42 1024 x512 7.65 1024x1024 7.41

Fine-tuning Datasets. Table shows results with different fine-tuning datasets, including
C4 (Raffel et al., 2020), RedPajama (Computer, 2023)), and Pile (Gao et al., 2020). We find that Pile
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Table 12: Ablation study about training epochs. The model used here is Llama-3-8B, and WikiText2
perplexity with 2048 context length is reported. Our default settings are marked in gray .

Epochs W4A8KV4 W4A4KV4

0 (w/o FT) 6.90 7.93
5 6.66 7.53
10 6.63 747
20 6.63 7.42
30 6.63 7.41

Table 13: Ablation study about quantization type of activation. The model used here is Llama-3-8B
with W4A4KV4 quantization. WikiText2 perplexity with 2048 context length is reported.

Fine-Tuning Quant Type W4A8KV4 W4A4KV4

No token-wise dynamic 6.84 8.29
No tensor-wise static 6.90 7.93
Yes token-wise dynamic 6.60 7.88
Yes tensor-wise static 6.63 7.41

Table 14: Ablation study about the number of prefixed tokens. WikiText2 perplexity with 2048
context length and W4A4KV4 quantization is reported. Number n indicates the first n tokens in
Table|1|are set as the prefixed tokens.

Model Method 0 1 2 3 4
Llama-2-7B PrefixQuant w/o FT  333.52 7437 621 6.22 -
_Llama-2-7B_ | PrefixQuant __ 17.63_ 1071 601 6.01 _
Mistral-7B-v0.3  PrefixQuant w/o FT ~ 90.02  6.12 5.84 643 5.89
Mistral-7B-v0.3 PrefixQuant 15.97 7.08 583 595 5.79

achieves the best performance. Additionally, we ablate the sequence length of each training sample
and the total training tokens. Table [TTb] shows that a sequence length of 1024 achieves the best
performance. Table demonstrates that fine-tuning on 512 x 1024 tokens achieves satisfactory
performance, with further increases in training samples only marginally improving performance.
Note that the optimal token number for fine-tuning datasets may change with quantization preci-
sion. Generally, lower precision requires more training data. For example, EfficientQAT shows that
4096 x 2048 tokens are needed for W2A 16 quantization, while our paper shows that only 512 x 1024
tokens are needed for W4A4 quantization.

Training Epochs. Table [12|demonstrates that 10 and 20 epochs are sufficient for the convergence
of fine-tuning on W4A8KV4 and W4A4KV4.

Dynamic Quantization. Tables [3|and [] show that PrefixQuant with static quantization can surpass
previous state-of-the-art methods (Xiao et al., 2023a; |Ashkboos et al.l |2024b; [Lin et al.l |2024b)
with dynamic quantization. Note that without prefixed outliers, per-token dynamic quantization
consistently outperforms per-tensor static quantization across different precisions, as shown in Ta-
ble[6] Therefore, a question arises: can dynamic quantization further improve the performance of
PrefixQuant? We replace per-tensor static activation quantization in PrefixQuant with per-token dy-
namic quantization and report the results in Table[I3] We find that the winner varies with different
precision. Specifically, per-token dynamic quantization marginally surpasses per-tensor static quan-
tization in W4A8KV4 quantization, while per-tensor static quantization significantly outperforms
per-token dynamic quantization in W4A4KV4 quantization. This is because, in high-precision quan-
tization such as 8-bit, clipping is not necessary (Gong et al.,2024), and the MAX-MIN initialization
of dynamic quantization adapts to a more diverse range flexibly. However, in low-precision quan-
tization such as 4-bit, clipping is crucial to balance clipping error and rounding error (Lin et al.
2023)), resulting in per-tensor static quantization outperforming per-token dynamic quantization.
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Table 15: Ablation study about the content of prefixed tokens. WikiText2 perplexity with 2048 con-
text length and W4A4KV4 quantization is reported. “default” refers to the prefixed tokens obtained
through the proposed method. “random” represents the average performance of 10 times with ran-
domly selected prefixed tokens.

Model Type Prefixed Wiki PPL (PrefixQuant w/o FT)
Llama-2-7B default \n[BOS] 6.22
Llama-2-7B only highest frequency ... 12.07
Llama-2-7B random - 66.51
- Mistral-7B-v0.3 ¢ default A\n.to[BOS] 589
Mistral-7B-v0.3  only highest frequency  \n\n\n\n 6.23
Mistral-7B-v0.3 random - 80.05

Number of Prefixed Tokens. In Sec. we determine the number of prefixed tokens by calculating
the average number of outlier tokens and adding an additional [BOS] token. Table [T]illustrates the
specific number and content of these tokens. We use Llama-2-7B (3 outlier tokens) and Mistral-7B-
v0.3 (4 outlier tokens) to study the impact of the number of prefixed tokens. Table[T4]shows that the
adaptively calculated number of prefixed tokens achieves the best performance. Notably, for models
like Llama-2-7B, using 2 prefixed tokens without the additional [BOS] token also yields excellent
performance. For consistency and simplicity, we include the [BOS] token in the prefixed tokens in
our experiments.

Content of Prefixed Tokens. PrefixQuant determines the number of outlier tokens /N and designates
the top- NV high-frequency outlier tokens as prefixes in the KV cache. Table [15|examines various
prefixed tokens with the same token count. The results show that using the top-N high-frequency
tokens as prefixed tokens significantly outperforms using only the highest-frequency or randomly
selected tokens.

@ 9

Table 16: Weight-only quantization results. “g” indicates group size for weight quantization. Ef-
ficientQAT only execute Block-AP and without E2E-QP for the fair comparisons in block-wise
reconstruction scenario. We providing WikiText2 perplexity with 2048 context length and detailed
zero-shot accuracy of weight-only quantization by 1m_eval v0.4.2. We report acc for Wino-
Grande and acc_norm for HellaSwag, ArcC, ArcE, and PIQA.

Model Method Precision Wiki PPL WinoGrande HellaSwag ArcC ArcE PiQA Avg. Acc.

Baseline FP16 6.14 72.61 79.17  53.41 77.69 80.69 72.71
‘EfficientQAT W3A16g128| 734 = 7048 ~ ~ 75.09 51.37 719 79.16 70.80

3-8B  PrefixQuant W3A16g128| 7.17 72.38 76.54  52.65 78.37 80.58 72.10
‘EfficientQAT W2A16g128| 13.55  ~ 62.04 6249 36.6 6044 73.18 58.95

PrefixQuant W2A16g128| 11.97 66.22 66.54 41.81 69.61 75.84 64.00

Baseline FP16 2.85 80.51 84.9 64.33 85.9 84.49 80.03
‘EfficientQAT W3A16g128| 4.80 7877 83.74  55.03 78.66 82.05 75.65

3-70B PrefixQuant W3A16g128| 4.79 78.22 84.03  60.15 83.00 83.35 77.75
‘EfficientQAT W2A16g128| 1679  ~  66.14 ~  73.01 48.21 73.57 7845 67.88

PrefixQuant W2A16g128| 11.01 72.3 78.55 53.67 779 80.63 72.61

G EXTEND TO WEIGHT-ONLY QUANTIZATION

In addition to static activation quantization, setting prefixed outliers in the KV-cache improves train-
ing stability (Chen et al.l 2024b) and reduces information loss from outlier tokens, can also enhanc-
ing weight-only quantization performance. To verify this, we compare PrefixQuant with the recent
state-of-the-art weight-only quantization method, EfficientQAT (Chen et al.| 2024a)), in a block-
wise fine-tuning scenario. Following EfficientQAT, we use 4096 RedPajama (Computer, 2023) with
a 2048 context length to train for 2 epochs. The learning rates for quantization parameters and
full-precision weights are set to 5Se-5 and 5e-6, except for W2A16g128 Llama-3-8B, where they are
le-4 and 2e-5, respectively. As shown in Table[I6] PrefixQuant significantly surpasses EfficientQAT
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with 45.05 and +4.73 points in average accuracy on W2A16g128 Llama-3-8B and Llama-3-70B,
respectively.

H FULL RESULTS OF WEIGHT-ACTIVATION QUANTIZATION

Table 17: W8AS performance comparisons with other methods that also set prefixed tokens in KV
cache.

Model Method Activation Quant ~ Wiki PPL

QFeP per-tensor dynamic 5.75
2-7B  CushionCache per-tensor static 5.87
PrefixQuant per-tensor static 5.48

) ;1 37B7 - QFeP  per-tensor dynamic  6.00
PrefixQuant per-tensor static 4.89

) 72_77071; ~ QFeP  pertensor dynamic  6.01
PrefixQuant per-tensor static 3.39

) 73j8;37 ~ CushionCache  per-tensor static ~ 7.37
PrefixQuant per-tensor static 6.17

H.1 COMPARISONS WITH RELATED WORKS
CushionCache (Son et al., 2024) and QFeP (Yang et al., [2024) also set prefixed tokens in the KV
cache to reduce outliers. However, they experience significant performance degradation even with

WB8AS quantization. Table [17] shows that PrefixQuant outperforms QFeP by 2.62 perplexity on
Llama-2-70B and surpasses CushionCache by 1.20 perplexity on Llama-3-8B.

H.2 DETAILED ACCURACY RESULTS

In the main paper, we present the average accuracy of five common reasoning tasks for brevity.
Here, we provide detailed results for each task in Table [I8]

H.3 RESULTS ON MORE MODELS
Table [I9] shows the effectiveness of the proposed PrefixQuant in other models, including Mistral-

v0.3-7B and Qwen-2-7B. It also includes instruction-tuned models such as Llama-3-{8B,70B}-
Instruct.

I MORE VISUALIZATIONS

I.1 OUTLIER TOKEN

In Figure[7, we showcase the four most frequently occurring outlier tokens in Llama-2-{13B,70B},
Llama-3-70B, and Mistral-7B-v0.3. Specifically, Table [I] selects the top-o high-frequent outlier
tokens as the prefixed tokens. It is important to note that we do not visualize the outlier tokens in

Llama-3-8B and Qwen-2-7B because all the outlier tokens in these two models appear in the initial
tokens.

1.2 MAGNITUDE DISTRIBUTION
We illustrate more token-wise maximum values distribution of other models. Details are as follows:

* Llama-2-13B: Figure [§] and Figure [J] illustrate the distribution of input activation and
Q/K/V, respectively.
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Table 18: Continuation of Table [3| and Table E], providing detailed zero-shot accuracy of weight-
activation quantization of Llama models by 1m_eval v0.4.2. We report acc for WinoGrande
and acc_norm for HellaSwag, ArcC, ArcE, and PIQA.).

Model Method Precision WinoGrande HellaSwag ArcC ArcE PiQA Avg. Acc.
~_ _Baseline ~~  FP16 6922 7600 _ 46.25 74.62 79.11 69.04
Atom W4A4KV4 62.75 69.37 ~ 3840 52.99 75.147 759.73
QuaRot W4A4KV4 64.40 72.3 4147 68.06 76.17  64.48
DuQuant W4A4KV4 67.09 72.53 4326 71.38 76.99  66.25
278 SpinQuant W4A4KV4 66.54 73.15  41.64 69.32 76.12  65.35
PreﬁxQuant w/o FT W4A4KV4 67.80 73.75 4394 7151 772  66.84
PrefixQuant ~ W4A4KV4 66.54 7342  43.09 71.17 77.64 66.37
T T T 7 Qo ~ W4ABKVE] ~ 768.03° ©~ T T 7400 ~ 43.60 72.81 77.64 "67.227 ~
QuaRot W4A8KVE 66.77 7456  43.86 72.39 77.97 67.11
PrefixQuant w/o FT W4A8KVS8 69.14 75.12 4445 73.06 77.53 67.86
__ PrefixQuant ~ W4A8KVS8| 69.06 7525 448 73.19 78.13  68.09
SmoothQuant ~ WEABKVS 69.22 7632~ 4556 7471 718.78 " "68.9:
QuaRot WEABKVSE 68.98 7596  46.59 7441 79.11 69.01
PrefixQuant w/o FT W8A8KVS 70.48 76.62  45.65 7391 78.18 68.97
~_ _Baseline =~ FPl16 | 7222 7937  49.06 77.48 80.52 71.73
Atom W4A4KV4 67.40 73384~ 4232 5749 776.50 "63.51
QuaRot W4A4KV4 67.88 7528  45.65 7235 7748 67.73
DuQuant W4A4KV4 68.9 76.65 477 7424 78.18 69.13
2-13B SpinQuant W4A4KV4 67.88 77.01 46.76 75.97 78.56  69.24
PrefixQuant w/o FT W4A4KV4 72.06 76.54  46.67 75.8 7851 69.92
PrefixQuant ~ W4A4KV4 72.53 76.12  47.70 76.09 79.38  70.36
"7 7 7 Qo ~ W4ABKVE| = 770.96° ~ ~ ~ 77380 ~ 48.38 7597 79.71" "70.56 ~
QuaRot W4A8KVE 70.24 78.21 47.01 74.49 79.87 69.96
PrefixQuant w/o FT W4A8KVS8 72.77 7749  48.12 77.06 79.92 71.07
__ PrefixQuant ~ W4A8KVS8| 7277 7754 48.72 76.81 80.41 71.25
SmoothQuant- ~ WEABKVE 72.14 7934 ~ 4889 77.31 "80.2 ~ "T71.58
QuaRot WEABKVSE 71.98 79.35  49.23 774 8047 71.69
PrefixQuant w/o FT W8A8KVS8 72.53 78.38 4898 76.81 80.9 71.52
~_ _Baseline. =~ FP16_ | 7948 8431 _ 56.91 80.30 82.54 76.71
Atom W4A4KV4 74.27 79.06° ~ 46.08 3825 779.927 767.52
QuaRot W4A4KV4 76.24 81.82  56.23 80.43 8243 7543
Du%lant W4A4KV4 75.45 81.95 5503 79 8232 7475
2-70B SpinQuant W4A4KV4 75.85 82.36 56.31 79.17 81.61 75.19
PrefixQuant w/o FT W4A4KV4 75.45 80.51 523 77.06 81.12 73.29
PrefixQuant ~ W4A4KV4 77.35 82.3 56.4 79.29 82.05 7548
T T T 7 Qo ~ W4ABKVE| = "77.51 © T T 8278 ~ 56.83 79.80 82.64~ 7591 °
QuaRot W4A8KVE 77.03 83.30 57.08 81.27 82.86 76.31
PrefixQuant w/o FT W4A8KVS8 77.35 82.79 5435 78.28 82.21 75.00
__ PrefixQuant ~ W4A8KVS8| 79.08 8356 _ 57.42 80.39 82.05 76.50
SmoothQuant™ ~ WEABKVSE 77.03 8338 ~ 56.9T 80.72 82.92" "76.19
QuaRot WE8ABKVSE 77.82 83.8 57.34 80.93 82.75  76.53
PrefixQuant w/o FT W8A8KVS8 79.16 84.14 55.8 78.87 82.59 76.11
~_ _Baseline = FPl6_ | 7261 79.17 _ 5341 77.69 80.69 72.71
“QuaRot W4A4KV4 65.98 7238 T 4445 67.3 775.637 "65.15
Du%lant W4A4KV4 68.59 74.27 46.5 7041 759  67.13
SpinQuant W4A4KV4 69.22 74.83 4599 74.07 77.04 68.23
3.8B PrefixQuant w/o FT W4A4KV4 69.14 75.46 47.1 7294 772  68.37
__ PrefixQuant ~ W4A4KV4| 719 7544  50.68 7832 79.05 71.08
Qo W4ABKVS 734 7123~ 50.87 775.59 779.65~ "71.35
QuaRot W4A8KVS 72.74 7735  51.62 7748 79.22 71.68
PrefixQuant w/o FT W4A8KV8 71.19 77.65 4898 7399 79.65 70.29
__ PrefixQuant ~ W4A8KVS8| 7253 7797  52.65 79.25 79.92 7246
SmoothQuant™ ~ WBABKVSE 73.01 7899 T 53.07 777.82 80.74~ "T2.7T.
QuaRot WEABKVE 72.53 78.99  53.67 78.03 80.63 72.77
PrefixQuant w/o FT W8A8KVS 74.11 79.25  53.75 78.03 80.36  73.10
~_ _Baseline. =~ FP16 | 8051 849  64.33 859 8449 80.03
QuaRot W4A4KV4 68.51 7675 ~ 47.01 7231 777.37" "68.39
%ant W4A4KV4 70.8 79.89  59.04 8291 81.83 74.89
uant W4A4KV4 76.4 80.9 56 773 80.8  74.28
3-70B Preﬁxguant w/o FT W4A4KV4 77.43 8348  58.87 79.88 82.32  76.40
__ PrefixQuant ~ W4A4KV4| 7735 8379 _ 60.15 81.31 833 77.18
Qo W4ABKVE 80.T1 837 61.01 82779~ 83 = "78.12
QuaRot W4A8KVS 80.35 84.03  62.12 84.64 8346 78.92
PrefixQuant w/o FT W4A8KVS8 79.23 84.71 59.39 81.57 84.22  77.82
__ PrefixQuant ~ W4A8KVS8| 7948  84.86  62.29 82.53 84.33 78.70
Smooth uant ~ WBABKVS 79.40 84.64 ~ 63.14 85.3583.9 ~ "79.29
uaRot WEABKVS 80.66 84.84  63.65 85.56 84.44 79.83
PreﬁxQuant w/o FT W8A8KVS8 79.40 85.5 61.43 82.49 84.22 78.61

* Llama-3-8B: Figure |10 and Figure |11] illustrate the distribution of input activation and
Q/K/V, respectively.
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Table 19: Results of proposed PrefixQuant on other models.

Model Precision Wiki PPL WinoGrande HellaSwag ArcC ArcE PiQA Avg. Acc.
FP16 5.32 73.88 80.43 523 78.28 82.26 73.43
Mistral-v0.3-7B WSABKVS 534 ~ ~ 7403~ 80.8 ~ 53.5 79.76 81.72" 73.96
’ W4A8KV4 551 73.88 79.8  52.0579.4280.79 73.19
W4A4KV4  5.79 71.51 78.12 49.6678.0379.92 71.45
FP16 7.14 72.3 78.96 52.6578.7580.96 72.72
Qwen-2-7B WSABKVS ~7.015 ~ = 7222 " 78.88 529 784980.85 72.67
wen-2- W4A8KV4  8.04 71.43 76.77 53.6777.9578.45 71.65
W4A4KV4  8.37 68.75 74.92  48.2174.7579.49 69.22
FP16 8.29 71.82 75.81 56.8379.76 78.51 72.55
Llama-3-8B-Instruct WSABKVS 821 ~ ~ 7135~ 7554 563178.7579.16° 72.22
W4A8KV4  8.74 70.17 74.6  54.4477.6577.97 7097
W4A4KV4  8.96 69.53 74.66 52.6576.3576.66 69.97
_FPle 533 7569 8258 644284978215 7796
Llama-3-70B-Tnstruct W8ASKVE8  5.40 78.06 82.67 66.7284.89 8221 7891
W4A8KV4  5.96 77.74 81.97 65.8784.9381.56 78.41
W4A4KV4  6.80 75.93 80.64 64.76 83.88 81.23 77.29
LLaMA-2-13B LLaMA-2-70B
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Figure 7: Content of outlier tokens in different models. Note that we do not count the outlier

tokens situated at the initial token.

* Llama-3-70B: Figure [I2] and Figure [[3]illustrate the distribution of input activation and

Q/K/V, respectively.

* Qwen-2-7B: Figure [I4] and Figure [T3] illustrate the distribution of input activation and

Q/K/V, respectively.

* Mistral-7B-v0.3: Figure[I6|and Figure[T7]illustrate the distribution of input activation and

Q/K/V, respectively.
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Figure 8: Distribution of token-wise maximum values for linear layers inputs in Llama-2-13b.

Top-1 —=— Median —— Min-1 —— Min-2 —— Min-3
E LLaMA-2-13B Q LLaMA-2-13B K LLaMA-2-13B V
H s max(zei)=1.5| max(fis)=7.6/ | | max(2i5)=1.3 max(jii)=9.8 . max(; 81 )=3.4 | max(2:23)=6.0
s
2 e AT | 15 § o ok Fon et
£ | SRS ARV > P Vo O
510 / " —~ A WA Y 20
E] a I
d g 10 B
s NV ey
5 S 10 e,
SRS s N FOON r T Mg e
\ ot ctonneend e | [ I
1 10 20 30 40 10 20 30 20 i 0 20 30 20
Layers Layers Layers
(a) Original distribution
K LLaMA 2-13B Q LLaMA-2-13B K LLaMA-2-13B V
max(;2-)=1.5 max(1Zi9)=7.6 20 max(ZFL)=1.3 max(23)=0.8 max(ZL)=1.4 | max(203)=25
15
5
- ot A A EATT |15 . A T
£ o AAA e WV A e WV a
2 /?’./sy\ ﬁ“i!an‘&nfzrgfgégﬂ -
] / - 101 ] ,
> 1 [ [ NNVt | o
5{ sl \
notey 1 ! . o2
| S o N Y o y
1 10 20 30 40 1 10 20 30 40 1 10 20 30 40
Layers Layers Layers
(b) Rotation
r LLaMA-2-13B Q LLaMA-2-13B K LLaMA-2-13B V.
3 17:5] max( 1 )=1.5 max(Z2)=1.6 20 max(;%52)=1.4 | max(7=02")=2.3 max( 252 )=1.4 | max(Z2)=1.7
15.0 5
12.5 15 A . A Fr el
VWA e A
10.0 . A
| AN
7.5 %/V‘\megﬁ LA m
50 E%s%ﬁmﬂw'ﬁp&ﬂ
1 10 20 30 40 1 10 20 30 40 1 10 30 40
Layers Layers Layers

(¢c) PrefixQuant (ours)

Figure 9: Distribution of token-wise maximum values for Q/K/V in Llama-2-13b. Same present
rules as Figure @ except that ratios greater than 5 are marked with red.
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Figure 10: Distribution of token-wise maximum values for linear layers inputs in Llama-3-8b.
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Figure 11: Distribution of token-wise maximum values for Q/K/V in Llama-3-8B.
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Figure 12: Distribution of token-wise maximum values for linear layers inputs in Llama-3-70B.
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Figure 13: Distribution of token-wise maximum values for Q/K/V in Llama-3-70B.
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Figure 14: Distribution of token-wise maximum values for linear layers inputs in Qwen-2-7B.

Top-1 —— Median —=— Min-1 —=— Min-2 —=— Min-3
E _Qwen-2:78 Qwen-2-7B K Qwen-2-7B V
max(2—)=1.4 max(2r)=2.0 max(-5)=1.8 max(Z03)=17.7 | yq0] Max(12:)=9.3 max(Ziy)=2.3
100 400
150
]
3 100
d
S
50
. o
i 7 14 21 28 i 7 14 21 28 14
Layers Layers Layers
(a) Original distribution
o Qwen-2-78 Q Qwen -2-7B K Qwen-2-7B V
max(-%1)=1.4] max(T%)=2.0 max(- 21 )=1.8] max(2la)=17.7 max(: 1 )=1.4] max(2%)=1.6
100 400 5
80
R 4
E e aaeaet SO
> a0
3 et s
20
14 i 7 14 21 28 i 7 14 21 28
Layers Layers Layers
(b) Rotation
v Qwen-2-7B @ Qwen-2-7B K Qwen-2-7B v
max(725)=1.4 | max(fii)=2.1 max(725)=1.6 max(3E)=1.9 max(zi)=1.4] max(fEn)=
100 400
a.0
2 300
s
s 200 3.5
> e
100 -
EX T e e A S e
° “Wﬂ
i 7 14 21 28 7 21 78

Layers

Layers
(c) PrefixQuant (ours)

Figure 15: Distribution of token-wise maximum values for Q/K/V in Qwen-2-7B.
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Figure 16: Distribution of token-wise maximum values for linear layers inputs in Mistral-
v0.3.
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Figure 17: Distribution of token-wise maximum values for Q/K/V in Mistral-7b-v0.3.
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