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Abstract001

Large Language Models (LLMs) are widely002
applied to downstream domains. However, cur-003
rent LLMs for high-stakes domain tasks, such004
as financial investment and legal QA, typically005
generate brief answers without reasoning pro-006
cesses and explanations. This limits users’ con-007
fidence in making decisions based on their re-008
sponses. While original CoT shows promise, it009
lacks self-correction mechanisms during rea-010
soning. This work introduces Domaino1s,011
which enhances LLMs’ reasoning capabili-012
ties on domain tasks through supervised fine-013
tuning and tree search. We construct CoT-stock-014
2k and CoT-legal-2k datasets for fine-tuning015
models that activate domain-specific reason-016
ing steps based on their judgment. Addition-017
ally, we propose Selective Tree Exploration018
to spontaneously explore solution spaces and019
sample optimal reasoning paths to improve per-020
formance. We also introduce PROOF-Score,021
a new metric for evaluating domain models’022
explainability, complementing traditional ac-023
curacy metrics with richer assessment dimen-024
sions. Extensive experiments on stock in-025
vestment recommendation and legal reason-026
ing QA tasks demonstrate Domaino1s’s lead-027
ing performance and explainability. Our code028
is available at https://anonymous.4open.029
science/r/Domaino1s-006F/.030

1 Introduction031

In specific domains such as finance (Xing, 2024;032

Jeong, 2024; Cheng et al., 2024c), law (Cheong033

et al., 2024; Colombo et al., 2024), and034

biomedicine (Labrak et al., 2024; Wang et al.,035

2023a), Large Language Models (LLMs) are036

widely used for tasks like recommendation (e.g.,037

stock investment recommendation (Koa et al.,038

2024; Qin et al., 2024; Takayanagi et al., 2023))039

and question answering (e.g., legal reasoning040

QA (Guha et al., 2024; Wang et al., 2023b; Ujwal041

et al., 2024)). However, popular approaches mainly042

Figure 1: Comparison of Domaino1s and other
paradigms on a demonstrative example. Domaino1s ex-
pands reasoning paths and obtains optimal ones through
tree search.

adopt direct prediction paradigms that immediately 043

generate brief answers to questions (Cheng et al., 044

2024a,c; Yue et al., 2023), leading to answers lack- 045

ing explainability. In practical applications within 046

high-stakes domains like finance and law, users 047

may not trust results lacking explainability (Biran 048

and McKeown, 2017) to guide decision-making. 049

While Chain-of-Thought (CoT) reasoning demon- 050

strates the ability to enhance models’ step-by-step 051

thinking and domain problem solving (Li et al., 052

2024b; Jiang and Yang, 2023; Miao et al., 2024) 053

and provides explainable reasoning processes, its 054

single-pass generated reasoning chains lack error 055

correction mechanisms. If errors occur in early rea- 056

soning steps, the model continues reasoning along 057

the flawed path, affecting the subsequent reasoning 058

process, as shown in Figure 1. This poses chal- 059

lenges for solving domain tasks, as flawed reason- 060

ing processes may introduce legal and ethical risks. 061

Recently introduced o1-like models (OpenAI, 062

2024; OpenO1 Team, 2024; Zhao et al., 2024), with 063

their exceptional reasoning capabilities, demon- 064

strate powerful performance surpassing reasoning 065

methods like CoT in mathematics, physics, and 066

coding. Compared to LLMs using CoT, o1-like 067

models feature longer reasoning chains and reason- 068

ing time. They are considered to perform multi- 069

stage reasoning rather than generating complete 070

reasoning chains in single-pass, which enhances 071
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the accuracy of LLM reasoning. However, despite072

high-stakes domains requiring high-quality reason-073

ing, extending o1-like models’ capabilities to these074

domains remains an unexplored research gap.075

In this paper, we design Domaino1s to pro-076

vide explainable answers for high-stakes domain077

problems. Domaino1s includes two model vari-078

ants, Domaino1s-finance and Domaino1s-legal. As079

shown in Figure 1, Domaino1s can (1) perform au-080

tonomous step-by-step reasoning, and (2) expand081

reasoning paths through tree search to obtain opti-082

mal ones. To achieve (1), we use GPT-4o (OpenAI,083

2024) to generate CoT data and construct CoT-084

stock-2k and CoT-legal-2k datasets for supervised085

fine-tuning. During dataset construction, we em-086

ploy 26 special tokens (e.g., <SUMMARY>) to087

prompt GPT-4o to distinguish different steps in088

the reasoning process explicitly. In the supervised089

fine-tuning process, we remove these special to-090

kens from the answers, enabling the model to au-091

tonomously select and organize intermediate steps092

in the reasoning chain. To achieve (2) during an-093

swer generation, we introduce a novel Selective094

Tree Exploration method to find the optimal reason-095

ing paths. This method uses the average perplexity096

of tokens in each reasoning step to decide whether097

to explore new paths and select the best path. Com-098

pared to traditional search methods (Weng et al.,099

2022; Jiang et al., 2023; Chen and Liu, 2024), Se-100

lective Tree Exploration balances search perfor-101

mance and time cost. We evaluate Domainso1s102

on stock investment recommendation (Koa et al.,103

2024) and legal reasoning QA (Guha et al., 2024)104

datasets. Unlike most domain benchmarks (Koa105

et al., 2024; Yang et al., 2022; Guha et al., 2024),106

we point out that focusing solely on answer accu-107

racy makes it difficult to determine whether mod-108

els properly reason through given contexts rather109

than relying on shortcuts or overfitting. We em-110

phasize the necessity of evaluating domain models’111

explainability and introduce a new evaluation met-112

ric PROOF-Score (Principled rating for reasoning113

completeness, domain safety, and factual accuracy)114

to fill this gap. Results show that Domaino1s im-115

proves reasoning accuracy while providing high-116

quality, explainable reasoning processes. Our con-117

tributions are:118

• Domaino1s is proposed for explainable an-119

swers, with two model variants.120

• CoT-stock-2k and CoT-legal-2k datasets are121

constructed for fine-tuning. Selective Tree Ex-122

ploration is proposed as a reasoning path search123

method that balances performance and time cost. 124

• PROOF-Score is proposed to evaluate the ex- 125

plainability of domain model answers, introducing 126

a new perspective for domain model evaluation. 127

• Domaino1s achieves leading performance, 128

demonstrating the effectiveness of its reasoning 129

capabilities in solving high-stakes domain tasks. 130

2 Related Works 131

2.1 LLMs for Specific Domains 132

LLM applications in specific domains typically fol- 133

low three approaches: training from scratch, fine- 134

tuning, and prompt learning. While training from 135

scratch (e.g., BloombergGPT (Wu et al., 2024)) 136

shows promising results, it requires significant com- 137

putational resources and data (Yang et al., 2023; 138

Ling et al., 2023; Xie et al., 2023b). Fine-tuning 139

emerges as a cost-effective alternative, with re- 140

searchers using GPT-4 (Li et al., 2024a) or low-cost 141

automated methods (Cheng et al., 2024c; Koa et al., 142

2024) to generate fine-tuning data. Prompt learn- 143

ing methods enhance model capabilities without 144

parameter modification through template engineer- 145

ing or knowledge retrieval (Li et al., 2023; Cui 146

et al., 2023; Huang et al., 2023), such as CoT (Wei 147

et al., 2022) reasoning. o1-like models are typi- 148

cally constructed to equip LLMs with CoT reason- 149

ing capabilities through fine-tuning, followed by 150

multi-pass search to obtain better reasoning paths. 151

2.2 Single-Pass vs. Multi-Pass 152

Prompt-based methods like CoT (Wei et al., 2022; 153

Zhang et al., 2022; Lyu et al., 2023) improve single- 154

pass reasoning through better prompt templates. 155

However, errors in intermediate reasoning steps can 156

propagate through the chain. In contrast, search- 157

based methods explore multiple reasoning paths in 158

the solution space, treating each reasoning step as 159

a node in the tree, and selecting the optimal path to 160

improve reasoning quality (Qi et al., 2024). 161

2.3 Sampling Reasoning Paths 162

Research on mathematical reasoning (Brown et al., 163

2024; Wang et al., 2024) indicates that sampling 164

different reasoning paths can improve performance 165

compared to greedy one-time decoding. Best-of-N 166

search (Weng et al., 2022; Jiang et al., 2023) gener- 167

ates N complete answers, allowing LLM to select 168

the best response based on final results, but may 169

miss high-quality intermediate reasoning steps (Xie 170

et al., 2024; Chen et al., 2024b). Sentence-level 171
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Figure 2: Comparison between the base model Qwen-2.5-Instruct (Qwen-Team, 2024) and Domaino1s. The base
model shows notable reasoning errors. In contrast, Domaino1s breaks problems into multiple reasoning steps and
reaches well-supported conclusions through systematic analysis. Details in Appendix C.

Beam Search (Chen and Liu, 2024) generates mul-172

tiple candidate sentences, selects the best one, and173

iteratively continues this process, but may get stuck174

in local optima. Stage-level Beam Search (Xu et al.,175

2024) offers a compromise by generating and se-176

lecting optimal candidates for each reasoning step177

rather than sentences.178

3 Methodology179

In this section, we first present the formal defini-180

tion of LLM-based multi-step reasoning. Then,181

we introduce Domaino1s from two aspects: en-182

hancing reasoning capabilities and solution expan-183

sion & sampling. For aspect 1, Domaino1s facili-184

tates a progressive reasoning process. For aspect185

2, Domaino1s improves reasoning performance186

through tree search to obtain optimal reasoning187

paths. A comparison of reasoning examples with188

the base model is shown in Figure 2.189

3.1 Preliminaries190

For a given question q, the solution process can be191

decomposed into multiple reasoning steps. Con-192

sider a complete solution consisting of up to T193

reasoning steps. The state St comprising all rea-194

soning steps from step 0 to t can be represented as:195

196
St = {s0, s1, . . . , st}, 0 ≤ t < T, t ∈ Z, (1)197

where st represents the t-th reasoning step, state198

St represents the collection of reasoning processes199

from step 0 to t. An action at(0 ≤ t < T−1) is de-200

fined as choosing the next reasoning step st+1. The201

LLM constitutes a policy model, where the tran- 202

sition f(St+1|at, St) from one state to the next is 203

implemented by auto-regressively generating st+1 204

through the input sequence. To guide the LLM in 205

selecting more reasonable subsequent reasoning 206

step st+1, a value function V (st+1) is defined to 207

evaluate the expected return of LLM’s strategy. 208

3.2 Enhancing Reasoning Capabilities 209

To enhance Domaino1s’s reasoning capabilities in 210

high-stakes domains (finance and legal), we em- 211

ploy supervised fine-tuning to let the model gen- 212

erate CoT-style responses. Since existing domain 213

datasets or databases lack the detailed reasoning 214

processes required for training Domaino1s models, 215

we constructed two new datasets, CoT-stock-2k and 216

CoT-legal-2k, using the training sets from stock in- 217

vestment recommendation (Koa et al., 2024) and 218

legal reasoning QA (Guha et al., 2024; Li et al., 219

2022) datasets respectively. The construction de- 220

tails are as follows: 221

Stock Investment Recommendation. Contains 222

price data and tweet information from the top 5 223

stocks across 11 industries during 2020-2022. The 224

task is to predict stock price movement (positive 225

or negative) for the next trading day based on facts 226

extracted from tweets over the past 5 days. Due 227

to the high volume of daily tweets, we fine-tuned 228

Qwen-2.5-Instruct (Qwen-Team, 2024) to generate 229

daily tweet summaries. We utilized GPT-4o (Ope- 230

nAI, 2024) to generate CoT data, explicitly prompt- 231

ing it to decompose the answer generation pro- 232
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cess into 10 structured reasoning steps, including233

market factors (Fama and French, 1993), company234

strategies (Porter and Kramer, 1985), and investor235

sentiment (Baker and Wurgler, 2006):236

• Summary: Extract key facts from tweets about237

question q, identify main analysis focus. • Histor-238

ical context: Review historical performance and239

market context. • Valuation: Assess current valua-240

tion metrics (e.g., P/E, price targets, market views).241

• Market size and dominance: Evaluate com-242

pany’s industry standing and influence. • Strategic243

initiatives: Review recent strategic moves (partner-244

ships, innovation) and growth potential. • Investor245

sentiment: Gauge investor mood through trading246

patterns and market discussion. • Risks and con-247

cerns: Identify key investor concerns and risk fac-248

tors. • Recent performance: Analyze recent price249

movements and drivers. • Consolidation: Review250

financial/stock structure changes (buybacks, prof-251

itability). • Overall impact: Synthesize all analysis252

points, clearly indicate overall impact, and provide253

a final prediction (positive or negative) for the next254

trading day’s stock price.255

Legal Reasoning QA. Includes legal reason-256

ing questions across multiple categories such as257

legal rule application, reasoning, and legal ques-258

tion classification, presented as multiple choice or259

true/false questions. We utilized GPT-4o (OpenAI,260

2024) to generate CoT data, explicitly prompting it261

to decompose the answer generation process into 4262

structured reasoning steps:263

• Summary: Extract key points from question264

q and identify analysis focus. • Reasoning: Apply265

step-by-step logic to reach answers. • Evidence:266

Systematically present supporting text and verify267

reasoning. • Conclusion: Synthesize the analysis268

and state the final answer.269

When explicitly prompting GPT-4o to generate270

multiple structured reasoning steps, we require the271

model to use special tokens (e.g., <SUMMARY>)272

for segmentation. However, we want Domaino1s to273

organize and initiate necessary steps independently274

during reasoning to maintain general capabilities.275

Therefore, we remove all special tokens from the276

answers during supervised fine-tuning. After train-277

ing, the model activates each reasoning step based278

on its own judgment.279

3.3 Solution Expansion & Sampling280

After supervised fine-tuning, the model can output281

responses in CoT format. To further enhance the282

model’s reasoning abilities, we enable the model to283

Figure 3: Solution expansion & sampling illustration.
Best-of-N search generates N complete responses and
selects the best one; Sentence-level Beam Search gener-
ates multiple candidates for each sentence and selects
the best one; Similarly, Stage-level Beam Search gen-
erates multiple candidates for each reasoning step and
selects the best one. In contrast, our Selective Tree
Exploration dynamically expands each reasoning step
node, explores multiple reasoning steps as candidates
only when necessary, and selects the best option at each
step. Our method balances search performance and com-
putational time overhead.

explore the solution space, and autonomously ex- 284

pand and sample reasoning paths. During sampling, 285

we introduce V (st+1) to evaluate the expected re- 286

turn of reasoning step st+1. Although V (st+1) can 287

be constructed through direct introduction or train- 288

ing of step-level reward models (Chen et al., 2024a; 289

Xie et al., 2024; Xu et al., 2024), this creates addi- 290

tional model training and inference overhead. In 291

our implementation, we use a more direct but ef- 292

fective approach. We introduce the perplexity p of 293

LLM when generating st+1 to serve as V (st+1): 294

p = exp(− 1

N

N∑
i=1

log(
ezi,k∑M
j=1 e

zi,j
)), (2) 295

where N represents the number of tokens in st+1, 296

zi,k is the logit value of the actually generated to- 297

ken k at position i, zi,j is the logit value of can- 298

didate token j at position i, M is the vocabulary 299

size representing the number of all candidate to- 300

kens, and e
zi,k∑M

j=1 e
zi,j

is the softmax probability of 301

the actually generated token. Overall, we propose 302

Selective Tree Exploration for solution expansion 303

& sampling, following these phases: 304

(1) Calculate the perplexity value p of tokens at 305

the generation step. 306

(2) If p ≥ θ (θ is the sampling threshold), regen- 307

erate the step until p < θ or reach the maximum 308

regeneration count K (i.e., maximum beam size). 309

If p of all K generations are no less than threshold 310

θ, greedily sample the candidate with minimum p 311

from the K candidates. 312

(3) Continue to generate the next step based on 313

the selected step, repeat phases (1)-(3) until the 314

complete answer is generated. 315

As shown in Figure 3, compared to Best-of- 316
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Figure 4: The role of solution expansion & sampling. Intermediate steps in single inference (without sample) may
contain errors, while solution expansion & sampling can find better reasoning paths.

N Search (Weng et al., 2022; Jiang et al., 2023),317

Sentence-level Beam Search (Chen and Liu, 2024)318

and Stage-level Beam Search (Xu et al., 2024),319

Selective Tree Exploration balances search perfor-320

mance and time cost. When θ is set to 0, Selec-321

tive Tree Exploration becomes Stage-level Beam322

Search as it explores K paths at each step. When323

θ is set to an extremely large value, Selective Tree324

Exploration degenerates into CoT with a single325

inference chain. In other cases, Selective Tree326

Exploration only expands reasoning paths when327

necessary, which reduces unnecessary overhead.328

To illustrate the role of solution expansion &329

sampling, as shown in Figure 4, when inference330

without sampling, although the model generates331

the reasoning process, errors in intermediate steps332

(starting from <REASONING>) lead to error ac-333

cumulation, ultimately resulting in incorrect re-334

sults. Through exploration and expansion of so-335

lution paths, better reasoning paths can be found,336

leading to more accurate results.337

4 Experiments338

In this section, we evaluate the performance of339

Domaino1s on stock investment recommendation340

and legal reasoning QA tasks. Our work aims341

to address the following questions: RQ1: How342

does Domaino1s perform in answer accuracy com-343

pared to other LLM methods? RQ2: What are the344

limitations of accuracy-based evaluation metrics345

in domain tasks, and how can we better evaluate346

model performance? RQ3: How do fine-tuning347

and solution expansion & sampling help improve348

the performance of Domaino1s?349

4.1 Experimental Settings350

Baselines. To validate Domaino1s’s performance351

on high-stakes domain tasks, we compare it with352

general purpose LLMs and domain LLMs trained353

or fine-tuned with domain data. 354

General Purpose LLMs: We choose Qwen- 355

2.5-Instruct (Qwen-Team, 2024) and Llama-3- 356

Instruct (AI@Meta, 2024) as general purpose LLM 357

baselines due to their remarkable performance on 358

many downstream tasks. We also select OpenO1- 359

Llama and OpenO1-Qwen (OpenO1 Team, 2024) 360

as representatives of o1-like model baselines. 361

Financial Domain LLMs: Finance-LLM (Cheng 362

et al., 2024c), Finance-Chat (Cheng et al., 2024c), 363

Finance-Llama-3 (Cheng et al., 2024b), FinGPT- 364

Forecaster (Yang et al., 2023), Llama-2-taiwan- 365

btc (Lanz, 2024), and SEP (Koa et al., 2024). 366

Legal Domain LLMs: Open-Australian-Legal- 367

LLM (Butler, 2023), DISC-LawLLM (Yue 368

et al., 2023), Law-LLM (Cheng et al., 369

2024c), Law-Chat (Cheng et al., 2024c), 370

and Lawma (Dominguez-Olmedo et al., 2024). 371

Datasets. For the stock investment recommenda- 372

tion task, we select the stock prediction dataset pro- 373

vided by Koa et al. (Koa et al., 2024). This dataset 374

contains price data and tweet information for the 375

top 5 stocks from 11 industries during 2020-2022, 376

comprising 7,866 test question entries. The task 377

is constructed to predict whether a stock will rise 378

or fall on the next trading day based on facts con- 379

tained in tweets from the previous 5 days. Any neu- 380

tral answers are considered incorrect. Due to the 381

large volume of daily tweets, we fine-tune Qwen- 382

2.5-Instruct (Qwen-Team, 2024) to generate daily 383

tweet summaries and apply these summaries as 384

input for all models. 385

For the legal reasoning QA task, we select Legal- 386

Bench (Guha et al., 2024), a dataset composed 387

of numerous legal QA datasets and benchmarks. 388

LegalBench includes 5 categories of legal tasks. 389

We select three reasoning-related categories: Rule- 390

application/Rule-conclusion, Interpretation, and 391

Rhetorical-understanding, encompassing 9 datasets 392
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Model Model
size

Interpretation Rule-application/
Rule-conclusion Rhetorical-analysis Avg.

CC CAUD MAUD PP IP PJ Scalr TTP TTD

Qwen-2.5-Instruct 7B 86.36 80.08 78.75 52.38 48.12 64.00 78.98 99.07 76.96 73.86
Llama-3-Instruct 8B 85.86 81.20 67.43 61.63 50.37 54.00 75.83 100.00 78.18 72.72
OpenO1-Llama 8B 85.10 81.31 74.54 62.36 50.37 60.00 80.03 91.52 77.58 73.65
OpenO1-Qwen 7B 84.85 80.13 79.11 59.27 48.87 66.00 80.38 88.78 76.64 73.78
Open-Australian-Legal 1.5B 0.00 0.00 1.20 17.64 1.50 22.00 0.00 0.00 0.00 4.70
DISC-LawLLM 13B 50.00 32.98 64.77 48.09 19.55 56.00 70.05 5.60 20.60 40.85
Law-LLM 7B 10.86 1.59 30.87 3.05 2.26 0.00 58.49 8.41 13.33 14.32
Law-Chat 7B 80.30 82.31 39.75 51.69 33.83 48.00 76.36 54.21 52.73 57.69
Lawma 8B 47.73 34.14 69.93 53.31 47.37 36.00 78.46 6.54 26.67 44.46

Domain-CoT-legal 7B 87.88 80.59 80.47 65.81 50.37 70.00 86.69 94.40 77.58 77.09
Domaino1s-legal 7B 88.64 81.76 80.33 66.54 52.63 72.00 88.97 95.33 78.78 78.33

Table 1: Model accuracy (%) on legal reasoning QA tasks. Avg. represents the mean accuracy across all tasks.

Model Model Size Accuracy MCC

Qwen-2.5-Instruct 7B 51.18 -0.017
Llama-3-Instruct 8B 51.41 0.017
OpenO1-Llama 8B 50.87 0.014
OpenO1-Qwen 7B 51.02 0.010
Finance-LLM 7B 48.05 -0.075
Finance-Chat 8B 47.16 -0.004
Finance-Llama-3 8B 49.03 -0.047
FinGPT 7B 46.13 0.016
Llama-2-taiwan-btc 7B 50.66 -0.002
SEP 7B 48.35 0.018

Domain-CoT-finance 7B 51.52 0.020
Domaino1s-finance 7B 51.98 0.021

Table 2: Model accuracy (%) and MCC on stock invest-
ment recommendation tasks.

with a total of 35,053 test questions. Question types393

include true/false and multiple-choice questions.394

Implementation Details. In this work, our395

Domaino1s is developed based on Qwen-2.5-396

Instruct (Qwen-Team, 2024). During the fine-397

tuning phase for enhancing reasoning capabilities,398

we set the learning rate, epoch, batch size, gradient399

accumulation, and maximum tokens length to 5e-5,400

120, 2, 2, and 2048 respectively. The θ and K in the401

sampling process are set to 1.1 and 2 respectively.402

The experimental hardware, software, and other403

configuration details can be found in Appendix A.404

4.2 Prediction Performance (RQ1)405

In this section, we compare Domaino1s with rele-406

vant baselines to evaluate the answer accuracy.407

Table 1 and Table 2 report the quantitative results408

for legal reasoning QA and stock investment rec-409

ommendations tasks respectively. For all models410

where answers cannot be directly parsed from re-411

sponses, we use GPT-3.5-turbo-16k (Ouyang et al.,412

2022) to extract the chosen options from responses413

for fair comparison. Additionally, given that not414

all stock price movements are necessarily caused415

by the provided text, accuracy results may not fully 416

indicate a model’s reasoning capabilities, as they 417

include some random guesses for non-informative 418

text (Koa et al., 2024). Following stock predic- 419

tion research (Ding et al., 2015; Feng et al., 2018), 420

we also calculate the Matthews Correlation Co- 421

efficient (MCC) as an evaluation metric, which 422

considers the ratios of true and false positives and 423

negatives (Chicco and Jurman, 2020; Chicco et al., 424

2021). We observe that Domaino1s outperforms its 425

base model Qwen-2.5-Instruct on almost all tasks, 426

despite being fine-tuned on only a small amount 427

of data. Moreover, Domaino1s and Domain-CoT 428

(model with reasoning-enhanced fine-tuning, with- 429

out solution expansion & sampling) achieve the 430

best accuracy or MCC on nearly all tasks, even 431

surpassing LLMs that are carefully designed and 432

trained on domain datasets, especially on legal rea- 433

soning tasks as shown in Table 1. Although these 434

legal LLMs learn domain knowledge through pre- 435

training or fine-tuning, they lack the reasoning ca- 436

pability to derive correct answers, in contrast to 437

our models. We also analyze the reasoning chain 438

length and inference time of Domaino1s and base- 439

lines, see Appendix D. 440

4.3 Explainability Evaluation Pipeline (RQ2) 441

In previous research, most domain tasks use accu- 442

racy as the primary evaluation metric (Koa et al., 443

2024; Yang et al., 2022; Guha et al., 2024). This 444

evaluation metric makes it difficult to distinguish 445

between models that truly understand and reason- 446

ably utilize context and those that simply rely on 447

partial text or overfit on pre-trained domain knowl- 448

edge (Zhang et al., 2024; Bordt et al., 2024). We 449

sample two subsets from the test sets of stock in- 450

vestment recommendation and legal reasoning QA, 451

with details available in Appendix F. 452
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Model Finance-Llama-3 Domaino1s-finance

Tweets Response

Pos. Neg. Pos. Neg. Acc Pos. Neg. Acc

0.1 0.9 0.018 0.982 50.45 0.173 0.827 50.91
0.3 0.7 0.182 0.818 48.64 0.391 0.609 49.55
0.5 0.5 0.545 0.455 48.18 0.527 0.473 49.09
0.7 0.3 0.882 0.118 51.36 0.777 0.223 50.91
0.9 0.1 1.000 0.000 50.00 0.882 0.118 50.45

Table 3: Model’s accuracy and prediction ratios for
Positive (Pos.) and Negative (Neg.) of the stock trend
under varying proportions of Pos. and Neg. tweets in
stock investment prediction tasks.

In the stock investment recommendation task,453

stock tweets are manually classified into Positive454

and Negative tweets and combined in different ra-455

tios as model inputs. We compare Domaino1s-456

finance with Finance-Llama-3. As shown in Ta-457

ble 3, when the Positive:Negative ratio of tweets is458

0.5:0.5, models’ responses maintain a similar 1:1459

ratio between Positive and Negative predictions.460

However, when either Positive or Negative tweets461

dominate the input, Finance-Llama-3 typically ig-462

nores tweets with the opposite sentiment and bases463

its answer solely on the majority sentiment. In464

contrast, Domaino1s-finance still considers the mi-465

nority sentiment tweets and generates answers by466

comprehensively evaluating all tweets. However,467

both models achieve similar accuracy, making it468

challenging to determine through accuracy met-469

rics alone whether the models truly understand and470

reasonably utilize the context in the inputs, rather471

than overfitting or hallucinating. For the legal rea-472

soning task subset, key conditions are removed473

from the question text, making it impossible to an-474

swer the tasks correctly. As shown in Figure 5,475

although Law-Chat achieves higher accuracy than476

Domaino1s-legal, its answers are mostly random re-477

sponses generated from overfitted legal knowledge,478

while Domaino1s-legal refuses to answer due to479

the absence of necessary reasoning conditions, re-480

sulting in an accuracy close to 0. This indicates that481

accuracy alone is insufficient to determine whether482

models blindly overfit using domain knowledge to483

generate irrelevant answers.484

For high-stakes domain tasks such as stock in-485

vestment recommendations and legal reasoning486

QA, non-transparent text comprehension or inade-487

quate reasoning processes may lead to wrong con-488

clusions or generate advice that violates ethical489

or legal principles. To evaluate the explainabil-490

ity of domain model responses, we propose a new491

Figure 5: Models responses and accuracy on legal rea-
soning QA tasks after removing key conditions.

Stock Legal

Qwen-2.5-Instruct 6.281 Qwen-2.5-Instruct 3.428
Llama-3-Instruct 6.129 Llama-3-Instruct 3.417
OpenO1-Llama 6.212 OpenO1-Llama 6.554
OpenO1-Qwen 6.227 OpenO1-Qwen 6.588
Finance-LLM 6.023 Open-Australian-Legal 5.152
Finance-Chat 5.583 DISC-LawLLM 0
Finance-Llama-3 5.965 Law-LLM 3.838
FinGPT 3.413 Law-Chat 3.339
Llama-2-taiwan-btc 0 Lawma 0
SEP 6.182

Domaino1s-finance 6.359 Domaino1s-legal 6.677

Table 4: Comparison of explanation quality (PROOF-
Score) between Domaino1s and baselines. For models
that generate responses containing no explanations, their
PROOF-Scores are set to 0.

evaluation metric called PROOF-Score (Principled 492

rating for reasoning completeness, domain safety, 493

and factual accuracy). PROOF-Score uses GPT- 494

4o (OpenAI, 2024) to generate a score from 1 to 7 495

for response, considering three aspects: 496

• Reasoning Completeness (RC): Evaluates the 497

completeness and logical coherence. 498

• Domain Safety (DS): Measures the safety and 499

appropriateness in specific domains. 500

• Factual Accuracy (FA): Evaluates the factual 501

accuracy of statements. 502

Detailed prompts can be seen in Appendix E. 503

Here, we define: 504

PROOF-Score =
RC +DS + FA

3
. (3) 505

Table 4 shows PROOF-Scores of models on two 506

tasks. Domaino1s achieves the highest scores on 507

both tasks, even though we do not train specifically 508

for these three metrics. This indicates Domaino1s 509

can inherently consider these factors to generate 510

better responses. We also observe that even when 511

a model’s response is incorrect in terms of results, 512

GPT-4o may still give a high PROOF-Score be- 513

cause these responses contain clear and reasonable 514

logic. This may be inappropriate for tasks requiring 515

strict accuracy, where prediction accuracy should 516

be considered the primary metric. However, for 517
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Method Acc time(s)

w/o Sample 86.69 8.35

Best-of-N Search 87.56 40.26
Sentence-level Beam Search 84.93 334.20
Stage-level Beam Search 88.44 133.68

Selective Tree Exploration 89.14 15.18

Table 5: Accuracy (%) and average inference time com-
parison between our Selective Tree Exploration and
other search methods on the Scalr dataset. Our method
(with θ = 1.1) outperforms other approaches under the
same beam size settings.

Method K Acc time(s)

w/o Sample 1 86.69 8.35

Selective Tree
2 88.97 24.88

Exploration
3 89.14 45.77
4 89.84 72.55
5 90.01 93.95

Table 6: Accuracy (%) and average inference time of
Domaino1s-legal on the Scalr dataset under different
beam size K settings. θ is set to 1.05.

tasks lacking standard answers or without unique518

correct answers (e.g., long-term investment advice,519

asset allocation recommendations), using PROOF-520

Score becomes effective in evaluating the explain-521

ability of model responses.522

4.4 Ablation Study (RQ3)523

In this section, we evaluate the impact of fine-524

tuning and solution expansion & sampling on525

Domaino1s’s performance. We primarily focus on526

accuracy metrics in this section, while presenting527

explainability analysis in Appendix G.528

Enhancing Reasoning Fine-tuning. As shown529

in Table 1 and Table 2, Domain-CoT represents530

the model configuration using only reasoning-531

enhanced fine-tuning without solution expansion532

& sampling. Compared to the base model Qwen-533

2.5-Instruct, Domain-CoT achieves performance534

improvements on almost all datasets, which demon-535

strates that reasoning-enhanced fine-tuning im-536

proves the model’s reasoning capabilities on do-537

main tasks.538

Solution Expansion & Sampling. Table 5539

shows the performance comparison on Scalr540

(a dataset in LegalBench) between best-of-N541

search (Weng et al., 2022; Jiang et al., 2023),542

Sentence-level Beam Search (Chen and Liu, 2024),543

Stage-level Beam Search (Xu et al., 2024), and our544

Selective Tree Exploration. The baseline search545

methods use the setup from Xu et al. (Xu et al.,546

2024), which uses the policy model to evaluate547

Method θ Acc time(s)

w/o Sample 10000 86.69 8.35

Selective Tree Exploration

1.4 87.21 8.40
1.3 87.91 8.44
1.2 88.97 10.16
1.1 89.14 15.18
1.0 89.49 51.03

Table 7: Accuracy (%) and average inference time of
Domaino1s-legal on the Scalr dataset under different
sampling threshold θ settings. K is set to 3.

the relative quality of reasoning chains or steps, in 548

contrast to our perplexity-based approach. Results 549

demonstrate that under the same beam setting of 550

K = 3, Selective Tree Exploration achieves com- 551

parable or better performance compared to all base- 552

line approaches (with and without search) while re- 553

quiring less computational time for inference than 554

other search methods. 555

To better illustrate the effectiveness of our Selec- 556

tive Tree Exploration as exploration paths increase, 557

we evaluate model performance under different set- 558

tings of K and θ on the Scalr dataset. As shown 559

in Table 6, using Selective Tree Exploration brings 560

performance improvements compared to methods 561

without sampling (K = 1). Model accuracy im- 562

proves as K increases, indicating that our Selective 563

Tree Exploration is scalable. As shown in Table 7, 564

model accuracy improves as θ decreases, as this 565

similarly expands the paths explored by Selective 566

Tree Exploration. However, both increasing K and 567

decreasing θ lead to longer inference time. Due 568

to computational resource constraints, we only set 569

K = 2, θ = 1.1. However, we demonstrate that 570

increasing beam size K and decreasing sampling 571

threshold θ will lead to performance improvements. 572

5 Conclusion & Future Works 573

In this work, we introduce Domaino1s and its two 574

model variants for finance and legal domains, guid- 575

ing LLMs towards explainable high-stakes domain 576

answers. We construct two datasets to fine-tune 577

Qwen-2.5-Instruct and propose Selective Tree Ex- 578

ploration for enabling LLMs to perform multi-stage 579

reasoning. The superior performance on datasets 580

demonstrates Domaino1s’s exceptional potential in 581

high-stakes domains. 582

In future work, we plan to build larger training 583

datasets to enhance domain models’ reasoning abil- 584

ities. We also plan to create Domaino1s variants 585

using domain-specific pre-trained base models to 586

better solve tasks requiring domain expertise. 587
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6 Limitations588

Despite the promising results achieved by589

Domaino1s, there are some limitations. First, while590

our Selective Tree Exploration method effectively591

balances search performance and computational592

costs, the additional inference time required for593

tree exploration may impact the model’s real-time594

application scenarios, such as in situations requir-595

ing high response speed. Second, although we con-596

struct high-quality CoT datasets using GPT-4o, the597

relatively small size of training data (2,000 exam-598

ples each for finance and legal domains) may limit599

the model’s ability to handle extremely rare or com-600

plex domain-specific cases. Additionally, while601

PROOF-Score provides a comprehensive evalua-602

tion framework, research on using LLMs as judges603

suggests that further refinement and elaboration604

of evaluation metrics may be beneficial (Gu et al.,605

2024). Finally, our current implementation focuses606

on stock recommendation and legal reasoning tasks,607

and the generalizability of our approach to other608

domain applications requires further investigation.609

These limitations point to promising directions for610

future research, such as optimizing inference effi-611

ciency, expanding training datasets, and extending612

the framework to broader domain applications.613

7 Ethical Considerations614

In this section, we discuss several important ethical615

considerations regarding the training, deployment,616

and use of Domaino1s.617

7.1 Fairness and Accessibility618

We recognize that the computational resources re-619

quired for training and inference of large language620

models (LLMs) and tree search exploration may621

limit accessibility for researchers and practitioners622

with fewer resources. To address this, we will open-623

source our implementation and provide efficient624

variants that can run on consumer-grade hardware.625

Additionally, we will release the training datasets626

(CoT-stock-2k and CoT-legal-2k) to enhance repro-627

ducibility and facilitate broader participation in this628

research direction.629

7.2 Potential Risks in Financial and Legal630

Applications631

For financial applications, we acknowledge that632

Domaino1s-finance’s advice, while explainable,633

should be viewed as restricted investment refer-634

ences. To mitigate potential risks:635

• We explicitly state that Domaino1s-finance’s 636

outputs should serve as one of many consid- 637

erations when users make actual investment 638

decisions. 639

• We implement safety checks in the Domain 640

Safety (DS) metric of PROOF-Score to detect 641

potentially harmful or high-risk advice. 642

• We emphasize the importance of human over- 643

sight and professional judgment in interpret- 644

ing model reasoning. 645

For legal applications, Domaino1s-legal is in- 646

tended to assist rather than replace legal profession- 647

als. To mitigate potential risks: 648

• We explicitly state that Domaino1s-legal is 649

proposed as a support tool rather than a sub- 650

stitute for professional legal advice. 651

• We detect responses that contradict legal facts 652

by evaluating the Factual Accuracy (FA) met- 653

ric of PROOF-Score. 654

• We emphasize the importance of human over- 655

sight and professional judgment in interpret- 656

ing model reasoning. 657

7.3 Privacy and Data Security 658

We have taken multiple measures to protect privacy 659

and ensure data security: 660

• Our datasets have been carefully screened and 661

curated to exclude sensitive personal informa- 662

tion. 663

• The model’s inference process is designed to 664

focus on public information. 665

• Implement rate limiting and access controls 666

after model and dataset open-sourcing to pre- 667

vent potential misuse. 668

7.4 Environmental Impact 669

We acknowledge the environmental impact of train- 670

ing and running large language models. To mini- 671

mize this: 672

• Our proposed Selective Tree Exploration 673

method is designed to improve computational 674

efficiency and reduce inference overhead. 675

• We provide guidance on optimal hyperparam- 676

eter settings and encourage the selection of 677

hyperparameter configurations that balance 678

computational costs with model performance 679

to reduce unnecessary computation. 680

Through these considerations and safeguards, we 681

aim to ensure Domaino1s makes positive contribu- 682

tions to the field while minimizing potential risks 683

and negative impacts. We encourage ongoing dia- 684

logue with stakeholders and welcome community 685
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feedback to further improve the ethical implemen-686

tation of our technology.687
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variant of Domaino1s, fine-tuning takes approxi-1007

mately 48 GPU hours per run. The system envi-1008

ronment uses CUDA version 12.4, Python version1009

3.10.15, PyTorch version 2.5.1, and transformers1010

version 4.45.2. The random seed is set to 42.1011

We employ LoRA (Low-Rank Adaptation) for1012

fine-tuning. The base model is Qwen2.5-7B-1013

Instruct. We use the qwen template with Flash1014

Attention enabled. The training dataset is prepro-1015

cessed using 16 workers with a maximum sequence1016

length of 2,048 tokens.1017

The LoRA hyperparameters are set as follows:1018

rank = 8, alpha = 16, and dropout = 0, targeting all1019

model layers. For optimization, we use the AdamW1020

optimizer with a learning rate of 5e-5 and cosine1021

learning rate scheduling. The training runs for 1201022

epochs. We employ mixed-precision training using1023

bfloat16 format.1024

The batch size is set to 2 per device with a gradi-1025

ent accumulation of 2 steps, effectively creating a1026

batch size of 16 (2 × 2 × 4 GPUs). Gradient clip-1027

ping is applied with a maximum norm of 1.0. The1028

model checkpoints are saved every 100 steps, with1029

loss logging occurring every 5 steps.1030

For experiments using accuracy or MCC as met-1031

rics in Tables 1, 2 and other related figures or tables,1032

to ensure a fair comparison with our Domaino1s,1033

we fine-tune the baselines using the training sets1034

of corresponding tasks. During fine-tuning, unlike1035

the CoT data used to train Domaino1s, we train1036

the baselines with direct prediction-style answers.1037

Therefore, the fine-tuning data remains consistent1038

between baselines and Domaino1s, with only dif-1039

ferent answer formats. For experiments on explain-1040

ability metrics, inference time and reasoning chain1041

length in Tables 4, 8, 9, 10, 11, 12 and other related1042

figures or tables, the baselines are not trained on1043

any of our datasets, ensuring they generate answers1044

in their originally designed output formats for fair1045

comparison of model explainability, inference time1046

and reasoning chain length.1047

B CoT Data Generation1048

Figure 6 and Figure 7 are the prompt templates for1049

instructing GPT-4o to generate responses in CoT1050

format.1051

Figure 8 is the prompt template for instructing1052

GPT-4o and Qwen-2.5-Instruct to generate tweet1053

summaries.1054

Figure 6: Prompt template for stock investment recom-
mendation.

Figure 7: Prompt template for legal reasoning QA.

Figure 8: Prompt template for tweet summarization.
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Model time(s) Length

Qwen-2.5-Instruct 6.91 166.2
Llama-3-Instruct 5.08 95.2
OpenO1-Llama 20.27 454.8
OpenO1-Qwen 21.09 465.1
Finance-LLM 14.70 131.3
Finance-Chat 14.52 130.8
Finance-Llama-3 5.34 13.5
FinGPT 6.29 14.2
Llama-2-taiwan-btc 13.63 41.3
SEP 13.182 119.6

Domain-CoT-finance 18.37 512.1
Domaino1s-finance 27.38 509.8

Table 8: Inference time and reasoning chain length on
stock investment recommendation tasks.

Model time(s) Length

Qwen-2.5-Instruct 0.65 1.3
Llama-3-Instruct 0.71 1.5
OpenO1-Llama 8.82 261.2
OpenO1-Qwen 9.53 265.9
Open-Australian-Legal 8.33 263.5
DISC-LawLLM 2.38 9.8
Law-LLM 4.18 97.4
Law-Chat 0.64 1.2
Lawma 0.63 1.0

Domain-CoT-finance 8.17 268.5
Domaino1s-legal 13.54 269.8

Table 9: Inference time and reasoning chain length on
legal reasoning QA tasks.

C Answer Demonstration1055

Figures 9 and 10 demonstrate complete question-1056

answering examples for stock investment recom-1057

mendation and legal reasoning QA tasks using1058

Domaino1s and the base model Qwen-2.5-Instruct.1059

Domaino1s does not explicitly output special to-1060

kens (e.g., <SUMMARY>), but reason according1061

to the structured reasoning process constructed in1062

the CoT-stock-2k and CoT-legal-2k datasets.1063

As shown in Figure 9, Qwen-2.5-Instruct reaches1064

an incorrect answer by focusing only on partial in-1065

formation (the Negative parts) while ignoring the1066

overall context. In contrast, Domaino1s-finance1067

comprehensively considers both Positive and Neg-1068

ative facts to draw conclusions. As shown in Fig-1069

ure 10, Qwen-2.5-Instruct starts making reasoning1070

errors after generating "However," incorrectly clas-1071

sifying the user as a non-consumer, leading to an1072

incorrect result. In comparison, Domaino1s-legal1073

avoids errors through structured reasoning paths1074

and tree search.1075

D Answer Length and Inference Time 1076

In this section, we present the reasoning chain 1077

length and inference time of Domaino1s and base- 1078

lines in generating answers for stock investment 1079

recommendations and legal reasoning QA tasks. 1080

The reasoning chain length is measured by the av- 1081

erage number of words rather than tokens in the 1082

responses to ensure fair comparison across differ- 1083

ent models. As shown in Table 8 and Table 9, o1- 1084

like models (OpenO1-Llama, OpenO1-Qwen, and 1085

our Domaino1s) have longer reasoning chains than 1086

other baselines, among which our Domaino1s and 1087

Domain-CoT have the longest reasoning chains. 1088

Although Domaino1s exhibits longer inference 1089

time compared to the baselines, this is attributed 1090

to its generation of longer and higher-quality rea- 1091

soning chains and the search for optimal reasoning 1092

paths, ultimately leading to superior accuracy met- 1093

rics. 1094

E PROOF-Score Generation 1095

Figure 11 is the prompt template for instructing 1096

GPT-4o to generate PROOF-Scores. 1097

F Construction of Sub-datasets 1098

We select 8 data points from each of the 55 stocks 1099

in the stock investment recommendation dataset. 1100

Each data point contains more than 10 positive 1101

tweets and 10 negative tweets. We construct five 1102

groups of tweets, with each group containing 10 1103

tweets but different ratios of positive to negative 1104

tweets: 1:9 (1 positive, 9 negative), 3:7 (3 positive, 1105

7 negative), 5:5 (5 positive, 5 negative), 7:3 (7 pos- 1106

itive, 3 negative), and 9:1 (9 positive, 1 negative). 1107

Figure 12 shows a construction example and model 1108

responses. The example has a Positive:Negative 1109

ratio of 7:3. Tweets with yellow background are 1110

positive, while those with blue background are neg- 1111

ative. Finance-Llama-3’s response only considers 1112

the positive tweets, completely ignoring the nega- 1113

tive ones. In contrast, Domaino1s-finance consid- 1114

ers both positive and negative tweets to arrive at 1115

the correct answer. 1116

We extract 500 questions from the legal reason- 1117

ing QA dataset. Each question contains key condi- 1118

tions necessary for answering the question. We re- 1119

move these key conditions from the questions, mak- 1120

ing them impossible to answer. Figure 13 shows a 1121

construction example. 1122
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Figure 9: Questions and answer demonstrations for Domaino1s-finance and base model.

Figure 10: Questions and answer demonstrations for Domaino1s-legal and base model.
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Figure 11: Prompt template for generating PROOF-
Score.

Figure 12: Example of stock sub-dataset construction.

Figure 13: Example of legal sub-dataset construction.

G Explainability Analysis 1123

Table 10 demonstrates the ablation experiments 1124

of PROOF-Score without fine-tuning (w/o Fine- 1125

tune) and without solution expansion & sampling 1126

(w/o Sample). In the w/o Fine-tune experiment, 1127

we use the Qwen-2.5-Instruct model without fine- 1128

tuning on our data and prompt it to separate each 1129

step with "\n" to facilitate our solution expansion 1130

& sampling. The results indicate that the PROOF- 1131

Score of the model without fine-tuning is lower 1132

than Domaino1s, demonstrating that Domaino1s 1133

learns to generate superior-quality reasoning pro- 1134

cesses from our constructed high-quality fine- 1135

tuning datasets. Meanwhile, the PROOF-Score of 1136

the model without solution expansion & sampling 1137

is similar to Domaino1s, which suggests that the 1138

role of solution expansion & sampling is more re- 1139

flected in improving the quality of reasoning paths 1140

to enhance model accuracy (as shown in Table 5-7). 1141

From the perspective of PROOF-Score, the differ- 1142

ence is not easily distinguishable, as the model can 1143

output highly interpretable answers regardless of 1144

whether solution expansion & sampling is used. 1145

Stock Legal

w/o Fine-tune 6.212 w/o Fine-tune 5.067
w/o Sample 6.351 w/o Sample 6.548

Domaino1s-finance 6.359 Domaino1s-legal 6.677

Table 10: Comparison of PROOF-Score between
Domaino1s with w/o Fine-tune and w/o Sample.

Stock Legal

Model TIGERScore Errors Model TIGERScore Errors

Qwen-2.5-Instruct 0.00 0.00 Qwen-2.5-Instruct -2.41 0.74
Llama-3-Instruct -0.50 0.50 Llama-3-Instruct -3.23 0.81
OpenO1-Llama 0.00 0.00 OpenO1-Llama -0.10 0.10
OpenO1-Qwen 0.00 0.00 OpenO1-Qwen -0.13 0.13
Finance-LLM -4.00 1.00 Open-Australian-Legal -6.40 1.60
Finance-Chat 0.00 0.00 DISC-LawLLM -4.00 1.00
Finance-Llama-3 -6.00 2.00 Law-LLM -2.45 1.11
FinGPT 0.00 0.00 Law-Chat -3.45 0.86
Llama-2-taiwan-btc 0.00 0.00 Lawma -3.76 0.94
SEP 0.00 0.00 Domaino1s-legal -0.03 0.03
Domaino1s-finance 0.00 0.00

Table 11: Comparison of TIGERScore and error rates
between Domaino1s and baselines on stock and legal
tasks (using TIGERScore-7B). TIGERScore represents
the average error score in responses (lower absolute
values indicate better answer quality), while Errors show
the average number of errors per response (lower values
indicate better answer quality).

In addition to our proposed PROOF-Score, we 1146

evaluate Domaino1s on other metrics. TIGER- 1147
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Stock Legal

Model TIGERScore Errors Model TIGERScore Errors

Qwen-2.5-Instruct 0.00 0.00 Qwen-2.5-Instruct -0.76 0.19
Llama-3-Instruct 0.00 0.00 Llama-3-Instruct -1.26 0.32
OpenO1-Llama 0.00 0.00 OpenO1-Llama 0.00 0.00
OpenO1-Qwen 0.00 0.00 OpenO1-Qwen 0.00 0.00
Finance-LLM -4.00 1.00 Open-Australian-Legal -10.80 3.00
Finance-Chat -0.50 0.50 DISC-LawLLM -3.40 0.80
Finance-Llama-3 -8.00 2.00 Law-LLM -4.09 1.28
FinGPT 0.00 0.00 Law-Chat -1.10 0.27
Llama-2-taiwan-btc 0.00 0.00 Lawma -1.75 0.44
SEP 0.00 0.00 Domaino1s-legal 0.00 0.00
Domaino1s-finance 0.00 0.00

Table 12: Comparison of TIGERScore and error rates
between Domaino1s and baselines on stock and legal
tasks (using TIGERScore-13B).

Score (Jiang et al., 2023) is an explainable1148

reference-free evaluation metric based on LLaMA-1149

2, which provides error analysis through natural1150

language instructions and demonstrates the error1151

analysis process. It can be used to evaluate a1152

wide range of text-generation tasks. Table 111153

and Table 12 show the evaluation results using1154

TIGERScore-7B and TIGERScore-13B models re-1155

spectively.1156

As shown in Table 11 and Table 12, Domaino1s1157

achieves the highest scores (TIGERScore) and low-1158

est error rates (Errors) in both stock and legal tasks,1159

which indicates that Domaino1s’ answers are more1160

accurate and have more reasonable explanations1161

compared to the baselines. Figure 14 shows exam-1162

ples of TIGERScore-13B’s evaluation of answers1163

from Domaino1s, Qwen-2.5-Instruct, and Law-1164

Chat. We observe several potential limitations with1165

TIGERScore-13B in evaluating answers. For in-1166

stance, (1) TIGERScore-13B judges answers based1167

on its knowledge, and when there are discrepancies1168

with the evaluated model’s answers (e.g., Qwen-1169

2.5-Instruct), it considers their errors and reflects1170

this in both TIGERScore and Errors, even when1171

TIGERScore-13B’s answers sometimes disagree1172

with the ground truth. Additionally, (2) when the1173

evaluated model (e.g., Law-Chat) provides only an1174

option as the answer, TIGERScore-13B cannot as-1175

sess the correctness of logic and reasoning as there1176

are no explanations. In such cases, TIGERScore-1177

13B can only score based on its judgment of an-1178

swer correctness, which may lead to incorrect eval-1179

uations as mentioned in (1). In contrast, when1180

the evaluated model (e.g., Domaino1s-legal) pro-1181

vides long comprehensive answers, TIGERScore-1182

13B no longer strictly scores based on the model’s1183

conclusions. These results demonstrate the im-1184

portance of incorporating more powerful language1185

models as evaluators while highlighting the con-1186

trast between TIGERScore and our PROOF-Score.1187

PROOF-Score primarily focuses on answer explain-1188

ability, safety, and factuality, rather than consider- 1189

ing answer accuracy as the sole important metric, 1190

which helps reduce hallucinations in the evaluation 1191

model during answer assessment. 1192

Figure 14: Example of TIGERScore-13B’s evaluation.

H Reasoning Process Analysis 1193

In this section, we introduce a new perspective 1194

to analyze how Domaino1s’s reasoning process 1195

assists user decision-making. Taking stock invest- 1196

ment recommendation tasks in the financial domain 1197

as an example, previous research has primarily fo- 1198

cused on prediction accuracy as the main evalua- 1199

tion metric (Koa et al., 2024; Xu and Cohen, 2018; 1200

Sawhney et al., 2020; Yang et al., 2022). How- 1201

ever, as shown in Table 2, even the previously 1202

most advanced financial LLMs or LLMs exten- 1203

sively trained on stock data achieve prediction ac- 1204

curacy close to 50% (random choice) for this binary 1205

classification problem. This confirms that LLMs 1206

are still "Wall Street Neophytes" in stock predic- 1207

tion (Xie et al., 2023a). In reality, many domain 1208

problems in the real world often do not have uni- 1209

fied or unique correct answers, as they typically in- 1210

volve dynamically changing environmental condi- 1211

tions, the interplay of multiple influencing factors, 1212

and user-specific preferences. When facing these 1213

problems, users can use Domaino1s’s responses 1214

as references to aid their judgment by providing 1215

explainable analysis processes and recommenda- 1216

tions. For example, Figure 15 shows part of the 1217

model’s response when asking Domaino1s-finance 1218

17



for stock investment advice. The model’s response1219

includes both short-term and long-term analysis1220

of stock prices and provides both short-term and1221

long-term investment recommendations based on1222

user investment habits.1223

Figure 15: Example of Domaino1s-finance’s response
on stock investment recommendation. Blue bold text
indicates short-term investment advice, and red bold
text indicates long-term investment advice.
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