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ABSTRACT

Image generation through disentangling object representations is a critical area of
research with significant potential. Disentanglement involves separating the rep-
resentation of objects and their attributes, enabling greater control over the gen-
erated output. However, existing approaches are limited to disentangling only the
objects’ attributes and generating images with selected combinations of attributes.
This study explores learning object-level disentanglement of semantically rich la-
tent representation using von-Mises-Fisher (vMF) distributions. The proposed
approach aims to disentangle compressed representations into object and back-
ground classes. The approach is tested on surgical scenes for disentanglement of
tools and background information using the Cholec80 dataset. Achieving tool-
background disentanglement provides an opportunity to generate rare and custom
surgical scenes. However, the proposed method learns to disentangle representa-
tions based on pixel intensities. This study uncovers the challenges and shortfalls
in achieving object-level disentanglement of the compressed representations using
vMF distributions. The code for this study is available at https://github.com/it-is-
lokesh/vMF-disentanglement-challenges.

1 INTRODUCTION

Convolutional neural networks (CNNs) have demonstrated remarkable success in performing tasks
like classification, object detection, localization, etc. (Krichen, 2023). However, their ability to learn
disentangled representations of objects in an image has vast potential and has been under-explored.
A representation is a condensed, encoded, and structured summary of object-specific attributes.
Disentanglement isolates object-specific representations of each object in an image into independent
channels of the representational space, thus enabling a network to encapsulate semantically rich
and interpretable object features. This ability has valuable applications, such as facilitating the
generation of new images by selecting specific channels of the representational space. This enables
the creation of synthetic datasets and advanced analytical applications such as focused or highlighted
object tracking in real-time video feeds.

This work aims to learn disentangled representations of surgical scenes, as depicted in Fig. 1. It
illustrates the hypothesis and overview of the proposed approach, which is designed to disentan-
gle object/class representations into independent channels. For this work, two classes are chosen:
tools (all surgical tools in the dataset), and background/non-tools (everything other than tools). The
representations of non-tools and tools is denoted as zIvMF and zIIvMF respectively (Fig. 1).

Recent advancements in disentangled representation learning have laid a promising foundation for
this task. Feature disentanglement methods that use supervision through segmentation ground truth
have successfully encapsulated object-specific information into separate latent channels (Tomar &
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Figure 1: An overview of the proposed method for learning disentangled representations of surgical
scenes. Details about the network modules are detailed in Sec. 2.

Rajagopalan, 2022; Liu et al., 2022). Generative adversarial networks (GAN) have shown decent
progress in disentanging object-specific attributes (Zhu et al., 2020). In addition, Dombrowski et al.
(2023) developed a pipeline to extract foreground and background masks utilizing a student-teacher
based approach. Although these approaches have significantly progressed in learning disentangled
representations, they rely heavily on segmentation ground truth. The current work focuses on achiev-
ing the same task without external supervision. Since obtaining high-quality annotations for medical
data increases the cost of data procurement and compressed representations. Here, a convolution
network as described in (Kakaiya et al., 2023; Raj et al., 2023) that produces semantically rich
compressed representations is employed. To disentangle the compressed representations, learnable
von-Mises-Fisher (vMF) distribution parameters are employed, similar to Liu et al. (2022).

2 METHOD

2.1 NETWORK ARCHITECTURE

The proposed network consists of four modules; encoder block (netE(·)), disentanglement block
(disentangle(·)), composition block (compose(·)), and decoder block (netD(·)). The encoder
takes an image I as input and compresses it to obtain a latent representation z. The obtained latent
representation z is convolved with 2K vMF kernels, represented by µ, followed by channel-wise
normalization(N(·)) to obtain zvMF . An affine transformation, termed as compose operation, is
performed using µ = {µI ,µII} and zvMF to obtain z̃. The z̃ is provided to the decoder as input
to reconstruct the original image Ĩ . The schematic representation of the network is shown in Fig. 1.
Training the network consists of two stages, where the objective in Stage 1 is to learn representations
of the background using K kernels (µI ). In Stage 2, the objective is to learn representations of tools
using another set of K kernels (µII ).

2.2 LEARNING OBJECTIVE

The trainable parameters corresponding to the blocks netE(·), the netD(·) and the disentangle(·)
are represented as θ1, θ2 and µ = {µI ,µII} respectively. The objective function employed
for this task consists of three components: reconstruction loss Lrec(I, Ĩ), vMF loss LvMF (µ, z)
and dissimilarity loss Ldis,s(µ) where s indicates the training stage. Mean absolute error (MAE)
is used for reconstruction loss. The vMF loss is mathematically represented as LvMF (µ, z) =
−(HW )−1

∑
i maxj µ

I
jzi where i indicates the index of the feature vectors, j indicates the index

of the vMF kernels, and H,W are the height and width of the latent representation.

The dissimilarity loss for Stage 1 is formulated as Ldis,1(µ
I) = −

∑K−1
i=0

∑K−1
j=i+1 µ

I
iµ

I
j and for

Stage 2 the dissimilarity loss is given by Ldis,2(µ) = −
∑K−1

i=0

∑K−1
j=0 µI

iµ
II
j . The vMF loss and

2



I Can’t Believe It’s Not Better Workshop @ ICLR 2025

dissimilarity loss are weighted by the parameters αs and βs where s is the training stage. The vMF
loss forces the kernels to be the cluster centers of the feature vectors (Kortylewski et al., 2020), thus
capturing the intrinsic patterns within them. The dissimilarity loss is employed to maintain a degree
of dissimilarity between the vMF kernels, preventing them from collapsing in the same direction.
The learning objective for stage s is mathematically given as:

µ∗,θ∗
1 ,θ

∗
2 = argmin

µ,θ1,θ2

Lrec(I, Ĩ) +αsLvMF (µ, z) + βsLdis,s(µ) (1)

3 EXPERIMENT RESULTS AND DISCUSSIONS

3.1 EXPERIMENTAL SETUP

Cholec80 dataset (Twinanda et al., 2016), containing surgical scenes from 80 laparoscopic chole-
cystectomy videos, is used to test the proposed approach. Stage 1 training is performed with images
where tools are absent, and only the first set of K vMF kernels (µI ) are used for training while the
other set is not part of the training pipeline. The network parameters are randomly initialized and
trained for 15 epochs. In Stage 2 of the training, the network is initialized with the weights learned
in Stage 1. Additionally, the remaining set of K vMF kernels (µII ) are randomly initialized. The
dissimilarity loss is constrained to be above −0.02, meaning its gradient does not propagate when
the loss falls below this threshold. Empirically, this chosen threshold yields better results; without
it, the tool channels fail to capture meaningful information. Such thresholding ensures that the vMF
kernels associated with tools are not excessively pushed away from the non-tool vMF kernels. The
network is trained for 10 epochs. The hyperparameters used for training are given in Sec. A.8.

3.2 STAGE 1: LEARNING NON-TOOL REPRESENTATIONS USING VMF KERNELS

After Stage 1 of the training process, the relative angles of the vMF kernels (µI ), visualized post
dimensionality reduction, are shown in Fig. 2a. The kernels are mainly split into two clusters,
one centered near 180◦ and the other centered near 330◦. This is a result of the combined effect
of the losses employed. While reconstruction loss forces the kernels to learn semantic information
and vMF loss forces them to align towards the vMF clusters in the latent representation z, the
dissimilarity loss reduces the similarity between the kernels. As a result, only a subset of kernels in
µI learn meaningful information while the others are pushed away from these kernels.

(a) Relative orientation of kernels in µI after Stage 1. (b) Relative orientation of kernels in µ after Stage 2.

(c) Average entropy of channels in disentangled latent representations zvMF after Stage 2.

Figure 2: Orientation of the vMF kernels and the entropy of the corresponding channels of zvMF .

3.3 STAGE 2: LEARNING TOOL REPRESENTATIONS USING VMF KERNELS

In Stage 2, vMF loss updates the weights of a vMF kernel using the feature vectors with a higher
likelihood of belonging to the cluster represented by that kernel. As µI learns non-tool information,
it is crucial to prevent µII from learning the same to achieve proper disentanglement. Dissimilarity
loss is employed to enforce this separation, which reduces the similarity between the non-tool and
tool kernels. Hence, the kernels in µII are expected to model the vMF clusters belonging to tool
feature vectors. The relative orientation of the vMF kernels upon training is shown in Fig. 2b. There
is a visual separation between the two sets of vMF kernels because the dissimilarity loss pushes
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away the second set of vMF kernels. Entropy calculated for each channel of zvMF averaged across
the validation dataset is shown in Fig. 2c.

3.4 LIMITATIONS OF VMF LOSS IN LEARNING DISENTANGLED REPRESENTATIONS

Based on the hypothesis, to have vMF kernels µII learn tool information, the feature vectors of tools
must be oriented away from the non-tool feature vectors. Conversely, the feature vectors of tools
and non-tools are highly similar. To verify and support this, the trained µI and randomly initialized
µII kernels are taken, and the cosine similarity between the feature vectors of images with tools
and these vMF kernels was computed. All the feature vectors, including those corresponding to
the tools, belong to the clusters represented by the non-tool vMF kernels and none to the randomly
initialized set of vMF clusters. Considering the working of vMF loss (Sec. A.5), the tool vMF
kernels are not being updated enough using the feature vectors and hence do not learn any tool-
specific information. The distribution of feature vectors among the vMF kernels is shown in Sec.
A.7. Even when the non-tool vMF kernels are initialized using the vMF mixture model approach as
used in the works Liu et al. (2022); Kortylewski et al. (2020), µI kernels are closer to the feature
vectors than µII kernels. Thus, the disentanglement of representations through a two-stage process
leads to the second set of vMF kernels not learning the distribution of feature vectors.

3.5 ANALYZING EFFECTIVE CHANGE IN THE VMF KERNELS

Effective change for a given kernel, defined by cosine similarity between the state of kernels after
Stage 1 and Stage 2, is shown in Fig. 3. These values indicate the degree of kernel update due to
training. The average effective change for the non-tool kernels (µI) is 0.91, whereas for the tool
kernels (µII) it is 0.49. Smaller area tools occupy in these images in comparison to the background
is a possible reason for such minimal updates between stages and the observations mentioned in Sec.
3.4. Moreover, the higher change observed in tool vMF kernels is due to the dissimilarity loss push-
ing these kernels away from non-tool vMF kernels but not them learning the tool representations.
In support of this, few channels in zIIvMF have non-zero entropy (Fig. 2c). This is also due to the
dynamics of the losses, causing few kernels in the set µII to learn some information from z.

Figure 3: Effective change for each kernel from Stage 1 to Stage 2.

3.6 RECONSTRUCTION FROM SELECTED CHANNELS OF LATENT REPRESENTATION

Although the proposed method has not successfully achieved complete disentanglement concerning
the tool and non-tool representations, partial disentanglement has been observed between brighter
and darker regions of the images. Analysis of the disentangled latent representation, zvMF , reveals
that specific channels selectively encode information from bright regions. Reconstructing images
using only these channels results in outputs that preserve only the bright pixel regions of the image.
This demonstrates the potential of the learned representations to isolate and reconstruct specific
information in compressed representation. Detailed results are provided in the Sec. A.11.

4 CONCLUSION

This work has experimented with a two-stage training process to learn the disentangled representa-
tions of surgical images. It provides concise insights on the working of vMF loss and analyzes its
limitations in such a two-stage training process. Additionally, a demonstration of the use of disen-
tanglement to generate images with specific information is shown. Although it aimed for object-
level disentanglement, it has achieved partial pixel-intensity-based disentanglement, highlighting
challenges in achieving true semantic separation of the compressed representations when objects
occupy smaller areas and without external supervision.
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A APPENDIX

A.1 VON-MISES-FISHER (VMF) DISTRIBUTION

von-Mises-Fisher (vMF) distributions are probability distributions commonly used in statistics and
directional data analysis. They are primarily used to model data points distributed on the surface of
a unit hypersphere in an n-dimensional space. These distributions are beneficial when dealing with
directional data. Mathematically, the probability density function (PDF) of a vMF distribution for
an input x is defined as:

f(x;µ,κ) = Cp(κ)
−1exp(κµTx) s.t. ∥x∥ = 1, ∥µ∥ = 1, κ ≥ 0 (2)

where Cp(κ) is a normalization constant parameterized by kappa κ, and mean µ of the distribution.
The parameter µ defines the average or the expected direction in which the data points are clustered,
and the parameter κ defines the spread or tightness of the distribution around the average direction
specified by µ.

The use of vMF distributions in this work is directly inspired by the work Liu et al. (2022). This
work aims to learn the compositional components of two classes, namely the surgical tools and
the background. Previous works (Kortylewski et al., 2020) have proven that vMF distributions
are crucial in learning compositional components, hence justifying the use of vMF distributions in
learning disentangled representations of compositional components in surgical images.

5



I Can’t Believe It’s Not Better Workshop @ ICLR 2025

A.2 FEATURE VECTORS

Consider an autoencoder architecture shown in Fig. 4a. It takes an image I ∈ RC×M×N as input,
where C is the number of channels, M and N are the height and width of the image, respectively.
The latent representation z ∈ RD×H×W , is obtained upon passing the image I through the encoder
netE(·), where D is the number of channels, H and W are the height and width respectively.

(a) Autoencoder architecture.
(b) Feature vectors of latent represen-
tation.

Figure 4: Schematic represention of the feature vectors obtained from latent representations of en-
coded input images.

The latent representation z ∈ RD×H×W is schematically illustrated as a tensor in Fig. 4b. A feature
vector z(i,j) ∈ RD×1 is extracted from a specific lattice position (i, j) spanning all D channels of
the latent representation. Consequently, the latent representation consists of HW feature vectors.

A.3 DISENTANGLEMENT BLOCK

Let z ∈ RD×H×W be the latent representation obtained from the encoder network netE(·). The
latent representation is convolved with the vMF kernels parameterized by µ = {µI ,µII} to ob-
tain the disentangled representation zvMF . In particular, we define µI = {µI

i ∈ R1×D ∀ i ∈
{0, 1, · · · ,K − 1}} and µII = {µII

i ∈ R1×D ∀ i ∈ {K,K + 1, · · · , 2K − 1}}. Essentially,
there are 2K vMF kernels that are used for convolving with the latent representation z to obtain
za ∈ R2K×H×W .

za(k,i,j) = µT
k zi,j ∥z∥ = 1, ∥µ∥ = 1 (3)

The exponential operation is applied on the tensor za to obtain zad ∈ R2K×H×W :

zad(k,i,j) =
Cp(κ)

−1

Cp(κ)−1
exp(κ · za(k,i,j)) = Cp(κ)

−1P (zi,j ; µk,κ) (4)

The disentangled representation is computed by normalizing the tensor zad across all the channels.
This operation is represented by the literal N(·) in Fig. 1. The normalization operation is represented
as follows:

zvMF (k,i,j) =
Cp(κ)

−1P (zi,j ; µk,κ)∑2K
k=1 Cp(κ)−1P (zi,j ; µk,κ)

=
zad(k,i,j)∑2K
k=1 zad(k,i,j)

(5)

A.4 COMPOSITION OPERATION

After disentangling the compositional components into individual channels of the tensor zvMF hav-
ing 2K channels, it is transformed into a tensor with D channels to be given to the decoder network
netD(·). This is necessary to ensure that the number of channels in the encoder’s output and in the
decoder’s input is the same. To facilitate this, Liu et al. (2022) have proposed a compose operation
that performs this transformation. The compose operation is an affine transform that takes in the
normalized likelihood tensor zvMF ∈ R2K×H×W and the set of cluster centers µ ∈ R2K×D×1 to
produce the composed version z̃ ∈ RD×H×W . This composed version z̃ is given to the decoder for
reconstruction purposes. This operation is represented as

z̃ = zvMFµ (6)
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A.5 VMF LOSS

The loss formulation is given in Sec. 2.2. The vMF loss is used to learn the mean of the feature
vector clusters. The loss can be understood as follows: for all the feature vectors, compute the
cosine similarity between that feature vector and all the vMF kernels. Choose the maximum cosine
similarity obtained for each feature vector across all the vMF kernels and compute the average
cosine similarity to obtain vMF loss. The goal of this loss is to increase the likelihood of the feature
vectors under the current vMF clusters parametrized by µ ∈ R2K×D where 2K is the number of
vMF clusters, and D is the dimension of the feature vectors.

A.6 DATASET DESCRIPTION

The proposed two stage approach is tested on the Cholec80 dataset containing videos of 80 chole-
cystectomy surgical videos (Twinanda et al., 2016). Each video is sampled at one frame per second
and contains the corresponding images. The annotation for each image indicates the tools present in
it.

Among these 80 videos, a random set of 60 videos is chosen for training and the remaining videos
are used for validation. These two sets are further divided into images with and without tools. The
images without tools from the training set and validation set are used for Stage 1 of the proposed
method, and the images with tools from the training set and validation set are used for Stage 2 of the
proposed method.

A.7 PERCENTAGE OF FEATURE VECTORS BELONGING TO EACH CLUSTER AFTER STAGE 1

Sec. 3.4 describes that the feature vectors of non-tools are highly similar to the feature vectors of
tools. To prove this, the trained set of vMF kernels µI from Stage 1 and the randomly initialized
set of vMF kernels µII are combined. Cosine similarity between the feature vectors of images
with tools and these 64 vMF kernels has been computed. Upon analyzing the cosine similarity, it is
observed that all the obtained feature vectors are distributed among the clusters represented by the
kernels shown in Tab. 1. This shows that the parameters of randomly initialized kernels µII are not
updated through the vMF loss. They are updated through the gradients from the other two losses,
namely the reconstruction loss and the dissimilarity loss.

Table 1: Percentage of feature vectors belonging to the cluster represented by kernels after Stage 1
(0-based indexing).

Kernel Value

Kernel 1 1.82× 10−5%
Kernel 2 6.09× 10−6%
Kernel 10 21.15%
Kernel 11 7.94× 10−3%
Kernel 14 73%
Kernel 19 4.9× 10−1%
Kernel 21 4× 10−1%
Kernel 28 3.52%
Kernel 29 6.07× 10−3%
Kernel 31 1.03%

A.8 HYPERPARAMETERS

The hyperparameters used for training the proposed architecture are given below.
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Table 2: Hyperparameters used for training (common for Stage 1 and Stage 2).

Parameter Value

K 32
Learning rate 0.001
Batch size 32
Learning rate scheduler type Step
Scheduler step 10
Scheduler rate 0.9
κ 30
α1 3
β1 0.05
α2 1
β2 0.001

The hyperparameters for weights of the losses are chosen by analyzing the feature disentanglement
visually for multiple combinations of weights. The visual analysis focused on two aspects of the
disentangled representations: amount of diversity in the disentangled features and the number of
channels in the disentangled representation that contain some information. The lack of labeled
ground truth data for the compositional components in the images is the key reason for following a
visual approach in choosing hyperparameters for this work.

A.9 DISENTANGLED LATENT REPRESENTATION OF IMAGES WITH NO TOOLS

The disentanglement achieved after Stage 1 is shown for a sampled set of images from the validation
dataset. For these images, each channel in zvMF is displayed in Fig. 5. 0-based indexing is used
to number the channels, and the index for the first channel of each row is written to the left of it.
The border color for each channel image is according to the color map generated for Fig. 2c. The
intensity scale chosen for the channels’ values is [0, 1].

A.10 DISENTANGLED LATENT REPRESENTATION OF IMAGES WITH TOOLS

To visualize the disentanglement achieved after Stage 2, one image from each class is sampled from
the validation data, and each channel in zvMF is displayed for all these images in Fig. 6. The
sampled images are shown in the first column of Fig. 7. 0-based indexing is used to number the
channels, and the index for the first channel of each row is written to the left of it. The border color
for each channel image is according to the color map generated for Fig. 2c. The intensity scale
chosen for the values in channels from 0 to 31 is [0, 1], while for the channels with an index from
32 to 63, it is [0, 0.2]. This is chosen to enhance the visibility of the captured features.

A.11 PROGRESSIVE RECONSTRUCTION

Progressive reconstruction is carried out by grouping the disentangled channels into four categories.
Category A includes channels that primarily capture bright regions, while Category B consists of
channels that contain a mix of bright and dark regions. Category C includes more channels with
prominent dark regions, and Category D comprises all latent channels from zvMF .
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(a) Sample 1 (b) Sample 1 compressed representations.

(c) Sample 2 (d) Sample 2 compressed representations.

(e) Sample 3 (f) Sample 2 compressed representations.

Figure 5: Sample images with corresponding zvMF representing the disentanglement achieved after
Stage 1.
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(a) Grasper (b) Bipolar

(c) Hook (d) Scissors

(e) Clipper (f) Irrigator

Figure 6: zvMF representing the disentanglement achieved after Stage 2 for various tool classes for
Sample images in Fig. 7.
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Figure 7: Progressive reconstruction: An overview of reconstructed images when using the specific
channels from the zvMF for reconstruction. The reconstructed images from the initial select chan-
nels prove partial pixel-intensity-based disentanglement of the compressed features argument, and
this is consistent across multiple samples containing various tools.
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