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Abstract

Pretraining datasets for large language models (LLMs) have grown to tril-
lions of tokens composed of large amounts of CommonCrawl (CC) web
scrape along with smaller, domain-specific datasets. It is expensive to un-
derstand the impact of these domain-specific datasets on model capabilities
as training at large FLOP scales is required to reveal significant changes
to difficult and emergent benchmarks. Given the increasing cost of ex-
perimenting with pretraining data, how does one determine the optimal
balance between the diversity in general web scrapes and the information
density of domain specific data? In this work, we show how to leverage
the smaller domain specific datasets by upsampling them relative to CC at
the end of training to drive performance improvements on difficult bench-
marks. This simple technique allows us to improve up to 6.90 pp on MMLU,
8.26 pp on GSM8K, and 6.17 pp on HumanEval relative to the base data mix
for a 7B model trained for 1 trillion (T) tokens, thus rivaling Llama-2 (7B)—a
model trained for twice as long. We experiment with ablating the duration
of domain upsampling from 5% to 30% of training and find that 10% to
20% percent is optimal for navigating the tradeoff between general lan-
guage modeling capabilities and targeted benchmarks. We also use domain
upsampling to characterize at scale the utility of individual datasets for
improving various benchmarks by removing them during this final phase
of training. This tool opens up the ability to experiment with the impact of
different pretraining datasets at scale, but at an order of magnitude lower
cost compared to full pretraining runs.

1 Introduction

Pretraining datasets for large language models (LLMs), such as Dolma (Soldaini et al., 2023),
have grown to trillions of tokens. To accommodate such large scales, they are typically
composed of two types of data sources. First, they contain large amounts of web scraped
data processed from CommonCrawl (CC) dumps. These are typically hundreds of billions
to trillions of tokens in size and contain a diverse distribution of information. However,
because of their size, they are necessarily less information dense and are not as filtered.
Second, LLM pretraining mixes contain datasets that either target certain domains or come
from single high quality sources. These are much smaller (often less than a hundred billion
tokens tokens). They are also more carefully processed and are dense with information from
domains we want LLMs to be good at; however, since their sources are limited, they are
often less diverse (Computer, 2023).

Related Works: One of the biggest challenges to pretraining LLMs is determining the
optimal strategy for mixing datasets that come from CC and smaller domain specific sources.
Some previous works have opted to pretrain entirely on heavily processed CC data (Penedo
et al., 2023). Others have used different heuristics to balance between CC and more domain
specific datasets (Computer, 2023). However, most recent language models trained at scale
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disclose limited information on the contents of their pretraining data (Touvron et al., 2023;
Jiang et al., 2023; 2024; Team et al., 2024). At smaller scales, there have been attempts to
algorithmically optimize the data mix proportions, but these methods have not been openly
validated at the scale most modern language models are trained (Xie et al., 2024). Given
the sheer cost of validating data mixing strategies at this scale, there is a paucity of open
research on pretraining data for LLMs.

Ideally one would conduct data mix experiments at smaller scales to identify what is a
good data mix. However, this is often ineffective because large FLOP scales are required
to reveal significant changes in difficult and emergent benchmarks. In fact, most LLMs
trained at smaller scales register random accuracy on many important benchmarks such as
MMLU (Wei et al., 2022). As a result, experiments at smaller scales can often be misleading;
the variation between different data mixes on important benchmarks is often due to noise
rather then dataset quality at this scale. On the other hand, it is prohibitively expensive and
impractical to exhaustively characterize datasets by doing multiple training runs at the scale
needed to measure above random performance on these metrics.

In this work, our goal is to characterize the utility of an alternative approach to conduct
pretraining data experiments at a reasonable scale. Our strategy is to modify the data
mixture at the end of training after we have already trained for enough FLOPs to measure
meaningful signal on difficult benchmarks. We show that this is an effective strategy for
improving LLM pretraining data mixes with experiments that are an order of magnitude
cheaper than full training runs.

Contributions:

• We begin with a baseline mix of publicly available datasets that achieves the same
scaling of performance with FLOPs as the Llama-2 model family for a 7B model
trained for 1 trillion tokens.

• We introduce domain upsampling—a data intervention which upsamples domain
specific datasets relative to Common Crawl at the end of training—and demonstrate
that it can boost challenging metrics. In particular, we observe improvements of up
to 6.90 pp on MMLU, 8.26 pp on GSM8K, and 6.17 pp on HumanEval relative to
the base data mix in our training setup. This makes our performance comparable to
Llama-2 (7B) but at approximately half the training FLOPs.

• We ablate the percentage of training that utilizes domain upsampling and show
10%-20% is optimal for navigating the tradeoff between general language modeling
capabilities and targeted benchmarks.

• We show how domain upsampling can be used as a FLOP-efficient tool to charac-
terize how individual datasets impact model capabilities. By removing a subset of
math-heavy pretraining data from the datasets we upsampled at the end of training,
we quantified the impact these datasets have on specific benchmarks.

2 Training Details

Parameter Value

Optimizer LionW (Chen et al., 2024)
Learning Rate 0.00012
Betas 0.9, 0.95
Weight Decay 0.00012
Max Sequence Length 4096
Batch Size 960
Tokenizer Tiktoken (GPT-4)
Positional Embedding ALiBi (Press et al., 2022)

Table 1: Training Hyperparameters.

We studied domain upsampling on 7 bil-
lion parameter models trained for 1 tril-
lion tokens. This FLOP scale was chosen
so that the model performed above the
noise floor on key metrics like MMLU
enabling us to see the effects of data in-
terventions on the model.

The 7B models trained for this work
are decoder-only transformers using the
MPT architecture in LLM Foundry (Mo-
saicML et al., 2023). To evaluate our
models we use the latest version of
the Eval Gauntlet v0.3.(MosaicML et al.,
2023), an evaluation framework consist-
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Figure 1: On key benchmarks, our 7B models trained with the data mix presented in Table 2
have errors at or below the error vs. FLOP scaling line of the Llama-2 family of models. We
first evaluated the performance of the 7B, 13B, and 70B variants of the Llama-2 models on
MMLU, GSM8K, HumanEval, and the Gauntlet v0.3 Core Average. We then performed
linear regression on the log of the error on these metrics vs. the log of the FLOPS used to
train these models. This scaling relationship is plotted as a dashed line in the log-log plots
shown above; one can observe that the models in the Llama-2 family lie close to this scaling
line. For MMLU, our models (square markers) lie on the Llama-2 scaling line. For the other
metrics, our models are significantly below the scaling line.

ing of 35 popular in context learning evaluation tasks used to evaluate LLM base models.
The Gauntlet v0.3 aggregates scores on benchmarks across 6 categories. It is described in
Appendix A. We use an inverse square root learning schedule similar to (Zhai et al., 2022).

3 Results

Here we present the experiments demonstrating the performance boost achieved by domain
upsampling as well as its utility in characterizing how datasets affect challenging, emergent
metrics.

3.1 Baseline data mix achieves Llama-2 scaling

To construct a baseline data mix, we grouped a set of publicly-available datasets into 4 broad
categories:

• Large-Scale Common Crawl: Datasets derived from Common Crawl that empha-
size scale. These datasets trade off thorough quality filtering in favor of curating a
large and diverse set of tokens.

• Small-Scale Common Crawl: Datasets derived from Common Crawl with more
extensive filtering but are smaller than large-scale Common Crawl.

• Domain Specific data: Small datasets that target certain domains or are from
individual sources and are of high quality (e.g. Wikipedia).

• Code: Code data across a variety of programming languages.
We set the proportions for mixing these datasets based on a rough heuristic for the number
of epochs each of these groups would be seen during the 1 trillion token training duration.
Specifically, we choose 0.5 epochs for the Small-Scale Common Crawl and Domain Specific
data and 1 epoch for Code. The remainder of the 1 trillion tokens are filled with Large-Scale
Common Crawl. The exact proportions are in Table 2.

The rationale behind choosing these proportions is as follows: we expect the Small-Scale
Common Crawl and Domain Specific data to be of high quality and we wanted them to
be well represented on our 1 trillion token budget. Also, we wanted to emphasize coding
ability and so we decided to sample code data at a high percentage—initial experiments
indicated that a high percentage of code around 20% boosted programming and reasoning
ability without negatively impacting language abilities. We then treat the Large-Scale CC as
filler tokens that increase the diversity of our dataset and allow us to fill our token budget.

Importantly, since the goal of our experimental setup is to demonstrate the utility of domain
upsampling at the end of training (discussed in section 3.2), we opt for choosing a reasonable
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Dataset Category Percentage Tokens Epochs (1T)

Large-Scale Common Crawl 34.35% 343.5B 0.148
Small-Scale Common Crawl 36.70% 367.0B 0.5
Domain Specific 7.17% 71.7B 0.5
Code 21.78% 217.8B 1

Table 2: Proportions for our pretraining data mix in terms of the 4 dataset groups. Code data
was included at twice the proportion of other domain specific datasets to focus on boosting
coding capabilities. Large-scale Common Crawl was used to fill the remainder of the tokens
once the other proportions were chosen.

heuristic for picking our initial data mix proportions without too much optimization. Table 3
and Figure 1 show the performance of this initial pretraining data mix for two 7B models
trained for 0.5T and 1T tokens. This heuristic has indeed been validated by our empirical
results; plotting error vs. FLOPs shows that our models lie on or below the Llama-2 scaling
line on the Gauntlet v0.3 Core Average, MMLU, GSM8K, and HumanEval. Interestingly,
though the overall performance scaling (as measured by Gaunlet v0.3 Core Average) is very
similar, our particular data choices and mixing coefficients have led to slightly different
tradeoffs. The model trained for 1T tokens outperforms the Llama-2 7B model trained
for 2T tokens on GSM8K and HumanEval. This indicates that our models have better
mathematical and programming ability despite being trained for half the number of tokens.
We also provide a comparison to OpenLlama 7Bv2 (Geng & Liu, 2023), a 7B model that
provides some open details about their data mix.

Us (7B) Llama-2 OpenLlama

Benchmark 0.5T tok 1T tok 7B (2T tok) 7Bv2 (1T tok)

MMLU (5-shot) 24.70 35.69 45.51 40.38
GSM8K (8-shot) 10.16 14.71 14.25 7.05
HumanEval (pass@1) 18.02 17.23 13.55 15.20

Gauntlet v0.3
Core Average 32.13 35.37 37.05 32.96
World Knowledge 39.29 41.77 50.94 43.79
Commonsense Reasoning 30.52 38.38 35.48 34.91
Language Understanding 61.47 61.52 65.02 61.00
Symbolic Problem Solving 14.10 16.28 22.23 19.09
Reading Comprehension 29.36 37.02 35.05 23.82
Programming (HE) 18.02 17.23 13.55 15.20

Table 3: Full evaluation results for the models presented in Figure 1. We note that a 7B
model trained with our data mix for 1T tokens outperforms Llama2-7B—a model trained
for 2T tokens—on GSM8K, HumanEval, and the Commonsense Reasoning and Reading
Comprehension subsets of the Gauntlet v0.3. We also compare to OpenLlama 7Bv2, a similar
model with a publicly available data mix trained for 1T tokens. Note that HumanEval (HE)
is the sole component of the programming section of the Gauntlet.

4



Published as a conference paper at COLM 2024

Figure 2: Domain upsampling (DU) using the proportions presented in Table 4 provides
a significant performance boost on challenging metrics for no additional FLOP cost. The
dashed lines represent the same scaling for the Llama-2 family of models as described in
Figure 1. The square markers are the performance of our 7B model trained for 1T tokens
with the data mix described in Section 3.1; the diamond markers are the resulting models
when domain upsampling is performed with the proportions specified in Table 4 for the
final 20% or 200B tokens of training. The light blue arrow emphasizes the improvement we
observe from DU: 6.90 pp on MMLU, 8.26 pp on GSM8K, 6.17 pp on HumanEval, and 3.95
pp on the Gauntlet v0.3

3.2 Domain upsampling significantly boosts performance on challenging metrics

Dataset Category Percentage Tokens

Large-Scale Common Crawl 0% 0
Small-Scale Common Crawl 30% 60B
Domain Specific 35% 70B
Code 35% 70B

Table 4: Domain upsampling (DU) is a data intervention
in which datasets are removed from the data mix at
the end of training in order to scale up or upsample the
reamining data. We consider results for removing Large-
Scale Common Crawl and scaling up the remaining
datasets as specified in this table.

Next, we introduce domain up-
sampling during the last 20% of
training for our 1T token train-
ing run. For this, we start with
a checkpoint at 0.8T tokens of
training, change the mixing pro-
portions of our pretraining data
mix, and continue training for the
remaining 0.2T tokens. The ex-
act mixing proportions of our do-
main upsampled pretraining mix
are in Table 4. These percentages
were chosen based on the follow-
ing heuristic: we hypothesize that
though the Large-Scale CC adds a
lot of diversity to the pretraining data mix, it is advantageous to emphasize Domain Specific
data at the end of training to bias our model towards token distributions that have high
information density in domains we care about. Thus, we remove Large-Scale Common
Crawl from our data mix while upsampling both Domain Specific and Code subsets. We
also maintain Small-Scale Common Crawl at high percentage to prevent a large distribution
shift in our pretraining data.

The results of this end-of-training data intervention are shown in Table 5 and Figure 2.
Domain upsampling was incredibly effective in boosting model performance relative to
the initial pretraining data mix on all challenging benchmarks. Given the large amount of
code and math related data in the domain upsampled data mix, it is perhaps unsurprising
that this intervention led to GSM8K and HumanEval scores that are approximately 10pp
higher than Llama-2 (7B) despite the model being trained for half the total number of tokens.
Additionally, this did not come at a cost to general language modeling capabilities; it led to
an overall model performance improvement as measured by Gauntlet v0.3 Core Average.
In fact, it improved world knowledge—as measured by MMLU and the Gauntlet v0.3
subset—relative to the base data mix, bringing us closer to Llama-2 (7B) performance on
these metrics. There was only a small 1pp tradeoff in the Language Understanding subset.

Overall, this across the board improvement on challenging benchmarks establishes the
efficacy of domain upsampling as a pretraining data intervention for improving model
performance. Importantly, even using simple heuristics for choosing the new data mix
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Us (7B, 1T tok) Llama-2 OpenLlama

Benchmark No DU 20% DU 7B (2T tok) 7Bv2 (1T tok)

MMLU (5-shot) 35.69 42.59 45.51 40.38
GSM8K (8-shot) 14.71 22.97 14.25 7.05
HumanEval (pass@1) 17.23 23.40 13.55 15.20

Gauntlet v0.3
Core Average 35.37 39.32 37.05 32.96
World Knowledge 41.77 44.19 50.94 43.79
Commonsense Reasoning 38.38 42.59 35.48 34.91
Language Understanding 61.52 60.08 65.02 61.00
Symbolic Problem Solving 16.28 20.23 22.23 19.09
Reading Comprehension 37.02 45.45 35.05 23.82
Programming (HE) 17.23 23.40 13.55 15.20

Table 5: Full evaluation reults for the models presented in Figure 2 along with a comparison
to OpenLlama 7Bv2. Overall, our model with 20% domain upsampling outperforms Llama2
(7B) on the Gauntlet v0.3 despite being trained for 1T fewer tokens. Our model particularly
excels at GSM8K and HumanEval but still trails Llama-2 (7B) on MMLU.

proportions has strong positive effects, leaving opportunity for further improvement with
better tuned mixing proportions.

3.3 Changing the duration of domain upsampling enables us to navigate the trade-off
between targeting specific domains and general purpose language models

Figure 3: Ablating the duration of Domain Upsampling (DU). Here we consider performing
DU for the final 5%, 10%, 20%, and 30% (50B, 100B, 200B, and 300B tokens) of training
for a 7B model for a total duration 1T tokens. We observe that GSM8K and HumanEval
performance continue to improve with increased DU while MMLU and the Gauntlet Core
Average peak at 10% and 20% respectively. Looking across the metrics presented in Table 5,
we conclude that (1) DU for the final 10%-20% of training provides the best trade-off for this
set up and (2) the mix used for DU should not be used for the entire duration of training.

The success of domain upsampling for the last 20% of training raises the question: are the
improvements from an end-of-training data intervention or are they from overall better data
mix proportions? Phrased another way, are the data mix proportions in Table 4 better than
our initial data mix and would training a model for 1T tokens with this data mix lead to
better performance? In this section, we provide evidence that this is not the case and in fact,
treating domain upsampling as an end-of-training data intervention helps us better tradeoff
domain specific improvements and general language modeling capabilities.

To identify when in training this intervention should be applied, we ablate our previous
experiment by performing domain upsampling for the last 5%, 10%, 20%, and 30% of
training. The results of this experiment are shown in Figure 3 and Table 6. Note, while
the math and programming related benchmarks, such as HumanEval, GSM8K and related
Gauntlet v0.3 subscores, continue to improve as we increase the fraction of training that
uses domain upsampling, other benchmarks reach optimal performance at 20% or less. For

6



Published as a conference paper at COLM 2024

Us (7B, 1T tok)

Benchmark 0% 5% 10% 20% 30%

MMLU (5-shot) 35.69 40.20 43.19 42.59 41.78
GSM8K (8-shot) 14.71 16.98 20.47 22.97 24.56
HumanEval (pass@1) 17.23 18.50 20.39 23.40 24.17

Gauntlet v0.3
Core Average 35.37 37.63 38.46 39.32 38.89
World Knowledge 41.77 43.52 44.72 44.19 43.71
Commonsense Reasoning 38.38 42.97 42.33 42.59 42.19
Language Understanding 61.52 61.05 60.41 60.08 60.35
Symbolic Problem Solving 16.28 18.50 19.55 20.23 20.44
Reading Comprehension 37.02 41.23 43.35 45.45 42.50
Programming (HE) 17.23 18.50 20.39 23.40 24.17

Table 6: Full evaluation results for the models presented in Figure 3.

example, MMLU peaks at 10% and Gauntlet v0.3 Core Average peaks at 20%. Thus, as
we increase the fraction of training with domain upsampling beyond 20%, improvements
on math and coding benchmarks come at the cost of performance on general language
modeling abilities.

This apparent trade-off indicates that the domain upsampling data mix proportions are not
incontrovertibly better than the initial data mix, and training with it for the full 1T token
duration would not lead to a better general purpose language model. We do not rule out that
there is an alternate mix that achieves similar performance as the 20% domain upsampling
experiment when trained for the full training duration. However, finding such a mix is
expensive to iterate on for the full training run. Thus, the strength of domain upsampling
is that it gives us a tool to navigate this tradeoff between targeted domains and general
language modeling abilities with experiments that are an order of magnitude cheaper.

3.4 Domain upsampling is a FLOP-efficient tool to characterize how individual datasets
impact model capabilities

Having observed that upsampling code and our domain specific datasets for a small per-
centage of training leads to significant improvements on difficult and emergent tasks, we
explore the question: how does one attribute improvements to specific subsets of these
data? Notably, as can be seen in Figure 3 and Table 5, GSM8K scores—a task measuring
math and reasoning abilities—improves monotonically as duration of domain upsampling
is increased. We hypothesize, given the quantity of math related data in our high-quality
datasets that these may be responsible for some or all of this improvement. To quantify
the impact of these datasets we repeat our experiment, applying domain upsampling for
the last 10% of the training duration. We keep our dataset proportions identical to those in
Table 4, but remove the math related subsets. We present the results in Table 7.

We observe that not only do the the mathematical knowledge and reasoning skills, as
measured by MMLU (which contains STEM subsets) & GSM8k, not reach the same level of
performance as the model trained using domain upsampling that included them, but in fact
performance is worse then the baseline model with no domain upsampling. Moreover, every
Gauntlet v0.3 subcategory score for the domain upsampling sans-math with the exception
of programming is lower than the baseline model. From this we can draw the conclusion
that these specific datasets are responsible for the majority of the mathematical knowledge
and reasoning capabilities in both the base model and the domain upsampled variant.

With this observation we have successfully done something which generally would be
considerably more expensive. That is, we have measured the impact of pretraining datasets
at a scale where difficult and emergent tasks can be reliably measured, but at an order of
magnitude fewer training FLOPS. We believe application of domain upsampling opens up
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10% DU

Benchmark No DU With Math Sans Math

MMLU (5-shot) 35.69 43.19 29.71
GSM8K (8-shot) 14.71 20.47 11.37
HumanEval (pass@1) 17.23 20.39 21.15

Gauntlet v0.3
Core Average 35.37 38.46 32.54
World Knowledge 41.77 44.72 39.08
Commonsense Reasoning 38.38 42.33 31.76
Language Understanding 61.52 60.41 59.97
Symbolic Problem Solving 16.28 19.55 16.80
Reading Comprehension 37.02 43.35 26.48
Programming 17.23 20.39 21.15

Table 7: Removing the math-specific datasets during domain upsampling results in sig-
nificantly worse performance on all metrics except programming vs. performing domain
upsampling with these datasets. Experiments such as this provide a significantly cheaper
method to characterize datasets compared to full pretraining runs with different data mixes.
Furthermore, unlike chepaer experiment with smaller models, we get signal on the effects
of the datasets on challenging benchmarks like MMLU, GSM8K and HumanEval.

the ability for researchers to experiment with their pretraining datasets in a tractable way as
compared to full pretraining runs.

4 Discussion

Pretraining LLMs has become an increasingly costly and clandestine endeavor given the
scale of compute required for each experiment. This problem is exacerbated by the multi-
faceted decision space presented to practitioners, especially in the selection of pretraining
data. Since many important model capabilities emerge with scale, trying to explore this
design space at small compute budgets is often ineffective: observations made about the
effects of the pretraining data mix typically do not transfer to larger models or training
budgets.

In this work, we consider a baseline data mix of publicly available datasets that achieves or
exceeds the scaling of the Llama-2 family of models on key benchmarks. Next, we take a
crucial first step towards making experimentation with pretraining datasets cheaper. We
introduce domain upsampling, a method that can strongly impact the performance of the
model by making targeted changes to the data mix at the end of training. This enables us
to achieve the performance of Llama-2 (7B) but with half the training budget. By varying
the duration of domain upsampling, we demonstrate how to navigate the tradeoff between
targeting specific domains and making general purpose language models.

Finally, we show how making changes to the data mix only during the domain upsampling
period enabled us to cheaply characterize the impact of several math-focused datasets, and
we see many opportunities to use this method as a general tool for studying pretraining
data in a FLOP-efficient manner. It also creates a platform to test data interventions at scale:
instead of testing possible dataset optimization algorithms at small scales and hoping they
will generalize, we can test them at the end of training to effectively measure their impact
at scale. By bringing down the cost of experimentation we have made pretraining data
experiments more accessible.
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A Gauntlet v0.3

The Gauntlet v0.3 is a aggregation of benchmark developed by Mosaic Research. Rather
than reporting a monolithic metric in which all scores are aggregated together, the indi-
vidual benchmarks were grouped into six broad competencies corresponding to different
capabilities we want our LLMs to have:

1. World Knowledge: Measures the model’s factual knowledge across a range of
subjects.

2. Commonsense Reasoning: Evaluates the model’s ability to do basic reasoning
tasks that require commonsense knowledge of objects, their properties, and their
behaviors.

3. Language Understanding: Assesses the model’s ability to understand structure
and properties of language.

4. Symbolic Problem Solving: Tests the model’s ability to solve a diverse range of
symbolic tasks including arithmetic, logical reasoning, algorithms, and algebra.

5. Reading Comprehension: Measures a model’s ability to answer questions based
on information in a passage of text.

6. Programming: Quantifies the ability to generate code from docstring descriptions.

These divisions allow for more fine-grained comparison between models and is especially
useful for understanding how datasets affect different capabilities of the model. The random
baseline of each metric was subtracted out before aggregating. For example, if the metric is
4-option multiple choice questions giving a random baseline of 25% and the model achieves
30% then this would be aggregated as (0.3 − 0.25)/(1 − 0.25) = 0.0667, essentially rescaling
accuracy above change to be between 0 and 1. If the random baseline is approximately 0,
then the metric is reported as is. Table 8 list the benchmarks in each category.

12



Published as a conference paper at COLM 2024

Benchmark Citation

World Knowledge
Jeopardy (3-shot) (Wolfe et al., 2022)
MMLU (5-shot) (Hendrycks et al., 2020)
BIG-bench Wikidata (3-shot) (Srivastava et al., 2022)
ARC-easy (3-shot) (Clark et al., 2018)
ARC-challenge (3-shot) (Clark et al., 2018)
TriviaQA-Subsampled (3-shot) (Joshi et al., 2017)

Commonsense Reasoning
BIG-bench Strategy QA (Srivastava et al., 2022)
BIG-bench Strange Stories (Srivastava et al., 2022)
COPA (0-shot) (Roemmele et al., 2011)
PIQA (10-shot) (Bisk et al., 2020)
SIQA (3-shot) (Sap et al., 2019)
Openbook QA (10-shot) (Mihaylov et al., 2018)
Commonsense QA (0-shot) (Talmor et al., 2018)

Language Understanding
LAMBADA (Paperno et al., 2016)
HellaSwag (Zellers et al., 2019)
Winograd (3-shot) (Levesque et al., 2012)
Winogrande (5-shot) (Sakaguchi et al., 2021)

Symbolic Problem Solving
BIG-bench Elementary Math QA (1-shot) (Srivastava et al., 2022)
BIG-bench Dyck Languages (5-shot) (Srivastava et al., 2022)
BIG-bench Operators (3-shot) (Srivastava et al., 2022)
Simple Arithmetic (with spaces, 5-shot) (MosaicML et al., 2023)
Simple Arithmetic (no spaces, 5-shot) (MosaicML et al., 2023)
GSM8K (8-shot) (Cobbe et al., 2021)
SVAMP (5-shot) (Patel et al., 2021)
AGI Eval LSAT AR (5-shot) (Zhong et al., 2023)

Reading Comprehension
SQuAD (3-shot) (Rajpurkar et al., 2016)
BoolQ (Clark et al., 2019)
CoQA (Reddy et al., 2019)
AGI Eval LSAT RC (5-shot) (Zhong et al., 2023)
AGI Eval LSAT LR (5-shot) (Zhong et al., 2023)
AGI Eval SAT En (5-shot) (Zhong et al., 2023)

Programming
HumanEval (pass@1) (Chen et al., 2021)

Table 8: Metrics included in the Gauntlet v0.3. Evaluation metrics are 0-shot unless otherwise
denoted.
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