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Abstract
Blind face restoration (BFR), which involves con-
verting low-quality (LQ) images into high-quality
(HQ) images, remains challenging due to com-
plex and unknown degradations. While previous
diffusion-based methods utilize feature extractors
from LQ images as guidance, using raw LQ im-
ages directly as the starting point for the reverse
diffusion process offers a theoretically optimal so-
lution. In this work, we propose Pseudo-Hashing
Image-to-image Schrödinger Bridge (P-I2SB), a
novel framework inspired by optimal mass trans-
port problems, which enhances the restoration
potential of Schrödinger Bridge (SB) by correct-
ing data distributions and effectively learning the
optimal transport path between any two data dis-
tributions. Notably, we theoretically explore and
identify that existing methods are limited by the
optimality and reversibility of solutions in SB,
leading to suboptimal performance. Our approach
involves preprocessing HQ images during training
by hashing them into pseudo-samples according
to a rule related to LQ images, ensuring structural
similarity in distribution. This guarantees optimal
and reversible solutions in SB, enabling the in-
ference process to learn effectively and allowing
P-I2SB to achieve state-of-the-art results in BFR,
with more natural textures and retained inference
speed compared to previous methods.

1. Introduction
Blind face restoration (BFR) (Yang et al., 2021; Wang et al.,
2021; Chen et al., 2021a) presents a significant challenge in
the field of image restoration due to the complexity of degra-
dation and the unknown causes of such degradation, along
with high demands for the quality of restoration results. As
a blind inverse problem, BFR necessitates the incorporation
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of extensive prior information during the restoration pro-
cess. In recent years, generative models (Ho et al., 2020;
Rombach et al., 2022; Goodfellow et al., 2014; Liu et al.,
2022; Karras et al., 2022; Li et al., 2025) based on diffu-
sion processes have demonstrated promising results in BFR.
These models have evolved from focusing on the transport
between Gaussian noise and real data distributions to facili-
tating transport between arbitrary real data distributions. In
contrast, bridge-based methods address the transport paths
between arbitrary distributions. An increasing number of
image processing tasks in the visual domain, including im-
age inpainting, and image segmentation, are capitalizing on
this capability. Diffusion-based generative approaches offer
robust data priors and a comprehensive solution framework.
Particularly in image restoration tasks, which require trans-
forming low-quality (LQ) images into high-quality (HQ)
counterparts with clear details and consistent content.

Recent strategies to address these issues can be categorized
into two primary approaches. The first approach involves
utilizing non-diffusion-based methods for preliminary pro-
cessing, followed by refinement through diffusion-based
techniques. Examples include DifFace (Yue & Loy, 2022)
and DR2 (Yue & Loy, 2022), which employ CNN-based
models like SwiIR (Liang et al., 2021) for initial restoration,
enhancing texture clarity using diffusion-based methods.
The second approach involves designing sophisticated fea-
ture extraction and fusion techniques to refine condition
guidance. Methods such as DiffBIR (Lin et al., 2023) and
PGDiff (Yang et al., 2024) incorporate external modules
to improve the integration of LQ images as condition guid-
ance, which indirectly controls the inverse process. How-
ever, these approaches introduce additional complexities.
The preliminary models are constrained by their lightweight
nature, potentially leading to the loss of critical informa-
tion. Meanwhile, the latter requires meticulously designed
modules to effectively guide the path, which can weaken
the inherent transport capabilities of diffusion models.

Both these methods share a focus on learning generative
models for HQ images by using feature extractors and fusion
to derive and embed content features from LQ images into
the model as guidance conditions. However, the forward
and reverse processes of diffusion models are not inherently
linked to LQ images, limiting restoration performance due to
the constraints of LQ feature extraction. Thus, robust feature
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extraction and embedding for LQ images are essential to
fully exploit diffusion models, such as DDPM (Ho et al.,
2020; Nichol & Dhariwal, 2021), which leverage learned
transformations between Gaussian noise and HQ images.
Consequently, we explore the direct construction of optimal
transport paths directly between LQ and HQ images, where
Schrödinger Bridge (SB) based methods can effectively
achieve this goal.

In this work, we propose P-I2SB, a novel restoration frame-
work, which consists of two stages: the Pseudo-Hashing
Module (PHM) for preprocessing image pairs using the
pseudo-hashing strategy, and the Schrödinger Bridge Mod-
ule (SBM) for directly finding the optimal path between
two data distributions without the need for indirect guid-
ance through Gaussian noise. In the second stage (SBM),
we employ I2SB (Liu et al., 2023), a robust restoration
framework based on SB. I2SB leverages the forward and
backward stochastic differential equation models inherent
in SB, connecting with stochastic gradient models (SGM)
through conditional configurations. While effective in
single-degradation image restoration tasks, the performance
in blind tasks is suboptimal. We address this by examining
how the optimal transport problem in image restoration can
establish the forward and backward stochastic differential
equation models of SB. Notably, blind tasks do not conform
to the typical Monge optimal transport problem, where the
optimal transport between images is not unique. A sin-
gle high-quality image may correspond to multiple optimal
paths from various LQ images, each facilitating restoration
back to the high-quality image. This contradicts the optimal-
ity principle of reversible SB, hindering the development
of a consistent I2SB model. We explore this theoretical
foundation, as illustrated in Figure 1, and introduce a novel
pseudo-hashing preprocessing strategy, which constitutes
the first stage (PHM) of our method. This technique pro-
cesses training image pairs in blind tasks by transforming
the associations between high-quality and low-quality dis-
tributions, ensuring the transformation is reversible.

Instead of relying on external methods or designing complex
networks, our work focuses on correcting unreasonable end-
point constraints to fully exploit the potential of SB models
for learning optimal transport paths compared to previous.
We identify that conflicts arise from the forward process
definition in Vanilla-I2SB theoretically, where a single HQ
image can correspond to multiple degraded versions, result-
ing in divergent forward processes. The core of our research
is the exploration of these improvements from both theo-
retical and experimental perspectives, demonstrating their
effectiveness, which confirms the practical efficiency and
economic viability of the proposed enhancements. Com-
pared to guidance-based methods, our approach achieves
state-of-the-art results within the same inference time, par-
ticularly on datasets with complex degradations, outperform-

Figure 1. Theoretical Foundations. We first pseudo-hashing x0 to
x̂0 using the information about x1 so that x̂0 has a similar distribu-
tion structure with x1, and then build Schrödinger Bridge Module
(SBM) between x̂0 and x1. Both two processes are reversible.

ing previous diffusion-based and flow-based methods. By
directly identifying optimal transport paths between LQ and
HQ distributions, our framework aligns more closely with
the nature of reverse problems, achieving superior results
with natural and clear textures and reduced distortions.

2. Related Work
2.1. Blind Face Restoration

Blind face restoration (Li et al., 2020; Wang et al., 2021;
2022; Qiu et al., 2023; 2024) is a crucial subfield within
image restoration. Significant advances have been pro-
posed, including various methodological approaches such
as CNN-based (Menon et al., 2020; Li et al., 2020), GAN-
based (Yang et al., 2021; Wang et al., 2021; Chen et al.,
2021a), dictionary-based (Gu et al., 2022; Zhou et al., 2022;
Wang et al., 2022), and diffusion-based (Yue & Loy, 2022;
Wang et al., 2023) methods. GFPGAN (Wang et al., 2021)
and GPEN (Yang et al., 2021) leverage GAN-based gen-
erative models within an encoder-decoder framework to
embed face prior. RestoreFormer (Wang et al., 2022) in-
tegrates classical dictionary-based methods with contem-
porary vector quantization (VQ) techniques (Esser et al.,
2021). DiffBIR (Lin et al., 2023) enhances prior knowledge
by employing pre-trained stable diffusion as generation pri-
ors. FlowIE (Zhu et al., 2024) and PMRF (Ohayon et al.,
2024) are image enhancement methods based on rectified
flow (Liu et al., 2022).

2.2. Schrödinger Bridge in Diffusion

Schrödinger Bridge (SB) problem (Schrödinger, 1932;
Léonard, 2013; Chen et al., 2016) represents an entropy-
regularized formulation of optimal transport. Given two
arbitrary probability distributions, p(x0) and p(x1), the SB
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framework seeks to determine an optimal coupling path
between these distributions. To address this challenge, De-
noising Diffusion Bridge Models (DDBMs) (Zhou et al.,
2023) have been introduced, which leverage the concept
of driving the diffusion process to establish a diffusion
bridge. Image-to-Image Schrödinger Bridge (I2SB) (Liu
et al., 2023) adopts a computational framework analogous
to standard score-based models. This approach has demon-
strated exceptional performance across a variety of image-
to-image translation tasks. Unlike conventional diffusion
models (Ho et al., 2020; Nichol & Dhariwal, 2021; Song
et al., 2020; Rombach et al., 2022), I2SB constraints neces-
sitate careful consideration to ensure optimal performance
in practical applications.

3. Preliminaries
We begin by establishing some notation and providing
an overview of the problem. From a Bayesian perspec-
tive (Davison, 2003; Kaipio & Somersalo, 2006), any image
x ∈ Rd, whether perceived as clear or degraded, can be
viewed as a realization of a random variable X . We consider
two probability distributions, denoted as ν0 and ν1, which
correspond to the measures of the spaces of HQ and LQ
images, respectively. These distributions are expressed as
p0(x)dx = ν0(dx) and p1(y)dy = ν1(dy). Given a LQ im-
age y sampled from p1(y), the objective of an image restora-
tion algorithm is to generate a prediction x̃ that closely
approximates the corresponding clear image x ∼ p0(x).

3.1. Optimal Mass Transport Problem

The image restoration problem can be viewed as a type
of optimal mass transport (OMT) problem. To begin, we
consider the general framework of optimal mass transport,
specifically Monge’s OMT problem (Chen et al., 2021b).
Let Tν0ν1 := {T : Rd → Rd | T#ν0 = ν1} represent
a family of measure-preserving maps, where T#ν0 = ν1
indicates that ν1 is the push-forward of ν0 under the map T .
Additionally, let c : Rd ×Rd → [0,+∞) be a cost function
that quantifies the cost of transporting a unit of mass from a
location x ∼ p0(x) to a location y ∼ p1(y).

inf
T∈Tν0ν1

∫
Rd

c(x, T (x))ν0(dx). (1)

If the map T is reversible, then for a given y ∼ p1(y), we
have x = T−1(y) ∼ p0(x) as the restored image of y in the
context of image restoration. However, Monge’s problem
does not always admit a solution. For instance, consider the
case where ν0 is a Dirac distribution and ν1 is the sum of
two Dirac distributions, each with half the magnitude. Since
ν0 must be ”split” to be transported to two distinct locations,
no map exists between them, rendering Tν0ν1 an empty set.

Therefore, the more extensively studied OMT problem is a
relaxed version introduced by Kantorovich in the 1940s1.
This problem seeks an optimal joint distribution within a
non-empty joint distribution space. Its dynamic formulation
was elegantly developed by Benamou and Brenier in (Ben-
amou & Brenier, 2000), and is expressed as:

inf
(µ,v)

∫ 1

0

∫
Rd

||v(t, x)||2µt(dx)dt,

∂µ

∂t
+∇ · (vµ) = 0, µ0 = ν0, µ1 = ν1.

(2)

Here, the flow {µt; 0 ≤ t ≤ 1} represents a family of
continuous mappings from the interval [0, 1] to the set of
probability measures on Rd, each possessing a finite sec-
ond moment. The variable v denotes smooth vector fields
associated with these mappings.

3.2. Schrödinger Bridge Problem

Let Ω = C([0, 1],Rd) denote the space of all continuous
Rd-valued paths over the unit time interval [0, 1]. The sets
M+(Ω) and P(Ω) represent all positive measures and prob-
ability measures on the space Ω, respectively. Given a ref-
erence path measure R ∈ M+(Ω), the Schrödinger bridge
problem (Schrödinger, 1932; Léonard, 2013; Chen et al.,
2016) is formulated as:

minimize H(P |R) = EP [ln
dP

dR
],

s.t. P ∈ P(Ω) : P0 = ν0, P1 = ν1,
(3)

where ν0, ν1 ∈ P(Rd) represent the prescribed initial and
final marginal distributions. The term H(P | R) denotes
the relative entropy of the measure P with respect to the
reference measure R. This problem admits at most one
solution, denoted as P̂ ∈ P(Ω), which is referred to as the
Schrödinger bridge from ν0 to ν1 over the measure R.

In general, we consider a reference family denoted as
D ⊂ M+(Ω), which consists of Markov finite energy diffu-
sion processes possessing various practical properties. The
coordinate process Xt(ω) = ω(t) can be represented:

dXt = ft(Xt)dt+
√

βtdWt,

dXt = [ft(Xt)− βt∇ log p(Xt, t)]dt+
√

βtdW̄t,
(4)

where βt ∈ R represents diffusion coefficients, and ft :
(Rd, [0, 1]) → Rd denotes drift function. The term p̄(x, t)
is the time-marginal density function of Xt at time t. Wt is
the Wiener process, and W̄t is its reverse process.

Given R ∈ D, we can obtain a specific Schrödinger bridge
P ∗ ∈ D from ν0 to ν1 over R, whose coordinate process

1More details can be seen in Appendix B
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Figure 2. Framework of the proposed P-I2SB for blind face restoration task. P-I2SB is a bridge-based diffusion model incorporating a
pseudo-hashing strategy. During training (a), given LQ and HQ face pairs, a Pseudo image is generated via the Pseudo-Hashing Module
(PHM), including the strategies of Origin, Cat-I2SB, Res-I2SB, and Noise-I2SB. In inference (b), the model produces a Pseudo Image
from an LQ input, which is then converted to a high-quality result using the inverse pseudo-hashing method.

X∗
t can be represented as follows (Chen et al., 2023):

dXt = [ft + βt∇ logΨ(Xt, t)]dt+
√

βtdWt,

dXt = [ft − βt∇ log Ψ̂(Xt, t)]dt+
√

βtdW̄t,
(5)

s.t. X0 ∼ p0, X1 ∼ p1. (6)

The functions Ψ, Ψ̂ ∈ C2,1(Rd, [0, 1]) represent time-
varying energy potentials that solve a set of known coupled
partial differential equations (PDEs).

The density function p∗(t, x) of X∗
t serves as the solution

to the following optimal transport problem (OTM) (Chen
et al., 2021b):

inf
(p,v)

∫ 1

0

∫
Rd

(1
2
||v(t, x)− v̄(t, x)||2+

βt

8
||∇ log

p(t, x)

p̄(t, x)
||2

)
p(t, x)dxdt,

(7)

s.t.
∂p

∂t
+∇ · (vp) = 0,

p(0, ·) = p0(·), p(1, ·) = p1(·),
(8)

where v̄(t, x) := ft(x)−
√
βt

2 ∇ log p̄(t, x) and p(t, x)dx =
µt(dx), just similar as equation (2).

4. Methodology
Here, we introduce the Pseudo-Hashing-I2SB (P-I2SB). We
begin by theoretically exploring how SB retrieves clearer
HQ images, presenting a theorem to justify the rationale
of I2SB and demonstrating its limitations for BFR through
Corollary (Sec. 4.1). To resolve this issue, we propose
the Pseudo-Hashing Module (PHM) with three implemen-
tations: Res-I2SB, Cat-I2SB, and Noise-I2SB (Sec. 4.2),
alongside the Schrödinger Bridge Module (SBM). Addition-
ally, we perform a toy experiment on the MNIST dataset for
quick verification (Sec. 4.3).

4.1. Practical Application and Improvement of SB

Building on the previous discussion, we derive an optimal
reversible Markov diffusion process X∗

t that describes the
evolution of the image state from clear to degraded and vice
versa between two boundary distributions. In practice, the
explicit forms of p0 and p1 are unknown. Instead, we have
access to sample pairs {(xi, yi) | xi ∼ p0, yi ∼ p1}Ni=1,
where xi denotes a clear image and yi its corresponding
degraded counterpart.

For image processing tasks, a practical approach involves
learning the reverse process from the forward process of a
self-designed reversible Markov diffusion process Xt. As
for image restoration, we posit that Xt is optimal when its
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forward process transforms a clear image into its correspond-
ing degraded counterpart, which is a stringent condition.

This leads us to consider the following question: given a
stochastic process defined over the time interval (0, 1):

dXt = αt(Xt)dt+
√

βtdWt. (9)

To ensure that the process Xxy
t can be described by Equa-

tion (9) for t ∈ (0, 1), it is necessary to appropriately select
time boundary distributions. Xxy

t represents the stochastic
process subject to the conditions X0 = x and X1 = y.

Generally, for any positive measure Q ∈ M+(Ω) on Ω, its
disintegration formula is expressed (Léonard, 2013):

Q(·) =
∫
R2d

Qxy(·)Q01(dxdy), (10)

where Q01 = (X0, X1)#Q ∈ M+(R2d), and Qxy = Q(· |
X0 = x,X1 = y) ∈ P(Ω), referred to as the bridge of Q
between the pairs (x, y).

Theorem 4.1. For P ∈ D whose coordinate process Xt

is the solution of the boundary value problem (5,6), then
the coordinate process Xxy

t of P xy is also subject to the
equation (5) with boundary condition X0 = x,X1 = y
if p0(·) = δx(·) centered at x ∈ Rd and p1(·) = δy(·)
centered at y ∈ Rd.

Theorem 4.1 indicates that an identical stochastic process
over the time interval (0, 1) can be learned using a large
number of sample pairs, which are assumed to follow Dirac
delta distributions.

Take I2SB for example, which effectively utilizes the SGM
framework to construct SB for specific known degradation
types. However, complexities arise in BFR, such as a sin-
gle HQ image corresponding to multiple types of LQ im-
ages. In this scenario, all LQ images are assumed to follow
a certain distribution, resulting in complex sample pairs
like {(xi, yij ) | xi ∼ p0, yij ∼ p1}, (i = 1, . . . , N, j =
1, . . . ,M). Despite this, constructing a unified SB, as an-
ticipated by I2SB, is not feasible. The underlying reason is
derived directly from Theorem 4.1, which we present as a
corollary:

Corollary 4.2. If we have two pairs like (x, y1) and (x, y2),
then we can not build a unified Schrödinger bridge P ∈ D
between them by means shown in theorem 4.1.

This follows from the uniqueness of the solution to a stochas-
tic differential equation given an initial value.

4.2. Pseudo-Hashing-I2SB

Pseudo-Hashing Module Initially, for the given high-
quality (HQ) and low-quality (LQ) image pairs, we pro-
pose the Pseudo-Hashing Module (PHM) as a preprocess-

Algorithm 1 Training
1: Input: clean pA(·) and degraded pB(·|x)
2: repeat
3: t ∼ U , x ∼ pA(X0), y ∼ pB(X1|X0)
4: x̂ = H(x, y), according to (11)
5: Xt ∼ q(Xt|X0, X1), according to (15)
6: L = wt ∥ ϵ(Xt, t; θ)− Xt−X0

σt
∥, take SGM

7: until converges

Algorithm 2 Inference
1: Input: degraded XN ∼ pB, trained ϵ(·, ·; θ), Step N
2: for n = N to 1 do
3: Predict Xϵ

0 using ϵ(Xn, tn; θ), tn = n
N

4: Xtn−1 ∼ p(Xn−1|Xϵ
0, Xn), according to (16)

5: end for
6: x̄ = J (X0, XN ), according to (18)
7: return: x̄

ing to address the infeasibility issue highlighted in Corol-
lary 4.2. The unified training process is detailed in Algo-
rithm 1, where x and y represent HQ and LQ images, respec-
tively. Specifically, considering the feasibility of image pair
configurations, we propose three detailed pseudo-hashing
strategies within PHM, as illustrated in Formula (11).

x̂ = H(x, y) =


x, Origin,
x⊕ y, Cat-I2SB,
x− y, Res-I2SB,
x+ σ(y)ϵ, Noise-I2SB.

(11)

The first strategy is sample concatenation, referred to as Cat-
I2SB. Given a high-quality image Ihq and its corresponding
randomly degraded LQ image Idlq = Degradationd(Ihq),
where d denotes the random degradation type and parame-
ters, we perform channel concatenation. Specifically, Ihq
and Idlq are concatenated to form a new image, while Idlq is
concatenated with itself. Consequently, the training image
pair becomes:

(x̂, y) = (Ihq ⊕ Idlq, I
d
lq ⊕ Idlq). (12)

The second strategy is relative residual prediction, termed
Res-I2SB. From a spatial geometric perspective, the direc-
tion of Rd = Idlq − Ihq aligns with Ihq, as illustrated in
Figure 3(a). By setting the two endpoint distributions of the
image pair as:

(x̂, y) = (Rd = Idlq − Ihq, Ilq). (13)

We achieve the goal of hashing the endpoint distributions
while maintaining a consistent direction and distance be-
tween the hashed endpoints.
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Figure 3. Toy Experiments. (a) illustrates Pseudo-hashing of x0

in Res-I2SB within the Rd space. For a single HQ image x0 with
two LQ counterparts, y11 and y12 , x0 is split into x̂01 and x̂02

using residuals between (x0, y11) and (x0, y12). This allows the
construction of a unified SBM, depicted by blue arrows between
(x̂01 , y11) and (x̂02 , y12). (b) presents results of toy experiments.

The third strategy involves lightly adding noise, referred to
as Noise-I2SB. A small amount of Gaussian noise is added
to Ihq, which does not cause significant visual degradation
but directly alters the distribution of the image vector Ihq.
This is expressed as Inoisehq = Idlq+λdϵ, where λd represents
the noise level, directly related to Idlq . The image pair is then
set as:

(x̂, y) = (Inoisehq , Ilq). (14)

This method leverages the most common Gaussian noise
correction in SGM, applying minimal noise to the image to
redistribute its numerical components into a new distribution
without compromising image content, as shown in Figure 2.

Schrödinger Bridge Module After preprocessing in the
Pseudo-Hashing Module (PHM), we obtain the image pair
(x̂, y), which is used to design the Schrödinger Bridge
Module (SBM) for training these predefined image pairs.
These pairs are treated as two new data distributions for
SBM to learn. Inspired by I2SB (Liu et al., 2023), we
directly employ the forward and reverse processes of I2SB.
The forward process is defined as follows:

Xt ∼ q(Xt|X0, X1) = N (Xt;µt(X0, X1),Σt),

µt =
σ̄t

2

σ̄t
2 + σt

2
X0 +

σt
2

σ̄t
2 + σt

2
X1,Σt =

σt
2σ̄t

2

σ̄t
2 + σt

2
· I
(15)

where σ̄t and σ̄t is the scheduled parameter. The reverse pro-
cess follows the design of the SGM framework, as shown:

Xt−1 ∼ p(Xt−1|Xϵ
0, Xt), (16)

where ϵ denotes the trained model using a Unet network.
Additionally, during training, we incorporate the loss as
follows:

L =∥ ϵ(Xt, t; θ)−
Xt −X0

σt
∥, t ∼ U(0, T ), (17)

where the analysis of losses is detailed in Appendix F.

Correspondingly, the results of the pseudo-hashing need to
be restored in the inference process to obtain the correspond-
ing high-quality image of the final repair. We give a unified
restoration process:

x̄ = J (x̂, y) =


x̂, Origin,
x̂[: 3], Cat-I2SB,
x̂− y, Res-I2SB,
Denoise(x̂;σ(y)), Noise-I2SB.

(18)

where Denoise uses DDIM (Song et al., 2020) at the initial
number of steps to denoise the image. Consequently, we
obtain the final clear restoration result, denoted as x̄. The
inference process is detailed in Algorithm 2.

4.3. Toy Exploration and Analysis

To directly investigate the impact of various hashing strate-
gies within I2SB, we conducted comparative experiments on
the MNIST dataset. The MNIST dataset consists of 28x28
grayscale images of handwritten digits. We denote HQ im-
ages as Ihq and generate LQ images Idlq by applying random
manual degradation. Both training and inference processes
utilize a lightweight model implemented at a resolution of
64x64. The comparative methods include Vanilla-I2SB and
variations with different hashing strategies: Res-I2SB, Cat-
I2SB, and Noise-I2SB. As depicted in Figure 3 (b), while
Vanilla-I2SB and the three hashing strategies can all restore
degraded images of handwritten digits to clear images, there
are discrepancies in label classification accuracy and sim-
ple texture representation. This indicates that the improved
methods preserve the structural integrity of image content
more accurately during the restoration of LQ images.

We recognize a strong correlation between the task con-
straints of image-to-image translation and the data distribu-
tions. In previous methods like DDPM (Ho et al., 2020), LQ
images are often used as guidance conditions to ensure ac-
curate content inference. Techniques such as SR3 (Saharia
et al., 2022) and IDM (Gao et al., 2023) enhance the embed-
ding of LQ images to improve the ability of diffusion models
to preserve image content during inference, which modifies
the transmission path between noise and HQ images. We
thoroughly explored the theoretical optimality of using the
raw LQ image directly as one endpoint of diffusion process,
instead of Gaussian distributions. In image-to-image trans-
mission, directly altering the input form of endpoint images,
rather than adding complex network structures for feature
extraction, is more straightforward and efficient. Both theo-
retical and experimental results confirm that this approach
effectively aids the SB in identifying the optimal path.
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Figure 4. Qualitative comparisons on the CelebA-Test for blind face restoration. Taking Res-I2SB as an example, our P-I2SB
demonstrates strong performance in detail enhancement, hue preservation and attitude preservation compared to these latest GAN-based,
dictionary-based, and diffusion-based methods. Zoom in for best view.

5. Experiments
Training Datasets We choose FFHQ (Karras et al., 2019)
as training dataset, which contains 70,000 high-quality PNG
format face images with 1024 × 1024 resolution. In this
experiment, we resize all images to 512× 512 for training.

Preprocessing Since our P-I2SB is supervised training,
the corresponding LQ-HQ image pairs are required. We
use generated random degradation model to simulate LQ
images in the real world. Its generation formula (Zhang
et al., 2018a; Wang et al., 2021) is shown in Eq.(19), where x
is HQ image, kσ is Gaussian blur kernel, r represents down-
sampling scale factor, and q represents JPEG compression
with quality factor q. The parameters σ, r, δ, q are randomly
sampled from {0.1: 10}, {0.8: 8}, {0: 20}, {60: 100}, to
align with the experimental environment of recent methods
for BFR, as shown in Appendix E. We also add gray color
probability during the training process for color adaptation
and augment data with the horizontal flip.

y = [(x⊗ kσ) ↓r +nδ]JPEGq (19)

Testing Datasets We choose CelebA-Test, Real-World
LFW, CelebChild and WedPhoto-Test as the testing datasets.
CelebA-Test contains 3,000 HQ images randomly sampled
from CelebA-HQ (Karras et al., 2018) with the resolution
of 512 × 512. Similarly, the corresponding random LQ
images are generated for evaluation by using the degrada-
tion model in Eq.(19) and the same set of parameters used
in the training dataset. Real-World LFW, CelebChild and
WedPhoto-Test are different real-world datasets to test the

generalization ability. All these datasets have no overlap
with our training dataset.

5.1. Comparisons with State-of-the-art Methods

Comparison Methods We compare Pseudo-Hashing with
recent BFR methods, including PSFRGAN (Chen et al.,
2021a), GFPGAN (Wang et al., 2021), GPEN (Yang et al.,
2021), VQFR (Gu et al., 2022), CodeFormer (Zhou et al.,
2022), RestoreFormer (Wang et al., 2022), DMDNet (Li
et al., 2022), DAEFR (Tsai et al., 2023), DifFace (Yue &
Loy, 2022), DR2 (Wang et al., 2023), PGDiff (Yang et al.,
2024), DiffBIR (Lin et al., 2023), PMRF (Ohayon et al.,
2024), FlowIE (Zhu et al., 2024) and I2SB (Liu et al., 2023).
Metrics We quantitatively compare the differences be-
tween our method and SOTAs using five widely-used
metrics, including SSIM (Wang et al., 2004), PSNR,
FID (Heusel et al., 2017), NIQE (Mittal et al., 2012), and
LPIPS (Zhang et al., 2018b). Among them, NIQE is a no-
reference metric. SSIM and PSNR are pixel-wise similarity
measures, while FID, NIQE and LPIPS are perceptual.
Evaluation on Synthetic Dataset. We compared the
restoration performance of P-I2SB, using Cat-I2SB as an
example, with existing SOTA methods on synthetic CelebA-
Test. Figure 4 shows visual comparison results, demonstrat-
ing that our approach can restore more accurate textures,
colors, and local features in severely degraded facial images.
VQFR and RestoreFormer exhibit noticeable color artifacts
in their restoration outputs, while CodeFormer, DR2, PMFR,
and FlowIE produce overly smooth results, losing local tex-
ture details. In contrast, our improved method achieves more

7



Feature out! Let Raw Image as Your Condition for Blind Face Restoration

Figure 5. Qualitative comparisons on real-world datasets. Our P-I2SB demonstrates superior performance in both detail enhancement
and hue preservation, particularly on inputs with severe degradation. Zoom in for best view.

Table 1. Quatitative comparison on CelebA-Test with 3000 randomly selected images for blind face restoration. Bold and underline
indicate the best and the second best performance. Our P-I2SB excels in naturalness and perceptual metrics. GFP denotes GFPGAN
and Restore denotes RestoreFormer. We compare with recent BFR methods, including GPEN (Yang et al., 2021), GFPGAN (Wang
et al., 2021), RestoreFormer (Wang et al., 2022), DMDNet (Li et al., 2022), DAEFR (Tsai et al., 2023), DifFace (Yue & Loy, 2022),
DiffBIR (Lin et al., 2023), DR2 (Wang et al., 2023), PGDiff (Yang et al., 2024), PMRF (Ohayon et al., 2024), FlowIE (Zhu et al., 2024)
and I2SB (Liu et al., 2023).

Metrics Input
Methods

GPEN GFP Restore DMDNet DAEFR DifFace DiffBIR DR2 PGDiff PMRF FlowIE I2SB P-I2SBCVPR CVPR CVPR TPAMI ICLR TPAMI ECCV CVPR NIPS ICML CVPR ICML
SSIM↑ 0.6460 0.6777 0.6827 0.6219 0.6727 0.5892 0.6494 0.6570 0.6554 0.6220 0.6815 0.6479 0.7047 0.6581
PSNR↑ 24.921 25.423 25.401 24.206 25.318 22.439 24.055 25.297 24.194 22.920 26.001 24.594 26.174 25.405
FID↓ 93.564 22.508 20.676 17.080 22.790 18.295 19.654 19.288 32.628 22.547 14.248 21.393 25.6026 13.910

NIQE↓ 9.1407 6.7775 6.7324 5.3440 6.7038 5.3992 6.1638 6.4053 8.1487 5.4556 5.6228 6.3571 6.5709 5.3300
LPIPS↓ 0.5953 0.2956 0.2823 0.2702 0.2965 0.2695 0.3052 0.2689 0.3447 0.3011 0.2413 0.2623 0.2851 0.2395

natural and accurate restoration in both overall color reten-
tion and local texture generation, attributed to the effective
use of high-performance generative models. Quantitative
comparisons are presented in Table 1. Our method demon-
strates competitive performance on perceptual metrics such
as FID, NIQE, and LPIPS. Throughout the restoration pro-
cess, our approach achieves results that are more natural and
consistent with facial priors.

Evaluation on Real-world Datasets. As illustrated in
Figure 5, our method demonstrates exceptional robustness
in handling real-world degradations, consistently producing
HQ face images. In contrast, diffusion-based methods like
FlowIE and PMRF often result in unnatural facial structures.
While codebook-based approaches can sometimes generate
natural-looking faces, they frequently introduce substantial
color and texture artifacts. Our method, however, excels
in predicting local textures with fewer imperfections com-
pared to other diffusion-based techniques. This advantage is
attributed to our pseudo-hashing module, which enables the
modeling of a more continuous optimal learning path. Ta-
ble 2 presents a detailed comparison of our approach against
existing SOTA methods, highlighting our superior perfor-
mance across perceptual quantitative metrics. Particularly

on the challenging Wider dataset, which features severe and
complex degradations, our method achieves leading results
on no-reference metrics such as FID and NIQE. These find-
ings underscore the robustness and generalizability of our
approach in a wide range of real-world scenarios.

5.2. Ablation Studies

Different between PHM and data augmentation. Data
augmentation involves using certain properties of images,
such as rotation and brightness, to augment the actual nu-
merical distribution of training data without altering the
semantic information of the images. In contrast, the strat-
egy design in pseudo-hashing module (PHM) is intended
to satisfy the boundary constraints in SB models, requiring
the direct or indirect involvement of degradation representa-
tions, and this hashing design is reversible.

Guidance Module. In this study, we systematically vali-
date the efficacy of the guidance module, encompassing both
conditional and degradation-aware components, through a
series of ablation experiments. As delineated in Table 3,
experiments (a)-(c) rigorously analyze the impact of incor-
porating these guidance mechanisms on restoration perfor-
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Table 2. Quantitative comparison on real-world datasets. Bold indicates the best performance. The non-reference metric NIQE
assesses the quality of restoration, while the distribution gap between FFHQ and results is quantified by FID.

Dataset Type-based LFW CelebChild WebPhoto-Test Wider
Method NIQE↓ FID↓ NIQE↓ FID↓ NIQE↓ FID↓ NIQE↓ FID↓
LQ - 6.4582 140.64 6.6542 140.46 10.0806 174.52 12.0099 174.52
GPEN GAN 6.0327 54.51 6.6999 118.66 6.6234 97.42 6.2069 97.42
GFPGAN GAN 6.2330 53.53 7.0313 118.76 7.1427 104.63 6.9093 104.63
VQFR Codebook 5.5092 54.08 6.5187 116.65 6.1202 88.52 5.4927 88.52
CodeFormer Codebook 5.3945 54.82 6.4258 114.67 5.8507 87.49 5.2382 87.49
DifFace Diffusion 6.8339 66.89 6.7321 119.07 7.3431 97.60 7.9364 97.60
DiffBIR Diffusion 5.8180 44.42 6.2220 110.48 6.3345 91.95 5.6994 91.95
DR2 Diffusion 6.2578 54.29 7.0488 123.53 8.2475 116.40 8.6105 116.40
PGDiff Diffusion 5.1049 47.19 5.8718 111.72 5.3651 89.69 4.9502 89.69
PMRF Flow 5.1464 54.97 5.5044 108.30 5.4790 83.76 5.2207 83.76
FlowIE Flow 5.7388 51.03 6.3734 112.69 6.5751 92.94 5.5997 92.94
Vanilla-I2SB Bridge 5.8074 64.43 7.1276 123.82 6.9031 108.03 6.0377 108.03
P-I2SB Bridge 5.2125 54.39 5.6425 108.07 5.2329 84.68 4.9056 69.62

Table 3. Ablation studies on CelebA-Test. (a) donates Vanilla-
I2SB as the baseline, (b)-(c) compare different condition guidance,
and (d)-(f) compare different Pseudo-Hashing strategies. ”lq” do-
nates LQ images as the condition in forward and reverse process
and ”da” donates degradation-aware representation as condition.

Method Condition Hashing Metrics
lq da strategy NIQE↓ FID↓ LPIPS↓

(a) 25.6026 6.5709 0.2851
(b) ! 25.9522 6.4849 0.2904
(c) ! ! 25.4932 6.3898 0.2945
(d) ours ! ! Noise 18.2646 5.7595 0.2678
(e) ours ! ! Cat 13.9109 5.3300 0.2395
(f) ours ! ! Res 14.2941 5.4401 0.2431

mance. Leveraging three established perceptual metrics,
including FID, NIQE, and LPIPS, we quantify the con-
tributions of each guidance component. The model that
integrates both types of guidance achieves the best restora-
tion results, indicating that learning the process between
two distributions directly on BFR using SB is not optimal.
Appropriate guidance conditions can enhance the ability of
the model to fit the inverse process.

Pseudo-Hashing Strategy. Finally, and most importantly,
we demonstrate the significant improvements brought by
the pseudo-hashing strategy in the comparisons between ex-
periments (c) and (d)-(f). There are marked enhancements
in NIQE, FID and LPIPS. The visual results in Appendix G
also reveal that the degradation artifacts are noticeably re-
duced in (a)-(c), with our P-I2SB exhibiting superior content
preservation and local texture generation.

6. Discussion and Future Work
Advantages. This work investigates why image-to-image
transfer methods like I2SB fail in blind inverse problems. It
identifies the core issue as the limitations imposed by the
optimality and reversibility of SB solutions, which result in
poor restoration. Inspired by spatial geometry, we propose a
straightforward correction strategy for training image pairs,

termed P-I2SB. This strategy circumvents the conflict be-
tween blind inverse problems and the original definition of
SB, which often leads to a lack of feasible solutions. By
deeply exploring and leveraging the capability of bridge-
based models to learn optimal transport, P-I2SB improves
restoration performance. Extensive experiments on the prac-
tical BFR demonstrate that P-I2SB significantly improves
the restoration capabilities of the Schrödinger Bridge.

Limitations and Future Work. Our approach is limited
by the inability of artificially generated degradation pro-
cesses to fully replicate real-world scenarios, such as water-
marks, where restoration remains suboptimal. To address
this, we propose three strategies: using segmentation to
isolate primary subjects and reduce interference, expanding
degradation types in training datasets to enhance restora-
tion through supervised learning, and employing contrastive
learning to improve degradation-aware information extrac-
tion from real-world datasets via unsupervised learning.
Additionally, the dominance of frontal face images in the
training data limits the model’s ability to restore faces in
extreme poses. Future work will integrate methods like
3D Morphable Models (3DMMs) to extract pose informa-
tion, aiding the learning from less represented samples and
improving robustness across diverse facial orientations.

7. Conclusion
In this paper, we introduced P-I2SB for the challenge of
blind face restoration, structured across two stages: the
Pseudo-Hashing Module (PHM) and the Schrödinger Bridge
Module (SBM). Our theoretical analysis identified funda-
mental limitations of traditional Schrödinger Bridge (SB)
solutions in handling blind problems and led to the devel-
opment of three feasible pseudo-hashing strategies. Experi-
mental results demonstrate the superior restoration perfor-
mance on both synthetic and real-world datasets. This work
offers a novel perspective on resolving challenges in blind
problems by effectively computing the relationship between
two distributions.
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A. Overview
In this Appendix, additional proof, experimental details and experimental results are provided, including:

• Details about the connection between different versions of OMT problem (in Sec. B);

• Details about the proof of theorem 4.1 (in Sec. C);

• Details about experiments setting (in Sec. D);

• Details about preprocessing data (in Sec. E);

• Details about loss analysis (in Sec. F);

• More ablation results (in Sec. G);

• Qualitative comparisons with SOTA methods in CelebA-Test and real-world datasets (in Sec. H and Sec. I);

• Qualitative results about failure samples (in Sec. J).

B. OMT
In the 1940s, Kantorovich studied a ”relaxed” version of the Monge’s problem (Chen et al., 2021b):

inf
π∈Π(ν0,ν1)

∫
R2d

c(x, y)π(dxdy). (20)

Here, Π(ν0, ν1) is the probability distributions on R2d with marginals ν0 and ν1. Indeed, Π(ν0, ν1) always contain the
product measure ν0 ⊗ ν1.

Though there are some different vrsions of OMT problem, they have some connection. If c(x, y) = ||x− y||2 and if ν1 does
not give mass to sets of dimension ≤ n1, there exists a unique optimal π∗ (Kantorovich) induced by a unique (Monge) map
T ∗, such that π∗ = (I × T ∗)#ν0 where I is the identity map (Villani, 2021).

Let

W2
2 := inf

π∈Π(ν0,ν1)

∫
R2d

||x− y||2π(dxdy) (21)

called as Kantorovich–Wasserstein quadratic distance. W2
2 is also the minimum value of the following optimal problem (Be-

namou & Brenier, 2000) written as problem (2). Let {µ∗
t ; 0 ≤ t ≤ 1} and {v∗(t, x); (t, x) ∈ [0, 1]×Rd} be optimal for (2).

And now, µ∗
t = [(1− t)I + tT ∗]#ν0.

C. Proof
The proof of theorem 4.1. We proof the theorem for a common Markov path measure P ∈ D whose coordinate process has
the SDE representation (9). The evolution its density function pt(x) can be characterized by the Fokker Plank equation on
time interval (0, 1):

∂pt(x)

∂t
= −∇ · (αt(x)pt(x)) +

1

2
βt∆pt(x). (22)

By disintegration formula (10), we have

Pt(z) =

∫
R2d

P xy
t (z)P01(dxdy). (23)

We can get the disintegration formula of the density function:

pt(z) =

∫
R2d

pxyt (z)P01(dxdy). (24)
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Suppose all the density functions are good enough, we can do some differential operations on equation (24):

(a) :

∂pt(z)

∂t
=

∂
∫
R2d p

xy
t (z)P01(dxdy)

∂t

=

∫
R2d

∂pxyt (z)

∂t
P01(dxdy),

(25)

(b) :

∇ · (αt(z)pt(z)) = ∇ ·
∫
R2d

αt(z)p
xy
t (z)P01(dxdy)

=

∫
R2d

∇ · (αt(z)p
xy
t (z))P01(dxdy),

(26)

(c) :

∆pt(z) = ∇ · ∇pt(z)

= ∇ ·
∫
R2d

∇pxyt (z)P01(dxdy)

=

∫
R2d

∆pxyt (z)P01(dxdy).

(27)

Then, let (a) + (b)− 1
2 (c):

∂pt(z)

∂t
+∇ · (αt(z)pt(z))−

1

2
∆pt(z) = 0

⇔
∫
R2d

∂pxyt (z)

∂t
+∇ · (αt(z)p

xy
t (z))− 1

2
∆pxyt (z)P01(dxdy) = 0.

(28)

Until now, we stress that what we consider is a boundary value problem. That is, we want to find some boundary conditions
subject to our requirement which is to find a suitable P01 so that the following equation can hold:

∂pxyt (z)

∂t
= −∇ · (αt(z)p

xy
t (z)) +

1

2
∆pxyt (z). (29)

One obvious choice is the Dirac distribution. Let p01(x, y)dxdy := P01(dxdy). In the sense of Dirac distributions where
p0(x) = δx0

(x) := δ(x− x0) and p1(y) = δy1
(y) := δ(y − y1), we can get:

δ(x− x0)δ(y − y1) = p01(x, y)

= p0(x)p(y|x) = p0(x)p1(y) = δx0
(x)δy1

(y).
(30)

We concluded that the bridges of a path between pairs (x, y) can induce an identical SDE over time interval (0, 1) when we
take the boundary distribution as Dirac distributions centered at x and y.

D. Implementation Details
We implement P-I2SB using PyTorch, leveraging eight 32GB Tesla V100 GPUs. The training process employs the Unet
network as the predictor. The Adam optimizer is utilized with a learning rate of 1× 10−4. The training process comprises
40000 iterations with a batch size of 64.

E. Pre-processing data
Since our P-I2SB relies on supervised training, it necessitates paired low-quality (LQ) and high-quality (HQ) images. To
simulate LQ images representative of real-world scenarios, we employ a degradation model generated through random
sampling. Its generation formula (Zhang et al., 2018a; Wang et al., 2021) is presented in Eq.(31), where x is the HQ image,
kσ is the Gaussian blur kernel, r represents the down-sampling scale factor, and q represents the JPEG compression of
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Table 4. Degradation parameters in training stage.

Method Blur list Blur size Blur sigma Kernel prob Noise range Down sampling Jpeg quality Gray prob
GPEN ’iso’, ’aniso’ 41 [0.1, 10] [0.5, 0.5] [0, 20] [0.8, 8] [60, 100] 0.2

GFPGAN ’iso’, ’aniso’ 41 [0.1, 10] [0.5, 0.5] [0, 20] [0.8, 8] [60, 100] 0.01
P-I2SB ’iso’, ’aniso’ 41 [0.1, 10] [0.5, 0.5] [0, 20] [0.8, 8] [60, 100] 0.2

Figure 6. Loss in Inference. The right shows the loss across different steps during inference for 64 batch images, from step = T to
step = 0. The left resents a zoomed-in view of the curve from step = 200 to step = 0.

the image with quality factor q. To ensure direct comparability with the experimental results of recent BFR methods, we
randomly sample the parameters σ, r, δ, q from {0.1: 10}, {0.8: 8}, {0: 20}, {60: 100}, respectively.

y = [(x⊗ kσ) ↓r +nδ]JPEGq (31)

This parameter selection is consistent with the established experimental settings in the field, as shown in Table 4. To
enhance color adaptation and mitigate overfitting, we introduce a gray color probability mechanism and apply horizontal flip
transformations to the training data. The specific degradation handling functions are included in the python file.

F. Numerical Experiments
Figure 6 illustrates the variation in loss at different steps during the reverse inference process. It can be observed that the
loss for Vanilla-I2SB exhibits significant fluctuations, with substantial loss occurring at the initial stages of inference. This
indicates that, under complex degradation conditions, the Schrödinger Bridge model fails to learn a feasible solution, leading
to severe oscillations at the endpoints of the constraints. In contrast, the three loss curves following the pseudo-hashing
strategy preprocessing show a noticeably smoother loss at the early stages of inference.

G. More Ablation Results
Figure 7 illustrates the results of the ablation study through visualizations. Panel (a) depicts the Vanilla-I2SB method,
serving as the baseline for comparison. Panel (b) utilizes low-quality (LQ) images as conditional guidance, while panel (c)
incorporates both LQ images and degradation representation for enhanced guidance. Panels (d) through (f) demonstrate the
application of three distinct pseudo-random strategies. The visualizations indicate that although panels (a) to (c) effectively
restore the general outlines of the images, they fail to capture fine local texture details, leading to an overall smooth and
averaged appearance. This inadequacy is particularly evident in the restoration of critical facial features, such as the eyes,
where accuracy is compromised.
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Figure 7. Ablation studies on CelebA-Test. (a) donates Vanilla-I2SB as baseline, (b)-(c) compare different condition guidance, and
(d)-(f) compare different Pseudo-Hashing strategies. Zoom in for best view.

H. Qualitative Comparisons in CelebA-Test
In Figure 8, we present a comprehensive comparison of P-I2SB with several state-of-the-art methods, including GFP-
GAN (Wang et al., 2021), GPEN (Yang et al., 2021), VQFR (Gu et al., 2022), CodeFormer (Zhou et al., 2022), Restore-
Former (Wang et al., 2022), DMDNet (Li et al., 2022), DAEFR (Tsai et al., 2023), DifFace (Yue & Loy, 2022), DiffBIR (Lin
et al., 2023), DR2 (Wang et al., 2023), PGDiff (Yang et al., 2024), FlowIE (Zhu et al., 2024) and PMRF (Ohayon et al.,
2024). Our results indicate that P-I2SB excels in preserving the original identity and facial expressions of the images while
generating natural and plausible texture details. This method surpasses other approaches in terms of visual fidelity and
detail accuracy, offering superior performance in maintaining both the overall appearance and the intricate nuances of facial
features.

I. Qualitative Comparisons in Real-world
Figures 9, 10, 11, and 12 present a comparative analysis of P-I2SB across four real-world datasets: CelebChild, LFW,
WedPhoto-Test, and Wider. Figure 13 shows comparative results of low-quality images with serious degradation in real-
world datasets. These comparisons are made against several state-of-the-art methods, including GPEN (Yang et al., 2021),
GFPGAN (Wang et al., 2021), VQFR (Gu et al., 2022), CodeFormer (Zhou et al., 2022), RestoreFormer (Wang et al., 2022),
DMDNet (Li et al., 2022), DAEFR (Tsai et al., 2023), DifFace (Yue & Loy, 2022), DiffBIR (Lin et al., 2023), DR2 (Wang
et al., 2023), PGDiff (Yang et al., 2024), FlowIE (Zhu et al., 2024), PMRF (Ohayon et al., 2024) and Vanilla-I2SB (Liu
et al., 2023). The results demonstrate that P-I2SB generates more coherent and detailed outputs by effectively utilizing the
Pseudo-Hashing Module (PHM) and Schrödinger Bridge Module (SBM). This approach circumvents the indirect process
of extracting features from LQ images by directly using the raw LQ images in place of Gaussian noise as one endpoint
of the data distribution in the generative diffusion model. This ensures the existence of a theoretically optimal solution.
The pseudo-hashing strategy significantly improves the feasibility of solutions in blind inverse problems based on the
Schrödinger Bridge method. The generated images excel in preserving facial structure and generating local texture details.

J. Failure Samples
Figure 14 illustrates the failure cases of P-I2SB. Specifically, when real-world images contain watermarks, the inference
results of P-I2SB still exhibit residual artifacts. This issue primarily arises because the model is trained on synthetically
generated degradation datasets, which fail to fully capture the complexity of real-world degradations. To address this
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limitation, our future research will focus on enhancing the robustness of the Schrödinger Bridge method by utilizing
unsupervised learning to augment the pseudo-hashing strategy, thereby extending its applicability to a broader range of
blind inverse problems.
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Figure 8. Qualitative comparisons on CelebA-Test. Our P-I2SB demonstrates superior performance in both detail enhancement and hue
preservation, particularly on inputs with severe degradation. Zoom in for best view.
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Figure 9. Qualitative comparisons on Wider. In terms of both detail enhancement and hue preservation, our P-I2SB outperforms,
particularly on inputs suffering from severe degradation. Zoom in for best view.
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Figure 10. Qualitative comparisons on WebPhoto. Demonstrating superior capability, our P-I2SB significantly improves detail and hue
retention, even on inputs with extreme degradation. Zoom in for best view.
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Figure 11. Qualitative comparisons on CelebChild-Test. Our P-I2SB excels in both enhancing fine details and preserving hues,
especially when dealing with severely degraded inputs. Zoom in for best view.
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Figure 12. Qualitative comparisons on LFW. The P-I2SB showcases exceptional performance in detail refinement and color fidelity,
particularly on heavily deteriorated inputs. Zoom in for best view.
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Figure 13. Qualitative comparisons on serious degradation in real-world dataset. The P-I2SB showcases exceptional performance in
detail refinement and color fidelity, particularly on heavily deteriorated inputs. Zoom in for best view.
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Figure 14. Failure samples in CelebA-Test. Degradation artifacts such as watermarks can seriously affect the restoration results. Zoom
in for best view.
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