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ABSTRACT

In the realm of machine learning, the ability to seamlessly translate natural language de-
scriptions into compilable code is a longstanding challenge. This paper presents a novel
framework that addresses this challenge by introducing a pipeline capable of iteratively
transforming natural language task descriptions into code through high-level machine
learning instructions. Central to this framework is the fine-tuning of the Llama model,
enabling it to rank different solutions for various problems and select an appropriate fit
for a given task. The paper covers the fine-tuning process and provides insights into the
general process of transforming natural language descriptions into code. Our approach
marks a significant step towards automating code generation, bridging the gap between
task descriptions and executable code, and holds promise for advancing machine learn-
ing applications across diverse domains. We showcase the effectiveness of our framework
through experimental evaluations and discuss its potential applications in various domains,
highlighting its implications for advancing the field of machine learning.

1 INTRODUCTION

In recent years, there have been significant advancements in the field of code generation and text-to-code
conversion, primarily propelled by the advent of Large Language Models (LLMs). Noteworthy contributions
from leading researchers such as Codex (Chen et al., |2021), AlphaCode (Li et al., 2022), PaLM-Coder
(Chowdhery et al.,2022)), GPT models (OpenAlL|2023)) have played a significant role in these advancements.

Alongside these works, a wave of exploration efforts has emerged, aiming to enhance the alignment between
end-user expectations and the output generated by LLMs. These endeavors range from “chain of thoughts”

to zero-shot learning and even employing reinforcement learning techniques (as demonstrated by Shen et al.
(2023)).

While code snippet generation has proved to have a solid base of scientific investigation, converting textual
descriptions of a complex machine learning (ML) task into primarily suitable compilable code is a relatively
developing area of research.

Our Goal: Transforming ML Task Descriptions into Code. In this paper, we take on the challenge of
translating ML task descriptions, written in everyday language, into code. We’ve broken this task into two
parts: first, we create high-level code instructions, and then we transform these instructions into Python
code. This approach provides the flexibility to choose any programming language for implementation.

Generating Instructions. To extract the high-level code instructions, we’ve devised a four-stage framework,
depicted in Figure (1| Here’s how it works:
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1. High-Level Solution Representation: We begin by creating high-level representations of ML solutions.
Leveraging the capabilities of GPT-3, we extract critical information regarding data preprocessing, model
architecture, and the training procedure from existing solutions.

2. Llama Fine-Tuning: We then employ Llama for fine-tuning, utilizing the distilled solution information as
a response. This fine-tuning process incorporates the solution and the corresponding task description, task
metadata, data specifics, and the evaluation metric type as prompt.

3. Llama Inference: The top three high-level instructions are obtained from Llama.

4. Enhancing LLM Responses with Smart-GPT: The inferenced instructions are refined using the smart-
GPT technique. This approach enhances the LLM response through additional prompts (for more details,
see Section ).
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Figure 1: Machine learning task description to code high-level instruction transformation framework.

Instruction-to-Code transformation. The refined high-level ML instructions undergo sequential process-
ing with GPT-4, resulting in the generation of functional code. One can find detailed insights into this
instruction-to-code transformation process in Section

Empirical Validation in Machine Learning. Our experimental results substantiate the effectiveness of our
framework, particularly within the field of machine learning. We showcase that our approach can effectively
produce code with promising results, as demonstrated by the evaluation metrics.

Main Contributions. To summarize, our main contributions are twofold:

1. A Controllable Transformation Framework: We introduce a framework for the controlled transformation
of ML task natural language descriptions into suitable high-level solution instructions. The framework
involves fine-tuning the Llama-2 model using pairs of ML task descriptions and instructions retrieved with
GPT-3.

2. Instruction-Based Sequential Generation: We demonstrate that executing instructions for sequential gen-
eration leads to producing compilable code backed by promising results based on evaluation metrics.

In the subsequent sections, we delve deeper into each facet of our framework, providing empirical evidence
of its effectiveness and highlighting its vast potential for diverse applications within machine learning.

2 RELATED WORK

The intersection of machine learning and code generation has garnered significant attention in recent years.
We explore relevant research contributions, focusing on advancements in code generation, text-to-code con-
version, and methods for aligning user expectations with model outputs.



Under review as a conference paper at ICLR 2024

2.1 CODE GENERATION AND TEXT-TO-CODE CONVERSION

Code generation has seen remarkable progress, attributed mainly to the rise of Large Language Models
(LLMs). [Feng et al.|(2020) introduce a pre-trained model that can generate code and handle natural language
tasks. Such models offer versatility in code-related tasks, including code generation, summarization, and
recommendation.

CoditT5 (Zhang et all |2022) is another language model that can generate the edit-based output sequence
given the corrupted input sequence. Pre-trained models like CoditT5 are valuable resources for improving
code generation capabilities and aligning them with user requirements.

Modern code generation approaches are based on general-purpose transformers such as GPT-3. Noteworthy
among these models is Codex, which has showcased the potential to generate code snippets directly from
natural language prompts. AlphaCode builds upon this foundation, emphasizing the importance of code
diversity and improving the contextual understanding of LLMs.

In parallel, text-to-code conversion has gained prominence. PaLM-Coder presents a method for converting
natural language descriptions into code, focusing on Java code generation. (OpenAll (2023) and Bubeck et al.
(2023)) have further extended the capabilities of LLMs in understanding and generating code from textual
prompts.

Controllable code generation is an emerging subfield with significant potential. |[Keskar et al.[(2019) intro-
duce conditional language models for controlled code generation. The authors focus on allowing users to
specify conditions that influence the generated code, providing a level of control over the output.

Zhu et al.|(2018)) present a benchmarking platform for evaluating text generation models, including those de-
signed for code generation. This platform facilitates the assessment of controllable code generation models
by offering standardized evaluation metrics and tasks.

2.2 ALIGNMENT OF USER EXPECTATIONS

Efforts to align user expectations with LLM-generated code outputs have emerged as a crucial area of re-
search. The ”Chain of Thoughts” method, as demonstrated in (Hebenstreit et al., [2023)), (Wei et al., [2023),
leverages user-provided intermediate steps to guide code generation, ensuring the generated code aligns with
the user’s intentions. It involves breaking down complex programming tasks into logical and coherent steps
akin to a thought process. This approach encourages the model to produce more structured and contextu-
ally accurate code. Researchers have explored the use of ”Chain of Thoughts” to enhance the reliability
and understandability of code generated from natural language, which is crucial in applications like code
completion and automated software development.

Zero-shot learning, explored in (Thirunavukarasul [2023)), extends the capability of LLMs to generate code
in languages it hasn’t been explicitly trained on. This capability is achieved through pre-training on a vast
corpus of text, enabling the model to generalize knowledge and apply it to new tasks or languages. Zero-shot
learning has significant implications for cross-lingual NLP, code-switching, and multilingual text generation,
broadening the versatility of language models.

”Smart GPT” (Nair et al., 2023), (Moghaddam & Honeyl 2023) refers to relatively new techniques and
methodologies employed to enhance the performance and reliability of GPT-based models. These tech-
niques typically involve fine-tuning the model on specific tasks, introducing additional prompts or context,
and refining the output to ensure logical coherence and correctness. Smart GPT is essential in addressing
the limitations of language models, such as generating code that aligns with user expectations and task re-
quirements. It can involve iterative processes where the model refines its responses based on user feedback
or additional context, making it more adaptable and context-aware.
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Reinforcement learning techniques, as detailed in [(Shinn et al.l [2023), (Shen et al.| [2023)), (Thakur et al.|
2022)], have been employed to fine-tune LLMs for code generation, enhancing the coherence and correct-
ness of generated code. These techniques involve training language models like GPT using reinforcement
learning frameworks, allowing them to learn from feedback and iteratively improve their code generation
skills. Reinforcement learning can help models generate code that not only compiles correctly but also
aligns with desired behavior or functionality. This approach has promising applications in automating code
generation for specific tasks and improving the code quality generated from natural language descriptions.

2.3  MACHINE LEARNING PIPELINES GENERATION

While generating code snippets has been extensively explored, transforming textual descriptions into com-
prehensive and consistent machine learning workflows presents an ongoing challenge. Despite the state-of-
the-art capabilities of GPT models, assessing generated code and precisely aligning it with the intended task
remain areas of improvement.

Our approach focuses on the controlled transformation of complex ML task descriptions into high-level
solution instructions. Such an approach expands the capabilities of code generation models into new domains
and problem spaces, bridging the gap between natural language task descriptions and executable code.

3 DATA

For our research, we rely on the Code4ML dataset (Drozdova et al., [2023)), a comprehensive resource com-
prising Python code snippets, contest summaries, and data descriptions from Kaggle competitions. It am-
plifies the dataset’s value by incorporating essential competition-related metadata, which includes crucial
details like data types and scoring metrics. These elements collectively render the Code4ML dataset an
invaluable asset for addressing many challenges within the domain of machine learning.

The authors introduce a novel knowledge taxonomy tree to augment the dataset’s utility further. This taxon-
omy tree is an innovative organizational framework that systematically categorizes Jupyter Notebook code
snippets into various groups. Structuring the dataset in this manner effectively reduces the dimensionality
of the learning space, thereby enhancing the efficiency of our pipeline generation process. This taxonomy
provides a structured roadmap for understanding and navigating the dataset, streamlining the process of data
utilization.

As mentioned in the paper, it’s important to note that not all code snippets presented in the dataset can be
unequivocally classified into specific taxonomy types. Nonetheless, the Code4ML dataset, with its wealth
of information, remains a pivotal resource that significantly empowers our research in machine learning and
code generation.

To enhance its usability for various machine learning tasks and code generation experiments, the dataset
authors have meticulously organized the metrics into 20 distinct categories. These categories can be further
classified into metrics designed for minimization and those tailored for maximization, providing a structured
framework for evaluating ML solutions. We use this information to rank the solutions.

In our research, we concentrate on competitions covering all metric categories except ’points,” ’significance,’
and ’custom loss.” From these competitions, we select the top 75 solutions for in-depth analysis and the
retrieval of high-level instructions. It’s worth noting that some contests have fewer than 75 solutions available
for selection.

As a result, our dataset comprises 396 natural language ML task descriptions paired with 7023 correspond-
ing instructions, obtained through the assistance of GPT-3, extracted from Kaggle solutions. Figure [2] offers
an insightful overview of the prevalent models featured in the selected solutions. This analysis highlights
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the dominance of specific models like LightGBM and EfficientNet in handling particular data types, under-
scoring their effectiveness and adaptability.

This dataset serves as the cornerstone of our experiments and training processes, providing the necessary
foundation for exploring the transformation of ML task descriptions into high-level solution instructions.

dataﬁtype/ AUC categorization | percentage MSE I -score Multiclass log e o MAE
metric accuracy errors multiclass loss
lightgbm - resnet-34 - -
. . . logistic .
densenet-161 efficientnet Sequential efficientnetb7 vggl6 . lightgbm
regression
. RandomForest . . . . .
Tabular lightgbm classifier lightgbm lightgbm lightgbm xgboost lightgbm lightgbm
Text Randoqu orest lo gistic AUC Bagging bert logi stic xgboost
classifier regression regressor regression
- - - myresnext
Time series R Randon_lForest RandomForest lightgbm bert lo gistic
classifier Regressor regression

Figure 2: The most popular model choice among Kaggle solutions based on metric and data type.

4 APPROACH

Drawing inspiration from the pioneering organizational framework presented by [Drozdova et al.| (2023)),
which systematically categorizes Jupyter notebook code snippets into various taxonomy groups, we adopt
a similar concept for the purpose of dimensionality reduction in our ML task description-to-code synthesis
approach. However, our focus diverges from the classification of individual code snippets. Instead, we pivot
towards harnessing high-level information that encapsulates the essence of a generalized ML solution.

This strategic shift allows us to streamline the process of generating code from natural language task descrip-
tions while operating more abstractly. Rather than delving into the intricate classification of code fragments,
we aim to extract overarching patterns and critical components of ML solutions. This approach simplifies
the synthesis process and promotes a more efficient and adaptable method of transforming task descriptions
into executable code.

As previously outlined, our approach dissects the challenge of converting ML task descriptions into exe-
cutable code in two distinct phases. We do it by introducing instructions for the high-level ML solution
representations.
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4.1 TASK DESCRIPTIONS TO INSTRUCTIONS SYNTHESIS

In the first phase, we tackle synthesizing high-level ML solution instructions from the provided ML task
descriptions. This step involves the transformation of descriptive and often unstructured natural language
expressions into coherent and actionable high-level instructions through the framework, as shown in Fig-
ure [Tl

We initiate this phase by utilizing GPT-3 to extract vital information about data preprocessing, model ar-
chitecture, and the training process from the provided code. Figure |3|illustrates the precise input prompt
presented to the model. Consequently, GPT-3 generates the high-level ML instructions.

Subsequently, we employ the obtained instructions as a completion for fine-tuning Llama. Additionally,
we provide LLM with the task description, metric details, and data type information as prompts. Figure
visually depicts the prompt-completion pair, separated by the [/INST] token, used in this stage.

Prompt for GPT-3
Prompt for GPT-3 <s> token [INST] Get the main information about data preprocessing,

"Get the main information about data preprocessing, model architecture model architectul:e and_ model training for this problem. This solutign
> has the 1 place in rating. Data type: **Data type**. Metric type is:

L epr I
and model training from the code. Code: **Kaggle code**. SMenic bpor Broblom: STk deseritiones, [INST) *eGPT:
resulted instruction®* </s>

Figure 3: GPT-3 prompt for ML instructions retriev-
ing. Figure 4: Llama fine-tune for ML instruction gener-
ation input.

Llama models have been pre-trained on vast amounts of data. By fine-tuning, we leverage this extensive
knowledge and adapt it to specific tasks, often achieving state-of-the-art results with less data and time. The
fine-tuning details are summarised in Appendix [A]

4.2 INSTRUCTIONS REFINEMENT WITH SMART-GPT

Next, we select the top three most valuable instructions by specifying their rank using a dedicated prompt, as
shown in Figure[5] The Llama temperature has been set up to 0.7. These inferred instructions then undergo
further refinement with the assistance of smart-GPT. The primary goal of smart-GPT is to identify any logical
errors in the provided instructions and subsequently choose the best option from the three variants, thereby
enhancing the overall quality of the instructions. This intelligent processing is elucidated in Figure 6]

4.3 INSTRUCTIONS TO CODE GENERATION

The second phase of our approach centers on the actual generation of code, building upon the high-level
instructions obtained in the previous step. In this phase, we harness the capabilities of language models to
transform these instructions into functional and well-structured code that aligns seamlessly with the under-
lying ML tasks.

Figure[7 provides a visual representation of the sequential pipeline involved in the instruction-to-code trans-
formation. We have broken down the code synthesis into distinct stages for Data Preprocessing, Model
Architecture, and Model Training. Additionally, we have introduced a submission block to enable the test-
ing of results on the Kaggle platform. The final step in this pipeline involves the seamless integration of all
the generated code segments.

This phase forms the critical bridge between the high-level ML instructions and the executable code, ensur-
ing that the generated code not only adheres to the provided instructions but also produces practical solutions
for the intended ML tasks.
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Prompt for fine-tuned Llama-2

Imagine that you are a data analyst. Your objective is writing the
**3rd** place instruction for solving this machine learning task. Task:
**Task description®*. The **Data type** data is used for the problem.
The metric type is **Metric type** for the problem. Your response
contains the main information about data preprocessing, model
architecture and model training.

Figure 5: Prompt for Llama inference.

Using the generated
Your are a Python code for the Data

Prompt 1 for GPT-4

You are a researcher tasked with investigating the 3 options of
instruction for solving this machine learning task. Task: **Task
description®*. The **Data type** data is used for the problem. The
metric type is **Metric type** for the problem.

Your response contains the main information about data preprocessing,
model architecture and model training. List the flaws and faulty logic of
each instruction option. Let’s work this out in a step by step way to be
sure we have all the errors.

Instruction option 1: **Instruction 1**
Instruction option 2: **Instruction 2**
Instruction option 3: **Instruction 3**

Prompt 2 for GPT-4

You are resolver tasked with 1) find which of the instruction options the
researcher thought was best 2) improving the instruction 3) printing the
improved instruction in full. Let’s work this out in a step by step way to
be sure we have the right meaningful instruction.

Figure 6: Smart-GPT for best instruction choice and

improvement.

/ Using the generated '\
code for the Data

g;gigsl;:::mf;'s Processing, let's add Processing, let's add
B GeL B R code for Model code for Model
& © co Architecture for this Architecture for this
instruction: i Hbintiun
instruction: instruction:
ML task ML task ML task
description description description
Data Preprocessing: - Model Architecture: . Model Training:
L&) —@)—
E Data Model Model
Best preprocessing architecture architecture
instruction description description description
Data Information: Data Information: Data Information:
Al il il
Data Data Data

information information

Figure 7: High-level instruction to code sequential transformation scheme.
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Using the
generated Data
Processing,
Model
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Submission
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Let's combine the
generated code for
Data Processing,

Model Architecture,
Model training and
submission.

These meticulously designed phases collectively form the foundation of our approach, enabling the seamless
transition from unstructured ML task descriptions to precise, high-level solution instructions and, ultimately,

to executable code.

5 RESULTS

To validate the effectiveness of our approach, we select Kaggle competitions that are not included in our
training data. We apply our text-to-code pipeline by providing the natural descriptions of these chosen
competitions along with the necessary meta-data to our framework. The summarized results for five sample
ML tasks are presented in Table 1. The rating column corresponds to the position of our automatically
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generated solutions out of the publicly available solutions number. It is evident that the generated code is
not only compilable but also aligns well with the evaluation metrics.

Table 1: The sample results of generated ML code validated on Kaggle platform.

Competition name Metric | Score Ratingﬂ
Feature Imputation with a Heat Flux Datasetﬂ rmse 0.059 1/694
Binary Classification of Machine Failure roc auc | 0.948 | 999/1502
Predict CO2 Emissions in Rwandzﬂ rmse | 15.409 | 395/1440
CommonlLit - Evaluate Student Summarief] rmse 0.470 | 868/1903
Binary Classification with a Tabular Credit Card Fraud Dataselﬂ rocauc | 0.773 | 446/641

It is noteworthy to consider the comparative efficacy of SmartGPT and unprocessed llama instructions in
generating optimal solutions. While SmartGPT, a sophisticated technique, is adept at providing refined
outputs, it occasionally exhibits a performance that is suboptimal compared to the unprocessed instructions
derived from Llama. Comprehensive analysis reveals that the integration of three options from Llama does
not consistently translate to enhanced solution quality. This inconsistency can be attributed to the inherent
complexity and variability in the tasks, where the context and nuanced requirements play a pivotal role.
Consequently, it underscores the necessity for a meticulous evaluation and potential refinement of the
algorithmic approach employed by SmartGPT to ensure its consistent superiority in generating solutions of
the highest quality.

It’s worth noting that Kaggle, as a competitive platform, traditionally demands a significant investment of
time and expertise from its participants. Engaging in Kaggle competitions often requires a deep understand-
ing of the field and a substantial time commitment.

In contrast, our pipeline for transforming ML task descriptions into code offers a significantly more efficient
alternative. This approach minimizes the time (it takes less than 1 minute to generate a solution) and ex-
pertise required to bridge the gap between task descriptions and executable code, making machine learning
development more accessible and efficient.

6 CONCLUSION

In conclusion, our research presents a comprehensive approach for the transformation of unstructured
ML task descriptions into executable code. Leveraging the Code4ML dataset, which encompasses a rich
collection of Python code snippets, contest summaries, and data descriptions from Kaggle competitions,
our methodology capitalizes on the dataset’s valuable competition-related metadata, data types, and scoring
metrics.

Drawing inspiration from the innovative knowledge taxonomy tree introduced by the dataset authors, we
adopt a similar organizational framework to achieve dimensional reduction in our ML task description-to-
code synthesis approach. However, our approach differs by focusing on high-level information extraction
rather than individual code snippet classification. This strategic shift simplifies and streamlines the code
generation process, making it more efficient and adaptable.

!The generated solution Kaggle links will be provided after double-blind review.

ZKaggle link: https://www.kaggle.com/competitions/playground-series-s3e15

*Kaggle link:https://www.kaggle.com/competitions/playground-series-s3e17

*Kaggle link:https://www.kaggle.com/competitions/playground-series-s3e20

SKaggle link:https://www.kaggle.com/competitions/commonlit-evaluate-student-summaries
Kaggle link:https://www.kaggle.com/competitions/playground-series-s3e4
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Our approach is structured into two distinct phases: synthesizing high-level ML solution instructions and
transforming these instructions into functional code. GPT-3 is employed to extract essential information
from the provided code, which is the basis for generating high-level instructions. These instructions are
then fine-tuned using Llama. The top three instructions are selected and further refined with the assistance
of Smart-GPT, ensuring the highest quality instructions for subsequent code generation.

The second phase involves translating these refined instructions into well-structured and executable code
segments, encompassing data preprocessing, model architecture, model training, and submission block
generation. This transformation bridges the gap between high-level ML instructions and practical code,
ensuring alignment with the underlying ML tasks.

Our approach’s effectiveness is validated through experiments on Kaggle competitions that are not part of
our training data. The results demonstrate that the generated code is compilable and aligns well with the
specified evaluation metrics. We also compare the performance of Smart-GPT and unprocessed Llama
instructions, highlighting the need for further refinement in Smart-GPT’s algorithmic approach to achieve
superior solution quality consistently.

In summary, our research provides an innovative and efficient solution for code generation from ML task
descriptions. By capitalizing on the Code4dML dataset’s wealth of resources and introducing a structured
approach to instruction synthesis and code generation, we bridge the gap between natural language task
descriptions and executable code, making machine learning development more accessible and efficient.
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Table 2: Llama-2 fine-tuning hyper-parameters.

LoRA Parameters

LoRA attention dimension 64
Alpha parameter for LoRA scaling 16
Dropout probability for LoRA layers 0.1
4-Bit Precision Parameters
Activate 4-bit precision base model loading True
Compute dtype for 4-bit base models float16
Quantization type nf4
Activate nested quantization for 4-bit base models False
TrainingArguments Parameters
Number of training epochs 1
Enable fp16/bf16 training False/False
Batch size per GPU for training 4
Batch size per GPU for evaluation 4
Number of update steps to accumulate the gradients for 1
Enable gradient checkpointing True
Maximum gradient normal (gradient clipping) 0.3
Initial learning rate (AdamW optimizer) 2e-4
Weight decay 0.001
Optimizer paged_adamw_32bit
Learning rate schedule constant
Number of training steps -1
Ratio of steps for a linear warmup 0.03
Group sequences into batches with same length True
Save checkpoint every X updates steps 500
Log every X updates steps 25
Sequence Fine-Tuning Parameters
Maximum sequence length None
Pack multiple short examples in the same input sequence False
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