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A B S T R A C T

Visible-thermal Person Re-identification (VT Re-ID) is a challenging task in all-weather surveillance system.
Existing methods concentrate on extracting the modality-shared features, ignoring the discriminative inter-
modality complementary features. To tackle this issue, we propose a multi-branch modality residual comple-
mentary learning method which consists of the modality residual complementary learning (MRCL) module and
the multi-branch feature learning (MBFL) module. The MRCL module can be easily integrated into existing CNN
baselines and drive the network to focus on both intra-modality and inter-modality information. On one hand, we
adopt the basic two-stream network to obtain the intra-modality features, on the other hand, we capture the
inter-modality complementary features within the residual image obtained by cross-modality correlation sa-
liency erasing operation. To handle the intra-modality variations, we employ the MBFL module to capture local
spatial features and local channel features, then integrate them with global features to achieve part-to-part and
high-level semantic information matching. Finally, the discriminability and robustness of the ultimate repre-
sentations are enhanced by multi-branch constraint loss learning. Extensive experiments on RegDB and SYSU-
MM01 datasets demonstrate the superiority of our proposed method compared with state-of-the-art methods.

1. Introduction

Person re-identification (ReID) [1,2,32–35] is an image retrieval task
that that involves finding a person across multiple discontinuous camera
views. It can be applied to the tracking and anomaly detection of person
in the industrial and public security fields. Nowadays a large number of
works are concentrated on single-modality person Re-ID, which has
shown promising performance in both video and image domains.
However, the applicability of single visible modality Re-ID is limited
under low lighting conditions (e.g. during the night). In this instance,
dual-mode cameras which work in visible mode during the day and
thermal mode in the night have recently become widespread in practical
video surveillance systems. Photos in a 24-h intelligent monitoring
system are from many modalities. For example, the probe images might
be captured by visible cameras during the day, while gallery images
could be acquired by thermal cameras at night. Therefore, in this paper,
we focus on the more challenging but practical cross-modality visible
thermal person re-identification (VT Re-ID).

As shown in Fig. 1, the cross-modality discrepancy caused by

differing imaging principles of visible and thermal cameras, as well as
the intra-modality variations suffered from camera viewpoint changes,
occlusion, and various pedestrian poses, are two main issues for VT Re-
ID. To overcome these problems, some VT Re-ID methods [3–6,36–38]
have been proposed to learn modality-shared features, and the advan-
tages of two-stream networks have been explored.

Given the lack of color information in the thermal image compared
to the visible image, we need to explore more additional information
when matching the thermal image with the visible image for VT Re-ID.
However, existing methods do not take full advantage of the underlying
modality information. To be specific, existing methods utilize two-
stream network to extract the modality-specific features for each mo-
dality independently and then learn the shareable features between
them. The modality-shared features focus on the same local salient part
and ignore the latent information which can help enhance performance.
Nonetheless, cross-modality correlation is the key to explore the latent
complementary information. Besides, previous approaches
[7–10,22,23,39,40] only focused on global features which is lack of
discriminative information with various granularities. However, due to
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the occlusion and misalignment, the global features may lose critical
local information such as the pedestrian's body part, thereby affecting
performance.

To address the above limitations, we propose modality residual
complementary learning (MRCL) module with a cross-modality corre-
lation saliency erasing operation (CM-CSEO) for VT Re-ID. The target of
our MRCLmodule is to acquire the neglected inter-modality information
for resolving the feature-level modality discrepancy. Specifically, the
CM-CSEO aims at erasing the most dominant area of the person image
based on the cross-modality correlation between pedestrian image and
the feature of another modality for obtaining the residual image. Then
we feed the remaining residual images to another two-stream network to
capture complementary inter-modality features containing latent inter-
modality information. We can get the final discriminative feature rep-
resentation by fusing the intra-modality features with their comple-
mentary inter-modality features. Another advantage of the MRCL is that
it can be easily inserted into any existing network to learn the neglected
complementary information.

In addition, we design the multi-branch feature learning (MBFL)
module to capture local spatial features and local channel features, then
integrate them with global features to obtain more discriminative and
robust ultimate representation for handling intra-modality variations.
Local spatial features corresponding to individual body parts, as

opposed to global features, can achieve part-to-part matching. Different
from spatial partition, channel partition is conducted along the channel
dimension. Besides, local channel features do not focus on individual
body parts and instead corresponding to high-level semantic informa-
tion such as hairstyle, body shape, etc. Fig. 2 illustrated the working
block diagram of our approach. The main contributions can be sum-
marized as follows:

1. We propose a modality residual complementary learning module to
incorporate intra-modality feature and inter-modality feature which
is often neglected by the two-stream network, thereby enhancing the
discriminability and diversity of learned representation for VT Re-ID.

2. We introduce a multi-branch feature learning module to combine
local spatial and channel features with the global features, which
overcomes intra-modality variations by part-to-part matching and
high-level semantic concept-to-concept matching.

3. To exploit the different attributes of both global features, local
spatial features, local channel features and final fused features
effectively, we design the multi-branch constraint loss including the
global loss, local loss and hetero-center cross-modality constraint
loss.

4. Extensive experiments on two publicly cross-modality datasets,
SYSU-MM01 and RegDB demonstrate that our approach achieves
promising performance. Especially when MRCL is inserted into other
state-of-art models, it can effectively improve the performance.

2. Related work

2.1. Single-modality ReID

With the rapid development of deep learning, single-modality person
Re-ID research has gotten remarkable advances. Nowadays, there are
two types of deep learning-based person re-identification methods:
feature learning and metric learning. Metric learning aims to optimize
the learning of discriminative features by network models by designing
different loss function. Feature learning extracts more robust features of
pedestrians by introducing local feature learning [7] or using attention
mechanisms to focus on key information about body parts [8]. In
addition to this, several works enhanced the final feature representation
by combining global and local features of pedestrians [9]. Generative
adversarial network (GAN) is widely used for person re-identification
tasks due to the good performance in generating images and learning
features. To relieve the expensive costs of annotating new training im-
ages, Wei et al. [10] proposed a Person Transfer Generative Adversarial
Network (PTGAN) to bridge the domain gap. More recently, approaches
based on graph convolutional networks have also emerged to learn more
discriminative and robust features by modeling graph relationships on

Fig. 1. Illustration of the key challenges in the VT Re-ID. The camera viewpoint
changes, occlusion, and various pedestrian poses exacerbates the cross-modality
discrepancy and intra-modality variations. Existing methods focus on modality-
shared features but ignore the discriminative inter-modality complemen-
tary features.

Fig. 2. The working block diagram of proposed multi-branch modality residual complementary learning method.
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pedestrian images. Yang et al. [11] proposed a spatio-temporal graph-
ical convolutional network (STGCN) to extract robust spatio-temporal
information that complementary to appearance information.

2.2. Visible-thermal ReID

The VT Re-ID problem was first discussed by Wu et al. [12], they
built the SYSU-MM01 dataset and presented the zero-padding network
which was a one-stream network and learned modality sharable infor-
mation adaptively. Ye et al. [13] proposed a two-stream CNN network
(TONE) with hierarchical cross-modality metric learning to supervise
the modality-specific features. Li et al. [15] introduced a supplemental X
modality to transform visible-thermal dual-mode problem to X-visible-
thermal three-mode problem for reducing cross-modality discrepancy.
In addition to the research on both feature learning and metric learning,
many scholars have also leveraged GAN to solve the VT Re-ID problem.
Dai et al. [17] first proposed the cm-GAN based on a generative
adversarial network involving a generator and a discriminator. The
generator aimed to extract features from two different modalities, and
then the discriminator was responsible for distinguishing whether the
features were from thermal modality or visible modality. Wang et al.
[19] also applied an alignment adversarial generative networks
(AlignGAN) to employ generators to conduct joint alignment from pixels
and features respectively.

2.3. Adversarial erasing learning

The core idea of adversarial erasing learning is that we can improve
the performance by employing the erased image. Initially, the adver-
sarial erasing operation was exploited extensively in data augmentation.
Zhong et al. [20] randomly elected a rectangle region in the image and
erased its pixels with random values. The robustness of the model to

occlusions can be enhanced by using the erased images. Many re-
searchers have extended adversarial erasing learning to other computer
vision areas recently. Liu et al. [21] introduced a cross-modal attention-
guided Erasing (CAGE) to accomplish cross-modal alignment of the
textual and visual domain. Similar to [20], the CAGE constructed diffi-
cult samples by discarding the most dominating features from textual or
visual domains, and then attempted to uncover complementary textual-
visual correspondences by training the difficult samples. Different from
them, we try to exploit erasure learning to mine discriminative infor-
mation that is neglected by the network.

3. Approach

In this section, we will introduce the framework of our proposed
multi-branch modality residual complementary learning method, as
illustrated in Fig. 3. Our proposed method is mainly composed of three
elements: (1) the modality residual complementary learning (MRCL)
module, (2) the multi-branch feature learning (MBFL) module, (3) the
multi-branch constraint loss which combines global loss, local loss and
hetero-center cross-modality constraint loss.

3.1. The modality residual complementary learning module

In this subsection, we will present the structure of the MRCL module
and how it addresses the cross-modality discrepancy in VT Re-ID. The
MRCL module is made up of two components: a basic two-stream
network for extracting prominent intra-modality features, and a com-
plementary network with the cross-modality correlation saliency
erasing operation for obtaining the inter-modality features.

1) The basic two-stream

Fig. 3. The framework of our proposed multi-branch modality residual complementary learning method. GAP: Global Average Pooling, GMP: Global Max Pooling,
BN: Batch Normalization, FC: Full Connection. Our framework mainly contains two components: MRCL module and MBFL module. The MRCL module includes a
basic two-stream network for extracting prominent intra-modality features and a complementary network with the same structure as the basic two-stream network,
but with the cross-modality correlation saliency erasing operation to obtain the inter-modality features. The MRFL contains the batch normalization neck and feature
extraction part to obtain global feature, spatial local feature and channel local feature.

L. Chen et al.



Image and Vision Computing 150 (2024) 105201

4

In VT Re-ID, the two-stream network comprised of feature extractor
and feature embedding is a common approach. Because of the
outstanding performance and the simple architecture, we adopt the
ResNet50 as the backbone. We split the ResNet50 into two parts. The
first two conv blocks in ResNet50 form a two-stream feature extractor
with independent parameters for learning low-level modality-specific
features from two different modalities. The following three conv blocks
make up the sharable feature embedding, and their input is a 3D feature
map generated by the feature extractor. These three conv blocks learn
high-level features shared by different modalities that include enough
spatial structure information and maps them to the common feature
space. For simplicity in presentation, we utilize Fv() to describe the
visible-stream network and define Ft() as the representation for the
thermal-stream network. Given two different types of input, visible
images Iv and thermal images It , the features captured by the two-stream
network can be respectively denoted as.

2) The cross-modality correlation saliency erasing operation

We apply the other two-stream network, the complementary
network as illustrated in Fig. 3, to get complementary inter- modality
features. The input to the complementary network determines the
ability to obtain high-quality complementary inter-modality features. As
a consequence, we design a cross-modality correlation saliency erasing
operation (CM-CSEO) to help us erase the most prominent areas of
highest correlation between the images and features from different
modalities. The CM-CSEO consists of three steps: cross-modality corre-
lation calculation, erasing region binarization, and significant area
erasing operation. As previously mentioned, the inputs to the two-
stream network are the visible image Iv and the thermal image It , and
the modality-specific features obtained by the basic two-stream network
are defined as Sv and respectively St.

a) Cross-modality correlation calculation

In general, we need to consider the image and the feature at every
spatial location when calculating the correlation, so we specify the
spatial positions (i, j) of the image and the modality-specific feature as
I(i, j) and S(i, j) separately. The purpose of the cross-modality correlation
calculation is to attain the semantic correlation between the image I and
modality-specific feature S by calculating the similarity between them.

We utilize dot product similarity which is easier to implement than
cosine and Euclidean distance similarity in modern deep learning plat-
forms. The corresponding correlation between the image I andmodality-
specific feature S is shown in the following Eq. (2).

C(i, j) = S(i, j)TI(i, j) (1 ≤ i ≤ H, 1 ≤ j ≤ W) (2)

The similarity value at each position in C reflect the degree of cor-
relation between the image I and modality-specific features S. Darker
colors in the correlation map represent higher correlations, as illustrated
in Fig. 4.

b) Erasing region binarization

In most other fields, erasing operation is performed by applying a
threshold to the corresponding correlation and obtaining a binarization
mask. However, it frequently results in noncontinuous regions. As we all
know, erasing the feature units discontinuously can be effective for fully
connected layers, but it is less effective for convolutional layers, where
features are correlated spatially. Erasing the correlation part discontin-
uously does not validly remove semantic information, as nearby features
contain closely related information. Instead, erasing continuous regions
can remove semantic information and consequently enforcing remain-
ing units to learning potential feature. Our proposedMRCLmodule focus
on convolution layer, so employing erasing region binarization is a
better choice than the soft erasing mask.

The key to getting the region binarization mask is to fix and compare
the value of the correlation of each region, as indicated in the Fig. 4. We
leverage search kernel for performing region binarization mask to solve
this problem. The search kernel is analogous to the convolutional kernel
in a convolutional neural network. Formally, the size of the search
kernel is established as hk × wk, the horizontal stride is set as sh, and the
vertical stride is set as sv. By sliding the search kernel according to the
Eq. (3) below, we can figure out how many relevant regions there are.

Nre =

(

⌊
H − hk
sv

⌋+1
)

×

(

⌊
W − wk

sh
⌋+1

)

(3)

The value of each relevant region is considered to be the sum of all
relevant correlation values of the item in the search kernel. Finally, we
choose the area of the relevant region that has the highest value to be
erased. We may get the erasing region binarization mask by setting the
selected erased part to 0 and the other locations to 1. In this case, we can

Fig. 4. Illustration of the cross-modality correlation saliency erasing operation. The CM-CSEO consists of three steps: cross-modality correlation calculation, erasing
region binarization, and significant area erasing operation.
V = FV(IV) T = Ft(It) (1)

L. Chen et al.
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obtain the erasing region binarization mask B ∈ BH×W.

c) Significant area erasing operation

By dot-multiplying the binary region mask with the original image to
get the residual image with no significant features, as demonstrated in
Eq. (4).

Xr = X⊙ B (4)

3.2. The multi-branch feature learning module

In this subsection, we will introduce the MBFL module, a feature
extraction part including global feature, spatial local feature and chan-
nel local feature extraction.

Most existing Re-ID works combined ID loss with triplet loss for
training the models. We implemented a common module, batch
normalization neck (BNNeck) which has been first proposed in [25], in
both the global and local feature networks. After a global pooling layer,
the triplet loss is employed to optimize feature vectors roughly distrib-
uted in the Euclidean space, while the ID loss is assigned to optimize
feature vectors approximately distributed in the hypersphere space after
a batch normalization layer and a fully connected layer.

We exploit the feature maps of pedestrian captured from the basic
two-stream network and the complementary two-stream network as
input to the multi-branch feature learning module, as shown in Fig. 3. A
global feature extraction part, a spatial local feature extraction part, and
a channel local feature extraction part are the three individual compo-
nents that make up the feature extraction part. A single-branch network
with a global max pooling layer (GMP) and a BNNeck makes up the
global feature extraction component.

The spatial local feature extraction part is a three-branch network
with a global average pooling layer (GAP) and a BNNeck on each
branch. The feature maps are divided horizontally into three equal parts
and served as inputs for the three-branch networks. The spatial local
feature corresponding to individual body part can achieve part-to-part
matching. The channel local feature extraction part is also a three-
branch network, just like the spatial local feature extraction part.
Relying on the number of channels in the feature map, we partition it
into three equal parts at the channel level which are used as inputs for
the three branches. The channel local features do not focus on individual
body parts and instead corresponding to high-level semantic informa-
tion such as hairstyle, body shape, etc. The global feature extraction
network differs from the two local feature extraction networks in the
pooling approach and the feature dimensionality.

3.3. The multi-branch constraint loss function

In this subsection, we introduce the multi-branch constraint loss
consisting of the global loss, intra-modality constraint loss and the
hetero-center cross-modality constraint loss. It not only takes advantage
of both local and global features, but also focuses on both cross-modality
discrepancy and intra-modality variations to improve the performance.

1) Intra-modality constraint loss

We design the intra-modality constraint loss to enable the feature
representation robust to intra-modality variations in both visible and
thermal modalities. For visible to thermal scenarios, we set visible image
as anchor va and thermal image as positive tp and negative objects tn.
Anchor ta is thermal image and positive vp and negative vn objects are
visible image for visible to thermal scenarios. By keeping the distance
between the anchor sample and its negative sample larger than set
margin ρ1, the intra-modality constraint loss is defined by:

Lintra =
∑

ya∕=yn

[
ρ1 − min‖va − vn‖2

]

+
+

∑

ya∕=yn

[
ρ1 − min‖ta − tn‖2

]

+
(5)

2) Hetero-center cross-modality constraint loss

The cross-modality constraint loss hardly works if there are harmful
triplets formed by outliers. Therefore, we utilize a hetero-center cross-
modality constraint loss that takes the center of each class of individual
data as the object for computation. In this manner, we can transfer the
computation of the anchor point with all other objectives to the
computation of center the anchor point center with all other centers. We
have to first compute the data center for the features of every identity in
both modalities.

civ =
1
k
∑k

j=1
vij c

i
t =

1
k
∑k

j=1
tij (6)

where vij and tij correspond to the jth visible image feature and thermal
image feature of the ith person from each batch respectively.

Based on the same PK sampling method as traditional triplet loss, we
select P person identities at random, with each identity containing K
images for each mini-batch. Accordingly, there are P visible image
centers

{
civ|i = 1,…,P

}
and P thermal image centers

{
cit |i = 1,…,P

}
.

The computation is shown as the following Eq. (7):

Lhc cross =
∑p

i=1

[

ρ2 +
⃦
⃦civ − cit

⃦
⃦
2 − min

j∕=i

⃦
⃦civ − cjn

⃦
⃦
2

]

+

+
∑p

i=1

[

ρ2 +
⃦
⃦cit − civ

⃦
⃦
2 − min

j∕=i

⃦
⃦cit − cin

⃦
⃦
2

]

+

(7)

where ρ2 denote the predefined margin.

3) Global loss

As with local features, we also need to apply ID loss to enhance the
robustness of global features. The global loss is comprised of three
components, the hetero-center cross-modality constraint loss, intra-
modality constraint loss and id loss, which is represented by

Lglobal = Lghc cross + Lintra +
∑M

i=1
Liid (8)

where M represents the number of the global features and id loss is
represented by

Lid = −
∑N

i=1
qilog(pi) (9)

4) The multi-branch constraint loss

In order to take full advantage of local feature, global feature and
final fused feature, we design the multi-branch constraint loss consisted
of local loss, global loss and hetero-center cross-modality constraint loss.
We employ id loss for each local feature and global loss for the global
feature, but only hetero-center cross-modality constraint loss for the
final fused feature. The multi-branch constraint loss is given as

Lmb c = Lfhc cross + Lglobal + Llocal

= Lfhc cross + Lghc cross + Lintra +
∑M

i=1
Liid +

∑N

i=1
Liid (10)

where M represents the number of global features and N describes the
number of local features.

4. Experiments

In this section, we employed two cross-modality re-identification
datasets, RegDB [27] and SYSU-MM01 [12], to evaluate the

L. Chen et al.
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effectiveness of our proposed method. In addition, extensive ablation
experiments were carried out to verify the role of each component of the
network as well as the influence of various parameters.

4.1. Datasets

SYSU-MM01: It is the only large-scale cross-modality re-
identification dataset with 287,628 visible images and 15,792 thermal
images collected by two thermal cameras (cam3, 6) and four visible
cameras (cam1, 2, 4, 5). The entire dataset consists of 491 identities, and
each identity contains at least one visible image and thermal image. The
dataset was split into two parts: a training set of 395 individuals with
22,258 visible and 11,909 thermal images, and a test set of 3803 visible
and 301 thermal images of the remaining 95 individuals. SYSU-MM01
can fulfill different modes of experimental situations, namely the
indoor-search mode and the all-search mode. We follow existing
methods to conduct 10 trials of gallery set selection in the single-shot
setting [3], and then evaluate the average retrieval performance.

RegDB: The image was captured using a dual-camera system with a
visible camera and a thermal camera. The entire dataset consists of 412
persons, each corresponding to ten visible images and ten thermal im-
ages, for a total of 8240 images. In order to comply with the conditions
of the evaluation protocol in [3,13], we split it into two halves, one for
training and the other for testing. During the test process, we set all of
the images in the gallery to the same modality, while the images in the
probe were set to a different modality.

4.2. Evaluation metrics

We adopt three different evaluation metrics to measure the perfor-
mance, namely the cumulative matching characteristic (CMC), the mean
average precision (mAP) and the mean inverse negative penalty (mINP)
[16].

mINP =
1
n
∑

i
(1 − NPi) =

1
n
∑

i

|Gi|

Rhard
i

(11)

where Rhard
i denotes the ranked position of the most difficult-to-match

samples, |Gi| denotes the ranked position of table denotes the total
number of correct matches for query i. Note that all the person features
are L2 normalized for testing and metric learning conducted by our
proposed multi-branch constraint loss.

4.3. Implementation details

The experiment was implemented in the Pytorch framework and
deployed on NVIDIA GeForce 3090 GPU. We adopt the ResNet50 as the
backbone and initialize the network parameters on ImageNet. Random
flip and random crop are two widely used data augmentation techniques
in content-based image retrieval methods [41] and image registration
[42]. The person images are resized to 288*144 before being randomly
flipped and cropped to their original size. We adopt a stochastic gradient
descent (SGD) optimizer for optimization with a momentum parameter
of 0.9. The initial value of the learning rate was set to 0.1. To improve
the network's performance during the training phase, we utilized a
warm-up learning rate strategy. The learning rate of epoch 0 is 0.01, and
every epoch after that is increased by 0.01. From epoch 9 to epoch 29,
the learning rate is 0.1, then decreases to 0.01 at epoch 30, then drops
again at epoch 50, which is set at 0.001. For different datasets, we
leverage different PK sampling strategies. We set P to 8 and K to 4 for
RegDB while P to 6 and K to 8 for SYSU-MM01. Among the hetero-center
cross-modality constraint loss and the intra-modality constraint loss, we
set the default value of margin ρ1 to 0.3 and ρ2 to 0.5. For each local
feature, the final dimension d of each local feature is set to 256.

4.4. Comparison with state-of-the-art methods

We obtain experimental results on SYSU-MM01 and RegDB using the
method proposed in this paper and compare them with the state-of-the-
art VT Re-ID methods.

The experiment results on the SYSU-MM01 and RegDB datasets are
shown in Table 1 and Table 2, respectively. We have applied the five
CMC metrics of rank-1, rank-10, rank20, mAP and mINP to measure
performance. The ‘-‘in the Table 1 and Table 2 means that the corre-
sponding results are not displayed in the original paper.

The experiments on SYSU-MM01 have two modes, all–search mode
and indoor-search mode. The results illustrated in Table 1 demonstrate
that our proposed method can achieve the best performance on SYSU-
MM01 under two different modes. We can observe that compared to
the baseline method, AGW [16], each metric has been improved by a
substantial margin. Especially in the two crucial criteria Rank1 and mAP
under the more challenging all-search mode, we achieve 61.75% and
59.51%. This indicates that our method can effectively extract ignored
multi-granularity complementary features and enhance the richness of
pedestrian information. When we inserted our MRCL in CAJ [4] without
the channel-augmented joint learning strategy (only +J), our proposed
method gets 68.75% Rank1, 65.65% mAP and 52.78% mINP on all-
search mode, outperforming the current state-of-the-art method PMT
[31]. The reason be attributed that the proposed MRCL can capture
more identity-related complementary knowledge across modalities.

The experiments based on the RegDB dataset have two query set-
tings, visible to thermal and thermal to visible. From Table 2, we observe
that our proposed method can achieve 91.26% Rank1 / 88.79% mAP /
81.80%mINP and 89.35% Rank1 / 86.85%mAP / 79.96%mINP, which
performs better than any of the existing methods under the two different
query settings. This shows previous methods neglect discriminative
features in the harsh thermal environment. Compared to AGW [16], our
method has achieved a huge improvement in the metric mINP, from
50.19% to 81.80%. This can be attributed to the fact that, the thermal
image contains less information, and our method can mine more effec-
tive detailed features by MRCL, MBFL and multi-branch constrains loss
function. Performance also improves after inserting the MRCL in CAJ. In
general, the experimental results on RegDB illustrate the effectiveness of
our proposed method in a variety of query settings.

4.5. Ablation study

In this subsection, we have done comprehensive ablation experi-
ments on SYSU-MM01 and RegDB to evaluate the effectiveness of each
component of the network structure, which mainly includes the MRCL
module, the MBFL module and the multi-branch constraint loss. All
experiments in this subsection are carried out in all-search modes of
SYSU-MM01 and visible to thermal query setting of RegDB. The baseline
model is a two-stream backbone network based on ResNet-50. The first
two stages are set as the modality-specific modules with independent
parameters to learn the modality-specific feature. The remaining three
stages are set as the modality-shared module with shared parameters to
learn the modality-sharable feature. Apart from this, the baseline model
only has global feature.

1) The effectiveness of the CM-CSEO in the MRCL module

In this subsection, we first discuss where to perform cross-modality
correlation saliency erasing operation (CM-CSEO) on the network in
order to obtain the best performing network structure. Moreover, we
compare the network with the CM-CSEO to the basic two-stream
network which only extracts the intra-modality feature. We also
explore which fusion mechanism is better, summation(sum) or concat-
enation(cat).

The residual complementary learning module needs to satisfy two
requirements: Firstly, we need to calculate the cross-modality
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correlation between the features and the input image from two different
modalities, and then employ a significant area erasing operation on the
image to acquire the residual image. Secondly, we need to transmit the
residual image into another two-stream network to discover the poten-
tial inter-modality information. On the basis of these two conditions, we
can put the CM-CSEO in four different positions of the network to form
four different network structures. We name these four network struc-
tures E0, E1, E2, and E3 respectively. As shown in Fig. 3, the features
used in the erasing operation in E1 are obtained by first two conv blocks,
and then the residual image is fed into the complementary network,
where first 2 conv blocks are used for extracting modality-specific fea-
tures, and following 3 conv blocks are used to extract modality shared
features. In comparison to E1, the difference between the other three
structures E0, E2 and E3 is the location of the CM-CSEO, corresponding
to after first conv block, after third block, and after fourth block,
respectively.

From Table 3, we can observe that the best experimental results can
be achieved with the E1 network structure for both SYSU-MM01 and
RegDB. Although E0 and E2 are not as good as E1, they can also achieve
acceptable results. However, E3 did not improve the performance a lot.
We think this because the feature map extracted by each layer of the
CNN corresponds to a different semantic level. The features extracted at
the bottom layer of the CNN focus more on texture and structural

information, while the higher-level features include more semantic in-
formation. We determine the location of significant feature erasing
operation based on the correlation between the image and the features,
and this is where texture and structure information can play a bigger
role than more abstract semantic information. This is the reason why E3
is not able to achieve better performance.

In Table 4, four-streams network denotes the addition of a same two
stream network based on the baseline. Compared to baseline, the four
streams network did not have improved a lot. “Random erasing” in-
dicates that the input of a two-stream network is transformed into a
random erased image on top of a four-streams network. “Random
erasing” can improve model performance on both SYSU-MM01 and

Table 1
Comparison to the state-of-the-art methods on the SYSU-MM01 dataset.

Method Reference SYSU-MM01

All-Search Indoor-Search

R1 R10 R20 mAP mINP R1 R10 R20 mAP mINP

Zero-Pad [12] ICCV17 14.80 54.12 71.33 15.95 – 20.58 68.38 85.79 26.92 –
HCML [13] AAAI18 14.32 53.16 77.95 23.12 – 24.52 73.25 86.73 30.08 –
cmGAN [17] IJCAI18 26.97 67.51 80.56 27.80 – 31.63 77.23 89.18 42.19 –
D2RL [18] CVPR19 28.90 70.60 82.40 29.20 – – – – – –

AlignGAN [19] ICCV19 42.40 85.00 93.70 40.70 – 45.90 87.60 94.40 54.30 –
XIV [15] AAAI20 49.92 89.79 95.96 50.73 – – – – – –
AGW [16] TPAMI21 47.50 – – 47.65 35.30 54.17 – – 62.97 59.23
HAT [30] TIFS21 55.29 92.14 97.36 53.89 – 62.10 95.75 99.20 69.37 –
DML [24] TCSVT22 58.40 91.20 96.90 56.10 – 62.40 95.20 98.70 69.50 –
MAUM [14] CVPR22 61.60 – – 60.00 – 67.10 – – 73.60 –
SPOT [28] TIP22 65.34 92.73 97.04 65.25 48.86 69.42 96.22 99.12 74.63 70.48
GALNet [29] IVC23 58.76 93.17 97.63 57.67 – 61.45 95.07 98.41 68.53 –
CMTR [26] TMM23 65.45 94.47 98.16 62.90 – 71.46 97.16 99.22 76.67 –
PMT [31] AAAI23 67.53 95.36 98.64 64.98 51.86 71.66 96.73 99.25 76.52 72.74
Ours – 61.75 93.10 97.35 59.51 42.35 63.50 94.85 97.76 69.52 65.12

Ours+J [4] – 68.57 95.42 98.23. 65.65 52.78 74.42 96.24 99.41 78.55 75.06

Table 2
Comparison to the state-of-the art methods on the RegDB dataset.

Method Venue RegDB

Visible to Thermal Thermal to Visible

R1 R10 R20 mAP mINP R1 R10 R20 mAP mINP

Zero-Pad [12] ICCV17 17.75 34.21 44.35 18.90 – 16.63 34.68 44.25 17.82 –
HCML [13] AAAI18 24.44 47.53 56.78 20.80 – 21.70 45.02 55.58 22.24 –
cmGAN [17] IJCAI18
D2RL [18] CVPR19 43.40 66.10 76.30 44.10 – – – – – –

AlignGAN [19] ICCV19 57.90 – – 53.60 – 56.30 – – 53.40 –
XIV [15] AAAI20 62.21 83.13 91.72 60.18 – – – – – –
AGW [16] TPAMI21 70.05 – – 66.37 50.19 – – – – –
HAT [30] TIFS21 71.83 87.16 92.16 67.56 – – – – – –
DML [24] TCSVT23 77.60 – – 84.30 – 77.00 – – 83.60 –
MAUM [14] CVPR22 83.39 – – 78.75 – 81.07 – – 78.89 –
SPOT [28] TIP22 80.35 93.48 96.44 72.46 56.19 79.37 92.79 96.01 72.26 56.06
GALNet [29] IVC23 87.48 96.94 98.11 75.59 – 84.81 96.55 98.50 74.98 –
PMT [31] AAAI23 84.83 – – 76.55 – 84.16 – – 75.13 –
CMTR [26] TMM23 88.11 – – 81.66 – 84.92 – – 80.79 –

Ours – 91.26 96.11 97.91 88.79 81.80 89.35 94.35 96.31 86.85 79.96
Ours+J [4] – 91.59 97.57 98.94 89.68 82.33 90.14 96.91 98.70 87.68 80.84

Table 3
The results of different MRCL module structure on SYSU-MM01 and RegDB
datasets.

Network SYSU-MM01 RegDB

R = 1 mAP mINP R = 1 mAP mINP

E0 57.10 52.86 39.53 87.00 84/90 75.88
E1 58.88 55.12 41.46 88.89 85.93 79.45
E2 57.89 53.26 40.12 88.36 84.52 75.61
E3 53.16 40.02 34.24 83.53 79.74 72.88
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RegDB datasets. However, the performance achieved by random erasing
is far inferior to our proposed CM-CSEO. As can be seen from Table 4,
CM-CSEO can effectively improve the performance, but the effect ach-
ieved by different fusion methods also varies greatly. “Sum” means
element-wise sum and “Cat” means concatenation. The major difference
between these two fusion strategies is that “Cat” changes the number of
channels while “Sum” only increases characteristic patterns without
changing the number of channels. Some performance improvement can
be achieved when taking the “Sum” approach, but it is not obvious. In
contrast to the “Sum” approach, CM-CSEO can greatly improve the
model by using the “Cat” method.

2) The effectiveness of the multi-branch feature learning module

In this subsection, we prove the effectiveness of the multi-branch
feature learning module. MBFL module can be categorized into three
types: channel part which extracts only local channel features, spatial
part which extracts only horizontal spatial features and all local part.

From Table 5, we can observe that different types of local feature
extraction networks can effectively enhance the performance. Both the
channel part and the spatial part can improve performance consider-
ably. In contrast, the spatial part gets a slightly bigger boost. The most
significant performance improvement is achieved when we combine the
channel part and the spatial part to form the all local part. This illus-
trates that fused all local features can make a fuller contribution to the
whole network.

3) The effectiveness of the multi-branch constrain loss

In this subsection, we performed ablation experiments of multi-
branch constrain loss. From Table 6, we observe that both Lintra and
Lghc cross can effective improve the performance. Besides, L

g
hc cross works a

little better than Lintra. However, combining the two components can

significantly improve performance on both datasets. It demonstrates
that we need to concentrate on intra-class compactness and inter-class
separability for both the intra-modality and cross-modality. Apart
from this, we also confirm the effectiveness of the hetero-center cross-
modality constraint loss for the final fused features (Lfhc cross). When we
adopt the multi-branch constraint loss completely, we can achieve the
best results on all indicators.

4.6. Parameter discussion

In this subsection, we discuss some parameters in the network, the
margin ρ1 in the intra-modality constraint loss, the margin ρ2 in the
hetero-center cross-modality constraint loss, the dimension d of the local
channel features and local spatial features in the multi-branch feature
learning module and the number of local features in the multi-branch
feature learning module.

Table 4
The effectiveness of CM-CSEO on SYSU-MM01 and RegDB datasets.

Network Fusion SYSU-MM01 RegDB

R = 1 mAP mINP R = 1 mAP mINP

Baseline – 51.10 50.12 36.13 81.35 78.28 71.23
Four-streams Cat 51.63 50.75 36.86 82.53 79.73 71.01
Random
erasing

Cat 52.54 51.13 37.24 83.94 80.95 72.12

CM-CSEO Sum 52.96 51.32 37.89 83.56 80.36 72.85
CM-CSEO Cat 58.88 55.12 41.46 88.89 85.93 79.45

Table 5
The effectiveness of different kind of local feature extraction part on SYSU-
MM01 and RegDB datasets.

Network SYSU-MM01 RegDB

R = 1 mAP mINP R = 1 mAP mINP

Baseline 51.10 50.12 36.13 81.35 78.28 71.23
Channel part 55.78 52.68 38.41 85.75 82.12 75.62
Spatial part 56.02 53.56 39.15 86.35 83.65 76.81
All local part 59.94 54.97 41.26 89.96 86.02 79.96

Table 6
The effectiveness of the multi-branch constrain loss on RegDB and SYSU-MM01 datasets.

Loss function SYSU-MM01 RegDB

Lid Lintra Lghc cross Lfhc cross
R = 1 mAP mINP R = 1 mAP mINP

√ 50.17 49.17 34.87 81.61 78.93 72.65
√ √ 55.48 53.08 36.00 86.46 83.16 75.23
√ √ 56.51 54.26 36.88 87.53 84.23 77.85
√ √ √ 58.48 56.08 38.05 89.82 86.61 80.39
√ √ √ √ 61.75 59.51 42.35 91.26 88.79 81.80

Fig. 5. The experimental results of different intra-modality constraint loss
margins on (a) RegDB and (b) SYSU-MM01 datasets.
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1) The effect of the margin ρ1 in the intra-modality constraint loss

In the intra-modality constraint loss, we predefine the ρ1 to deter-
mine the minimal distance of the anchor image and its negative image.
In this subsection, experiments are carried out using various values. of
the margin ρ1 in the intra-modality constraint loss on the RegDB and
SYSU-MM01 datasets.

As demonstrated in Fig. 5, we could inspect that intra-modality
constraint loss achieves the best performance when margin ρ1=0.3 for
both of RegDB and SYSU-MM01 datasets. It also proved that intra-
modality constraint loss could help improve the performance to some
extent with proper margin ρ1.

2) The effect of the margin ρ2 in the hetero-center cross-modality constraint
loss

Different training data have different requirements for margin ρ2 in
hetero-center cross-modality constraint loss, so we discuss the values of
the margin on two different datasets, RegDB and SYSU-MM01, in this
subsection.

From (a) in Fig. 6, we find out that the experimental effect on RegDB
gradually gets better as the margin ρ2 gradually increases from 0 to 1,
while the model performance progressively decreases as ρ2 increases
from 1 to 1.5. Therefore, the optimal value for the hetero-center cross-
modality loss margin on the RegDB dataset is 1. As can be observed from
Fig. 6 (b), the effect of changing the value on SYSU-MM01 is similar to
the situation on RegDB, except that the best value is changed from 1 to
0.5. Therefore, the model has the best performance on SYSU-MM01
when the margin is 0.5.

3) The effect of different local feature dimensions in the multi-branch feature
learning module

In the multi-branch feature learning module, we finally change the
dimensions of local channel features and spatial features through the
batch normalization layer. Therefore, in this subsection, we discuss the
effect of the different dimensions of local features on two different
datasets, RegDB and SYSU-MM01. As shown in Fig. 7(a), the perfor-
mance of the model improves progressively as the local feature dimen-
sion increases on the RegDB dataset. When dimensions d is increased
from 256 to 512, the model performance has improved a little, but this
improvement is based on the premise that the feature dimension is
doubled. Therefore, considering the performance of the model and the
impact of feature dimensionality on network complexity, we set the final
dimension d to 256 on the RegDB dataset. In Fig. 7(b), we can clearly
observe that d = 256 performs the best effect on the rank1, mAP, and
mINP criterion for the SYSU-MM01. Therefore, we set the dimension on
SYSU-MM01 to 256.

4.7. Visualization analysis

In this subsection, we compare the visualization results of modality-
specific feature maps extracted by baseline and our proposed MRCL
module. Visible and infrared images with the same identity were
selected as input images from datasets SYSU-MM01 and RegDB in Fig. 8
(a). As shown in Fig. 8, feature of baseline and feature of upper stream of
MRCL almost pay attention to the same part. With the help of the CM-

Fig. 6. The experimental results of different dimensions of local features on (a)
RegDB and (b) SYSU-MM01 datasets.

Fig. 7. The experimental results of different hetero-center cross-modality
constraint loss margins on (a) RegDB and (b) SYSU-MM01 datasets.
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CSEO, the lower stream of MRCL is able to mine potential comple-
mentary information in Fig. 8(d). With the complementary parts mined
by the lower stream of MRCL, the final performance of our model can be
improved significantly.

5. Conclusion

In this paper, we proposed an innovative visible thermal person re-
identification (VT Re-ID) method named multi-branch modality resid-
ual complementary feature learning. Our method incorporates two
modules, the modality residual complementary learning (MRCL) mod-
ule and the multi-branch feature learning (MBFL) module. MRCL drives
the model simultaneously considers the intra-modality features and
inter-modality features containing important complementary informa-
tion that was ignored by the conventional two-stream network. We can
obtain diverse and discriminative features to reduce cross-modality
discrepancy with the help of MRCL. Meanwhile, we also adopt the
MBFL module to capture local spatial features and local channel features
and integrate them with global features to acquire ultimate represen-
tations. The MBFL handles the intra-modality variations by part-to-part
matching and high-level semantic concept-to-concept matching. We
further introduce the multi-branch constraint loss function to utilize the
different attributes of both global and local features thoroughly.
Experimental results on two VT Re-ID datasets RegDB and SYSU-MM01
validate the superior performance of the proposed method.
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