
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

MC-MOE: MIXTURE COMPRESSOR FOR MIXTURE-OF-
EXPERTS LLMS GAINS MORE

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixture-of-Experts large language models (MoE-LLMs) marks a significant step
forward of language models, however, they encounter two critical challenges in
practice: 1) expert parameters lead to considerable memory consumption and
loading latency; and 2) the current activated experts are redundant, as many tokens
may only require a single expert. Motivated by these issues, we investigate the
MoE-LLMs and make two key observations: a) different experts exhibit varying
behaviors on activation reconstruction error, routing scores, and activated frequen-
cies, highlighting their differing importance, and b) not all tokens are equally
important– only a small subset is critical. Building on these insights, we propose
MC-MoE, a training-free Mixture-Compressor for MoE-LLMs, which leverages
the significance of both experts and tokens to achieve an extreme compression.
First, to mitigate storage and loading overheads, we introduce Pre-Loading Mixed-
Precision Quantization (PMQ), which formulates the adaptive bit-width allocation
as a Linear Programming (LP) problem, where the objective function balances
multi-factors reflecting the importance of each expert. Additionally, we develop
Online Dynamic Pruning (ODP), which identifies important tokens to retain and
dynamically select activated experts for other tokens during inference to optimize
efficiency while maintaining performance. Our MC-MoE integrates static quanti-
zation and dynamic pruning to collaboratively achieve extreme compression for
MoE-LLMs with less accuracy loss, ensuring an optimal trade-off between per-
formance and efficiency. Extensive experiments confirm the effectiveness of our
approach. For instance, at 2.54 bits, MC-MoE compresses 76.6% of the model,
with only a 3.8% average accuracy loss. During dynamic inference, we further
reduce activated parameters by 15%, with a performance drop of less than 0.6%.
Remarkably, MC-MoE even surpasses floating-point 13b dense LLMs with signifi-
cantly smaller parameter sizes, suggesting that mixture compression in MoE-LLMs
has the potential to outperform both comparable and larger dense LLMs.

1 INTRODUCTION

Mixture-of-Experts large language models (MoE-LLMs) (Muennighoff et al., 2024; Jiang et al., 2024;
Dai et al., 2024) provide an efficient model-scaling mechanism by utilizing a sparse architecture, in
which only a subset of experts is activated by router. This selective activation boosts computational
efficiency and scalability by assigning experts dynamically based on the specific needs of each input.
Despite reducing the number of active experts to improve inference efficiency, MoE models still
face significant deployment challenges. All experts must be loaded into memory simultaneously,
and typically at least two experts are activated during inference, resulting in considerable memory
and computational overhead. Even an NVIDIA A100-80GB GPU cannot accommodate typical
MoE models like Mixtral 8×7b (Jiang et al., 2024) (Fig. 1(b)). The proposed challenges hinder the
deployment of LLM with limited hardware resources which further promotes study on MoE-LLM
compression for better deploying model-scaling paradigm.

The primary goal of compressing MoE-LLMs is to reduce the size of expert parameters, as they
dominate the memory usage (Li et al., 2024). For instance, in models like Mixtral 8 × 7b, the
number of expert parameters is 33 times greater than that of the attention modules. On the other
hand, recent studies (Chi et al., 2022; Lu et al., 2024) have shown that due to the training strategies
of MoE, not all experts are equally important, which indicates that both the static experts during

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

(b)

LLaMA3-8b

7b

7b

8×7b

(a)

Pe
rf

or
m

an
ce

 (M
M

L
U

 5
-s

ho
t) 

↑

Activated Parameters Size (billions)

Pa
ra

m
et

er
s S

iz
e 

(G
B

)

Mixtral 8×7bDeepSeek-16bLLaMA2-13b

×3.6

×8

87
.1

29
.8

24
.2

3.
7

Total Parameters

Activated Parameters

A100 
80GB

Large Language Models
Mixtral 8×7b 

2.05bit

Mixture Compressor

13b

13b 33b

34b2.0b

1.6b

1.3b

2b

2.7b

3090
24GB

2.6b

1.9b

5.2b

8×22b

3.6b

4.5b

5.5b

Figure 1: (a) MMLU (5-shot↑) accuracy across different open-source LLMs with various activated
parameters (dot-lines denote the quantized models, solid-lines are 16-bit models). To align quantized
models’ parameter size with 16-bit models, we define 16bits as one parameter (e.g. 8×2-bit elements
represent one parameter). (b) Comparison of total parameter size and inference activated parameter
size on few open-source LLMs and compressed Mixtral 8×7b.

the pre-loading phase and the dynamic experts during online inference need to be compressed.
Previous expert compression methods have typically focused on compressing a single phase, such as
quantizing expert weights during the pre-loading stage (Li et al., 2024) or pruning experts during
the inference stage (Lu et al., 2024; Koishekenov et al., 2022; Kim et al., 2021). Furthermore,
vanilla uniform bit-width quantization and expert pruning based solely on routing scores struggle to
maintain performance at extremely high compression ratios. Therefore, in this work, we are the first
to explore extreme training-free mixture compression for MoE-LLMs, efficiently combining static
expert quantization with dynamic expert pruning using a combination of expert importance metrics
to achieve ultra-lightweight MoE-LLMs without significantly sacrificing performance.

To this end, we propose the MC-MoE, i.e., Mixture-Compressor for MoE LLMs, exploring the
combined benefits of expert quantization and pruning. MC-MoE consists of two phases: Pre-
Loading Mixed-Precision Quantization (PMQ) and Online Dynamic Pruning (ODP), as shown in
Fig. 1(a). In the pre-loading phase, we focus on extreme compression of the stored experts through
low-bit quantization. Our empirical study reveals imbalances in activation reconstruction error,
routing weights, and frequencies of activated expert (Sec. 3.2.1 and Fig. 3), which inspires the
allocation of different bit-widths to each expert. However, relying solely on the routing frequencies
or scores is insufficient to accurately determine the optimal bit-width, as the two distributions may
not be consistent but rather the opposite (Li et al., 2024). Therefore, we developed a weighted
evaluation function that considers both the frequency and scores of expert activations, as well as
the associated quantization loss at different bit-widths. This function is then minimized within a
Linear Programming (LP) model to determine the optimal quantization configuration. Utilizing a
training-free Post-training Quantization (PTQ) approach, GPTQ (Frantar et al., 2022), PMQ achieves
high-performance compression at extremely low bit-widths (1.5-bit∼2.5-bit), and our mixed-precision
strategy is compatible with other advanced quantization techniques (Tseng et al., 2024; Chen et al.,
2024; Shao et al., 2023; Egiazarian et al., 2024; Liao & Monz, 2024). As for inference phase,
ODP dynamically prunes low-confidence experts for each token based on the routing weights. Our
pruning strategy follows two key principles: first, experts with significantly lower routing scores are
categorized as “low confidence” and can be pruned (Lu et al., 2024). Second, to prevent attention
degradation that solely relies on routing weights, we protect important tokens by considering both
attention scores and feature magnitudes. Experiments show that protecting only 2% of the important
tokens effectively mitigates pruning loss while maintaining nearly the same compression ratio.

The proposed mixture compression of low bit-width experts improves performance compared to
uniform quantized experts or other mixed-precision strategies, even surpassing float-point (FP) models
with the same number of activated parameters. Moreover, when compressing Mixtral 8 × 7b to
around 8b (2.54-bit), its activated parameters amounted to only 2b, while even outperforming 16-bit
LLaMA2-13b by around 8% on the MMLU (5-shot), as shown in Fig. 1(a). Mixture compression
exploits the disparities between MoE experts, for the first time enabling surpassing of smaller FP
models of equivalent size under extreme compression without training. This achievement underscores
the significant compression potential and practical utility of sparse MoE-LLMs.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

(a) (b)

Pre-Loading Static Mixed-Precision Quantization Online Dynamic Mixture Pruning

Multi-Head Self-Attention

Gating
Routing Score

…

𝑬𝟎 𝑬𝟏 𝑬𝟔… 𝑬𝟕𝑬𝟏

Multi-Head Self-AttentionGating

𝑬𝟎 𝑬𝟏 𝑬𝟔
… 𝑬𝟕𝑬𝟐

4-bit 4-bit

𝛿& 𝛿' 𝛿(

𝜶
𝜷

𝜸

1-bit

Multi-Head Self-Attention

Activation Gating

T

Attention 
Map

𝑬𝟎 𝑬𝟔 𝑬𝟏 𝑬𝟐 𝑬𝟐 𝑬𝟓 …

𝒘𝟏
𝒘𝟎

< 𝝁 …

𝑻 𝟏×𝑨

Top-𝟐% 
Protection

𝒘𝟏
𝒘𝟎

≥ 𝝁2-bit 3-bit

Figure 2: The overview of our proposed MC-MoE pipeline with two stages compression for experts.
(a) Framework of pre-loading static mixed-precision quantization (PMQ) of MoE-LLMs. PMQ
determins the activated feature and loss sensitivity of all experts and plans the optimal precision
configuration under ultra-low -bit-width. (b) Schematic of online dynamic mixture pruning (ODP)
of MoE-LLMs. ODP utilizes significant token protection mechanism with weigh-guided experts
pruning, which only need to keep 2% token to successfully safeguard the MoE performance.

2 RELATED WORKS

Mixture-of-Experts LLMs. LLMs have achieved significant advancements across various natural
language processing domains (Chang et al., 2024; Zhao et al., 2023). Despite their success, these
models rely heavily on dense parameters, which presents significant challenges for deployment(Zhou
et al., 2024; Zhu et al., 2023). Sparse activated MoE models have been identified as an essential
strategy to enhance the cost-performance balance in LLMs. In MoE models, each layer is comprised
of several experts, with each token activating only a specific subset, thereby significantly improving
efficiency compared to dense models, which activate all parameters for every input (Shazeer et al.,
2017; Yun et al., 2024). Recent advancements in decoder-only LLMs (Brown, 2020) have further
popularized MoE-based architectures (Jiang et al., 2024; Muennighoff et al., 2024). Industry-leading
models such as Mixtral 8 × 7b (Jiang et al., 2024), Deepseek-MoE (Dai et al., 2024), and GPT-
4 (Achiam et al., 2023) also incorporate this technology.

Quantization for LLMs. Post-Training Quantization (PTQ) is an efficient method that requires
no additional training, making it well-suited for large-scale LLMs (Dettmers et al., 2022; Frantar
et al., 2022; Xiao et al., 2023; Shao et al., 2023; Lin et al., 2024). Previous studies have investigated
the diverse salience of weights and proposed mixed-precision methods to improve low-bitwidth
performance by allocating different bitwidths accordingly (Dong et al., 2020; Huang et al., 2024c;
Dettmers et al., 2023; Shang et al., 2023; Huang et al., 2024a). Recent research introduced an expert-
guided, block-wise mixed-precision benchmark for MoE-LLMs to address the disparities in expert
weights (Li et al., 2024); however, developing more effective expert-wise quantization strategies
remains a challenge. Codebook-based encoding approaches enable more precise quantization of
LLMs and enhance post-quantization performance through fine-tuning (Egiazarian et al., 2024; Tseng
et al., 2024). While Quantization Aware Training (QAT) requires significant resources (Chen et al.,
2024; Liu et al., 2023b), QAT-based retraining strategies or PTQ combined with additional fine-
tuning (Liao & Monz, 2024; Guo et al., 2023; Huang et al., 2024b) are more effective in maintaining
the performance of quantized lightweight LLMs.

Parameter pruning for LLMs. Parameter pruning is another effective method for neural network
compression (Kwon et al., 2022; Hubara et al., 2021), and it has recently become crucial in reducing
the size of LLM weights (Frantar & Alistarh, 2023; Sun et al., 2023). Traditional pruning approaches
focus on two main techniques: structured and unstructured pruning, both of which selectively zero
out certain parameters based on their importance (Zhou et al., 2024). In MoE-LLMs, less important
experts can be pruned based on activation frequencies or the statistical characteristics of gating (Kim
et al., 2021; Koishekenov et al., 2022; Liu et al., 2024). During the model preloading stage, pruning
tends to incur greater loss than quantization at the same compression rate. However, dynamically
adjusting the quantization bit-width during inference remains a challenge, whereas pruning offers the
flexibility to dynamically select activation parameters during inference (Zhu et al., 2023). Recent
work by (Lu et al., 2024) has explored dynamically activating top-k experts based on gating weights
in MoE, significantly improving inference efficiency.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

3 METHOD

3.1 PRELIMINARIES

Mixture-of-Experts LLM. In decoder-only MoE-LLMs, conventional feed-forward networks
(FFN) are replaced by MoE layer, each having N experts (Gale et al., 2023). The MoE-
LLMs selectively activates the top-k experts for different tokens by a group of routing scores
wtop-k = {w0, w1, ..., wk−1}, k < N , generated by a gating layer G(t). Fig. 2(a) illustrates the
experts selection mechanism during the inference phase based on routing scores. Specifically, in the
Mixtral 8× 7b model, there are 8 experts and each token t is routed to the top-2 experts (Jiang et al.,
2024). The output y of each token in MoE layer is calculated as:

y =
∑

wi∈Top-2{G(t)}

wi Ei(t), (1)

where Ei represents the feed-forward operator of the i-th expert and wi is the routing weights/scores
calculated by the gating G(t). Therefore, according to the definition in Eq (1), the routing mechanism
establishes the correspondence between tokens and experts.

Quantization Technique. Since the substantial memory overhead of MoE models mainly arises
from the weights of its experts (over 96% weights of the model), quantization is employed for the
experts. Specifically, floating-point weights distributed in the interval [Wmin,Wmax] are mapped
to the integer range of [0, 1..., 2B ], where B represents the target bit-width, and the quantization
reconstruction for the weights W ∈ Rin×out can be defined as:

argmin
Wq

∥WX−WqX∥22, (2)

where Wq denotes the quantized weight and ∥ · ∥2 is the mean square error (MSE) loss. The primary
objective of this study is to explore the optimal mixture compression strategy for MoE-LLMs. To
this end, we employ the efficient PTQ scheme, GPTQ (Frantar et al., 2022), as our foundational
tool. By utilizing Hessian-based estimation (H = 2XX⊤) and quantization error compensation,
GPTQ effectively reduces the group-wise quantization error of weights, enabling the quantization of
Mixtral 8× 7b within 90 minutes. This work focuses on the design of optimal mixture compression
strategies for MoE-LLMs and is therefore orthogonal to other quantization techniques, including PTQ
methods (Shao et al., 2023; Lin et al., 2024), codebook-based works (Egiazarian et al., 2024; Tseng
et al., 2024), and even the deployment of fine-tuning (Liao & Monz, 2024) or QAT (Chen et al., 2024;
Liu et al., 2023b) can be deployed for MC-MoE, additional evidences are shown in Appendix A.3.

3.2 PRE-LOADING MIXED-PRECISION QUANTIZATION

As outlined in Sec. 3.1, the primary storage overhead of MoE-LLMs resides in the experts, necessitat-
ing compression before loading onto devices. Mainstream LLM pruning suffers from performance
degradation under extreme pruning conditions (≥50%) (Frantar & Alistarh, 2023; Sun et al., 2023;
Lu et al., 2024), whereas quantization has been demonstrated to achieve high levels of compression
with lower performance drop (Huang et al., 2024b; Zhou et al., 2024). Moreover, as shown in (Li
et al., 2024) and our Sec. 4.1, uniform bit-width quantization does not meet the extreme compression
accuracy requirements for MoE-LLMs. Therefore, the diverse and uneven features of experts inspire
us to explore the optimal mixed-precision quantization approaches.

In this section, we introduce our Pre-Loading Mixed-Precision Quantization (PMQ) method, designed
to effectively reduce the model size by applying targeted-experts quantization. The core focus of
PMQ is optimizing the bit-width allocation strategy for experts. To this end, we begin by conducting
a thorough analysis of experts’ behavior on the calibration dataset and leverage this information to
design an Integer Programming (IP) model that solves the optimal quantization configuration. For
other components of the model, such as attention parameters, we apply the same bit-width.

3.2.1 EXPERTS SIGNIFICANCE ANALYSIS

The core principle of our expert quantization strategy is grounded in the significance of each expert,
which enables the allocation of bit-widths according to their relative importance within a block.
We initially observed the performance of different experts in Mixtral 8 × 7b in terms of expert-
drop reconstruction loss (Frobenius norm) (He et al., 2017), and activation features on the dataset

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Activation Frequency MapWeight Score MapFrobenius Loss Map

C4

Math

Figure 3: Distribution of expert drop F-norm (red), activated weights (green) and frequencies (blue)
in the Mixtral 8× 7b model, encompassing 32 MoE layers with 8 experts per layer. The top set of
the heatmap is calculated through C4 dataset, and the bottom set is calculated through MATH dataset.
MoE-LLMs selectively activate top-2 experts in each MoE layer, wherein a significant portion of
experts remain less important or inactivated all the time.

C4 (Raffel et al., 2020) and the specialized domain dataset Math (Hendrycks et al., 2021). As shown
in Fig 3, the impact of experts on the model varies widely: 1) some experts, such as the one at position
[2, 4] (Fig 3 left), have minimal influence on the output activation reconstruction loss, while others in
layer 2 exhibit significantly higher losses, highlighting the imbalance among MoE-LLMs’ experts; 2)
the activation scores and frequencies reveal distinct patterns, where experts at positions [11, 3] and
[12, 7] show extremely low activation frequencies and average scores, while the expert at position
[1, 3] has low scores but comparatively high activation frequencies; and 3) in task-specific contexts
like mathematics (MATH), MoE activates fewer experts, resulting in a strong sparser distribution
than general text datasets. This variability in routing feature inspires the need to consider multiple
factors in determining the optimal bit-width allocation for experts.

We mainly measure the significance of each expert through two critical factors: access frequency
and activation weight. Given an N -sized calibration dataset C4 (general language understanding
dataset), we first perform inference on the original 16-bit MoE-LLMs to compute these factors. For
each expert, access frequency refers to the rate at which the expert is activated, defined as the number
of activations divided by the dataset size. Thus, i-th expert’s access frequency is ϕi =

ni

N , where
ni is this expert’s total activated number. A higher activation frequency indicates that the expert is
triggered more often, suggesting its generality and applicability across a wide range of tokens, thereby
signifying higher importance. However, access frequency alone overlooks the potential significance
of experts who are rarely activated. To account for this, we introduce the activation-weighted metric,
which sums the routing weights assigned to each expert during inference. This metric for i-th expert

can be denoted as wi =
∑N

j=1 σj

N , where σj is the expert’s routing weight in the j-th inference. This
provides a finer-grained measure of an expert’s contribution in MoE-LLMs, capturing its relative
importance beyond mere frequencies. By combining these two metrics, we achieve a more nuanced
assessment of expert significance. The final expert significance is computed as ϕα

i · wβ
i , where α and

β are hyperparameters used to balance the two factors.

3.2.2 OPTIMAL EXPERTS BIT-WIDTH ALLOCATION WITH WEIGHTED IMPORTANCE FACTORS

After obtaining the expert significance, we proceed to explore how to leverage this significance for
mixed-precision quantization. The core idea is to assign different bit-widths to each expert based
on its importance, preserving the contributions of more significant experts with higher bit-widths
while applying more aggressive quantization to less significant experts. In addition to considering
expert significance, we evaluate the reconstruction error of output activations in each MoE layer
post-quantization, which allows us to quantify the impact of individually quantizing each expert.
Specifically, for a given expert, we compute the Frobenius norm (F-norm) between the output of the
model when this expert is quantized and the output when no quantization is applied to any experts.

ϵi,j = ∥F (θ)− F (θ[ei → Q(ei, j)])∥F , (3)

where F (θ) is the model output with full parameters θ, and F (θ[ei → Q(ei, j)]) represents the
output when only expert ei is quantized to j bits. Q(·) denotes the quantization function.

Our goal is to ensure that the extremely-low average bit-width across all experts in a MoE block
equals a targeted value k, with bit-width options restricted to {1, 2, 3}-bit. To achieve this, we
formulate the problem as an Integer Programming (IP) optimization, which only takes a second to
finish the bit-width allocation computing. The IP model is defined as:

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Attention-aware experts pruning of Block 14

Keep top-2 Experts 
of Token67

Block 15, Head 4

Weight-only expert pruning of Block 14

Drop one Expert 
of Token67

Block 15, Head 4 Block 15, Head 4

Attention-Sink Tokens

Figure 4: Typical attention map of block 15, head 4 in Mixtral 8×7b under different dynamic pruning
process. The middle with out pruning shows that attention, in a column-wise manner, highlighted
several tokens with high scores, such as token 31 and token 67. However, after undergoing traditional
weight-only pruning through block 14 layers, experts pruned at the position of token 67, resulting in
a decay in the attention map. Through attention-aware pruning based on token importance, block 14
protected token 67, thereby avoiding attention decay in the subsequent layer.

MINIMIZE

n∑
i=1

3∑
j=1

ϕα
i · wβ

i · (ϵi,j · xij)
γ

SUBJECT TO

n∑
i=1

3∑
j=1

j · xij = n · k,
3∑

j=1

xij = 1, ∀i,

n∑
i=1

xi3 ≥ 1,

n∑
i=1

xi2 ≥ 1, xij ∈ {0, 1}, ∀i, j.

(4)

Here, xij is a binary variable indicating whether the i-th expert is quantized to j bits (xij = 1 if true,
xij = 0 otherwise). To preserve the accuracy of key experts, we enforce a constraint that at least one
expert must be quantized to 3 bits and at least one expert to 2 bits. γ is a weighting hyperparameter.
After determining the optimal bit-width combination for each MoE Block expert, we apply the
GPTQ quantization algorithm to quantize the experts accordingly. For the remaining weights in the
attention or gating module, considering their extremely small parameter size, we quantize them to
4-bit, resulting in an introduced average bit-width of no more than 0.05 bits.

3.3 ONLINE DYNAMIC PRUNING

Our PMQ strategy compresses the storage memory of experts during the pre-loading phase; however,
the selection of the top-k experts during inference still incurs high computational costs. As discussed
in Lu et al. (2024), not all tokens require k experts for inference. To optimize efficiency while
maintaining performance during inference, in this section, we introduce the Online Dynamic Prun-
ing (ODP) technique, which identifies important tokens to retain and dynamically selects activated
experts for other tokens.

3.3.1 ATTENTION DECAY UNDER WEIGHT-ONLY PRUNING

To effectively perform dynamic experts pruning, an intuitive and efficient method involves utilizing
the top-k experts’ routing scores during inference (Lu et al., 2024; Huang et al., 2023). This approach
directly skips experts with lower routing weights among selected set for each token. For simplicity,
when k = 2 (as in Mixtral 8× 7b), the pruning process follows:

{w0 = 0, w1 = 1, w0, w1 ∈ Top-2{G(t)} | w1

w0
< µ} (5)

w0 and w1 denote the top-2 experts, respectively, with µ erving as a hyperparameter threshold for
each MoE layer. This threshold is set at the median value of w1

w0
derived from calibration data

(Lu et al., 2024). According to Eq. (5), when a selected expert has a notably low weight, it is
feasible to be pruned for the current token, thus retaining only the primary expert for computation.
Sec. 4.2 documents that employing this weight-based dynamic pruning strategy reduces computational

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

demands by 15%, but also incurs a performance decrease of approximately 10%. Further examination
reveals that this decline is due to an “attention decay” effect, which is evident in Fig. 4. Specifically,
unpruned conditions show a pronounced vertical pattern in the attention map of block 15, head 4, at
token 67 (Fig. 4, middle). However, the application of weight-only pruning in block 14 results in the
elimination of one expert for token 67, leading to a significant reduction in the attention map score at
token 67 in block 15 (Fig. 4, left). This effect is herein defined as “attention decay.”

3.3.2 SIGNIFICANCE-AWARE TOKEN PROTECTION

Weight-only pruning considers only the routing weights of experts, but overlooks the intrinsic
importance of tokens. However, the output capabilities of LLMs are often influenced by a few
critical tokens (Zhang et al., 2024; Guo et al., 2024; Nrusimha et al., 2024), and considering weights
alone, as illustrated in Fig. 4, can lead to the pruning of experts corresponding to salient tokens. To
circumvent the issue of attention decay, we introduce a simple but effective method that safeguards
the computational experts of the most critical tokens in dynamic inputs from being pruned. Inspired
by (Guo et al., 2024), we introduce an evaluation metric for token importance:

Ij = ∥tj∥1 ·
∑

j≤i≤L Aj,i

L− j
(6)

where Ij denotes the importance of the i-th token, ∥ · ∥1 is the ℓ1 norm, and the total length of input
tokens is L. A represents the attention map in an LLM block, calculated from A = softmax(K

⊤Q√
dk

)

of this layer. Considering the co-effects of token magnitude and attention socres, Eq. 6 flexibly
combines these two factors to accurately define the importance of each token.

As demonstrated in Fig. 4, right, introducing important token protection into weight-only pruning
effectively mitigates attention decay issues. Due to the high importance parameter I67 of token
67, all experts are preserved for computing token 67 in block 14, thereby preserving the expected
distribution in the attention map of block 15 for token 67. Experiments in Sec. 4.2 indicate that
selectively protecting merely 2% of important tokens can significantly reduce performance losses in
MoE-LLMs, while still maintaining a computational efficiency improvement of approximately 15%.
We also provide the detailed computation overhead analysis of Eq. 6 during the online inference in
Appendix A.9.

4 EXPERIMENT

In this section, a series of experiments are conducted to evaluate the proposed MC-MoE. We present
by describing the models selected, datasets, quantization methods, and experimental parameter
settings. In Sec. 4.1, we assess the parameter settings for the PMQ method and the performance of
mixture quantization. We conduct a detailed evaluation of the performance loss and compression
efficiency of ODP stage, shown in Sec. 4.2. Finally, we present the combined performance of static
quantization and dynamic pruning in MoE-LLMs.

Table 1: Selected MoE-LLMs and model configu-
rations. Size: the total parameter size, Act Size: ac-
tivated parameter size per-token; B: decoder block
number, H: hidden dimension, E: expert number.

Model Size Act Size B H E
Mixtral 8× 7b 49b 13b 32 4096 8
Mixtral 8× 22b 141b 39b 56 6144 8

Experiment Setup. The mixed-precision fac-
tors of experts are calibrated from C4 (Raffel
et al., 2020) dataset, with 128 sets of random
sequences, each 2048 tokens long. After de-
termining the bit-width configuration, the final
quantization process follows the GPTQ (Frantar
et al., 2022) procedure. We select the open-
source Mixtral 8 × 7b and Mixtral 8 × 22b as
our target models, shown in Tab. 1. Mixtral 8× 7b can be compressed on two NVIDIA A100-80GB
GPUs, while Mixtral 8× 22b is completed on four NVIDIA A100-80GB GPUs.

Other None-MoE layers are set to 4-bit. Due to the significant size of expert weights, the 4-bit
quantization of other parameters has minimal impact on the average bit-width. In the performance
experiments for the proposed MC-MoE, perplexity (PPL↓) was chosen as the metric to evaluate token
prediction capabilities, primarily deploying the general text dataset WikiText2. To comprehensively
assess the language capabilities of the compressed LLMs, we evaluated the models’ overall abilities in
eight zero-shot benchmarks (↑) tested by EleutherAI LM Harness (Gao et al., 2013), which included
evaluations on PIQA, ARE/C, BoolQ, HellaSwag, Winogrande, MathQA, and MMLU.

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Figure 5: Quantized PPL performance of Mix-
tral 8 × 7b under different mixed-precision
strategies (with random allocation)

Figure 6: Quantized PPL performance of Mix-
tral 8 × 7b under different mixed-precision
strategies (without random allocation).

Table 2: Performance of quantized Mixtral 8× 7b on eight zero-shot benchmarks. We deploy GPTQ
as our baseline PTQ method for uniform quantization. “Uni” denotes the uniform quantization of
2-bit with GPTQ. Since the results of some data sets in the block score predictor (BSP) (Li et al.,
2024) method were not reported, we resumed the relevant quantized model from the official code
repository and evaluated all the results under the same settings. In BSP, 25% MoE layers are 4-bit
and the left are 2-bit to achieve 2.54-bit. “HellaS.” is the short format of “HellaSwag” and “Wino.”
denotes “Winogrande”. ↓ gives the accuracy loss between quantized results and original 16-bit model.

Method Bits PIQA ARC-e ARC-c BoolQ HellaS. Wino. MathQA MMLU Avg.% ↑

16.00 85.20 84.01 57.17 85.35 81.48 75.93 39.29 67.88 71.29
Uni 3.00 82.10 78.58 55.80 82.94 79.28 74.19 39.26 60.58 69.092.2%↓

Uni 2.00 61.98 47.20 25.71 62.39 41.91 53.22 22.79 30.36 42.6728.6%↓
BSP

(Li et al., 2024) 2.54 68.23 54.97 28.38 68.16 55.61 62.19 24.07 27.74 49.0722.2%↓

Hessian
(Dong et al., 2020)

2.54 80.21 76.38 51.20 81.11 78.05 72.97 35.27 56.21 67.184.1%↓

2.05 75.32 67.26 45.01 70.29 71.90 69.11 31.07 40.85 58.8512.4%↓

1.57 65.26 52.12 21.84 68.21 52.91 50.32 24.99 31.58 45.9125.4%↓

PMQ

2.54 80.52 77.10 51.28 82.54 79.03 73.95 39.18 56.37 67.503.8%↓

2.42 80.36 75.76 50.17 80.00 78.13 73.09 34.97 53.22 65.715.6%↓

2.30 83.11 73.59 47.78 80.83 76.48 73.14 33.84 52.54 64.916.4%↓

2.20 79.05 73.70 47.87 74.56 76.63 72.77 34.24 47.73 63.298.0%↓

2.05 79.16 73.06 48.38 80.58 74.95 71.27 31.79 46.80 63.258.0%↓

1.94 76.88 68.48 45.48 75.23 72.05 72.61 31.16 40.93 60.3510.9%↓

1.81 76.93 66.67 43.60 75.50 70.50 69.85 28.68 40.71 59.0612.2%↓

1.69 75.41 64.14 40.61 68.96 67.01 68.03 28.04 37.14 56.1715.1%↓

1.57 72.42 62.46 37.88 73.55 63.17 66.38 26.80 32.25 54.4916.8%↓

4.1 EXPERIMENT ON PRE-LOADING MIXED-PRECISION QUANTIZATION

Ablation of Bit-Width Allocating Metrics. Fig. 5 illustrates a significant decline in model perfor-
mance with random bit-width allocation. And employing only the routing scores of experts from
calibration data, the curve in Fig. 6 though better than random allocation, the PPL curve is still high.
However, activation frequencies, in comparison to weight, shows a better performance.

Furthermore, in conventional networks and dense LLMs, Hessian-based quantization loss is a common
use for bit-width allocation (Dong et al., 2020; Huang et al., 2024c). We also utilized is as a compared
metric for expert-wise bit-width allocation. Fig. 6 also contains three metric curves: Hessian, F-norm,
and PMQ. F-norm and PMQ are more effective than Hessian for expert-wise bit-width allocation,
exhibiting better performance under different bit-widths. When the average bit-width exceeds 2-bit,
the F-norm is similar to the PPL curve of PMQ; below 2-bit, the lead of PMQ gradually widens.

Comparison of Mixed-Precision Quantization. We present a comprehensive comparison of the
performance of PMQ within the ultra-low bit-width range (other challenging benchmarks are shown
in Appendix A.4). GPTQ was set as the baseline for uniform bit-width quantization, denoted as “Uni”

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Figure 7: Significant tokens protection of 2.05-bit
Mixtral 8 × 7b. “CR” denotes the average com-
putation compression ratio (blue); “PPL” denotes
the perplexity(red); Star represents the weight-
only pruning performance.

Figure 8: Less significant tokens drop of 2.05-
bit Mixtral 8× 7b. In Mixtral 8× 7b, we mask
all experts of the less significant tokens. “CR”
denotes the average computation compression
ratio (blue); “PPL” denotes the perplexity(red).

in Tab. 2. We also compare it with a recent mixed-precision approach for MoE-LLMs known as the
block score predictor (BSP) (Li et al., 2024). Following Eq. 4, we set the average bit-width of Mixtral
8× 7b within the range of 1.57-bit to 2.54-bit. As shown in Tab. 2, the uncompressed 16-bit model
achieves an average accuracy of 71.29%. With uniform precision quantization, the average loss for
the 3-bit model is approximately 2.2%, while the loss for the 2-bit model increases significantly by
28.6%, highlighting the challenges in maintaining model accuracy with existing uniform precision
quantization methods at ultra-low bit widths.

Table 3: Comparison of different mixed-precision
strategies on few-shot performance (MMLU five-
shot ↑) for Mixtral 8×7b. More results of different
bit-widths are shown in Appendix. A.1.

Method Bits Accuracy % ↑
16.00 70.60

Uni 2.00 34.0536.6%↓
BSP (Li et al., 2024) 2.54 31.5739.0%↓

Hessian (Dong et al., 2020)
2.54 58.2212.4%↓
2.05 43.5127.1%↓
1.57 31.9638.6%↓
2.54 61.199.4%↓

PMQ 2.05 49.8420.8%↓
1.57 33.4437.2%↓

BSP achieves an average accuracy of only
49.07% at 2.54-bit. However, our proposed
PMQ achieves a performance of 67.50%, ex-
ceeding BSP by 18.4% and only falling of the
16-bit Mixtral 8× 7b by 3.8%. Notably, PMQ
can maintain a accuracy of 54.49% at 1.57-bit,
even outperforming BSP at 2.54-bit by 5.4%.
The Hessian-based method in Tab. 2 consistently
underperform to PMQ across varying bit-width
levels. Specifically, Hessian shows a slight un-
derperformance of 0.2% at 2.54-bit, while PMQ
demonstrates more substantial advantages be-
low 2-bit, leading by 9.4% at 1.57-bit. Further-
more, we also evaluated the few-shot capability
of PMQ in Tab. 3, where PMQ continues to
demonstrate superior accuracy. More bit-widths performance results are shown in Appendix. A.1.

4.2 EXPERIMENT ON ONLINE DYNAMIC PRUNING

In pre-loading phase, PMQ enables the compression of MoE-LLMs to an exceptionally low bit-width
range. Furthermore, during the inference phase, we apply the ODP outlined in Sec. 3.3 to the
quantized MoE model, further enhancing the efficiency of real-time inference for lightweight models.

Ablation of Tokens Protection. As shown Fig. 7, when we select 2% crucial tokens to be protected,
the PPL drops from 6.46 to 6.24, with activated experts’ parameters decreasing only from 15.1%
to 14.8%. Moreover, as we gradually increase the ratio, the performance remains relatively stable,
while the compression ratio exhibits a nearly linear decline. Thus, we conclude that protecting just
2% of the important tokens can significantly enhance the compressed performance of MoE-LLMs
with almost no impact on efficiency. Furthermore, we try to prune all experts associated with the
less important tokens, as illustrated in Fig. 8. When removing the experts to the 2% of tokens, the
overall compression ratio reached 15.8%, while the PPL improved to 6.35, yielding performance
enhancements in both efficiency and accuracy compared to weight-only pruning. However, we
observed that the performance curves of all experts’ masking exhibited exponential growth, indicating
that directly skipping experts results in a significant accuracy loss. By employing a protection
mechanism for only 2% of the experts, we can maintain the accuracy of MoE-LLMs without
compromising efficiency. We also provide the detailed ablation on pruning threshold in Appendix A.8.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Table 4: Ablation evaluation of PMQ and ODP for Mixtral 8 × 7/22b, and compared with dense
LLaMA models. “Params” denotes the parameter size, and “Act Params” is averaged activated pa-
rameters for one token. The parameter calculation of the compressed model includes the compressed
weights and quantizer parameters (e.g., scaling factor and zero factor for dequantization). We carry
out the average activated parameter size and speedup on C4 dataset. 16-bit Mixtral 8 × 7b uses 2
A100-80GB GPUs and Mixtral 8× 22b uses 4, quantized models are tested on one A100-80GB GPU.

LLMs Bits PMQ ODP Uni LM-Eval% ↑ Params.(GB) Act Params.(GB) Speedup

LLaMA2-7b 16.00 - - - 61.52 13.48 13.48
LLaMA2-13b 16.00 - - - 65.19 26.03 26.03

Mixtral 8× 7b

16.00 - - - 71.29 96.80 26.31 1.00×
2.00 - - ✓ 42.67 13.61 3.70 1.72×
2.54 ✓ - - 67.50 16.24 4.53 1.63×
2.54 ✓ ✓ - 66.94 16.24 3.96 1.71×
2.05 ✓ - - 63.25 13.41 3.73 1.67×
2.05 ✓ ✓ - 62.68 13.41 3.23 1.80×
1.57 ✓ - - 54.49 10.82 2.94 1.82×
1.57 ✓ ✓ - 53.77 10.82 2.55 1.89×

Mixtral 8× 22b

16.00 - - - 76.33 281.24 76.49 1.00×
2.00 - - ✓ 50.44 38.08 10.35 1.95×
2.54 ✓ - - 72.08 46.58 12.66 1.77×
2.54 ✓ ✓ - 71.21 46.58 10.96 1.82×
2.05 ✓ - - 67.94 38.35 10.42 1.80×
2.05 ✓ ✓ - 66.50 38.35 9.03 1.87×
1.57 ✓ - - 59.29 30.27 8.23 1.97×
1.57 ✓ ✓ - 58.84 30.27 7.13 2.06×

Memory Saving and Inference Efficiency. Tab. 4 details the memory compression, speed tests, and
average zero-shot results (Gao et al., 2013) (LM-Eval) of the proposed MC-MoE. The 16-bit Mixtral
8× 7b model requires two A100-80G GPUs, while the Mixtral 8× 22b model needs four. We utilize
the HQQ (Badri & Shaji, 2024) tool to save quantized weights and handle dequantization. To saving
the binary weight, we design a bit-change transformation (see Appendix A.2). After applying PMQ,
the Mixtral 8× 7b model can be compressed to a memory from 10.82 to 16.65 GB. During dynamic
inference, ODP reduces activation parameters by about 15%, with average accuracy decreasing by
less than 1%. At 2.05-bit, the average activation parameter per token is only 3.23 GB, resulting in a
1.80× increase in inference speed and an evaluation accuracy of 62.68%. Tab. 4 also compares the
performance of the LLaMA series dense models. The MC-MoE compressed 2.54-bit Mixtral 8× 7b
model outperforms the 26.03 GB 16-bit LLaMA2-13b model, with a total parameter size of 16.65
GB and activation parameters of 3.69 GB. We have also extended the compression experiments to the
Mixtral 8× 22b model. MC-MoE shows higher overall performance compared to mainstream dense
models, demonstrating the potential for compressing MoE-LLMs without additional training.

5 CONCLUSION

MoE represents a promising framework of sparse models for natural language understanding through
scaling up the model capacity. However, the memory demands and redundancy among experts
pose significant challenges for their practical implementation. In this work, we propose MC-
MoE, a mixture compression strategy based on the imbalance of significance among experts. This
method co-designs the Pre-Loading Mixed-Precision Quantization (PMQ) and Online Dynamic
Pruning (ODP) approach, allowing MoE models to be compressed to an ultra-low bit-width while
maintaining exceptional memory and parameter efficiency, as well as knowledgeable performance.
And our mixed-precision strategy is orthogonal to various quantization techniques. Comprehensive
experiments validate the effectiveness of our mixture compression, revealing that highly compressed
MoE-LLMs can even outperform equal-size full-precision dense LLMs, thereby improving the
feasibility of MoE compression. Future work will focus on adapting this strategy for multimodal
applications and optimizing it for specific hardware platforms.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

REFERENCES

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Hicham Badri and Appu Shaji. Towards 1-bit machine learning models, March 2024. URL https:
//mobiusml.github.io/1bit_blog/.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Tom B Brown. Language models are few-shot learners. arXiv preprint arXiv:2005.14165, 2020.

Yupeng Chang, Xu Wang, Jindong Wang, Yuan Wu, Linyi Yang, Kaijie Zhu, Hao Chen, Xiaoyuan
Yi, Cunxiang Wang, Yidong Wang, et al. A survey on evaluation of large language models. ACM
Transactions on Intelligent Systems and Technology, 15(3):1–45, 2024.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Mengzhao Chen, Wenqi Shao, Peng Xu, Jiahao Wang, Peng Gao, Kaipeng Zhang, Yu Qiao, and Ping
Luo. Efficientqat: Efficient quantization-aware training for large language models. arXiv preprint
arXiv:2407.11062, 2024.

Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun Patra, Saksham Singhal,
Payal Bajaj, Xia Song, Xian-Ling Mao, et al. On the representation collapse of sparse mixture of
experts. Advances in Neural Information Processing Systems, 35:34600–34613, 2022.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to solve
math word problems. arXiv preprint arXiv:2110.14168, 2021.

Damai Dai, Chengqi Deng, Chenggang Zhao, RX Xu, Huazuo Gao, Deli Chen, Jiashi Li, Wangding
Zeng, Xingkai Yu, Y Wu, et al. Deepseekmoe: Towards ultimate expert specialization in mixture-
of-experts language models. arXiv preprint arXiv:2401.06066, 2024.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix
multiplication for transformers at scale. NeurIPS, 35:30318–30332, 2022.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized represen-
tation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Zhen Dong, Zhewei Yao, Daiyaan Arfeen, Amir Gholami, Michael W Mahoney, and Kurt Keutzer.
Hawq-v2: Hessian aware trace-weighted quantization of neural networks. NeurIPS, 33:18518–
18529, 2020.

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan
Alistarh. Extreme compression of large language models via additive quantization. arXiv preprint
arXiv:2401.06118, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Trevor Gale, Deepak Narayanan, Cliff Young, and Matei Zaharia. Megablocks: Efficient sparse
training with mixture-of-experts. Proceedings of Machine Learning and Systems, 5:288–304, 2023.

11

https://mobiusml.github.io/1bit_blog/
https://mobiusml.github.io/1bit_blog/


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

L Gao, J Tow, B Abbasi, S Biderman, S Black, A DiPofi, C Foster, L Golding, J Hsu,
A Le Noac’h, et al. A framework for few-shot language model evaluation. URL https://zenodo.
org/records/10256836, 7, 2013.

Han Guo, Philip Greengard, Eric P Xing, and Yoon Kim. Lq-lora: Low-rank plus quantized matrix
decomposition for efficient language model finetuning. arXiv preprint arXiv:2311.12023, 2023.

Zhiyu Guo, Hidetaka Kamigaito, and Taro Watanabe. Attention score is not all you need for token
importance indicator in kv cache reduction: Value also matters. arXiv preprint arXiv:2406.12335,
2024.

Yihui He, Xiangyu Zhang, and Jian Sun. Channel pruning for accelerating very deep neural networks.
In Proceedings of the IEEE international conference on computer vision, pp. 1389–1397, 2017.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Haiyang Huang, Newsha Ardalani, Anna Sun, Liu Ke, Hsien-Hsin S Lee, Anjali Sridhar, Shruti
Bhosale, Carole-Jean Wu, and Benjamin Lee. Towards moe deployment: Mitigating inefficiencies
in mixture-of-expert (moe) inference. arXiv preprint arXiv:2303.06182, 2023.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. arXiv preprint
arXiv:2402.04291, 2024a.

Wei Huang, Xudong Ma, Haotong Qin, Xingyu Zheng, Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan
Qi, Xianglong Liu, and Michele Magno. How good are low-bit quantized llama3 models? an
empirical study. arXiv preprint arXiv:2404.14047, 2024b.

Wei Huang, Haotong Qin, Yangdong Liu, Yawei Li, Xianglong Liu, Luca Benini, Michele Magno,
and Xiaojuan Qi. Slim-llm: Salience-driven mixed-precision quantization for large language
models. arXiv preprint arXiv:2405.14917, 2024c.

Itay Hubara, Brian Chmiel, Moshe Island, Ron Banner, Joseph Naor, and Daniel Soudry. Accelerated
sparse neural training: A provable and efficient method to find n: m transposable masks. NeurIPS,
34:21099–21111, 2021.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Renren Jin, Jiangcun Du, Wuwei Huang, Wei Liu, Jian Luan, Bin Wang, and Deyi Xiong. A
comprehensive evaluation of quantization strategies for large language models. arXiv preprint
arXiv:2402.16775, 2024.

Young Jin Kim, Ammar Ahmad Awan, Alexandre Muzio, Andres Felipe Cruz Salinas, Liyang Lu,
Amr Hendy, Samyam Rajbhandari, Yuxiong He, and Hany Hassan Awadalla. Scalable and efficient
moe training for multitask multilingual models. arXiv preprint arXiv:2109.10465, 2021.

Yeskendir Koishekenov, Alexandre Berard, and Vassilina Nikoulina. Memory-efficient nllb-200:
Language-specific expert pruning of a massively multilingual machine translation model. arXiv
preprint arXiv:2212.09811, 2022.

Woosuk Kwon, Sehoon Kim, Michael W Mahoney, Joseph Hassoun, Kurt Keutzer, and Amir Gholami.
A fast post-training pruning framework for transformers. NeurIPS, 35:24101–24116, 2022.

Pingzhi Li, Xiaolong Jin, Yu Cheng, and Tianlong Chen. Examining post-training quantization for
mixture-of-experts: A benchmark. arXiv preprint arXiv:2406.08155, 2024.

Baohao Liao and Christof Monz. Apiq: Finetuning of 2-bit quantized large language model. arXiv
preprint arXiv:2402.05147, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Wei-Ming Chen, Wei-Chen Wang, Guangxuan
Xiao, Xingyu Dang, Chuang Gan, and Song Han. Awq: Activation-aware weight quantization for
on-device llm compression and acceleration. Proceedings of Machine Learning and Systems, 6:
87–100, 2024.

Enshu Liu, Junyi Zhu, Zinan Lin, Xuefei Ning, Matthew B Blaschko, Shengen Yan, Guohao Dai,
Huazhong Yang, and Yu Wang. Efficient expert pruning for sparse mixture-of-experts language
models: Enhancing performance and reducing inference costs. arXiv preprint arXiv:2407.00945,
2024.

Peiyu Liu, Zikang Liu, Ze-Feng Gao, Dawei Gao, Wayne Xin Zhao, Yaliang Li, Bolin Ding, and
Ji-Rong Wen. Do emergent abilities exist in quantized large language models: An empirical study.
arXiv preprint arXiv:2307.08072, 2023a.

Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang
Shi, Raghuraman Krishnamoorthi, and Vikas Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint arXiv:2305.17888, 2023b.

Xudong Lu, Qi Liu, Yuhui Xu, Aojun Zhou, Siyuan Huang, Bo Zhang, Junchi Yan, and Hongsheng
Li. Not all experts are equal: Efficient expert pruning and skipping for mixture-of-experts large
language models. arXiv preprint arXiv:2402.14800, 2024.

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Weijia
Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts language
models. arXiv preprint arXiv:2409.02060, 2024.

Aniruddha Nrusimha, Mayank Mishra, Naigang Wang, Dan Alistarh, Rameswar Panda, and Yoon
Kim. Mitigating the impact of outlier channels for language model quantization with activation
regularization. arXiv preprint arXiv:2404.03605, 2024.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Mohammad Rastegari, Vicente Ordonez, Joseph Redmon, and Ali Farhadi. Xnor-net: Imagenet
classification using binary convolutional neural networks. In European conference on computer
vision, pp. 525–542. Springer, 2016.

Yuzhang Shang, Zhihang Yuan, Qiang Wu, and Zhen Dong. Pb-llm: Partially binarized large language
models. arXiv preprint arXiv:2310.00034, 2023.

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,
Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large
language models. arXiv preprint arXiv:2308.13137, 2023.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton, and
Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer. arXiv
preprint arXiv:1701.06538, 2017.

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach for
large language models. arXiv preprint arXiv:2306.11695, 2023.

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint
arXiv:2402.04396, 2024.

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In International
Conference on Machine Learning, pp. 38087–38099. PMLR, 2023.

Longfei Yun, Yonghao Zhuang, Yao Fu, Eric P Xing, and Hao Zhang. Toward inference-optimal
mixture-of-expert large language models. arXiv preprint arXiv:2404.02852, 2024.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. Advances in Neural Information Processing
Systems, 36:34661–34710, 2023.

Zhenyu Zhang, Ying Sheng, Tianyi Zhou, Tianlong Chen, Lianmin Zheng, Ruisi Cai, Zhao Song,
Yuandong Tian, Christopher Ré, Clark Barrett, et al. H2o: Heavy-hitter oracle for efficient
generative inference of large language models. NeurIPS, 36, 2024.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning Wang,
Zhihang Yuan, Xiuhong Li, et al. A survey on efficient inference for large language models. arXiv
preprint arXiv:2404.14294, 2024.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for
large language models. arXiv preprint arXiv:2308.07633, 2023.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

A APPENDIX

A.1 MORE QUANTIZED RESULTS OF PMQ

This section expands on the comparative results of the Hessian and PMQ mixed precision metrics
across different bit-width settings. Tab. 5 serves as an extension of Tab. 2, specifically providing a
detailed comparison of the evaluation results across eight zero-shot datasets using the Hessian metric
employed by HAWQ V2 (Dong et al., 2020) in the 1.57 to 2.54-bit range. Within the target bit-width
interval, PMQ outperforms Hessian in all ranges, achieving better bit-width allocation results by
0.3% to 8.6%. Notably, at the ultra-low bit-width of 1.57-bit, PMQ achieves a comprehensive score
of 54.49%, while Hessian reaches only 45.91%.

Table 5: Performance of quantized Mixtral 8× 7b on eight zero-shot benchmarks. “HellaS.” is the
short format of “HellaSwag” and “Wino.” denotes “Winogrande”.

Method Bits PIQA ARC-e ARC-c BoolQ HellaS. Wino. MathQA MMLU Avg.% ↑
16.00 85.20 84.01 57.17 85.35 81.48 75.93 39.29 67.88 71.29

Hessian

2.54 80.21 76.38 51.20 81.11 78.05 72.97 35.27 56.21 67.18
2.42 78.81 73.97 47.58 81.04 77.72 72.77 33.01 52.16 64.23
2.30 79.21 72.41 46.70 79.15 76.38 71.25 31.97 50.60 63.47
2.20 78.46 72.98 46.66 77.29 75.31 70.22 31.84 45.29 62.25
2.05 75.32 67.26 45.01 70.29 71.90 69.11 31.07 40.85 58.85
1.94 75.41 64.02 43.19 67.75 69.18 68.27 28.58 36.99 56.67
1.81 71.96 60.81 37.72 68.27 63.29 65.46 26.27 32.58 53.30
1.69 69.88 60.37 35.64 70.06 59.60 58.43 26.05 32.11 51.39
1.57 65.26 52.12 21.84 68.21 52.91 50.32 24.99 31.58 45.91

PMQ

2.54 80.52 77.10 51.28 82.54 79.03 73.95 39.18 56.37 67.50
2.42 80.36 75.76 50.17 80.00 78.13 73.09 34.97 53.22 65.71
2.30 83.11 73.59 47.78 80.83 76.48 73.14 33.84 52.54 64.91
2.20 79.05 73.70 47.87 74.56 76.63 72.77 34.24 47.73 63.29
2.05 79.16 73.06 48.38 80.58 74.95 71.27 31.79 46.80 63.25
1.94 76.88 68.48 45.48 75.23 72.05 72.61 31.16 40.93 60.35
1.81 76.93 66.67 43.60 75.50 70.50 69.85 28.68 40.71 59.06
1.69 75.41 64.14 40.61 68.96 67.01 68.03 28.04 37.14 56.17
1.57 72.42 62.46 37.88 73.55 63.17 66.38 26.80 32.25 54.49

Additionally, in Tab. 6, we extend the comparison of Hessian and PMQ’s few-shot performance
across different bit widths presented in Tab. 3. At 1.69-bit, PMQ achieves a score of 38.35% on the
MMLU (five-shot) benchmark, while maintaining a model size that is 16% smaller than the 2-bit
model under uniform quantization, with an accuracy improvement of 4.5%. More importantly, we
observe that PMQ at 2.54-bit compresses the model size by 84% compared to the 16-bit model,
yet the few-shot performance is only 9.4% lower, highlighting the substantial advantages of mixed
compression for MoE models. In comparison to Hessian at the same bit-width, PMQ demonstrates
great overall improved accuracy. BSP, on the other hand, exhibits poor performance in the few-shot
evaluations, which is even lower than 2-bit uniform quantization. In Tab. 7, we also compare these
precision allocating metrics on WikiText2 dataset; PMQ shows a clearer advantage, particularly
at 1.57-bit, where it achieves a PPL of 8.50, representing a significant improvement over the 2-bit
uniform quantization, while the Hessian at 1.57-bit achieves only 14.20.

A.2 ONE-BIT WEIGHT SAVING AND DEQUANTIZATION

This paper presents MC-MoE, which explores static compression strategies and dynamic pruning
method for MoE-LLMs in the ultra-low bit-width range, with selected static bit-width of 1-bit, 2-bit,
and 3-bit. We observe that both 2-bit and 3-bit can be addressed using conventional linear quantizers,
a method commonly utilized in most studies (Frantar et al., 2022; Shao et al., 2023; Huang et al.,
2024c; Lin et al., 2024). In contrast, the quantization of 1-bit weights involves totally different
calculations; we first provide the binarization formula for the weights:

B = sign(W) (7)

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Table 6: Comparison of different mixed-
precision strategies on few-shot performance
(MMLU five-shot ↑) for Mixtral 8× 7b.

Method Bits Accuracy % ↑
16.00 70.60

Uni 2.00 34.0528.4%↓
BSP 2.54 31.5730.9%↓

Hessian

2.54 58.224.2%↓
2.42 54.098.3%↓
2.30 51.3711.1%↓
2.20 47.0115.4%↓
2.05 43.5118.9%↓
1.94 38.6223.8%↓
1.81 33.8728.9%↓
1.69 33.0429.4%↓
1.57 31.9630.49%↓
2.54 61.191.3%↓
2.42 58.304.2%↓
2.30 55.087.4%↓
2.20 50.7011.8%↓

PMQ 2.05 49.8412.6%↓
1.94 45.9816.5%↓
1.81 41.6720.8%↓
1.69 38.3524.0%↓
1.57 33.4429.0%↓

Table 7: Comparison of different mixed-
precision strategies on PPL performance (Wiki-
Text2 PPL ↓) for Mixtral 8× 7b.

Method Bits PPL ↓
16.00 3.84

Uni 2.00 16.38
BSP 2.54 13.61

Hessian

2.54 5.41
2.42 5.81
2.30 5.86
2.20 6.58
1.05 6.65
1.97 7.88
1.81 8.45
1.69 10.18
1.57 14.20
2.54 5.09
2.42 5.25
2.30 5.45
2.20 5.72

PMQ 2.05 5.91
1.94 6.49
1.81 6.81
1.69 7.78
1.57 8.50

sign(x) =

{
1 if x ≥ 0,

−1 others.
(8)

where W ∈ Rd×m is the full precision weight and B ∈ {−1,+1}d×m denotes the binarized matrix.
Due to the elements range of B being ±1, we can not directly save the one-bit value into compact
memory. Hence, we propose a simple transformation for B:

B̃ =
sign(W) + 1

2
(9)

where B̃ ∈ {0, 1}d×m. In this case, we can really use 1-bit memory to storage each element. During
the inference stage, we need to dequantize the binary weight and operate the matrix multiplication of
each input vector follows:

s · xB = s(

d∑
j:B̃ij=1

xj −
d∑

j:B̃ij=0

xj), for i = 1, 2, ...m (10)

where x ∈ R1×d denotes one set of input vector (token), and s represents the scaling factor of each
binary matrix, which is calculated from s =

∥W∥ℓ1

d×m (Rastegari et al., 2016). In this binarized weight
format, we can achieve computation without minimal multiplication operation. As shown in Eq. (10),
the original computation requires dm multiplications and (d− 1)m additions, resulting in a MACs
consumption of dm and a computational complexity of O(m2). In contrast, binary matrix operations
require only m multiplications and (d− 1)m additions, leading to a MACs consumption of just m
and a computational complexity of O(m).

A.3 RESULTS OF DIFFERENT QUANTIZATION TECHNIQUES

As detailed in Sec. 3.2 of the main text, PMQ focuses primarily on leveraging the significance
differences between experts to construct an optimal mixed-precision bit-width allocation. After
determining the optimal allocation, it can be combined with various quantization techniques. In this
study, to efficiently validate the effect of mixed compression, we employ GPTQ (Frantar et al., 2022),
an efficient training-free post-training quantization (PTQ) strategy, which completes mixed-precision
quantization on the Mixtral 8× 7b model in just 90 minutes.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

In this section, we replace GPTQ with another advanced quantization method, Omniquant (Shao et al.,
2023), which uses a learnable weight clipping (LWC) for quantization calibration. For calibration,
256 sequences from the C4 dataset are selected for gradient optimization. Omniquant requires
approximately 480 minutes to quantize the Mixtral 8 × 7b model (see Tab. 8), but it outperforms
GPTQ across eight zero-shot benchmarks, owing to its precise search for quantizer factors via LWC.
This further demonstrates the flexibility of our PMQ framework.

Table 8: Performance of quantized Mixtral 8× 7b on eight zero-shot benchmarks on GPTQ (Frantar
et al., 2022) and Omniquant (Shao et al., 2023). w denotes “with”.

Method Bits PIQA ARC-e ARC-c BoolQ HellaS. Wino. MathQA MMLU Avg.% ↑
16.00 85.20 84.01 57.17 85.35 81.48 75.93 39.29 67.88 71.29

PMQ
w GPTQ

(Frantar et al., 2022)

2.54 80.52 77.10 51.28 82.54 79.03 73.95 39.18 56.37 67.50
2.05 79.16 73.06 48.38 80.58 74.95 71.27 31.79 46.80 63.25
1.57 72.42 62.46 37.88 73.55 63.17 66.38 26.80 32.25 54.49

PMQ
w Omniquant

(Shao et al., 2023)

2.54 81.63 78.66 52.91 82.54 80.17 74.51 39.20 59.83 68.80
2.05 79.77 74.24 48.65 81.09 75.76 72.48 33.01 47.15 64.01
1.57 73.33 65.28 38.54 74.06 66.61 66.59 26.74 35.20 55.79

A.4 QUANTIZATION RESULTS ON CHALLENGING BENCHMARKS

In this section, we expand our mixed-precision benchmarks on more challenging datasets in
Tab. 9, considering the importance of performance testing on more complex long text or reasoning
tasks (Cobbe et al., 2021; Bai et al., 2023; Chen et al., 2021). We have observed that in challenging
tasks like GSM8K and HumanEval, the performance drop of model compression becomes more pro-
nounced. This phenomenon holds true in other MoE LLM compression methods (Frantar et al., 2022;
Huang et al., 2024c; Shao et al., 2023; Lu et al., 2024) as well. However, our PMQ method, compared
to the latest method like BSP (Li et al., 2024) and HAWQ (Dong et al., 2020) with Hessian-based
approaches for MoE LLM, is still able to maintain state-of-the-art performance.

Recent studies on quantization performance losses (Jin et al., 2024; Liu et al., 2023a) were also
explored, revealing that ARC-C and GSM8K primarily involves inference issues, categorized as
chain-of-thought (CoT), while MMLU can be classified as in-context learning (ICL). CoT tasks, due
to their intricate reasoning demands, pose significant challenges to various LLM types. Given that
many open-source MoE LLMs and dense LLMs do not exhibit strong inference capabilities during
pre-training, we anticipate larger performance losses when reducing model bit-width to ultra-low
scenarios. The results in Tab. 2 and Tab. 9 also indicate that there is the huge potential for future
exploration of MoE LLM compression on complex tasks.

Table 9: Comparison of different mixed-precision quantization methods on challenging benchmarks.

Method Bits GSM8K↑ HumanEval (pass@10)↑
16.00 58.30 59.15

Uniform 3.00 38.13 29.88
Uniform 2.00 0.00 0.00

BSP 2.54 4.25 3.21
Hessian 2.54 33.59 25.49
Hessian 2.05 17.24 7.84

ODP 2.54 37.67 29.34
ODP 2.05 19.97 11.83

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

A.5 DETAILED RESULTS ON BIT-WIDTH ALLOCATION

In this section, we further visualize the different bit-width allocation results of PMQ on Mixtral
8× 7b model, as shown in Fig. 9. The results clearly show that the importance of MoE expert varies
with different position. It can be seen that at lower bits-width, our algorithm only selects a small part
of the position for protection, which greatly improves calculation efficiency. With the increasing of
the bit-width, the important positions from lower bit-width are leavening unchanged which further
proves the effectiveness of the proposed method.

A.6 ABLATION ANALYSIS ON HYPER-PARAMETERS OF EXPERT SIGNIFICANCE WEIGHT

In this section, we conduct experiments based on different hyperparameter settings for the expert
significance factor weights, i.e., α and β in Eq. 4. We evaluate these factors with values of 1,
1.5, and 2 to differentiate their relative significance on Mixtral 8 × 7B (2 bit). Since quantization
error is a critical evaluation metric, we fix its weight γ at 2 and vary the weights of the expert
significance factors accordingly. The experimental results, shown in Tab. 10, indicate that the overall
accuracy remains stable, but exhibits a slight decline when the combined value of α and β exceeds
the quantization error weight.

Table 10: Ablation analysis on Mixtral 7×8B model, evaluating different settings for the weights of
the two significance factors, α and β (Eq. 4), with the quantization error weight fixed at 2, using the
WikiText2 dataset.

α = 1 α = 1.5 α = 2

β 1 1.5 2 1 1.5 2 1 1.5 2

PPL 5.92 5.92 5.91 5.92 5.91 5.96 5.91 5.96 5.95

A.7 COMPARISON OF DIFFERENT TOKEN-DEPENDENT PRUNING METRIC

Regarding the dynamic pruning of experts, we note that most existing pruning methods for LLMs or
other neural networks focus on static weight pruning (Sun et al., 2023; Zhang et al., 2023), and cannot
dynamically prune experts during inference based on tokens. Dynamic pruning during inference
remains under-explored, with only one recent post-training MoE LLM dynamic pruning work (Lu
et al., 2024) proposing a gating-score-based strategy for dynamic pruning. This work has already
compared with Wanda (Sun et al., 2023) method, a highly effective static pruning method, and
concluded that static pruning methods result in significant performance degradation when applied
to dynamic MoE LLM experts. We incorporated additional metrics for dynamic expert pruning to
expand the scope of our experiments. Specifically, we perform token-dependent expert pruning on
token kurtosis, token var, and token mean, where 30% of tokens will be pruned from top-2 to top-1
(Tab. 11).

Table 11: Comparison of different token-dependent dynamic expert pruning strategies on Mixtral
8× 7b.

Method Threshold PPL (WikiText2)↓ Avg. Pruning Params.

Token kurtosis 0.3 7.16 15.62%
Token variance 0.3 6.69 15.62%

Token mean 0.3 6.82 15.62%

ODP - 6.22 14.88%

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

A.8 ABLATION OF DYNAMIC EXPERT PRUNING THRESHOLD

We follow the setting from recent dynamic MoE pruning work (Lu et al., 2024), selecting it as
the median value of w1

w0
, which also theoretically and empirically demonstrates that this choice of

threshold is a comprehensive optimal setting. In this section, we provide a more comprehensive
ablation on threshold µ in Eq. 5. As demonstrated in Table 12, utilizing a manual threshold of 0.4,
the PPL performance stands at 6.29 with a mere 12.00% of experts pruned. In contrast, our proposed
method, referred to as ODP, achieves a PPL of 6.22 and prunes 14.88% of the experts. This not only
showcases superior accuracy but also highlights enhanced efficiency.

Table 12: Ablation of different threshold hyperparameter.

w1/w0 PPL (WikiText2)↓ Avg. Pruning Params.

0.4 6.29 12.00%
0.5 6.49 16.51%
0.6 6.64 19.25%
0.7 6.89 22.43%

Median 6.48 15.18%
ODP(Median + Protection) 6.22 14.88%

A.9 COMPUTATION ANALYSIS OF ONLINE DYNAMIC PRUNING

During the ODP phase, compared to the significant reduction in the number of tokens and experts
leading to large-scale matrix multiplications, the computational cost of token importance calculation
can be negligible. Specifically, in Mixtral 8× 7b, where the typical input token matrix size is Rn×m,
the token importance calculation involves three steps: summing attention weights, computing the ℓ1
norm, and performing top-k calculations. The overall floating-point operations per second (FLOPs)
calculation amounts to n2 + n+mn+ nlogn. In the ODP inference phase, after dynamic pruning,
an average of 15% of tokens in a MoE layer will reduce an experts inference (see Tab. 12). The
FLOPs for these 15% of tokens within an expert (an expert with 3 linear layers, the size is Rm×m1 ,
Rm1×m1 , Rm1×m) are 0.15n∗×(m×m1×2+m2

1×2+m1×m×2), where m1 is typically much
larger than n and m in Mixtral 8× 7b. Therefore, the computational cost of importance calculation
is usually low. As demonstrated in Tab. 4, when PMQ is combined with ODP, it further enhances
computational efficiency. This indicates that the efficiency gain from experts’ dynamic pruning
outweighs the computational cost of token importance calculation.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079 Figure 9: Visualization on different bit-width allocation. Color refers to the bit size.

20


	Introduction
	Related Works
	Method
	Preliminaries
	Pre-Loading Mixed-precision Quantization
	Experts Significance Analysis
	Optimal Experts Bit-Width Allocation with Weighted Importance Factors

	Online Dynamic Pruning
	Attention Decay Under Weight-only Pruning
	Significance-Aware Token Protection


	Experiment
	Experiment on Pre-Loading Mixed-Precision Quantization
	Experiment on Online Dynamic Pruning

	Conclusion
	Appendix
	More Quantized Results of PMQ
	one-bit Weight Saving and Dequantization
	Results of Different Quantization Techniques
	Quantization Results on Challenging Benchmarks
	Detailed Results on Bit-Width Allocation
	Ablation Analysis on Hyper-parameters of Expert Significance Weight
	Comparison of Different Token-dependent Pruning Metric
	Ablation of Dynamic Expert Pruning Threshold
	Computation Analysis of Online Dynamic Pruning


