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Abstract
Bayesian neural networks (BNN) promise to com-
bine the predictive performance of neural net-
works with principled uncertainty modeling im-
portant for safety-critical systems and decision
making. However, posterior uncertainty estimates
depend on the choice of prior, and finding infor-
mative priors in weight-space has proven diffi-
cult. This has motivated variational inference (VI)
methods that pose priors directly on the function
generated by the BNN rather than on weights,
thus making it possible to pose structured prior
beliefs in the form of Gaussian process (GP) pri-
ors. In this paper, we address a fundamental issue
with such function-space VI approaches pointed
out by Burt et al. (2020), who showed that the
objective function (ELBO) is negative infinite for
most priors of interest. Our solution builds on
generalized VI (Knoblauch et al., 2019) with the
regularized KL divergence (Quang, 2019) and is,
to the best of our knowledge, the first well-defined
variational objective for function-space inference
in BNNs with GP priors. Experiments show that
our method incorporates the properties specified
by the GP prior on synthetic and small real-world
data sets, and provides competitive uncertainty
estimates for regression, classification and out-of-
distribution detection compared to BNN baselines
with both function and weight-space priors.

1. Introduction
Neural networks have shown impressive results in many
fields but fail to provide well-calibrated uncertainty esti-
mates, which are essential in risk-associated applications,
such as healthcare (Kompa et al., 2021; Abdullah et al.,
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2022) or finance (Bew et al., 2019; Wong, 2023). Bayesian
neural networks (BNNs) offer to combine the scalability
and predictive performance of neural networks with princi-
pled uncertainty modeling by explicitly capturing epistemic
uncertainty, i.e., uncertainty resulting from finite training
data. While the choice of prior in the Bayesian framework
strongly affects the uncertainty estimates later obtained from
the posterior, specifying informative priors on BNN weights
has proven difficult and is hypothesized to have limited
their practical applicability (Knoblauch et al., 2019; Cin-
quin et al., 2021; Tran et al., 2022). For instance, the default
isotropic Gaussian prior, which is often chosen for tractabil-
ity rather than for the beliefs it carries (Knoblauch et al.,
2019), is known to have pathological behavior in some cases
(Tran et al., 2022). A promising approach to solve this issue
is to place priors directly on the function represented by the
BNN instead of the weights. While being technically more
challenging, function-space priors allow incorporating inter-
pretable knowledge into the inference, for instance enabling
the use of the extensive Gaussian Process (GP) literature
for encoding structural prior beliefs such as smoothness or
periodicity (Williams & Rasmussen, 2006).

A recent line of work has focused on using function-space
priors in BNNs with variational inference (VI) (Sun et al.,
2019). VI is an appealing method because of its success-
ful application to BNNs, its flexibility in terms of approxi-
mate posterior parameterization, and its scalability to large
datasets and models (Hoffman et al., 2013; Blundell et al.,
2015; Tomczak et al., 2020). Unfortunately, in the context
of BNNs with function-space priors, the Kullbach-Leibler
(KL) divergence term in the VI objective (ELBO) involves
two intractabilities: (i) a supremum over infinitely many
subsets and (ii) access to the density of the distribution of
functions generated by the BNN, which has no closed-form
expression. Sun et al. (2019) propose to address problem (i)
by approximating the supremum in the KL divergence by
an expectation, and problem (ii) by using implicit score
function estimators (which make this method difficult to use
in practice (Ma & Hernández-Lobato, 2021)). However, the
problem is actually more severe. Not only is the KL diver-
gence intractable, it is infinite in many cases of interest (Burt
et al., 2020), such as when the prior is a non-degenerate GP
or a BNN with a different architecture. Thus, in these (and
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many more) situations, the KL divergence cannot even be ap-
proximated. As a consequence, more recent work abandons
using BNNs and instead uses deterministic neural networks
to parameterize basis functions (Ma & Hernández-Lobato,
2021) or a GP mean (Wild et al., 2022). The only prior
work (Rudner et al., 2022b) on function-space VI in BNNs
that overcomes the issue pointed out by Burt et al. (2020)
does so by deliberately limiting itself to cases where the KL
divergence is known to be finite (by defining the prior as the
pushforward of a weight-space distribution). Therefore, the
method by Rudner et al. (2022b) suffers from the same is-
sues regarding prior specification as any other weight-space
inference method for BNNs.

In this paper, we address the argument by Burt et al. (2020)
that VI does not provide a valid objective for inference in
BNNs with genuine function-space priors, and we propose
to apply the framework of generalized variational inference
(Knoblauch et al., 2019). We present a simple method for
function-space inference with GP priors that builds on the
so-called regularized KL divergence (Quang, 2019), which
generalizes the conventional KL divergence and is finite
for any pair of Gaussian measures. We obtain a Gaussian
measure for the variational posterior by considering the lin-
earized BNN from Rudner et al. (2022b), and we are free to
choose a prior from a large set of GPs which have an asso-
ciated Gaussian measure on the considered function space.
While the regularized KL divergence is still intractable, it
can be consistently estimated from samples with a known er-
ror bound. We find that our method effectively incorporates
the beliefs specified by GP priors (see Figure 1) and pro-
vides competitive performance compared to BNN baselines.
To the best of our knowledge, our method is the first to pro-
vide a well-defined objective for function-space inference
in BNNs with informative GP priors. Our contributions are
summarized below:

1. We propose to use generalized VI with the so-called
regularized KL divergence to mitigate the issue of an
infinite KL divergence when using VI in BNNs with
function-space priors.

2. We present a new, well-defined objective for function-
space inference in the linearized BNN with GP priors,
which results in a simple algorithm.

3. We analyze our method empirically on synthetic and
real-world data sets, and find that it accurately captures
structural properties specified by the GP prior and pro-
vides competitive uncertainty estimates for regression,
classification, and out-of-distribution detection com-
pared to BNN baselines with both function-space and
weight-space priors.

The paper is structured as follows. Section 2 introduces
function-space VI in BNNs. Section 3 presents the regu-

larized KL divergence and our proposed method for gen-
eralized function-space VI (GFSVI) in BNNs. Section 4
presents experimental results. We discuss related work in
Section 5 and conclude in Section 6.

2. Background: Function-space VI in BNNs
We provide background on function-space variational infer-
ence (VI) in BNNs and discuss the fundamental issue of infi-
nite KL-divergence. We consider a neural network f( · ;w)
with weights w ∈ Rp, and a data set D = {(xi, yi)}Ni=1

with features xi ∈ X ⊂ Rd and values yi ∈ Y . Bayesian
Neural Networks (BNNs) are specified further by a like-
lihood function p(D |w) =

∏N
i=1 p(yi | f(xi;w)) and—

traditionally—a prior p(w) on the weights, and one seeks
the posterior distribution p(w | D) ∝ p(D |w) p(w). The
method proposed in this paper builds on variational infer-
ence (VI), which approximates p(w | D) with a variational
distribution qϕ(w), whose variational parameters ϕ maxi-
mize the evidence lower bound (ELBO),

L(ϕ) := Eqϕ(w)[log p(D |w)]−DKL(qϕ ∥ p) (2.1)

where DKL is the Kullback-Leibler (KL) divergence

DKL(qϕ ∥ p) := Eqϕ(w)

[
log

(
qϕ(w)

/
p(w)

)]
. (2.2)

At test time, we approximate the predictive dis-
tribution for given features x∗ as p(y∗ |x∗) =
Ep(w | D)

[
p(y∗ | f(x∗;w))

]
≈ Eqϕ(w)

[
p(y∗ | f(x∗;w))

]
.

Function-space variational inference Since weights of
neural networks are not interpretable, we abandon the
weight-space prior p(w) and instead pose a prior P directly
on the function f( · ;w) (notated simply as f when there
is no ambiguity). Here, the symbol P denotes a probabil-
ity measure that does not admit a density since the func-
tion space is infinite-dimensional. A naive formulation of
function-space VI would replace the KL-term (Eq. 2.2) with
the KL-divergence from P to the variational measure Qϕ,
which is the pushforward of qϕ(w) along the mapping
w 7→ f( · ;w). Thus, the ELBO would become

L(ϕ) := Eqϕ(w)[log p(D |w)]−DKL(Qϕ ∥P) (2.3)

with DKL the KL divergence between measures given by

DKL(Qϕ ∥P) =
∫

log

(
dQϕ

dP
(f)

)
dQϕ. (2.4)

Here, the Raydon-Nikodym derivative dQϕ/dP generalizes
the density ratio from Eq. 2.2. Like Eq. 2.1, the ELBO in
Eq. 2.3 is a lower bound on the evidence (Burt et al., 2020).
In fact, if P is the pushforward of p(w) then Eq. 2.3 is a
tighter bound than Eq. 2.1 by the data processing inequality,
DKL(Qϕ ∥P) ≤ DKL(qϕ ∥ p). However, we argue that
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Figure 1: BNN inference on synthetic data (gray circles) with Gaussian process priors encoding different functional
properties such as smoothness (increasing smoothness from Matern-1/2 to RBF kernels) and periodicity (periodic kernel).

restricting P to the pushforward of a weight-space prior (as
done, e.g., in (Rudner et al., 2022b)) would defeat our goal
of posing structured prior beliefs in function space. For
general P, the bound in Eq. 2.3 can be looser, and we will
indeed see below that it becomes infinitely loose in practice.

Two intractabilities prevent directly maximizing the ELBO
in function space (Eq 2.3). First, it is not obvious how to
practically evaluate or estimate the KL divergence between
two measures in function space in Eq 2.4. Sun et al. (2019)
showed that it can be expressed as a supremum of KL diver-
gences between finite-dimensional distributions,

DKL(Qϕ ∥P) = sup
x∈XM

DKL(qϕ(f(x)) ∥ p(f(x))). (2.5)

Here, x = {x(i)}Mi=1 ∈ XM is a set of M points in fea-
ture space X , and qϕ(f(x)) and p(f(x)) are densities of
the marginals of Qϕ and P on {f(x(i))}Mi=1 respectively.
To obtain a tractable approximation of the supremum over
infinitely many sets, Sun et al. (2019) replace it by an expec-
tation and Rudner et al. (2022b) estimate it from samples.

Second, we cannot express the pushforward measure Qϕ

of qϕ(w) in a closed form because the neural network is
nonlinear. Previous work has proposed to mitigate this issue
using implicit score function estimators (Sun et al., 2019)
or a linearized BNN fL to obtain a closed-form Gaussian
variational measure (Rudner et al., 2022a;b). Our proposal
in Section 3 follows the linearized BNN approach as it
only minimally modifies the BNN, preserving most of its
inductive bias (Maddox et al., 2021) while considerably sim-
plifying the problem by turning the pushforward of qϕ(w)
into a Gaussian process (GP). More specifically, we con-
sider a Gaussian variational distribution qϕ(w) = N (m,S)
with variational parameters ϕ = {m,S}, and we obtain fL
by linearizing f in the weights around w = m,

fL(x;w) := f(x;m) + J(x;m)(w −m) (2.6)

with J(x;m) = ∇wf(x;w)|w=m. Thus, for w ∼ qϕ(w)
we have fL(x;w) ∼ N

(
f(x;m), J(x;m)SJ(x;m)⊤

)
for all x, and the function fL( · ;w) is a degenerate GP (as
rank(J( · ;m)SJ( · ;m)⊤) ≤ number of weights < ∞),

fL ∼ GP
(
f( · ;m), J( · ;m)SJ( · ;m)⊤

)
. (2.7)

DKL(Qϕ ∥P) is infinite in most practically relevant cases.
Burt et al. (2020) point out an even more severe issue of
function-space VI in BNNs: DKL(Qϕ ∥P) is in fact infinite
in many relevant cases, in particular for non-degenerate GP-
priors with BNNs. Thus, approximations in these cases are
futile. The proof in Burt et al. (2020) is somewhat involved,
but the fundamental reason for DKL(Qϕ ∥P) = ∞ is that
Qϕ has support on a finite-dimensional submanifold of the
infinite-dimensional function space, while the measure P
induced by a (non-degenerate) GP prior has support on the
entire function space. That such a dimensionality mismatch
can lead to infinite KL divergence can be seen in a finite-
dimensional example: consider the KL-divergence between
two Gaussians in Rn for some n ≥ 2, one of which has
support on the entire Rn (i.e., its covariance matrix Σ1 has
full rank) while the other one has support only on a proper
subspace of Rn (i.e., its covariance matrix Σ2 is singular).
The KL divergence between two multivariate Gaussians has
a closed form expression (Eq 3.2 below with γ = 0) that
contains log det

(
Σ−1

2 Σ1

)
, which is infinite for singular Σ2.

We find that the fact that DKL(Qϕ ∥P) = ∞ has severe
practical consequences even when the KL divergence is only
estimated from samples. It naturally explains the stability
issues discussed in Appendix A.1 of Sun et al. (2019) (we
compare the authors’ solution to this stability issue to our
method in Section 3.1). Surprisingly, similar complications
arise even in the setup by Rudner et al. (2022b), which
performs VI in function space with the pushforward of a
weight-space prior. While the KL divergence is technically
finite because prior and variational posterior have the same
support, numerical errors lead to mismatching supports and
thus to stability issues even there.

In summary, the ELBO for VI in BNNs is not well-defined
for a large class of interesting function-space priors. In the
next section, we propose a solution by using the so-called
regularized KL divergence (Quang, 2022).

3. Generalized function-space VI with the
regularized KL divergence

This section presents our proposed generalized function-
space variational inference (GFSVI) method. The method
addresses the problem of the infinite KL divergence dis-
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cussed in Section 2, which we take as an indication that
VI is too restrictive if one wants to use genuine function-
space priors. We instead consider generalized variational
inference (Knoblauch et al., 2019), which reinterprets the
ELBO in Eq. 2.1 as a regularized expected log-likelihood
and explores alternative divergences for the regularizer.

Regularized KL divergence. We start from the naive
ELBO with function space regularization (Eq. 2.3), which
contains the (typically infinite) KL divergence DKL(Qϕ ∥P)
from the Gaussian measure P (induced by the GP prior) to
the GP variational posterior measure Qϕ under the linearized
network (Eq. 2.7). We replace this KL divergence with
the so-called regularized KL divergence (Quang, 2022),
which is defined in general between two Gaussian measures
ν1 = N (m1, C1) and ν2 = N (m2, C2) over the Hilbert
space L2(X , ρ) of square-integrable functions with respect
to a probability measure ρ on a compact set X ⊂ Rd,

Dγ
KL(ν1 ∥ ν2) :=

1

2
⟨m1 −m2, (C2 + γI)−1(m1 −m2)⟩

+
1

2
TrX

[
(C2 + γI)−1(C1 + γI)− I

]
− 1

2
log detX

[
(C2 + γI)−1(C1 + γI)

]
. (3.1)

Here, γ > 0 denotes a regularization strength (for
γ → 0, Dγ

KL converges to the conventional KL-
divergence where it is finite, see Theorem 6 in Quang
(2022)). Further, the means m1,m2 have to be square-
integrable, and the linear covariance operators C1, C2 have
to be bounded, self-adjoint, positive and trace-class (i.e.,∫
X C{1,2}(x, x)dρ(x) < ∞).

We elaborate on the precise mathematical relations between
GPs and Gaussian measures in Appendix A.1. In summary,
most GP priors of interest and the GP variational posterior
induced by the linearized BNN (Eq. 2.7) induce Gaussian
measures that satisfy the above conditions on the means and
covariance operators. Furthermore, if both ν1 and ν2 are
induced by GPs (which applies in our case to both the prior
measure P and the variational posterior Qϕ), Dγ

KL(ν1 ∥ ν2)
can be consistently estimated (Quang, 2022) from a finite
number M of samples using the estimator

D̂γ
KL(ν1 ∥ ν2) :=

1

2
(m1 −m2)

⊤(Σ
(γ)
2 )−1(m1 −m2)

+
1

2
Tr

[
(Σ

(γ)
2 )−1Σ

(γ)
1 − IM

]
− 1

2
log det

[
(Σ

(γ)
2 )−1Σ

(γ)
1

]
(3.2)

with mi := µi(x) and Σ
(γ)
i := Ki(x,x) + γM IM , where

µi(x) and Ki(x,x) are the mean vector and covariance
matrix obtained by evaluating µi and Ki, respectively, at
measurement points x = {x(i)}Mi=1, sampled i.i.d. from the

Algorithm 1 Generalized function-space variational infer-
ence (GFSVI)

Require: linearized BNN fL with measure QF
ϕ , GP prior

GP(µ,K) with measure PF , measurement point distri-
bution ρ(x), D = {(xi, yi)}Ni=1, batch size B, γ > 0.

1: for each minibatch (xB, yB) ∼ D do
2: Calculate ℓ̂1 = N

BEqϕ(w)[log p(yB | fL(xB,w))]

3: Draw x = {x(i)}Mi=1, x(1), . . . ,x(M) i.i.d∼ ρ(x)

4: Calculate ℓ̂2 = D̂γ
KL

(
QF

ϕ

∣∣∣∣PF
)

using x (Eq. 3.2)
5: Calculate L̂(ϕ) = ℓ̂1 − ℓ̂2
6: Update ϕ using a step in the direction ∇ϕL̂(ϕ)
7: end for

the measure ρ that defines the Hilbert space L2(X , ρ). The
right-hand side of Eq. 3.2 is, up to a constant, the closed-
form expression for the KL-divergence between multivariate
Gaussian distributions N (m1,Σ

(γ)
1 ) and N (m2,Σ

(γ)
2 ).

Objective Function and Optimization. For a likelihood
p(D |w) =

∏N
i=1 p(yi | fL(xi;w)), replacing the KL di-

vergence DKL(Qϕ ∥P)in Eq. 2.3 with the generalized KL
divergence (Eq. 3.1) leads to the objective function of our
proposed generalized function-space variational inference
(GFVI) method,

L(ϕ) :=
N∑
i=1

Eqϕ(w)[log p(yi|fL(xi;w))]−Dγ
KL

(
QF

ϕ ∥PF
)
.

(3.3)
We maximize an estimate of this objective function us-
ing stochastic gradient descent, see Algorithm 1. Here,
the expected log-likelihood (first term on the right-hand
side of Eq. 3.3) can be estimated by sampling from qϕ(w).
For a Gaussian likelihood, it can also be computed in
closed form because (unlike Rudner et al. (2022b)) we
use the linearized network fL to parameterize the likeli-
hood function, which made training more stable in our
experiments. We estimate the regularized KL divergence
(second term on the right-hand side of Eq. 3.3) using its
consistent estimator (see Eq. 3.2), with m1 = f(x;m),
Σ

(γ)
1 = J(x;m)SJ(x;m)⊤ + γMIM , m2 = µ(x), and

Σ
(γ)
2 = K(x,x) + γMIM , where µ and K are the mean

function and kernel of the GP prior, and x = {x(i)}Mi=1,
x(1), . . . ,x(M) i.i.d∼ ρ(x) are measurement points sampled
from the probability measure ρ(x) on X . The choice of
this measure is a hyperparameter of the method, and we
empirically analyze its impact in Section 4.2. We maximize
the estimated objective over the mean m and covariance S
of the Gaussian variational distribution qϕ(w), and over any
likelihood parameter (e.g., σy for a Gaussian likelihood), see
Algorithm 1. Appendix A.2 provides explicit expressions
for the estimator with Gaussian and Categorical likelihoods.
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Technical details (γ and ρ). It turns out that increasing γ
reduces the influence of the prior on inference (see Figure 17
in Appendix). At the same time, γ acts as jitter that prevents
numerical errors (see Section 3.1). We recommend setting γ
large enough to avoid numerical errors but sufficiently small
to strongly regularize the objective in Eq. 3.3 (see Figure 15
in Appendix). We found that GFSVI is robust to a wide
range of values and fixed γ = 10−10. Furthermore, the
probability measure ρ defined with L2(X , ρ) has to assign
non-zero probability to any open set of X to regularize the
BNN on all of its support. Following Rudner et al. (2022b),
we draw measurement points from a uniform distribution
over X when using tabular data and explore different config-
urations (such as samples from other data sets) when using
high-dimensional image data (see Appendix A.3.4).

3.1. Connections to prior work

TFSVI (Rudner et al., 2022b) and FVI (Sun et al., 2019)
solve stability issues by introducing jitter/noise, which has
a similar effect as the regularization in Eq. 3.1. However, as
mentioned in Section 2, TFSVI introduces jitter only to over-
come numerical issues and is fundamentally restricted to
prior specification in weight space since its function-space
prior is the pushforward of a weight-space prior. FVI does
not linearize the BNN, and therefore does not have access
to an explicit variational measure in function space. This
severely complicates the estimation of (gradients of) the KL
divergence, and the authors resort to implicit score function
estimators, which make their method difficult to use in prac-
tice (Ma & Hernández-Lobato, 2021). Our proposed GFSVI
does not suffer from these difficulties as the variational pos-
terior is an explicit (Gaussian) measure. This allows us to
estimate the (regularized) KL divergence without sampling
any noise or using implicit score function estimators.

4. Experiments
In this section, we evaluate our generalized function-space
variational inference (GFSVI) method qualitatively on syn-
thetic data (Section 4.1) and quantitatively on real-world
data (Section 4.2). We find that GFSVI accurately captures
structural properties specified by the GP prior, that it ap-
proximates the exact Gaussian process (GP) posterior more
faithfully than BNN baselines, and that it performs compet-
itively on regression, classification and out-of-distribution
detection tasks. We also discuss the influence of the BNN’s
inductive biases.

Baselines. We compare the proposed GFSVI method to
two weight-space inference methods (mean-field variational
inference (Blundell et al., 2015) and linearized Laplace
(Immer et al., 2021)) and to three function-space inference
methods (FVI (Sun et al., 2019), TFVSI (Rudner et al.,

2022b) and VIP (Ma et al., 2019), where TFSVI performs
inference in function space but with the pushforward of a
weight-space prior and VIP using a BNN prior). All BNNs
have the same architecture and fully-factorized Gaussian
approximate posterior. We also include results for a sparse
GP with a posterior mean parameterized by a neural network
(GWI) (Wild et al., 2022), as well as for a Gaussian Process
(GP) (Williams & Rasmussen, 2006) (when the size of the
dataset allows it), and for a sparse GP (Hensman et al., 2013)
for regression tasks. We consider the GP, sparse GP and
GWI as gold standards as they represent the exact (or near
exact) posterior for models with GP priors.

4.1. Qualitative results on synthetic data

Regression. We consider synthetic regression data with
a one-dimensional feature-space X ⊂ R, where the val-
ues yi are randomly sampled around sin(2πxi) (circles in
Figures 1-11, see Appendix A.3.1). The green lines in Fig-
ures 1-8 and 11 show functions sampled from the (approx-
imate) posteriors, and the red lines are the inferred mean
functions. Figure 2 compares GFSVI with an RBF GP prior
to baselines and to the exact posterior. We find that GFSVI
visually matches the true posterior best (the same holds for
a Matern-1/2 prior, see Figure 5 in the Appendix). Figure 1
in the Introduction and Figure 6 in the Appendix show that
GFSVI notably adapts to varying prior assumptions (vary-
ing smoothness, periodicity and length scale). In addition,
Figures 4 and 8 in the Appendix show that GFSVI provides
strong regularization when the data generative process is
noisy, and that it can be trained with fewer measurement
points M than FVI without significant degradation.

Classification. We further consider a binary classification
task derived from the 2-dimensional two moons data set
(Pedregosa et al., 2011), see red and blue dots in Figures 9
and 10 in the Appendix. The first and second row in both
figures show the inferred mean probability of class 1 (blue
dots) and its 2-standard deviations with respect to poste-
rior samples. Just like for regression, we find that GFSVI
captures the beliefs of the RBF and Matern-1/2 GP priors
better than all BNN-baselines, and shows greater uncertainty
outside of the support of the data than the BNN baselines.

Inductive biases. Figure 11 in the Appendix compares
GFSVI to the exact GP-posterior across two different priors
and three model architectures (details in Appendix A.3.1).
We find that, with ReLU activations, small models are prone
to underfitting for smooth priors (RBF), and to collapsing
uncertainty for rough priors (Matern-1/2). By contrast, with
smooth activations (Tanh), smaller models suffice, and they
are compatible with most standard GP priors (the results
shown in Figure 11 extend to RBF, Matern, and Rational
Quadratic in our experiments). We also analyzed how the
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Figure 2: Inference on synthetic data (gray circles) using an RBF prior for function-space methods GFSVI and FVI. The
proposed GFSVI provides the best approximation of the exact GP posterior.
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Figure 3: Ocean current modeling experiment. We report the mean velocity vectors and the squared errors. We find that
GFSVI models ocean current dynamics better than TFSVI which uses an isotropic Gaussian prior on the weights.

Table 1: Results for the ocean current modeling task. We
find that incorporating prior knowledge via a Gaussian pro-
cess prior in GFSVI improves score over weight-space pri-
ors in TFSVI.

DATASET GFSVI (OURS) TFSVI GP

LOG-LIKE. -6.627 ± 0.753 -22.651 ± 2.947 -0.507 ± 0.000
MSE 0.021 ± 0.002 0.034 ± 0.003 0.013 ± 0.000

number M of measurement points affects performance. Fig-
ures 7 and 14 in Appendix show that capturing the beliefs
of rough GP priors and estimating Dγ

KL with these priors
requires larger M .

4.2. Quantitative results on real-world data

We study the fidelity of GFSVI compared to the true GP-
posterior on real data, and evaluate GFSVI on regression,
classification, and out-of-distribution detection tasks. In
tables, we bold the highest score and any score whose (stan-
dard) error bars overlaps with the highest score’s error bar.

Ocean current modeling. We consider the problem of
modeling ocean currents in the Gulf of Mexico to measure
the extend to which GFSVI can incorporate knowledge
specified via a GP prior on real-world data. Specifically, we

follow the setup by Shalashilin (2024) and Cinquin et al.
(2024), and use the GulfDrifters dataset (Lilly & Pérez-
Brunius, 2021) to estimate ocean currents from 20 two-
dimensional velocity vectors collected from drifter buoys.
We embed physical properties of fluid motions into the GP
prior and to the neural networks by applying the Helmholtz
decomposition (Berlinghieri et al., 2023; Cinquin et al.,
2024). We compare our GFSVI to a GP and to TFSVI.

Results are shown in Table 1 and in Figure 3. We find
that incorporating prior knowledge via an informative GP
prior in GFSVI improves expected log-likelihood (Log-like.)
and mean squared-error (MSE) over weight-space priors in
TFSVI. However, for this relatively small dataset, exact GP
inference is still possible, and it outperforms both BNN-
based predictions. This suggests that the physically moti-
vated GP describes the true fluid dynamics well enough that
the additional inductive bias introduced by a neural network
hurts performance rather than helping it. In the following,
we consider experiments with larger datasets (making exact
GP inference computationally infeasible in many cases), and
where structural prior knowledge in function space exists
but is not derived from strict laws of nature.

Regression. We assess the predictive performance of
GFSVI on data sets from the UCI repository (Dua & Graff,
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Table 2: Test expected log-likelihood (higher is better) of evaluated methods on regression datasets. GFSVI performs
competitively compared to all BNN baselines and obtains the best mean rank.

DATASET FUNCTION-SPACE PRIORS WEIGHT-SPACE PRIORS GAUSSIAN PROCESSES (GOLD STANDARDS)
GFSVI (OURS) FVI TFSVI MFVI VIP LAPLACE GWI SPARSE GP GP

BOSTON -0.733 ± 0.144 -0.571 ± 0.113 -1.416 ± 0.046 -1.308 ± 0.052 -0.722 ± 0.196 -0.812 ± 0.205 -0.940 ± 0.145 -0.884 ± 0.182 -1.594 ± 0.556
CONCRETE -0.457 ± 0.041 -0.390 ± 0.017 -0.983 ± 0.012 -1.353 ± 0.018 -0.427 ± 0.050 -0.715 ± 0.025 -0.744 ± 0.079 -0.966 ± 0.025 -2.099 ± 0.421
ENERGY 1.319 ± 0.052 1.377 ± 0.042 0.797 ± 0.098 -0.926 ± 0.197 1.046 ± 0.378 1.304 ± 0.043 0.461 ± 0.093 -0.206 ± 0.027 -0.205 ± 0.022
KIN8NM -0.136 ± 0.013 -0.141 ± 0.023 -0.182 ± 0.011 -0.641 ± 0.225 -0.102 ± 0.013 -0.285 ± 0.014 -0.708 ± 0.054 -0.443 ± 0.014 (infeasible)
NAVAL 3.637 ± 0.132 2.165 ± 0.194 2.758 ± 0.044 1.034 ± 0.160 1.502 ± 0.061 3.404 ± 0.084 -0.301 ± 0.254 4.951 ± 0.014 (infeasible)
POWER 0.044 ± 0.011 0.031 ± 0.021 0.007 ± 0.013 -0.003 ± 0.015 0.036 ± 0.018 -0.002 ± 0.019 0.043 ± 0.009 -0.100 ± 0.010 (infeasible)
PROTEIN -1.036 ± 0.005 -1.045 ± 0.005 -1.010 ± 0.004 -1.112 ± 0.007 -0.994 ± 0.007 -1.037 ± 0.006 -1.050 ± 0.009 -1.035 ± 0.002 (infeasible)
WINE -1.289 ± 0.040 -1.215 ± 0.007 -2.138 ± 0.221 -1.248 ± 0.018 -1.262 ± 0.025 -1.249 ± 0.025 -1.232 ± 0.038 -1.240 ± 0.037 -1.219 ± 0.035
YACHT 1.058 ± 0.080 0.545 ± 0.735 -1.187 ± 0.064 -1.638 ± 0.030 -0.062 ± 1.378 0.680 ± 0.171 0.441 ± 0.138 -0.976 ± 0.092 -0.914 ± 0.045
WAVE 5.521 ± 0.036 6.612 ± 0.008 5.148 ± 0.117 6.883 ± 0.008 4.043 ± 0.093 4.658 ± 0.027 1.566 ± 0.123 4.909 ± 0.001 (infeasible)
DENMARK -0.487 ± 0.013 -0.801 ± 0.005 -0.513 ± 0.013 -0.675 ± 0.007 -0.583 ± 0.021 -0.600 ± 0.008 -0.841 ± 0.026 -0.768 ± 0.001 (infeasible)
MEAN RANK 1.545 2.000 2.727 3.455 2.091 2.455 - - -

Table 3: Test expected log-likelihood, accuracy, expected calibration error and OOD detection accuracy on MNIST and
Fashion MNIST.

D
A

TA METRIC FUNCTION-SPACE PRIORS WEIGHT-SPACE PRIORS GP-BASED

GFSVI (RND) GFSVI (KMNIST) FVI (RND) FVI (KMNIST) TFSVI (RND) TFSVI (KMNIST) MFVI VIP LAPLACE GWI

M
N

IS
T LOG-LIKE. (↑) -0.033 ± 0.000 -0.041 ± 0.000 -0.145 ± 0.005 -0.238 ± 0.006 -0.047 ± 0.003 -0.041 ± 0.001 -0.078 ± 0.001 -0.033 ± 0.001 -0.108 ± 0.002 -0.090 ± 0.003

ACC. (↑) 0.992 ± 0.000 0.991 ± 0.000 0.976 ± 0.001 0.943 ± 0.001 0.989 ± 0.000 0.989 ± 0.000 0.990 ± 0.000 0.989 ± 0.000 0.984 ± 0.000 0.971 ± 0.001
ECE (↓) 0.002 ± 0.000 0.006 ± 0.000 0.064 ± 0.001 0.073 ± 0.003 0.007 ± 0.000 0.006 ± 0.000 0.021 ± 0.000 0.002 ± 0.001 0.048 ± 0.001 0.003 ± 0.000
OOD ACC. (↑) 0.921 ± 0.008 0.980 ± 0.004 0.894 ± 0.010 0.891 ± 0.006 0.887 ± 0.011 0.893 ± 0.005 0.928 ± 0.002 0.871 ± 0.012 0.903 ± 0.007 0.829 ± 0.007

F
M

N
IS

T LOG-LIKE. (↑) -0.260 ± 0.003 -0.294 ± 0.006 -0.300 ± 0.002 -0.311 ± 0.005 -0.261 ± 0.001 -0.261 ± 0.002 -0.290 ± 0.002 -0.252 ± 0.001 -0.426 ± 0.009 -0.260 ± 0.001
ACC. (↑) 0.910 ± 0.001 0.909 ± 0.001 0.910 ± 0.002 0.906 ± 0.002 0.909 ± 0.001 0.907 ± 0.001 0.913 ± 0.001 0.911 ± 0.001 0.886 ± 0.001 0.906 ± 0.000
ECE (↓) 0.020 ± 0.003 0.042 ± 0.002 0.027 ± 0.005 0.024 ± 0.002 0.022 ± 0.002 0.021 ± 0.002 0.010 ± 0.001 0.024 ± 0.001 0.060 ± 0.004 0.016 ± 0.001
OOD ACC. (↑) 0.853 ± 0.005 0.997 ± 0.001 0.925 ± 0.005 0.975 ± 0.002 0.802 ± 0.006 0.779 ± 0.010 0.805 ± 0.010 0.790 ± 0.010 0.826 ± 0.006 0.792 ± 0.005

2017) (described in Table 6 in the Appendix). Table 2, and
Table 7 in the Appendix, show expected log-likelihood and
mean squared error, respectively. We perform 5-fold cross
validation and report means and standard errors across the
test folds. We also rank the methods for each dataset and
report the mean rank of each method across all datasets.
See Appendix A.3.3 for more details. We find that GFSVI
performs competitively compared to baselines and obtains
the best mean rank for both metrics, matching the top per-
forming methods on nearly all datasets. In particular, we
find that using GP priors in the linearized BNN with GFSVI
yields improvements over the weight-space priors used in
TFSVI and that GFSVI performs slightly better than FVI.

Classification. We further evaluate the classification per-
formance of our method on the MNIST (LeCun et al., 2010)
and FashionMNIST (Xiao et al., 2017) image data sets. We
fit the models on a random subset of 90% of the training
set, use the remaining 10% as validation data, and evaluate
on the provided test split. We repeat with 5 different ran-
dom seeds and report the mean and standard error of the
expected log-likelihood, accuracy and expected calibration
error (ECE) of the predictive distribution’s mean in Table 3.
For GFSVI, FVI, and TFSVI, we tested measurement points
from both a random (RND) distribution ρ(x) and from KM-
NIST (see Algorithm 1 and Appendix A.3.4). We find that
GFSVI performs competitively on MNIST, exceeding the ex-
pected log-likelihood and accuracy of top-scoring baselines
(see Table 3) and on par with best baselines on FashionM-
NIST. Additionally, GFSVI yields well-calibrated models
with low ECE.

Out-of-distribution detection. We further evaluate our
method by testing if its epistemic uncertainty is predictive
of out-of-distribution (OOD) data. We consider two settings:
(i) with tabular data and a Gaussian likelihood following
Malinin et al. (2020), and (ii) with image data and a categor-
ical likelihood following Osawa et al. (2019). We report the
accuracy of classifying OOD from in-distribution (ID) data
using a (learned) threshold on the predictive uncertainty. Ad-
ditional details are provided in Appendix A.3.5. In setting (i)
(Table 4), we find that GFSVI performs competitively and
obtains the highest mean rank. Likewise, in setting (ii) (Ta-
ble 8 in the Appendix), GFSVI strongly outperforms all
baselines when using the KMNIST measurement point dis-
tribution ρ(x). We find that with high-dimensional image
data, the choice of measurement point distribution highly
influences OOD detection accuracy. We provide more de-
tails in Appendix A.4.4. In both settings, we find that using
GP priors with GFSVI rather than weight-space priors with
TFSVI is beneficial, and that GFSVI improves over FVI.

Variational measure evaluation. Table 5 evaluates our
inference method by comparing samples drawn from the
exact posterior (where computationally feasible) with the
approximate posterior obtained with our method (GFSVI).
More details are provided in Appendix A.3.6. We find that
GFSVI approximates the exact posterior more accurately
that FVI, obtaining a higher mean rank, but worse than the
gold standard sparse GP, which demonstrates to be most
accurate.
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Table 4: Out-of-distribution accuracy (higher is better) of evaluated methods on regression datasets. GFSVI (ours) performs
competitively on OOD detection and obtains the highest mean rank.

DATASET FUNCTION-SPACE PRIORS WEIGHT-SPACE PRIORS GAUSSIAN PROCESSES (GOLD STANDARDS)

GFSVI (OURS) FVI TFSVI MFVI VIP LAPLACE GWI SPARSE GP GP

BOSTON 0.893 ± 0.011 0.594 ± 0.024 0.705 ± 0.107 0.563 ± 0.013 0.628 ± 0.010 0.557 ± 0.009 0.817 ± 0.017 0.947 ± 0.011 0.952 ± 0.003
CONCRETE 0.656 ± 0.016 0.583 ± 0.022 0.511 ± 0.003 0.605 ± 0.012 0.601 ± 0.024 0.578 ± 0.015 0.730 ± 0.020 0.776 ± 0.006 0.933 ± 0.004
ENERGY 0.997 ± 0.002 0.696 ± 0.017 0.997 ± 0.001 0.678 ± 0.014 0.682 ± 0.037 0.782 ± 0.020 0.998 ± 0.001 0.998 ± 0.001 0.998 ± 0.001
KIN8NM 0.588 ± 0.007 0.604 ± 0.023 0.576 ± 0.008 0.570 ± 0.009 0.563 ± 0.015 0.606 ± 0.009 0.602 ± 0.011 0.608 ± 0.014 (infeasible)
NAVAL 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 0.919 ± 0.017 0.621 ± 0.059 1.000 ± 0.000 1.000 ± 0.000 1.000 ± 0.000 (infeasible)
POWER 0.698 ± 0.006 0.663 ± 0.021 0.676 ± 0.008 0.636 ± 0.019 0.514 ± 0.004 0.654 ± 0.013 0.754 ± 0.004 0.717 ± 0.004 (infeasible)
PROTEIN 0.860 ± 0.011 0.810 ± 0.022 0.841 ± 0.018 0.693 ± 0.020 0.549 ± 0.020 0.629 ± 0.013 0.942 ± 0.002 0.967 ± 0.001 (infeasible)
WINE 0.665 ± 0.013 0.517 ± 0.004 0.549 ± 0.015 0.542 ± 0.009 0.706 ± 0.028 0.531 ± 0.007 0.810 ± 0.008 0.781 ± 0.014 0.787 ± 0.007
YACHT 0.616 ± 0.030 0.604 ± 0.025 0.659 ± 0.043 0.642 ± 0.035 0.688 ± 0.040 0.612 ± 0.024 0.563 ± 0.014 0.762 ± 0.018 0.787 ± 0.011
WAVE 0.975 ± 0.005 0.642 ± 0.004 0.835 ± 0.034 0.658 ± 0.026 0.500 ± 0.000 0.529 ± 0.005 0.903 ± 0.001 0.513 ± 0.001 (infeasible)
DENMARK 0.521 ± 0.006 0.612 ± 0.008 0.519 ± 0.006 0.513 ± 0.003 0.500 ± 0.000 0.529 ± 0.008 0.688 ± 0.003 0.626 ± 0.002 (infeasible)

MEAN RANK 1.455 2.364 1.909 2.909 3.364 2.909 - - -

Table 5: Average point-wise Wasserstein-2 distance (lower is better) between exact and approximate posterior of reported
methods. GFSVI (ours) provides a more accurate approximation than FVI.

DATASET BOSTON CONCRETE ENERGY WINE YACHT MEAN RANK

GFSVI (OURS) 0.0259 ± 0.0040 0.0499 ± 0.0029 0.0035 ± 0.0004 0.0571 ± 0.0097 0.0036 ± 0.0006 1.0
FVI 0.0469 ± 0.0044 0.0652 ± 0.0037 0.0037 ± 0.0004 0.1224 ± 0.0167 0.0052 ± 0.0013 1.6
GP SPARSE 0.0074 ± 0.0022 0.0125 ± 0.0016 0.0042 ± 0.0003 0.0170 ± 0.0035 0.0035 ± 0.0008 -

5. Related work
In this section, we review related work on function-space
variational inference with neural networks, and on approxi-
mating functions-space measures with weight-space priors.

Function-space inference with neural networks. Prior
work on function-space VI in BNNs has addressed issues
(i) and (ii) mentioned in Section 2. Sun et al. (2019) ad-
dress (i) (intractable variational posterior in function space)
by using implicit score function estimators, and (ii) (in-
tractable KL divergence) by replacing the supremum with
an expectation. Rudner et al. (2022a;b) address (i) by using
a linearized BNN (Khan et al., 2020; Immer et al., 2021;
Maddox et al., 2021), and (ii) by replacing the supremum
with a maximum over a finite set of samples. Other work
abandons approximating the posterior over neural network
weights altogether and instead uses a BNN only to specify
a prior (Ma et al., 2019), or deterministic neural networks
to fit basis functions for Bayesian linear regression (Ma
& Hernández-Lobato, 2021) or the mean of a generalized
sparse GP with Wasserstein-2 metric (Wild et al., 2022).
Our work combines linearized BNNs with generalized vari-
ational inference, but we use the regularized KL divergence
(Quang, 2019), which naturally generalizes the conventional
KL divergence and allows for informative GP priors.

Approximating function-space measures with weight-
space priors in BNNs. Flam-Shepherd et al. (2017); Tran
et al. (2022) minimize a divergence between the BNN’s prior
predictive and a GP before performing inference on weights,
while Wu et al. (2023) directly incorporate the bridging
divergence inside the inference objective. Alternatively,

Pearce et al. (2020) derive BNN architectures mirroring GPs,
and Matsubara et al. (2022) use the Ridgelet transform to
design weight-spaces priors approximating a GP in function
space. Another line of work considers weight-space priors
which regularize in function space by comparing the model’s
predictions to those of a reference model (Nalisnick et al.,
2020) and using an empirical prior (Rudner et al., 2023).

6. Discussion
We proposed a simple inference method with a well-defined
variational objective function for Bayesian neural networks
with Gaussian process (GP) priors in function-space. As
standard VI with functions-space priors suffers from an in-
finite KL divergence problem, we propose to follow the
generalized VI framework. Specifically, we substitute the
conventional KL divergence in the ELBO by the regular-
ized KL divergence, which is always finite, and which can
be estimated consistently within the linearized BNN ap-
proximation. We demonstrated that our method allows to
incorporate interpretable structural properties via a GP prior,
accurately approximates the true GP posterior on synthetic
and small real-world data sets, and provides competitive
uncertainty estimates for regression, classification and out-
of-distribution detection compared to BNN baselines with
both function-space and weight-space priors.

Future work should investigate the use of more expressive
variational distributions, such as Gaussian with low-rank
plus diagonal covariance proposed by Tomczak et al. (2020),
which is compatible with our proposed method.
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(BMBF): Tübingen AI Center, FKZ: 01IS18039A. Robert
Bamler acknowledges funding by the German Research
Foundation (DFG) for project 448588364 of the Emmy
Noether Programme. The authors extend their gratitude to
the International Max Planck Research School for Intelli-
gent Systems (IMPRS-IS) for supporting Tristan Cinquin.
Finally, we thank Marvin Pförtner for very useful discus-
sions on the theory and experiments, and Vincent Fortuin
for his feedback.

References
Abdullah, A., Hassan, M., and Mustafa, Y. A review on

Bayesian deep learning in healthcare: Applications and
challenges. IEEE Access, 10:1–1, 01 2022. doi: 10.1109/
ACCESS.2022.3163384.

Belkin, M. Approximation beats concentration? an approx-
imation view on inference with smooth radial kernels,
2018.

Berlinghieri, R., Trippe, B. L., Burt, D. R., Giordano, R.,
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A. Appendix
A.1. Regularized KL divergence for Gaussian measures

In this section, we provide more details on the relationship between Gaussian processes and Gaussian measures, and present
the regularized KL divergence in greater depth.

Gaussian measures and Gaussian processes. The regularized KL divergence is defined in terms of Gaussian measures,
and thus we need to verify that the GP variational posterior induced by the linearized BNN (Eq 2.7) has an associated
Gaussian measure. We consider the Hilbert space L2(X , ρ) of square-integrable functions with respect to a probability
measure ρ on a compact set X ⊂ Rd, with inner product ⟨f, g⟩ =

∫
X f(x)g(x)dρ(x). This is not a restrictive assumption

as we can typically bound the region in feature space that contains the data and any points where we might want to evaluate
the BNN.
Definition A.1 (Gaussian measure, Kerrigan et al. (2023), Definition 1). Let (Ω,B,P) be a probability space. A measurable
function F : Ω 7→ L2(X , ρ) is called a Gaussian random element (GRE) if for any g ∈ L2(X , ρ) the random variable ⟨g, F ⟩
has a Gaussian distribution on R. For every GRE F , there exists a unique mean element m ∈ L2(X , ρ) and a finite trace
linear covariance operator C : L2(X , ρ) 7→ L2(X , ρ) such that ⟨g, F ⟩ ∼ N (⟨g,m⟩, ⟨Cg, g⟩) for all g ∈ L2(X , ρ). The
pushforward of P along F denoted PF := F#P is a Gaussian (probability) measure on L2(X , ρ).

Gaussian measures generalize Gaussian distributions to infinite-dimensional spaces where measures do not have associated
densities. Following Wild et al. (2022), we notate the Gaussian measure obtained from the GRE F with mean element m
and covariance operator C as PF := N (m,C).

Gaussian processes provide a convenient method to specify Gaussian measures over functions via mean and covariance
functions (Wild et al., 2022; Kerrigan et al., 2023). A GP f ∼ GP(µ,K) has an associated Gaussian measures in L2(X , ρ)
if its mean function satisfies µ ∈ L2(X , ρ) and its covariance function K is trace-class, i.e., if

∫
X K(x, x)dρ(x) < ∞ (Wild

et al., 2022, Theorem 1). The GP variational posterior induced by the linearized BNN (Eq 2.7) satisfies both properties as
neural networks are well-behaved functions on the compact subset X ⊂ Rd. It thus induces a Gaussian measure QF

ϕ ∼
N (mQ, CQ) with mean element mQ = f( · ;m) and covariance operator CQg(·) =

∫
X J( · ;m)SJ(x′,m)⊤g(x′)dρ(x′).

It turns out that the infinity of the KL divergence discussed in Section 2 of the main text is easier to prove for Gaussian
measures, and we provide the proof in the next paragraph for the interested reader.

The KL divergence is infinite. We here show that the Kullbach-Liebler (KL) divergence between the Gaussian measures
QF

ϕ ∼ N (mQ, CQ) and PF ∼ N (mP , CP ), respectively induced by the linearized BNN in Eq 2.7 of the main text and by
a non-degenerate Gaussian process satisfying conditions given in Appendix A.1, is infinite. While this has already been
shown by Burt et al. (2020), the proof is easier for Gaussian measures. We first need the Feldman-Hàjek theorem which tells
us when the KL divergence between two Gaussian measures is well-defined.
Theorem A.2 (Feldman-Hàjek, Quang (2022) Theorem 2, Simpson (2022) Theorem 7). Consider two Gaussian measures
ν1 = N (m1, C1) and ν2 = N (m2, C2) on L2(X , ρ). Then ν1 and ν2 are called equivalent if and only if the following
holds:

1. m1 −m2 ∈ Im(C
1/2
2 )

2. The operator T such that C1 = C
1/2
2 (I − T )C

1/2
2 is Hilbert-Schmidt, that is T has a countable set of eigenvalues λi

that satisfy λi < 1 and
∑∞

i=1 λ
2
i < ∞.

otherwise ν1 and ν2 are singular. If ν1 and ν2 are equivalent, then the Radon-Nikodym dervative exists and DKL(ν1 ∥ ν2)
admits an explicit formula. Otherwise, DKL(ν1 ∥ ν2) = ∞.

Let us now show that the KL divergence between QF
ϕ and PF is indeed infinite.

Proposition 1. The Gaussian measures QF
ϕ and PF are mutually singular and DKL(QF

ϕ ||PF ) = ∞.

Proof. The proof follows from the Feldman-Hàjek theorem (Theorem A.2). In our case, CQ has at most p non-zero
eigenvalues as the covariance function of the GP induced by the BNN is degenerate, while CP has a set of (countably)
infinite non-zeros eigenvalues (prior is non-degenerate as per assumption). Hence, for the equality in condition (2) to hold,
T must have eigenvalue 1 which violates the requirement that T is Hilbert-Schmidt i.e. that its eigenvalues {λi}∞i=1 satisfy
λi < 1 and

∑∞
i=1 λ

2
i < ∞. Therefore, QF

ϕ and PF are mutually singular and DKL(QF
ϕ ||PF ) = ∞.
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The regularized KL divergence. We now present in greater detail the regularized KL divergence (Quang, 2019), which
we use to solve the infinite KL divergence problem in function-space variational inference.
Definition A.3 (Regularized KL divergence, Quang (2022) Definition 5). Let ν1 = N (m1, C1) and ν2 = N (m2, C2) be
two Gaussian measures with m1,m2 ∈ L2(X , ρ) and C1, C2 bounded, self-adjoint, positive and trace-class linear operators
on L2(X , ρ). Let γ ∈ R, γ > 0 be fixed. The regularized KL divergence is defined as in Eq. 3.1 of the main text, which we
repeat here for completeness,

Dγ
KL(ν1 ∥ ν2) :=

1

2
⟨m1 −m2, (C2 + γI)−1(m1 −m2)⟩+

1

2
TrX

[
(C2 + γI)−1(C1 + γI)− I

]
− 1

2
log detX

[
(C2 + γI)−1(C1 + γI)

]
.

(A.1)

For any γ > 0, the regularized KL divergence is well-defined and finite, even if the Gaussian measures are singular
(Quang, 2019). It converges to the conventional KL divergence (if it is well-defined) for γ → 0 (Quang, 2022, Theorem
6). Furthermore, and importantly for our application to VI, if two Gaussian measures ν1 and ν2 are induced by GPs
fi ∼ GP(µi,Ki) for i = 1, 2, then Dγ

KL(ν1 ∥ ν2) can be consistently estimated (Quang, 2022) from a finite number M of
samples using the estimator in Eq. 3.2 of the main text, which we repeat here for completeness,

D̂γ
KL(ν1 ∥ ν2) :=

1

2
(m1 −m2)

⊤(Σ
(γ)
2 )−1(m1 −m2) +

1

2
Tr

[
(Σ

(γ)
2 )−1Σ

(γ)
1 − IM

]
− 1

2
log det

[
(Σ

(γ)
2 )−1Σ

(γ)
1

]
(A.2)

with mi := µi(x) and Σ
(γ)
i := Ki(x,x) + γM IM where µi(x) and Ki(x,x) are the mean vector and the covariance

matrix obtained by evaluating µi and Ki respectively, at measurement points x = {x(i)}Mi=1, x(1), . . . ,x(M) i.i.d∼ ρ(x). The
right-hand side of Eq. 3.2 is the closed-form expression for the KL-divergence between multivariate Gaussian distributions
N (m1,Σ

(γ)
1 ) and N (m2,Σ

(γ)
2 ). Quang (2022) shows that the absolute error of the estimator is bounded by O(1/M) with

high probability with constants depending on γ and properties of the GP mean and covariance functions. We provide the
exact bound below.
Theorem A.4 (Convergence of estimator, Quang (2022) Theorem 45). Assume the following:

1. Let T be a σ − compact metric space, that is T = ∪∞
i=1Ti, where T1 ⊂ T2 ⊂ · · · with each Ti being compact.

2. ρ is a non-degenerate Borel probability measure on T, that is ρ(B) > 0 for each open set B ⊂ T .
3. K1,K2 : T × T → R are continuous, symmetric, positive definite kernels and there exists κ1 > 0, κ2 > 0 such that∫

T
Ki(x, x)dρ(x) ≤ κ2

i for i = 1, 2.
4. supx∈T Ki(x, x) ≤ κ2

i for i = 1, 2.
5. fi ∼ GP (µi,Ki), where µi ∈ L2(T, ρ) for i = 1, 2.
6. ∃Bi > 0 such that ∥µi∥∞ ≤ Bi for i = 1, 2.

Let x = {x(i)}Mi=1, x(1), . . . ,x(M) i.i.d∼ ρ(x). If Gaussian measures N (mi, Ci) are induced by GPs fi ∼ GP(µi,Ki) for
i = 1, 2, then for any 0 < δ < 1, with probability at least 1− δ,

|DKL(N (µ1(x),K1(x,x) +MγIM ) ∥N (µ2(x),K2(x,x) +MγIM ))−Dγ
KL(N (m1, C1) ∥N (m2, C2))|

≤ 1

2γ
(B1 +B2)

2[1 + κ2
2/γ]

2 log 48
γ

M
+

√
2 log 48

γ

M

+
1

2γ2
[κ4

1 + κ4
2 + κ2

1κ
2
2(2 + κ2

2/γ)]

2 log 12
γ

M
+

√
2 log 12

γ

M


(A.3)

A.2. Additional details on the GFSVI objective estimator

In this section, we present details on the estimation of the generalized function-space variational inference (GFSVI)
objective. Let fL( · ;w) be the linearized BNN (Eq 2.6) with weights w ∈ Rp, and D = {(xi, yi)}Ni=1 a data set with
features xi ∈ X ⊂ Rd and associated values yi ∈ Y . Assuming a likelihood p(D |w) =

∏N
i=1 p(yi | f(xi;w)) and a

Gaussian variational distribution on model weights qϕ(w) = N (w |m,S), the GFSVI objective function is

L(ϕ) =
N∑
i=1

Eqϕ(w)[log p(yi | fL(xi;w))]−Dγ
KL

(
QF

ϕ ∥PF
)

(A.4)
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where QF
ϕ and PF are the Gaussian measures induced by the linearized BNN and a Gaussian process prior respectively.

Expected log-likelihood. When considering a Gaussian likelihood, we use the closed form expression available due to the
Gaussian variational measure over functions induced by the linearized BNN

Eqϕ(w)

[
logN

(
yi | fL(xi;w), σ2

y

)]
= −1

2
log

(
2πσ2

y

)
− (yi − f(xi;m))2 + J(xi;m)SJ(xi;m)⊤

2σ2
y

. (A.5)

When considering a Categorical likelihood with C different classes, we estimate the expected log-likelihood term using
Monte-Carlo integration as

Eqϕ(w)[logCat(yi |σ(fL(xi;w)))] =
1

K

K∑
k=1

C∑
c=1

I[yi = c]

[
f c
L(xi;w

(k))− log

[
C∑

c′=1

exp
(
f c′

L (xi;w
(k))

)]]
(A.6)

where w(k) ∼ qϕ(w) for k = 1, . . . ,K, I[·] is the indicator function, σ(·) is the softmax function and f c
L( · ;w) is the logit

for class c obtained from fL.

Regularized KL divergence. We estimate the regularized KL divergence using its consistent estimator (Eq. 3.2)

D̂γ
KL

(
QF

ϕ ∥PF
)
=

1

2
(f(x;m)− µ(x))⊤(K(x,x) + γMIM )−1(f(x;m)− µ(x))

+
1

2
Tr

[
(K(x,x) + γMIM )−1(J(x;m)SJ(x;m)⊤ + γMIM )− IM

]
− 1

2
log det

[
(K(x,x) + γMIM )−1(J(x;m)SJ(x;m)⊤ + γMIM )

] (A.7)

with measurement points x = {x(i)}Mi=1, x(1), . . . ,x(M) i.i.d∼ ρ(x) sampled from a probability measure on X .

A.3. Additional details on the experimental setup

A.3.1. EXPERIMENTS ON SYNTHETIC DATA

Regression. We consider the following generative model for the toy data

yi = sin(2πxi) + ϵ with ϵ ∼ N
(
0, σ2

n

)
(A.8)

and draw xi ∼ U([−1,−0.5] ∪ [0.5, 1]). When not otherwise specified, we use σn = 0.1. On the plots, the data points
are shown as gray circles, inferred mean functions as red lines, their 2-standard-deviations interval around the mean in
light green, and functions sampled from the approximate posterior as green lines. In general, we consider two hidden-layer
BNNs with 30 neurons per layer and hyperbolic tangent activation (Tanh) functions. Specifically in Figure 11, the small
BNN has the same architecture as above while the large BNN has 100 neurons per layer. All the BNN baselines have the
same architecture and fully-factorized Gaussian approximate posterior. The prior scale of TFSVI (Rudner et al., 2022b)
is set to σp = 0.2 and σp = 0.75 for MFVI (Blundell et al., 2015) and Laplace (Immer et al., 2021). For the Gaussian
process posterior baseline, we fit the prior parameters by maximizing the log-marginal likelihood (Williams & Rasmussen,
2006). Apart from the cases where the parameters of the GP prior used for GFSVI (our method) and FVI (Sun et al., 2019)
are explicitly stated, we consider a constant zero-mean function and find the parameters of the covariance function by
maximizing the log-marginal likelihood from mini-batches (Chen et al., 2021). Except where otherwise stated, we estimate
the functional KL divergences with 500 measurement points and use the regularized KL divergence with γ = 10−10.

Classification. We sample 100 data points perturbed by Gaussian noise with σn = 0.1 from the two moons data (Pedregosa
et al., 2011). On the plots, the data points are shown as red (class 0) and blue (class 1) dots. We plot the mean and 2-
standard-deviations of the probability that x belongs to class 1 with respect to the posterior (i.e. p(y = 1 |w(k),x)) which
we estimate from K = 100 samples w(k) ∼ qϕ(w) for k = 1, . . . ,K. We consider two hidden-layer BNNs with 100
neurons per layer and hyperbolic tangent activation (Tanh) functions. All the BNN baselines have the same architecture and
fully-factorized Gaussian approximate posterior. The prior scale of MFVI (Blundell et al., 2015) is set to σp = 0.8 and
σp = 1.0 for TFSVI (Rudner et al., 2022b) and Laplace (Immer et al., 2021). For the Gaussian process posterior baseline,
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we approximate the intractable posterior using the Laplace approximation and find the prior parameters by maximizing the
log-marginal likelihood (Williams & Rasmussen, 2006). The GP prior for GFSVI (our method) and FVI (Sun et al., 2019)
has a constant zero-mean function and we find the parameters of the covariance function by maximizing the log-marginal
likelihood from mini-batches (Chen et al., 2021) using the method to transform classifications labels into regression targets
from Milios et al. (2018). We estimate the functional KL divergences with 500 measurement points and use the regularized
KL divergence with γ = 10−10.

A.3.2. OCEAN CURRENT MODELING EXPERIMENT

Following Cinquin et al. (2024), we apply the Helmholtz decomposition to the neural network f as

f(·,w) = gradΦ(·,w1) + rotΨ(·,w2) (A.9)

where w = {w1,w2} and, Φ(·,w1) and Ψ(·,w2) are 2-layer fully-connected neural networks with 50 hidden units per
layer and hyperbolic tangent activation functions. GFSVI and TFSVI both use 160 fixed context points. The prior scale
of TFSVI is set to σp = 0.5. We fit the neural networks on the entire dataset and average the scores with respect to five
different random seeds.

A.3.3. REGRESSION EXPERIMENTS WITH TABULAR DATA

Datasets and pre-processing. We evaluate the predictive performance of our model on regression datasets from the UCI
repository (Dua & Graff, 2017) described in Table 6. These datasets are also considered in Sun et al. (2019); Wild et al.
(2022) but we include two additional larger ones (Wave and Denmark). We perform 5-fold cross validation, leave out one
fold for testing, consider 10% of the remaining 4 folds as validation data and the rest as training data. We report mean and
standard-deviation of the average expected log-likelihood and average mean square error on the test fold. We also report the
mean rank of the methods across all datasets by assigning rank 1 to the best scoring method as well as any method who’s
error bars overlap with the highest score’s error bars, and recursively apply this procedure to the methods not having yet
been assigned a rank. The expected log-likelihood is estimated by Monte Carlo integration when it is not available in closed
form (MFVI, TFSVI and FVI) with 100 posterior samples. We preprocess the dataset by encoding categorical features as
one-hot vectors and standardizing the features and labels.

Baseline specification. We compare our GFSVI method to two weight-space inference methods (mean-field variational
inference (Blundell et al., 2015) and linearized Laplace (Immer et al., 2021)) and two function-space inference methods
(FVI (Sun et al., 2019) and TFSVI (Rudner et al., 2022b)). While FVI uses GP priors, TFSVI performs inference in function
space but with the pushforward to function space of the variational distribution and prior on the weights. We compute the
function-space (regularized) KL divergence using a set of 500 measurement points sampled from a uniform distribution
for GFSVI and TFSVI, and 50 points drawn from a uniform distribution along with 450 samples from the training batch
for FVI as specified in Sun et al. (2019). All the BNN baselines have the same architecture and fully-factorized Gaussian
approximate posterior. We also provide results with a GP (Williams & Rasmussen, 2006) when the size of the dataset allows
it, and a sparse GP (Hensman et al., 2013). As we restrict our comparison to BNNs, we do not consider the GP and sparse
GP as baselines but rather as gold-standards. All models have a Gaussian heteroskedastic noise model with a learned scale
parameter. All the BNNs are fit using the Adam optimizer (Kingma & Ba, 2017) using a mini-batch size of 2000 samples.
We also perform early stopping when the validation loss stops decreasing.

Model selection. Hyper-parameter optimization is conducted using the Bayesian optimization tool provided by Wandb
(Biewald, 2020). BNN parameters are selected to maximize the average validation expected log-likelihood across the 5
cross-validation folds. We optimize over prior parameters (kernel and prior scale), learning-rate and activation function.
We select priors for GFSVI, FVI, sparse GP and GP among the RBF, Matern-1/2, Matern-3/2, Matern-5/2, Linear and
Rational Quadratic covariance functions. The GP prior parameters used with GFSVI and FVI are selected by maximizing
the log-marginal likelihood from batches as proposed by Chen et al. (2021) and done in Sun et al. (2019). Hyper-parameters
for GPs and sparse GPs (kernel parameters and learning-rate) are selected to maximize the mean log-marginal likelihood of
the validation data across the 5 cross-validation folds.
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Table 6: UCI regression dataset description

DATASET BOSTON NAVAL POWER PROTEIN YACHT CONCRETE ENERGY KIN8NM WINE WAVE DENMARK

NUMBER SAMPLES 506 11 934 9 568 45 730 308 1 030 768 8 192 1 599 288 000 434 874
NUMBER FEATURES 13 16 4 9 6 8 8 8 11 49 2

A.3.4. CLASSIFICATION EXPERIMENTS WITH IMAGE DATA

Datasets and pre-processing. We further evaluate the predictive performance of our model on classification tasks with
the MNIST (LeCun et al., 2010) and Fashion MNIST (Xiao et al., 2017) image data sets. We fit the models on a random
subset of 90% of the provided training split, consider the remaining 10% as validation data and evaluate on the provided
test split. We repeat this procedure 5 times with different random seeds and report the mean and standard-deviation of the
average expected log-likelihood, accuracy and expected calibration error (ECE) of the mean of the predictive distribution
on the test set. The expected log-likelihood is estimated by Monte Carlo integration with 100 posterior samples when it is
not available in closed form (MFVI, TFSVI and FVI). We estimate the mean of the predictive distribution to compute the
accuracy and the ECE with 100 posterior samples. We preprocess the dataset by standardizing the images.

Baseline specification. We compare our GFSVI method to the same baselines as for the regression experiments (see A.3.3).
All the BNN baselines have the same architecture and fully-factorized Gaussian approximate posterior. More specifically, we
consider a CNN with three convolutional layers (with output channels 16, 32 and 64) before two fully connected layers (with
output size 128 and 10). The convolutional layers use 3× 3 shaped kernels. Each pair of convolutional layers is interleaved
with a max-pooling layer. We consider three different measurement point distributions ρ to estimate the (regularized)
KL divergence in GFSVI, FVI and TFSVI: RANDOM, RANDOM PIXEL and KMNIST. The RANDOM measurement point
distribution is sampled from by drawing 50% of the samples from the training data batch and 50% of the samples from
a uniform distribution over [pmin, pmax]

H×W×C , where H , W and C are respectively the height, width and number of
channels of the images, and pmin = vmin−0.5×∆ and pmax = vmax+0.5×∆ where ∆ = vmax−vmin is the difference
between the minimal (vmin) and maximal (vmax) pixel values of the data set. The RANDOM PIXEL measurement point
distribution is taken from Rudner et al. (2022b) and is sampled from by randomly choosing each pixel value among the ones
available from the training data batch at the same position in the 28 × 28 pixel grid. Finally, the KMNIST measurement
point distribution is also taken from Rudner et al. (2022b) and is drawn from by randomly sampling data points from the
Kuzushiji-MNIST (KMNIST) dataset (Clanuwat et al., 2018). The KMNIST dataset is a collection of 70’000 gray-scale
images of size 28× 28 which we preprocess by standardizing the images. We sample 10 measurement points when using
RANDOM, 25 measurement points when using RANDOM PIXEL and 20 when using KMNIST. All the BNNs are trained
using the Adam optimizer (Kingma & Ba, 2017) using a mini-batch size of 100. We also perform early stopping when the
validation loss stops decreasing.

Model selection. Hyper-parameter optimization is conducted just like for the regression tasks (see A.3.3). The Gaussian
process prior parameters used with GFSVI and FVI are selected by maximizing the log-marginal likelihood from batches
(Chen et al., 2021) using the method to transform classifications labels into regression targets from Milios et al. (2018). We
optimize the same hyper-parameters as for the regression experiments with the exception of the additional αϵ parameter
introduced by Milios et al. (2018) for the function-space VI methods with GP priors (FVI and GFSVI).

A.3.5. OOD DETECTION

Tabular data with a Gaussian likelihood. Following the setup from Malinin et al. (2020) we take epistemic uncertainty
to be the variance of the mean prediction with respect to samples from the posterior. We consider the test data to be
in-distribution (ID) data and a subset of the song dataset (Bertin-Mahieux et al., 2011) of equal length and with an equal
number of features as out-of-distribution (OOD) data. We use the same preprocessing as for regression as well as the same
baselines with the same hyper-parameters (see Appendix A.3.3). We first fit a model, then evaluate the extend by which the
epistemic uncertainty under the model is predictive of the ID and OOD data using a single threshold obtained by a depth-1
decision tree fit to minimize the classification loss. We report the mean and standard error of the accuracy of the threshold to
classify OOD from ID data based on epistemic uncertainty across the 5 folds of cross-validation. We also provide results
obtained using a GP and sparse GP as gold standard.
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Figure 4: Our method (GFSVI) effectively regularizes functions generated by the Bayesian neural network (BNN) both in
settings where the generative process is very noisy (σn = 1) or not (σn = 0.1).

Image data with a Categorical likelihood. Following the setup by Osawa et al. (2019), we take the epistemic uncertainty
to be the entropy of the mean of the predictive distribution with respect to samples from the posterior. We evaluate models
trained on MNIST using MNIST’s test split as ID data and a subset of the training set of Fashion MNIST as OOD data.
Likewise, we evaluate models trained on Fashion MNIST using Fashion MNIST’s test split as ID data and a subset of the
training set of MNIST as OOD data. We use the same preprocessing as for classification, as well as the same baselines with
the same hyper-parameters (see Appendix A.3.4). We first fit a model, then evaluate the extend by which the epistemic
uncertainty under the model is predictive of the ID and OOD data using a single threshold obtained by a depth-1 decision
tree fit to minimize the classification loss. We estimate mean of the predictive distribution by Monte-Carlo integration using
100 posterior samples. We report the mean and standard error of the accuracy of the threshold to classify OOD from ID data
based on epistemic uncertainty for the 5 models trained on different random seeds (see Appendix A.3.4).

A.3.6. VARIATIONAL MEASURE EVALUATION

We evaluate our inference method by comparing the samples drawn from the exact posterior over functions with the
approximate posterior obtained with our method (GFSVI). We follow the setup by Wilson et al. (2022) and we compute the
average Wasserstein-2 metric between 1000 samples drawn from a GP posterior with a RBF kernel evaluated at the test
points, and samples from the approximate posterior of GFSVI, sparse GP and FVI evaluated at the same points and with the
same prior. We consider the Boston, Concrete, Energy, Wine and Yacht datasets for which the exact GP posterior can be
computed and use the same preprocessing as for regression (see Appendix A.3.3). We report the mean and standard error of
the average Wasserstein-2 metric across the 5 folds of cross-validation. The Wasserstein-2 metric is computed using the
Python Optimal Transport library (Flamary et al., 2021).

Baseline specification. FVI and GFSVI have the same two hidden layer neural network architecture with 100 neurons
each and hyperbolic tangent activation. These models are fit with the same learning rate and set of 500 measurement points
jointly sampled from a uniform distribution over the feature-space and mini-batch of training samples. We use γ = 10−15

for the regularized KL divergence. We further consider a sparse GP with 100 inducing points.

A.3.7. SOFTWARE

We use the JAX (Bradbury et al., 2018) and DM-Haiku (Hennigan et al., 2020) Python libraries to implement our Bayesian
neural networks. MFVI, linearized Laplace and TFSVI were implemented based on the information in the papers, and code
for FVI was adapted to the JAX library from the implementation provided by the authors. We further use the GPJAX Python
library for experiments involving Gaussian processes (Pinder & Dodd, 2022).

A.3.8. HARDWARE

All models were fit using a single NVIDIA RTX 2080Ti GPU with 11GB of memory.

A.4. Additional experimental results

In this section, we present additional figures for our qualitative uncertainty evaluation as well as further experimental
results on regression, out-of-distribution detection and robustness under input distribution shift tasks. We also provide
plots illustrating the eigenvalue decay of different kernels, and figures showing the influence of γ in the regularized KL
divergence.
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A.4.1. QUALITATIVE UNCERTAINTY EVALUATION

Regression. We further find that our method (GFSVI) provides strong regularization when the data generative process is
noisy (see Figure 4) and is more robust than FVI to situations where ones computational budget constrains the number of
measurement points M to be small (Figure 8). In contrast to FVI, GFSVI accurately approximates the exact GP posterior
under rough (Matern-1/2) GP priors effectively incorporating prior knowledge defined by the GP prior to the inference
process (see Figure 5). Likewise, GFSVI adapts to the variability of the functions specified by the kernel (see Figure 6).
We also find that GFSVI requires a larger number of measurement points to capture the behavior of a rougher prior (see
Figure 7).
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Figure 5: Our method (GFSVI) with a Matern-1/2 Gaussian process (GP) prior accurately approximates the exact GP
posterior unlike the function-space prior baseline (FVI). Weight-space prior baselines do not provide a straight-forward
mechanism to incorporate prior assumptions regarding the functions generated by BNNs and underestimate the epistemic
uncertainty (MFVI, Laplace). The lower row is identical to the one in Figure 2 in the main text and is reproduced here to
make comparison easier.

-2 -1 0 1 2

-2
0
2

λ=0.15

-2 -1 0 1 2

λ=0.35

-2 -1 0 1 2

λ=0.5

Figure 6: Our method (GFSVI) allows to incorporate prior beliefs in terms of function variability using the characteristic
length-scale parameter of the Gaussian process (GP) prior. GFSVI was fit using a GP prior with RBF covariance function.
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Figure 7: Our method (GFSVI) captures the smooth behavior of a Gaussian process (GP) prior with RBF covariance function
even if the number of measurement points is small (M=10). However, in that setting GFSVI fails to reproduce the rough
effect of a GP prior with a Matern-1/2 covariance function, and requires a larger amount of measurement points to do so
(M=100).

Classification. We find that GFSVI better captures the beliefs induced by the smooth RBF and rough Matern-1/2 Gaussian
process priors compared to FVI (see Figures 9 and 10). Moreover, GFVSI both accurately fits the training data and shows
greater uncertainty outside of its support relative to BNNs baselines with weight-space and function-space priors. Unlike for
the toy data regression experiments where the GP posterior was the ground truth, the Laplace (approximate) GP posterior in
Figures 9 and 10 only represents a possible approximation to the now in-tractable posterior (due to the softmax inverse link
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Figure 8: Our method (GFSVI) already provides a reasonable approximation to the exact posterior with small numbers of
measurement points (M=10) while function-space baseline FVI requires many more (M=100).

function). Thus the GP should not be considered as the ground truth nor as the optimal approximation in the classification
setting, but is nevertheless useful to give a idea of the level of uncertainty a BNN with a GP prior should provide outside of
the support of the data.

-4 -2 0 2 4
-4

-2

0

2

4
GFSVI (ours)

-4 -2 0 2 4

FVI

-4 -2 0 2 4

TFSVI

-4 -2 0 2 4

MFVI

-4 -2 0 2 4

Laplace

-4 -2 0 2 4

GP (not BNN)

-4 -2 0 2 4
-4

-2

0

2

4

-4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4 -4 -2 0 2 4

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

[y=
1|,x]

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9 2

[y=
1|,x]

Figure 9: Our method (GFSVI) with a RBF Gaussian process (GP) prior accurately captures the smooth decision boundary
induced by the prior and shows high uncertainty outside of the data support. Weight-space baselines do not provide a
straight-forward mechanism to incorporate prior assumptions regarding the functions generated by BNNs and underestimate
the epistemic uncertainty (TFSVI, Laplace) or underfit the data (MFVI).
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Figure 10: Our method (GFSVI) with a Matern-1/2 Gaussian process (GP) prior accurately captures the rough decision
boundary unlike the function-space baseline (FVI). Weight-space baselines do not provide a straight-forward mechanism
to incorporate prior assumptions regarding the functions generated by BNNs and underestimate the epistemic uncertainty
(TFSVI, Laplace) or underfit the data (MFVI).
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Figure 11: Our method requires that the Bayesian neural network (BNN) and Gaussian process (GP) prior share similar
inductive biases to provide an accurate approximation to the exact posterior.

Inductive biases. Figure 11 compares GFSVI to the exact posterior across two different priors and three model architectures
(details in A.3.1). We find that the BNN’s ability to incorporate the beliefs introduced by the GP prior depends on its size
and activation function. When using piece-wise linear activations (ReLU), small models are prone to underfitting for smooth
priors (RBF), and to collapsing uncertainty for rough priors (Matern-1/2). By contrast, when using smooth activations
(Tanh), smaller models suffice, and they are compatible with most standard GP priors (the results shown in Figure 11 extend
to RBF, Matern family, and Rational Quadratic in our experiments). We also analyzed how the number M of measurement
points affects performance. Figures 7 and 14 show that capturing the properties of rough GP priors and estimating Dγ

KL with
these priors requires larger M .

A.4.2. REGRESSION ON TABULAR DATA

Table 7: Test mean square error (MSE) of evaluated methods on regression datasets. We find that GFSVI (ours) also performs
competitively in terms of MSE compared to baselines and obtains the best mean rank, matching best the performing methods
on nearly all datasets.

DATASET FUNCTION-SPACE PRIORS WEIGHT-SPACE PRIORS GAUSSIAN PROCESSES (GOLD STANDARDS)

GFSVI (OURS) FVI TFSVI MFVI VIP LAPLACE GWI SPARSE GP GP

BOSTON 0.123 ± 0.021 0.136 ± 0.022 0.995 ± 0.092 0.532 ± 0.072 0.201 ± 0.056 0.203 ± 0.047 0.273 ± 0.069 0.122 ± 0.014 0.115 ± 0.020
CONCRETE 0.114 ± 0.008 0.116 ± 0.004 0.389 ± 0.015 0.698 ± 0.046 0.109 ± 0.008 0.116 ± 0.007 0.145 ± 0.017 0.399 ± 0.020 0.116 ± 0.007
ENERGY 0.003 ± 0.000 0.003 ± 0.000 0.003 ± 0.000 0.152 ± 0.024 0.043 ± 0.036 0.002 ± 0.000 0.003 ± 0.001 0.087 ± 0.005 0.087 ± 0.004
KIN8NM 0.071 ± 0.001 0.075 ± 0.003 0.073 ± 0.001 0.290 ± 0.111 0.068 ± 0.002 0.083 ± 0.001 0.071 ± 0.001 0.088 ± 0.002 (infeasible)
NAVAL 0.000 ± 0.000 0.001 ± 0.001 0.000 ± 0.000 0.007 ± 0.003 0.002 ± 0.000 0.000 ± 0.000 0.197 ± 0.174 0.000 ± 0.000 (infeasible)
POWER 0.052 ± 0.001 0.054 ± 0.002 0.054 ± 0.001 0.058 ± 0.002 0.054 ± 0.002 0.054 ± 0.002 0.052 ± 0.001 0.071 ± 0.001 (infeasible)
PROTEIN 0.459 ± 0.005 0.466 ± 0.004 0.429 ± 0.004 0.537 ± 0.008 0.421 ± 0.005 0.446 ± 0.006 0.425 ± 0.003 0.408 ± 0.002 (infeasible)
WINE 0.652 ± 0.022 0.663 ± 0.009 1.297 ± 0.093 0.655 ± 0.023 0.627 ± 0.013 0.637 ± 0.031 0.682 ± 0.048 0.607 ± 0.033 0.585 ± 0.032
YACHT 0.003 ± 0.001 0.004 ± 0.001 0.221 ± 0.037 0.682 ± 0.140 0.004 ± 0.001 0.002 ± 0.001 0.008 ± 0.003 0.399 ± 0.064 0.355 ± 0.030
WAVE 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000 0.001 ± 0.001 0.000 ± 0.000 (infeasible)
DENMARK 0.155 ± 0.004 0.287 ± 0.003 0.163 ± 0.004 0.225 ± 0.003 0.189 ± 0.008 0.194 ± 0.003 0.197 ± 0.004 0.260 ± 0.001 (infeasible)

MEAN RANK 1.364 2.000 2.182 3.182 1.636 1.727 - - -

We present additional regression results reporting the mean square error (MSE) of evaluated methods across the considered
baselines, see Table 7. We find that GFSVI also performs competitively in terms of MSE compared to baselines and obtains
the best mean rank, matching best the performing methods on nearly all datasets. In particular, we find that using GP
priors in the linearized BNN setup with GFSVI yields improvements over the weight-space priors used in TFSVI and that
GFSVI performs slightly better than FVI. Function-space VI methods (TFSVI, GFSVI, FVI) significantly improves over
weight-space VI mostly performing similarly to the linearized Laplace approximation. Further improvement over baselines
are obtained when considering GP priors with GFSVI and FVI. Finally, GFSVI compares favorably to the GP and sparse GP.

A.4.3. OUT-OF-DISTRIBUTION DETECTION WITH IMAGE DATA

We here show an additional plot from our out-of-distribution detection experiment with image data (details in A.3.5).
Figure 12 shows the (normalized) histograms of the entropy of the mean prediction produced by each model on the
in-distribution (blue) and out-of-distribution (red) data sets considered in our OOD detection experiment. Methods which
estimate the (regularized) KL-divergence in function-space (GFSVI, FVI and TFSVI) use the KMNIST measurement
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distribution. We find that the entropy produced by GFSVI on in-distribution data highly peaks around 0 while the entropy
produced from out-of-distribution data strongly concentrates around its maximum ln(10). GFSVI best partitions ID and
OOD data based on predictive entropy improving over the function-space prior (FVI) and weight-space prior (TFSVI, MFVI,
Laplace) BNN baselines (see Table 3).
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Figure 12: Histograms of the entropy of the mean predictive distribution produced by evaluated methods in the out-of-
distribution detection with image data experiment. GFSVI (ours) best partitions in-distribution and out-of-distribution data
based on the entropy of its mean predictive distribution.

A.4.4. INFLUENCE OF MEASUREMENT POINT DISTRIBUTION FOR IMAGE DATA.

We present additional results evaluating the influence of the measurement point distribution ρ on the the performance
of function-space inference methods when using high-dimensional image data. The measurement point distribution are
described in Appendix A.3.4. Just like in Rudner et al. (2022b), we find that the choice of measurement point distribution
may highly influence the OOD detection accuracy. While the expected log-likelihood, accuracy and expected calibration
error (ECE) of a model generally remains comparable across measurement point distributions, the OOD accuracy of GFSVI
is greatly improved by using samples from KMNIST to evaluate the (regularized) KL divergence. The measurement point
distribution determines where the BNN is regularized and thus should be carefully selected especially for high dimensional
data.

Table 8: Influence of the measurement point distribution ρ on expected log-likelihood (log-like.), accuracy (acc.), expected
calibration error (ECE) and out-of-distribution detection accuracy (OOD acc.). ρ determines where the BNN will be
regularized and strongly influences the out-of-distribution performance of the BNN.

D
A

TA METRIC GFSVI FVI TFSVI
RANDOM RANDOM PIXEL KMNIST RANDOM RANDOM PIXEL KMNIST RANDOM RANDOM PIXEL KMNIST

M
N

IS
T LOG-LIKE. (↑) -0.033 ± 0.000 -0.034 ± 0.000 -0.041 ± 0.000 -0.145 ± 0.005 -0.038 ± 0.000 -0.238 ± 0.006 -0.047 ± 0.003 -0.032 ± 0.001 -0.041 ± 0.001

ACC. (↑) 0.992 ± 0.000 0.989 ± 0.000 0.991 ± 0.000 0.976 ± 0.001 0.988 ± 0.000 0.943 ± 0.001 0.989 ± 0.000 0.989 ± 0.000 0.989 ± 0.000
ECE (↓) 0.002 ± 0.000 0.004 ± 0.000 0.006 ± 0.000 0.064 ± 0.001 0.003 ± 0.000 0.073 ± 0.003 0.007 ± 0.000 0.003 ± 0.000 0.006 ± 0.000
OOD ACC. (↑) 0.921 ± 0.008 0.868 ± 0.010 0.980 ± 0.004 0.894 ± 0.010 0.863 ± 0.003 0.891 ± 0.006 0.887 ± 0.011 0.861 ± 0.008 0.893 ± 0.005

F
M

N
IS

T LOG-LIKE. (↑) -0.260 ± 0.003 -0.258 ± 0.002 -0.294 ± 0.006 -0.300 ± 0.002 -0.293 ± 0.003 -0.311 ± 0.005 -0.261 ± 0.001 -0.258 ± 0.001 -0.261 ± 0.002
ACC. (↑) 0.910 ± 0.001 0.908 ± 0.001 0.909 ± 0.001 0.910 ± 0.002 0.900 ± 0.001 0.906 ± 0.002 0.909 ± 0.001 0.908 ± 0.001 0.907 ± 0.001
ECE (↓) 0.020 ± 0.003 0.022 ± 0.001 0.042 ± 0.002 0.027 ± 0.005 0.018 ± 0.002 0.024 ± 0.002 0.022 ± 0.002 0.018 ± 0.001 0.021 ± 0.002
OOD ACC. (↑) 0.853 ± 0.005 0.867 ± 0.005 0.997 ± 0.001 0.925 ± 0.005 0.842 ± 0.006 0.975 ± 0.002 0.802 ± 0.006 0.800 ± 0.007 0.779 ± 0.010

A.4.5. INPUT DISTRIBUTION SHIFT WITH ROTATED IMAGE DATA

We here provide an experiment evaluating our method’s (GFSVI) robustness in detecting input distribution shift. We expect
the predictive uncertainty of a well-calibrated Bayesian model to be low for in-distribution data and to gradually increase as
the input distribution shifts further away from the training data distribution. To test this property, we follow the setup by
Sensoy et al. (2018); Rudner et al. (2022b) and assume like the related work that increasing the rotation angle of images
gradually increases the level of input ”distribution shift”. We report the mean and standard-deviation of the average mean
predictive entropy of models fit on MNIST (LeCun et al., 2010) and Fashion MNIST (Xiao et al., 2017) for increasingly
large angles of rotation of their respective test data partition. We find that GFSVI is confident (low predictive entropy) for
images with small rotation angles, and that its predictive entropy increases with the angle. GFSVI therefore exhibits the
expected behavior of a well-calibrated Bayesian model. We note that FVI, Laplace and MFVI tend to be under-confident
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(high predictive entropy) for small rotation angles, which might be a symptom of underfitting further supported by the
results in Table 3. Also, with the exception of TFSVI, the predictive entropy of baselines across different rotation angles is
generally higher than the one produced by GFSVI.
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Figure 13: Average predictive entropy of models trained on MNIST and Fashion MNIST and evaluated for different rotation
angles of their respective test data partitions. We see that our method (GFSVI) exhibits the behavior of a well-calibrated
Bayesian model.

A.4.6. ADDITIONAL PLOTS FOR KERNEL EIGENVALUE DECAY

Figure 14 shows a plot demonstrating the decay rate of the eigenvalues of RBF and Matern-1/2 kernels evaluated at points
sampled uniformly over X . The rate of decay of covariance operator’s eigenvalues gives important information about
the smoothness of stationary kernels (Williams & Rasmussen, 2006) and that increased smoothness of the kernel leads to
faster decay of eigenvalues Santin & Schaback (2016). For instance, RBF covariance operator eigenvalues decay at near
exponential rate independent of the underlying measure (Belkin, 2018) and Matern kernels eigenvalues decay polynomialy
(Chen et al., 2021). We find that the kernel evaluated at points sampled from a uniform distribution over X share this same
behavior (see Figure 14).
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Figure 14: Mean eigenvalues of the Gram matrix obtained for different kernels and for varying length-scales over 10 draws
from a uniform distribution on [−2, 2]D. The mean eigenvalues are arranged in increasing order. The eigenvalues of the
Gram matrix associated with the smooth RBF kernel decays much faster than those of the Matern-1/2. Furthermore, the
eigenvalues decay at a slower rate in high dimensions (D=100).

A.4.7. ADDITIONAL PLOTS FOR CHOOSING γ IN Dγ
KL

The γ parameter controls the magnitude of the regularized KL divergence (see Figure 17) and adjusts the relative weight of
the regularized KL divergence and expected log-likelihood term in the training objective (see Figure 15). Furthermore, γ
also acts as ”jitter” preventing numerical errors. We recommend choosing γ large enough to avoid numerical errors while
remaining small enough to provide strong regularization.
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Figure 15: The γ parameter of the regularized KL divergence controls the magnitude of the regularizer in the objective and
should be small enough to provide strong regularization.
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Figure 16: The BNN’s covariance adaptation to the
prior’s covariance rank depends on its activation func-
tion. BNNs fit with a RBF prior (full) show lower rank
than with a Matern-1/2 (dotted).
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Figure 17: γ explicitly controls the magnitude of the regularized
KL-divergence Dγ

KL. Rougher priors (Matern-1/2) require more
measurement points to accurately estimate Dγ

KL than smooth pri-
ors (RBF).
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