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Figure 1: (a) Overview of proposed Sim2Real-HOI. Given the initial and desired final poses of
both the hand and object, along with the object mesh, Sim2Real-HOI generates photo-realistic in-
the-wild videos by decoupling motion and appearance through a diffusion-based generative process,
thereby closing the sim-to-real gap without paired real-world supervision. (b) Evaluation on video
quality and downstream task. Our experiments reveal that Sim2Real-HOI not only generates
videos with superior perceptual quality, as evidenced by a lower Fréchet Video Distance (FVD)
(Unterthiner et al., 2018) against baselines, but also that these videos serve as effective synthetic
data. Incorporating them into training reduces the error of a downstream hand pose estimator, out-
performing the model trained solely on real videos.

ABSTRACT

We present Sim2Real-HOI, a zero-shot framework that closes the sim-to-real gap
for hand–object interaction (HOI) video generation using the initial and target
poses of both hand and object. Controllable diffusion models like InterDyn and
ManiVideo stumble at scale when moving simulation to reality: the quality of
generated videos are suboptimal, and they rely on simulator-unobtainable cues
such as the first frame. Sim2Real-HOI addresses the problem in two stages: (1)
an appearance generator that models both appearance and background using a
controllable image diffusion model, and (2) a motion transfer model that trans-
fers motion, generated by a pretrained hand pose generator, to real-world video
through a controllable video diffusion model. To improve performance, we incor-
porate multiple types of conditions that ensure the generated output aligns with the
geometry, semantics, and fine details of the hand pose. Extensive experiments on
DexYCB and OAKINK2 demonstrate that Sim2Real-HOI enhances the generated
quality compared to the best prior work and results in a lower error rate when the
generated videos are used to train downstream hand-pose estimators. The code
and pre-trained weights will be made publicly available.

1 INTRODUCTION

The ability to manipulate objects with two hands represents a fundamental human skill, and the
computational understanding of this capability—referred to as Hand-Object Interaction (HOI) un-
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Method
Input Req. Background HOI Pose Seq Object Appearance Hand Apperance

CosHand ✓ ✓ ✓ ✓
InterDyn ✓ ✓ ✓ ✓

ManiVideo ✓ ✓ ✓ ✓
Sim2Real-HOI (Ours) ✗ ✓* ✗ ✗

Table 1: Comparison of input requirements for HOI video generation. A checkmark (✓) signifies
a condition provided as input to the model, whereas a cross (✗) indicates a condition that is not
provided and will be synthesized. The symbol (*) denotes a setting where only the initial and target
states are specified.

derstanding—has become increasingly significant in the fields of computer vision and embodied
AI. The field has seen a shift towards data-driven paradigms, where large-scale HOI datasets are
instrumental for accurate hand pose estimation (Zhou et al., 2024; Pavlakos et al., 2024; Dong et al.,
2024) and enabling realistic human-to-robot motion transfer (Liu et al., 2025; Lepert et al., 2025; Li
et al., 2025). The critical challenge, however, lies in the data itself. Despite considerable investments
in collecting real-world HOI sequences with detailed annotations (Liu et al., 2022; Fu et al., 2025;
Yang et al., 2022), the reliance on costly and labor-intensive manual labeling poses a fundamental
limitation to scalability.

The advent of video diffusion models promises scalable generation of HOI videos. However, state-
of-the-art methods (Pang et al., 2025; Akkerman et al., 2025; Sudhakar et al., 2024) critically depend
on being conditioned on the first frame of the video, which creates a two-fold problem: (1) a signif-
icant input bottleneck, as obtaining a first frame that is geometrically consistent with the provided
initial hand-object pose sequence is challenging, and (2) a diversity bottleneck, as fixing the first
frame severely limits the potential for visual randomization, which is essential for data augmenta-
tion. Overcoming these bottlenecks by generating realistic videos from minimal inputs constitutes a
key unsolved problem.

In this paper, we introduce a pioneering sim-to-real HOI video generation framework that requires
only the initial and target poses, along with object geometry, as input. By integrating a novel de-
coupled motion-appearance diffusion process, our method bypasses the need for a conditioned first
frame, thereby maximizing both motion and appearance diversity—a capability unattainable by prior
work. To ensure high realism, we incorporate multiple conditions that effectively preserve fine hand
details. As demonstrated in Table 1 and Figure 1, our approach surpasses existing methods by jointly
generating realistic foreground, background, and dynamically interpolated poses.

Our framework comprises two core stages. The appearance generation stage synthesizes a realis-
tic initial frame using the controllable image diffusion model Flux (black-forest labs, 2024). This
model is conditioned on a fusion of depth maps, semantic masks, and hand keypoint maps, which
collectively ensure geometric accuracy, semantic coherence, and the preservation of fine-grained
hand details. The motion generation stage then animates this frame into a video sequence. We
first generate a plausible hand motion trajectory using a pre-trained model, which is subsequently
rendered by a controllable video diffusion model (based on CogVideoX (Yang et al., 2024)). Cru-
cially, the video model is conditioned on the same multi-modal inputs to maintain consistency with
the generated HOI pose sequence.

We evaluate our method on the DexYCB (Chao et al., 2021) and OAKINK2 (Zhan et al., 2024)
benchmarks, where it comprehensively surpasses existing approaches in video generation quality,
motion plausibility, and hand pose fidelity. More importantly, as evidenced in Figure 1, the synthe-
sized videos from our method provide substantial value as synthetic data. When used for training,
they lead to meaningful gains in the performance of a downstream hand pose estimation model,
demonstrating their effectiveness as a data augmentation tool.

We summarize our contributions as follows:

• Minimal-Conditioning Generation: We pioneer an HOI video generation framework that re-
quires only sparse pose keyframes and object geometry as input, overcoming the first-frame bot-
tleneck of prior methods.

• Decoupled Generation Architecture: We design a novel pipeline that decouples appearance and
motion synthesis, leveraging multi-modal conditions to achieve superior realism and diversity.

2
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• State-of-the-Art Performance and Utility: Our method achieves superior results on established
benchmarks and proves its practical value by enabling significant gains in downstream task per-
formance through effective data augmentation.

2 RELATED WORKS

2.1 HAND-OBJECT MOTION SYNTHESIS

Synthesizing high-fidelity hand-object motion is a fundamental challenge in computer animation
and robotic grasping (Agarwal et al., 2023; Ghosh et al., 2023; Christen et al., 2024). Prevailing
data-driven approaches rely on supervised learning from large-scale, well-annotated datasets (Grady
et al., 2021; Jiang et al., 2021; Karunratanakul et al., 2020; Dong et al., 2024; Pavlakos et al., 2024;
Christen et al., 2022; Liu & Yi, 2024; Li et al., 2025; Zhong et al., 2025; Zhou et al., 2024). However,
the scalability of these methods is constrained by their dependence on costly and difficult-to-acquire
data (Fan et al., 2023; Hampali et al., 2020; Liu et al., 2022; 2024; Fu et al., 2025; Yang et al.,
2022; Zhan et al., 2024; Chao et al., 2021). To circumvent this limitation, reinforcement learning
(RL) has emerged as a promising alternative. Methods like (Christen et al., 2024; Xu et al., 2023)
generate reference grasps before synthesizing motions, while GraspXL (Zhang et al., 2024a) learns a
generalizable grasping policy directly in simulation, eliminating the need for predefined references.
These RL-based techniques produce high-quality interaction data, forming a robust foundation for
sim-to-real transfer.

2.2 CONTROLLABLE VIDEO GENERATION

Recent breakthroughs in video generation foundation models (Yang et al., 2024; Blattmann et al.,
2023; Wan et al., 2025; Kong et al., 2024; Agarwal et al., 2025) have intensified interest in con-
trollable generation that precisely aligns with user intent. While text-to-video and image-to-video
models (Agarwal et al., 2025; Wan et al., 2025; Yang et al., 2024; Singer et al., 2022; Qing et al.,
2024; Guo et al., 2023; Wiersma et al., 2025; Zhang & Agrawala, 2025) have demonstrated impres-
sive capabilities, they often lack the granularity for specialized tasks. This has spurred research into
integrating more precise control signals, such as semantic maps, depth, and camera motion. Control-
Net (Zhang et al., 2023) and its variants (Gu et al., 2025; Guo et al., 2024b) enable conditioning on
dense inputs, while works like VideoComposer (Wang et al., 2023) fuse multiple conditions for en-
hanced control. Camera motion has been explicitly modeled by embedding parameters into diffusion
models (He et al., 2024; Bai et al., 2025). However, generating videos of hand-object interactions
(HOI) presents a unique challenge due to the high degrees of freedom in hand motion. This de-
mands even more enriched and specialized control mechanisms—combining semantic, geometric,
and precise pose cues—to achieve the necessary fidelity and accuracy.

2.3 HAND-OBJECT INTERACTION IMAGE & VIDEO GENERATION

Generating Hand-Object Interaction (HOI) content is vital for understanding human activities. Prior
work on HOI image generation (Hu et al., 2022; Kwon et al., 2024; Pelykh et al., 2024; Wang
et al., 2025; Ye et al., 2023; Zhang et al., 2024b; Chen et al., 2025) typically conditions on 2D
signals like segmentation masks and keypoints. However, these static methods cannot capture the
dynamic nature of interactions. Recently, several studies (Sudhakar et al., 2024; Pang et al., 2025;
Akkerman et al., 2025; Dang et al., 2025; Ye et al., 2025) have explored HOI video generation.
InterDyn (Akkerman et al., 2025) conditions on hand mask sequences via ControlNet (Zhang et al.,
2023), but under-utilizes the rich conditions available from simulators. ManiVideo (Pang et al.,
2025) introduces an occlusion-aware representation but requires human appearance data, which is
not available from simulators like GraspXL (Zhang et al., 2024a). More critically, these methods
primarily focus on generation quality and have not thoroughly investigated the downstream utility of
their synthesized data, which is essential for validating practical impact beyond perceptual metrics.

3
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Figure 2: Overview of our two-stage generation pipeline. (1) Appearance Generation: A con-
trollable image diffusion model synthesizes the first frame from multi-modal conditions (depth,
semantic masks, keypoints). (2) Motion Generation: A pre-trained hand pose generator produces
intermediate poses, which are then rendered into a full video sequence by a video diffusion model,
conditioned on the same controls as appearance generation.

3 THE PROPOSED METHOD

3.1 OVERVIEW

Figure 2 illustrates Sim2Real-HOI. Conditioned on an initial MANO (Romero et al., 2022) hand
pose h0∈R51×3, an object mesh m without appearance, an initial 6-DoF object pose o0∈R6, and
a target hand pose hT ∈R51×3, our generative model

fθ : (h0,m,o0,hT ) → {It}Tt=0 (1)

produces a photo-realistic video that (i) begins with h0, (ii) ends with hT , and (iii) depicts a
temporally-coherent grasp-to-place motion. All hand poses are parameterised by global translation
+ rotation plus joint angles; frames It are RGB images.

Jointly modelling appearance and motion is notoriously hard because of the high-dimensional
spatio-temporal manifold (Guo et al., 2024a). We therefore disentangle generation into two stages:
(i) appearance—a pose-conditioned image diffusion model synthesises the first frame I0 given
initial hand–object poses and object mesh (h0,o0,m) (Sec. 3.2); (ii) motion—a pretrained pose
generator produces aligned sequences {ht,ot}Tt=0, which are injected into a video diffusion model
to animate I0 into a photo-realistic clip (Sec. 3.3).

3.2 STAGE I: APPEARANCE GENERATION STAGE

Bridge Conditions for Sim-to-Real HOI Video Synthesis The primary objective of this work is to
enhance the visual quality of simulated videos while preserving other conditions, thereby bridging
the gap between simulation and real-world scenarios. By incorporating both geometric informa-
tion (e.g., depth maps) and semantic data (e.g., segmentation masks) from the simulator, we seek
to accurately reconstruct the visual representation of scenes and objects, while ensuring consistency
across all other conditions. However, relying solely on these two data types proves insufficient for
accurately generating Hand-Object Interactions (HOI) images or videos. This limitation stems from
the complexity and high degree of freedom inherent in hand movements, which cannot be fully cap-
tured by geometric and semantic data alone. Specifically, these conditions fail to account for critical
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details, such as the number of fingers and their individual poses. To address this challenge, we intro-
duce an additional condition—hand keypoint sequences, as proposed by (Zhang et al., 2024b)—to
enable more precise and accurate hand pose generation. This approach facilitates the generation of
realistic hand poses, thereby enhancing the overall realism of the interaction. In section 4.2 and 4.3,
we explore the influence of every condition.

We fine-tune Flux (black-forest labs, 2024) with a ControlNet (Zhang et al., 2023) fork that accepts
depth D0, segmentation S0 and hand-keypoint image K0 (H×W×3 each). All cues are VAE-encoded
to H

8 × W
8 ×16 latents, concatenated channel-wise and Injected into two layers of DiT (Peebles &

Xie, 2023) blocks, with weights initialized from the first two layers of original Flux.:
fl = fl + Z(f ′

l ), (2)
where fl is the output of the l-th layer of the original DiT (Peebles & Xie, 2023) blocks, and f ′

l is
the output of the l-th layer of the duplicated DiT blocks whose input is the concentrated conditions.
Here, l ∈ {0, 1}, and Z represent the zero-convolution layer, which is a 1 × 1 convolution with all
parameters initialized to zero. During training, only the parameters of ControlNet are updated.

3.3 STAGE II: MOTION GENERATION STAGE

To obtain the target video sequence we cascade a pretrained hand-motion generator with a control-
lable video diffusion model. As illustrated in Figure 2, GraspXL (Zhang et al., 2024a) consumes
the initial MANO hand pose h0 , the 6-DoF object pose o0 and object mesh m to produce aligned
trajectories {ht,ot}Tt=0. We rasterize depth maps, instance-level segmentation masks, and 2-D hand
keypoint images at each frame. The pretrained video VAE encodes these conditions into a latent
tensor of shape R

T+1
4 ×H

8 ×W
8 ×16, after which we concentrate these latents and inject them into

CogVideo-X through 12 duplicate DiT blocks, as outlined in Eq. 2. During training each cue is
randomly masked with probability 0.2 to prevent over-reliance on any single modality.

4 EXPERIMENT

4.1 EXPERIMENT SETTINGS

Datasets and Data Processing. We evaluate our method on two standard benchmarks for HOI
video generation: DexYCB (Chao et al., 2021) and OAKINK2 (Zhan et al., 2024). For DexYCB,
we adopt the s0-split, comprising 6,400 training and 1,600 validation videos. Due to the scale of
OAKINK2, we use a curated subset of 8,000 video clips (each 49 frames long), split into 6,400 for
training and 1,600 for validation. The conditions for our model—depth maps, semantic masks, and
hand keypoints—are derived as follows: depth maps are estimated using DepthCrafter (Hu et al.,
2025), while semantic and keypoint information are obtained directly from the dataset annotations.

Evaluation Metrics. We employ a comprehensive set of metrics to evaluate our method from four
perspectives:

• Image Quality: We assess perceptual quality using Structural Similarity Index Measure (SSIM),
Learned Perceptual Image Patch Similarity (LPIPS) (Zhang et al., 2018) and Peak Signal-to-Noise
Ratio (PSNR).

• Spatio-temporal Coherence: We adopt Fréchet Video Distance (FVD) (Unterthiner et al., 2018)
to evaluate overall video realism, using the implementation from (Skorokhodov et al., 2022).

• Motion Fidelity: We use the Motion Fidelity (MF) metric (Yatim et al., 2024) to quantify dy-
namic accuracy. For each video, we sample 100 foreground points (on hands/objects), track
them using CoTracker3 (Karaev et al., 2024), and compare the trajectories between generated
and ground-truth videos. For a ground-truth tracklet T = {τ1, . . . , τT } and a generated tracklet
T̃ = {τ̃1, . . . , τ̃T } where τt ∈ R2, MF is defined as:

MF =
1

|T̃ |

∑
τ̃∈T̃

max
τ∈T

corr(τ, τ̃) +
1

|T |
∑
τ∈T

max
τ̃∈T̃

corr(τ, τ̃). (3)

The correlation between two tracks is computed as:

corr(τ, τ̃) =
1

F

F∑
k=1

vk · ṽk

∥vk∥∥ṽk∥
, (4)
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Figure 3: Qualitative comparison against CosHand. Example results on DexYCB and OAKINK2
highlight the strengths of our method in two key areas: (1) higher visual fidelity in both foreground
and background generation, and (2) improved geometric accuracy of the synthesized hand poses.

Method FVD (↓) MF (↑) LPIPS (↓) SSIM (↑) PSNR (↑) MPJPE (↓) Resolution

CosHand 58.51 0.591 0.139 0.767 23.20 30.05 256 x 256
InterDyn 38.83 0.680 0.119 0.848 24.86 - 256 x 384

ManiVideo - - 0.079 0.913 30.10 57.30 -
Ours w/ seg 33.23 0.695 0.077 0.900 29.27 21.14 480 x 720

Ours w/ depth 30.00 0.703 0.070 0.906 29.15 23.16 480 x 720
Ours w/ hand 33.41 0.713 0.086 0.901 29.07 20.70 480 x 720
Ours w/ all 29.13 0.712 0.069 0.914 30.17 19.37 480 x 720

Table 2: Quantitative comparison on DexYCB dataset. Our method is evaluated against Cos-
Hand, InterDyn, and ManiVideo. Results for InterDyn and ManiVideo are taken from their original
papers. For fair comparison, CosHand was fine-tuned on the s0-split training set identical to ours.
Our approach achieves state-of-the-art performance across all metrics (FVD, LPIPS, MF, MPJPE)
while generating high-resolution 480x720 videos.

where vk = (vxk , v
y
k) and ṽk = (ṽxk , ṽ

y
k) are the displacement vectors at the k-th frame for tracks

τ and τ̃ , respectively.
• Hand Pose Accuracy: We report Mean Per-Joint Position Error (MPJPE) in millimeters (Fan

et al., 2023), measuring the average Euclidean distance between the 21 predicted and ground-
truth hand joints after root alignment. Lower MPJPE indicates better pose estimation accuracy.

4.2 MAIN RESULTS

Baselines. We compare our method against state-of-the-art HOI video generation approaches:
ManiVideo (Pang et al., 2025), InterDyn (Akkerman et al., 2025), and CosHand (Sudhakar et al.,
2024) on the DexYCB dataset (Chao et al., 2021). For ManiVideo and InterDyn, we report results
directly from their original publications (omitting metrics for which results were unavailable due to
these methods not being open-source). For CosHand, we use the official implementation and fine-
tune it on the DexYCB s0-split training set for a fair comparison. We also evaluate on OAKINK2,

6
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Method FVD (↓) MF (↑) LPIPS (↓) SSIM (↑) PSNR (↑) MPJPE (↓)

CosHand 68.76 0.651 0.156 0.765 23.84 14.49
Ours w/ seg 48.97 0.708 0.084 0.831 25.76 9.61

Ours w/ depth 50.85 0.702 0.086 0.845 26.98 10.07
Ours w/ hand 52.41 0.671 0.113 0.838 25.66 8.01
Ours w/ all 46.31 0.777 0.081 0.851 28.36 7.01

Table 3: Quantitative results on the OAKINK2 dataset. Comparison of our method with Cos-
Hand. For a fair evaluation, both models are trained on the same dataset. Our approach achieves
state-of-the-art performance, outperforming CosHand across all evaluated metrics.

w/ Seg w/ Depth w/ Hand w/ All GT

Figure 4: Ablation study on input conditions on DexYCB dataset.
comparing against a similarly fine-tuned CosHand model. All baselines are evaluated in an image-
to-video setting where the ground-truth first frame is provided, as this is required by these methods.

Quantitative Comparisons. Our quantitative evaluation (Tables 2, 3) demonstrates that our method
achieves state-of-the-art performance across most metrics. We attribute this superiority to our multi-
conditioning strategy, which provides the diffusion model with rich geometric and semantic cues
(depth, masks, keypoints) to jointly optimize for visual realism and pose accuracy. In contrast,
baseline methods exhibit limitations: InterDyn, ManiVideo, and CosHand rely on more limited
conditioning signals or are built upon foundation models that struggle to capture the intricacies of
hand-object interactions, leading to suboptimal performance.

Qualitative Comparisons. As shown in Figure 3, our method generates visually superior results
compared to CosHand, even when CosHand is fine-tuned on the same training data. We identify
two primary limitations in CosHand: (1) its reliance on hand masks as the sole conditioning signal
provides insufficient geometric guidance for reconstructing precise hand poses, and (2) its lack of
explicit temporal modeling mechanisms leads to inconsistent frame-to-frame outputs. In contrast,
our approach addresses these issues by leveraging a video diffusion foundation model equipped with
temporal attention to enforce coherence across frames. Furthermore, the use of hand keypoint maps
as a conditioning signal explicitly preserves the structural details of hand configurations, resulting
in more accurate and smooth video sequences.

4.3 ABLATION STUDIES ON INPUT CONDITIONS

We conduct an ablation study on the DexYCB dataset to evaluate the contribution of different input
conditions. The results (Tables 2, 3, and 4) yield three key observations:

Method FVD (↓) MF (↑) LPIPS (↓) SSIM (↑) PSNR (↑) MPJPE (↓)

Ours w/o seg 29.62 0.711 0.071 0.899 29.95 20.46
Ours w/o depth 29.53 0.711 0.073 0.902 29.57 19.92
Ours w/o hand 29.32 0.712 0.071 0.906 30.60 22.51

Ours w/ all 29.13 0.712 0.069 0.914 30.17 19.37

Table 4: Ablation study on input conditions on DexYCB dataset.
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Figure 5: Sim-to-real transfer results. Sim2Real-HOI can generate realistic videos given initial
and target states.
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Figure 6: Data augmentation analysis with varying ratios of real data. We augment different portions
of the DexYCB training set (25%, 50%, 75%, 100%) with our generated synthetic data. The baseline
(dashed line) indicates performance when training solely on 100% of the real DexYCB data without
synthetic augmentation.

• The performance improves with an increasing number of conditions, validating the effectiveness
of our multi-condition design.

• Even when using the same segmentation mask condition as CosHand and InterDyn, our method
achieves superior results, demonstrating the advantage of our pipeline.

• While using only hand keypoints yields low MPJPE (due to explicit pose supervision), it underper-
forms on other metrics due to the lack of broader geometric and semantic context. This highlights
the necessity of combining detailed local cues (keypoints) with global scene understanding (depth,
semantics) for optimal performance.

Visual results in Figure 4 further support these findings: using all conditions produces accurate
poses; semantic masks or depth maps alone lead to pose inaccuracies; and keypoints alone degrade
appearance quality.

4.4 SIM-TO-REAL TRANSFER

We conduct a sim-to-real transfer experiment to validate the effectiveness of our full pipeline. We
employ GraspXL (Zhang et al., 2024a) as our hand motion generator due to its superior performance
and strong generalization. Using objects from the DexYCB dataset, we randomly initialize the hand
and object poses along with a target hand pose. GraspXL generates the intermediate motion se-
quence, which is then used to render the necessary conditions (depth, semantic masks, keypoints)
for our video generation model. As shown in Figures 1 and 5, Our method effectively synthesizes
realistic videos from minimal input, consisting solely of the initial and target poses, along with
the object geometry. This capability stems from our decoupled generation architecture, which ef-
fectively integrates the motion prior from GraspXL with the appearance modeling of our diffusion
model. The utility of these synthesized videos for downstream tasks is explored in Section 4.5.

4.5 DOWNSTREAM TASK VALIDATION

To evaluate the utility of our generated videos, we employ them for data augmentation in a hand pose
estimation task. We use SimpleHand (Zhou et al., 2024) as the pose estimation model, which re-
gresses MANO parameters (Romero et al., 2022) from a single image. Our Sim2Real-HOI pipeline,

8
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Setting PA-MPJPE (↓) PA-MPVPE (↓) F-Score@05 (↑) F-Score@15(↑)

All real data 5.5 5.5 0.7953 0.9899
All gen. data 8.2 8.1 0.6274 0.9626

All gen. + 25% real data 6.1 6.0 0.7512 0.9851
All gen. + 50% real data 5.5 5.5 0.8001 0.9879
All gen. + 75% real data 5.4 5.3 0.7984 0.9899

All gen. + 100% real data 5.3 5.3 0.8025 0.9904

Table 5: Downstream task evaluation on SimpleHand (Zhou et al., 2024).

trained on DexYCB, generates 3,400 video sequences (207,400 frames) for augmentation. We com-
bine this synthetic data with varying subsets (25%, 50%, 75%, 100%) of the original DexYCB
s0-split training set (406,888 frames). All models are evaluated on the DexYCB validation set using
four metrics: Procrustes-Aligned Mean Per-Joint Position Error (PA-MPJPE), Procrustes-Aligned
Mean Per-Vertex Position Error (PA-MPVPE), and F-Score. PA-MPJPE/PA-MPVPE measure the
average Euclidean distance (in mm) after Procrustes alignment between the predicted and ground-
truth joints/vertices, respectively.

The quantitative results (Table 5) demonstrate that incorporating our generated data consistently im-
proves hand pose estimation accuracy across all metrics. Figure 6 reveals two key trends: (1) model
performance improves monotonically with the amount of real data, and (2) most notably, using only
50% of the real data augmented with our synthetic samples achieves competitive performance with
the 100% real data baseline. This indicates that our synthetic data can effectively compensate for
reduced real data volume. Furthermore, the superior performance achieved using videos generated
with multiple conditions validates the importance of our multi-conditioning approach for producing
diverse and useful training data.

4.6 ZERO-SHOT RESULTS

Generated Videos

Ground Truth Videos

Figure 7: Zero-shot result on OAKINK2 dataset. We use the
weight trained on DexYCB dataset.

To evaluate the generalizability
of our approach, we test our
model trained on the DexYCB
dataset (single-hand interac-
tions) directly on the OAKINK2
dataset (bimanual interactions)
in a zero-shot setting. As
shown in Figure 7, our method
generates plausible videos that
maintain reasonable alignment
with ground-truth hand poses
and visual details, despite the
significant domain shift. This
cross-dataset generalization
capability can be attributed to our use of pretrained video diffusion model weights as a strong
foundation, combined with the ControlNet mechanism (Zhang et al., 2023), which helps preserve
the model’s original generation quality while adapting to new conditioning signals.

5 CONCLUSION

This paper proposed Sim2Real-HOI, a framework that addresses the challenge of generating real-
istic HOI videos from minimal pose inputs. Our decoupled, multi-condition architecture produces
superior results in both perceptual quality and geometric accuracy, and demonstrates practical utility
through enhanced downstream task performance. While our method shows strong generalization,
future work could explore extending it to more complex object interactions or unifying the mo-
tion and appearance stages into an end-to-end model. We believe our contributions provide a solid
foundation for future research in generative models for embodied AI.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT
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REPRODUCIBILITY STATEMENT

We have made every effort to ensure that the results presented in this paper are reproducible.
Our experimental setup is detailed in Section 4.1 and Section A.3. The code is available at
https://anonymous.4open.science/r/Sim2Real-HOI-704C/.

Additionally, the public datasets used in this paper, such as DexYCB (Chao et al., 2021) and
OAKINK2 (Zhan et al., 2024), are publicly available, ensuring consistent and reproducible eval-
uation results.
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A APPENDIX

A.1 USE OF LLMS

We employ GPT-5 to improve and elevate the quality of our written content, primarily for enhancing
accuracy and ensuring native-level expression. Its application is focused solely on refining language,
rather than idea generation or other functions.

A.2 TOOLKIT

For access to our fully anonymous code toolkit, please visit:
https://anonymous.4open.science/r/Sim2Real-HOI-704C/

A.3 IMPLEMENTATION DETAILS

Training Details: Our model was trained on a setup consisting 8 x NVIDIA 800 GPUs, with a batch
size of 4 x 8 and a learning rate of 1 × 10−4. The training process involved 8,000 training steps,
using the AdamW optimizer and the DeepSpeed training architecture (Rajbhandari et al., 2020).

Evaluation Details: For the evaluation of video generation, we sample 1,600 videos, each consisting
of 49 frames, from the test set. For the evaluation of Mean Per Joint Position Error (MPJPE), we
utilize Hamer (Pavlakos et al., 2024) to estimate the hand joints in the generated videos, and compute
the loss by comparing the estimated joint positions with the ground truth hand joints. To assess the
performance on downstream tasks, we train the SimpleHand model for 200 epochs using its official
implementation.

A.4 RESULTS

We provide more qualitative results in Figure 8 and Figure 9 for DexYCB dataset, Figure 10 and
Figure 11 for OANINK2 dataset and Figure 12 for sim-to-real transfer.
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Figure 8: More qualitative results on DexYCB dataset (a).
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Figure 9: More qualitative results on DexYCB dataset (b).
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Figure 10: More qualitative results on OAKINK2 dataset (a).
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Figure 11: More qualitative results on OAKINK2 dataset (b).
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Figure 12: More Sim-to-real transfer results.
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