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ABSTRACT

Autoregressive (AR) models have recently shown strong performance in image
generation, where a critical component is the visual tokenizer (VT) that maps
continuous pixel inputs to discrete token sequences. The quality of the VT largely
defines the upper bound of AR model performance. However, current discrete
VTs fall significantly behind continuous variational autoencoders (VAEs), lead-
ing to degraded image reconstructions and poor preservation of details and text.
Existing benchmarks focus on end-to-end generation quality, without isolating
VT performance. To address this gap, we introduce VTBench, a comprehen-
sive benchmark that systematically evaluates VTs across three core tasks: Image
Reconstruction, Detail Preservation, and Text Preservation, and covers a diverse
range of evaluation scenarios. We systematically assess state-of-the-art VTs us-
ing a set of metrics to evaluate the quality of reconstructed images. Our findings
reveal that continuous VAEs produce superior visual representations compared to
discrete VTs, particularly in retaining spatial structure and semantic detail. In
contrast, the degraded representations produced by discrete VTs often lead to dis-
torted reconstructions, loss of fine-grained textures, and failures in preserving text
and object integrity. Furthermore, we conduct experiments on GPT-4o image gen-
eration and discuss its potential AR nature, offering new insights into the role of
visual tokenization. We release our benchmark and codebase publicly to support
further research and call on the community to develop strong, general-purpose
open-source VTs.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive generalization across a wide range
of task, including reasoning (Ning et al., 2024; Plaat et al., 2024), question answering (Zhang et al.,
2024; Sima et al., 2024) and text generation (Touvron et al., 2023; DeepSeek-AI et al., 2024; Jiang
et al., 2024). Recent advances suggest that integrating visual understanding and generation into the
LLM framework could lead to unified, general-purpose multimodal models (Fan et al., 2024; Lu
et al., 2024; Team, 2024; Xie et al., 2024; Ge et al., 2024).

Visual Tokenizer. In diffusion-based image generation, images are typically compressed into a
continuous latent space using a variational autoencoder (VAE), allowing the model to operate in a
lower-dimensional but still continuous domain (Ho et al., 2020; Rombach et al., 2021). However,
when integrating visual understanding and generation into LLMs, images must be converted into
discrete token sequences, similar to word or subword tokens in natural language processing (Esser
et al., 2021; Chang et al., 2022; Wang et al., 2023). Figure 2 illustrates various visual tokenizer
architectures and the autoregressive modeling used for image generation.

Vector Quantized Tokenization. To enable such tokenization of visual inputs, Vector Quantized
Variational Autoencoder (VQ-VAE) is proposed to encode images into a continuous latent space and
then map each latent vector to the nearest entry in a learned codebook, producing a discrete index per
spatial location (van den Oord et al., 2017; Esser et al., 2021). However, scaling the codebook often
leads to codebook collapse, where only a small portion of entries are used, reducing representa-
tional capacity. Additionally, nearest-neighbor search introduces computational inefficiency during
generation (Yu et al., 2024a; Han et al., 2024). To address these limitations, Lookup-Free Quantiza-
tion (LFQ) eliminates the embedding lookup by projecting continuous features into a binary latent
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GPT-4o SD3.5L Janus Pro 7B LlamaGen T2IInfinity 8BPrompt Liquid 7B

A baby chick with human hands on stage, 

wearing a black long-sleeve T-shirt, grey pants, 

white suspenders, and black shoes, spinning a 

basketball with one hand while the other hand 

rests on its chest. The back-drop reads “Singing, 

Dancing, Rapping, and Basketball.”

A wall covered in colorful graffiti using red, 

yellow, and blue colors. Among the graffiti, the 

word “VTBench” is prominently displayed. The 

letters “VT” are in blue font with a white outline, 

while “Bench” is in green font with a black 

outline. Urban, vibrant, street-style aesthetic.

Titok-bl64

SD3.5L Janus Pro 7B LlamaGen T2IInfinity 8B Liquid 7B (Chameleon)

Titok-sl256 OpenMagViT2 VAR-512 BSQ-ViT MaskBiT 18bit

Ground Truth
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36.30 17.49 34.58 20.19 19.2844.28
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15.19 17.74 19.28 25.08 14.7315.81

Titok-bl128

Figure 1: Image generation and reconstruction across different models. (Top) Images generated
from prompts using various models. (Bottom) Reconstructions of the ground truth image using
VTs from different models. PSNR ↑ values (shown in white) indicates reconstruction fidelity.

space, enabling discrete tokenization without explicit search (Yu et al., 2024a). To constrain error
and enhance stability, Binary Spherical Quantization (BSQ) introduces ℓ2 normalization, smoothing
the representation and facilitating optimization (Zhao et al., 2024).

Next-Scale Tokenization. However, AR modeling with existing visual tokenizers often violates the
unidirectional dependency assumption and disrupts spatial locality due to the flattening of 2D token
grids. To overcome these limitations, Tian et al. (2024) proposed Visual Autoregressive Modeling
(VAR), which encodes images into multiple levels of tokens by progressively quantizing the resid-
ual information at each scale. This hierarchical tokenization preserves spatial structure and allows
the model to capture fine-grained details in a coarse-to-fine manner. In Figure 2, we refer to this
architecture as “Residual Next-Scale VAE”. Building on this foundation, Infinity enhances visual
tokenization by integrating BSQ, enabling extremely large vocabularies and efficient scaling. This
allows Infinity to generate high-resolution images with unprecedented detail (Han et al., 2024).

Despite the growing number of AR models for image generation (Li et al., 2024; Bie et al., 2025;
Wu et al., 2024b), most existing methods are still limited to relatively simple datasets such as
ImageNet and fall significantly behind diffusion models in terms of generation quality and detail
preservation. As shown in Figure 1(Top), which presents outputs from several SOTA text-to-image
models prompted with highly detailed descriptions, only the images generated by diffusion models
(SD3.5L (Rombach et al., 2022) and FLUX.1-dev (Labs, 2024)) and GPT-4o (architecture currently
undisclosed (Yan et al., 2025; Li et al., 2025)) exhibit high-quality synthesis. We hypothesize that
the visual tokenizer plays a critical role in this quality gap. To investigate this, we conduct a re-
construction experiment using the images generated by GPT-4o as the ground truth. As shown
in Figure 1(Bottom), we reconstruct the ground truth image using different VTs from various AR
models. The results reveal substantial information loss, including blurred or unreadable text, loss
of fine-grained visual details, and noticeable structural distortions. These failures indicate that cur-
rent VTs struggle to generate accurate and expressive latent representations, which limits the overall
image generation quality of AR models.

Why Benchmarking VT Matters? The reconstruction failures observed in Figure 1 highlight a
fundamental issue: current visual tokenizers often fail to preserve fine-grained details and semantic
integrity during the quantization process (Yu et al., 2024a; Zhao et al., 2024). This failure propagates
through the entire AR generation pipeline, ultimately degrading image quality regardless of the
downstream model’s capacity. Despite their central role, existing evaluation protocols focus almost
exclusively on end-to-end generation quality, without isolating the contribution or limitations of the
VT itself. This leaves several critical issues unaddressed: (1) Lack of VT-Specific Evaluation: The
performance of the VT often determines the upper bound of AR model quality (Yu et al., 2024a). Yet,
most VTs are only evaluated on limited datasets like ImageNet (Russakovsky et al., 2015), and there
is a lack of dedicated benchmarks designed specifically to measure VT effectiveness across diverse
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Figure 2: Overview of visual tokenizer architectures and integration with AR image generation.

scenarios. (2) Benchmark Misalignment: Existing benchmarks evaluate overall image generation
(e.g., ImageNet (Russakovsky et al., 2015), GenEval (Ghosh et al., 2023), T2i-compbench (Huang
et al., 2023; 2025)), rather than isolating the visual tokenizer contribution, making it difficult to
diagnose or improve this key component. (3) Inadequate Evaluation Metrics: Commonly used
metrics such as FID are insufficient to capture fine-grained failures like high-frequency detail loss
or incorrect text reconstruction, which are essential for many multimodal and LLM-centric tasks.

To address these issues, in this paper, we introduce VTBench, a comprehensive benchmark specifi-
cally designed to evaluate visual tokenizers across a broad range of tasks, datasets, and conditions.
VTBench provides a systematic framework for understanding and improving VTs as standalone
components in AR image generation pipelines. Through extensive experiments on a wide range
of VTs used in SOTA AR models, we uncover the following key findings: (1) Existing discrete
VTs fall significantly behind continuous VAEs used in diffusion models, particularly in terms of
reconstruction quality, detail preservation, and text accuracy. (2) None of the existing VTs can ro-
bustly handle arbitrary resolutions, unlike continuous VAEs, although VAR (Tian et al., 2024) and
Infinity (Han et al., 2024) are restricted to a fixed set of predefined input sizes. (3) Many AR mod-
els (e.g., Chameleon (Team, 2024), Liquid (Wu et al., 2024a), Anole (Chern et al., 2024)) reuse
the same open-source VT, yet there is currently no strong, general-purpose VT available for reuse,
highlighting the lack of a reliable, high-quality open-source solution in this space.

Contributions. The main contributions of this paper are:
• We introduce VTBench, a high-quality and comprehensive benchmark designed specifically

for evaluating VTs in the context of AR image generation.
• We design three tasks: Image Reconstruction, Detail Preservation, and Text Preservation, col-

lectively providing a multi-faceted framework for assessing visual tokenizers. These tasks
cover diverse evaluation aspects, including high-resolution inputs, multilingual text scenarios
(Chinese, Korean, Japanese, Hindi), and varying-resolution conditions.

• We conduct extensive experiments on VTs used in SOTA AR models, including continuous
VAE, GPT4o, VQVAE, etc. Our evaluation is designed to assess both image quality and text
preservation through a diverse set of quantitative metrics.

• We provide an in-depth comparison and discussion of current VTs and contrast their behavior
with the emerging capabilities of GPT-4o’s VT. We identify fundamental gaps and discuss
directions for future tokenizer development.

• We open-source both the codebase and the VTBench dataset to foster further research in visual
tokenization for autoregressive image generation. Our codebase is designed to be lightweight
and easy to run, requiring minimal setup and no complex configuration.

2 BACKGROUND

In this section, we introduce image generation methods, focusing on both diffusion and AR mod-
els. We then discuss the role of visual tokenizers in AR pipelines, reviewing several architectures
including VQ-VAE, LFQ-VAE, BSQ-VAE, and Residual Next-Scale VAE, as illustrated in Figure 2.
Finally, we highlight recent advances in image generation with GPT-4o, which motivate the need for
deeper evaluation of visual tokenization quality.

2.1 IMAGE GENERATION: DIFFUSION VS. AUTOREGRESSIVE MODELS

Modern image generation methods are mainly dominated by two families: diffusion mod-
els (Croitoru et al., 2023; Yang et al., 2024) and AR models (Fan et al., 2025; Chen et al., 2025a; Yu
et al., 2024b). Diffusion models learn to iteratively denoise a sample from pure noise to a realistic
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image using a learned reverse diffusion process, such as Stable Diffusion (Rombach et al., 2022),
which have demonstrated SOTA performance in high-quality image synthesis. In contrast, AR mod-
els decompose image generation into a sequence modeling problem, where an image is represented
as a sequence of discrete tokens predicted one at a time (Ma et al., 2025; Luo et al., 2024; Yu et al.,
2023), as shown in Figure 2(f). AR models benefit from the scaling properties of LLMs and enable
seamless integration with multimodal pipelines. However, AR image generation relies heavily on
high-quality visual tokenization to convert pixel data into token sequences and reconstruct images
from these tokens, making the design of effective visual tokenizers a central challenge in AR-based
image generation.

2.2 VISUAL TOKENIZERS

To enable AR models to process image inputs, images must be converted into discrete token se-
quences. This is achieved via visual tokenizers that compress high-dimensional image data into
compact, symbolic representations. In this section, we briefly introduce several representative tok-
enization approaches. We briefly introduce representative tokenization approaches here; a detailed
version with mathematical formulations is included in Appendix B.

• Continuous VAE. In diffusion models, a common approach is to use a continuous Variational
Autoencoder (VAE) (Rombach et al., 2022; Peebles & Xie, 2023) as a feature compressor as
shown in Figure 2(a). These VAEs encode the input image into a continuous latent space, typi-
cally using convolutional encoders and decoders, enabling high-quality image reconstructions.

• VQ-VAE. Vector Quantized Variational Autoencoder (VQ-VAE) (van den Oord et al., 2017) is
one of the earliest and most widely adopted discrete visual tokenizers. It encodes an image into
a latent feature map and then quantizes each spatial location to the closest vector in a learned
codebook. The resulting discrete indices form a token grid that can be used in AR models.

• LFQ-VAE. Lookup-Free Quantization (LFQ) (Yu et al., 2024a) eliminates the nearest-neighbor
lookup and codebook by projecting features into a binary latent space by a learnable mapping.

• BSQ-VAE. Binary Spherical Quantization (BSQ) (Zhao et al., 2024) extends LFQ by applying
ℓ2 normalization to the latent features before quantization. This constrains the representation
to a unit hypersphere, effectively reducing quantization error and leading to smoother latent
spaces. BSQ allows for finer-grained tokenization while maintaining efficient binary encoding,
which is beneficial for downstream tasks sensitive to visual detail.

• Residual Next-Scale VAE. applies hierarchical tokenization by encoding images in a coarse-
to-fine manner. It quantizes residual information across multiple spatial scales, enabling preser-
vation of structure and fine details, especially in high-resolution settings (Tian et al., 2024).

2.3 GPT-4O IMAGE GENERATION

OpenAI recently introduced new image generation and editing capabilities in GPT-4o (OpenAI,
2025), showcasing remarkable performance in both tasks. Although the precise architecture and
workflow of GPT-4o remain undisclosed, recent studies suggest that the model may employ an
autoregressive backbone in conjunction with a diffusion-based decoder for image synthesis(Yan
et al., 2025; Li et al., 2025). In this paper, we present extensive experiments on GPT-4o to investigate
its architecture and workflow, with a focus on how the visual tokenizer influences image quality.

3 VTBENCH: TASK SETTINGS & EVALUATION METRICS

To systematically evaluate VTs in AR image generation pipelines, we propose VTBench, a compre-
hensive benchmark that isolates and diagnoses the capabilities and limitations of VTs across three
critical tasks: (1) Image Reconstruction, (2) Detail Preservation, and (3) Text Preservation. Each
task is designed to stress different aspects of tokenization quality, using diverse data conditions.

3.1 TASK 1: IMAGE RECONSTRUCTION

This task evaluates the fundamental ability of a VT to reconstruct an image from its tokenized repre-
sentation. As the interface between high-dimensional pixel inputs and the discrete token sequences
consumed by AR models, the VT plays a critical role in determining the upper bound of image gen-
eration quality. If the tokenizer discards or distorts essential visual information, such as fine-grained
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a) Tasks

Task 1. Image Reconstruction

Task 3. Text Preservation

Task 2. Detail Preservation

1.1 ImageNet (Center Crop) 1.2 High Resolution 1.3 Varying Resolution

3.1 Easy (Movie Posters) 3.2 Hard (ArXiv Abstracts) 3.3 Multilingual (Non-Latin)

• Chinese

• Hindi

• Japanese

• Korean

(Patterns or High-Frequency Info)

b) Evaluations

Image Quality: Text Quality

• FID (Fréchet Inception Distance)

• PSNR (Peak Signal-to-Noise Ratio)

• CER (Character Error Rate)

• WER (Word Error Rate)

• SSIM (Structural Similarity Index Measure)

• LPIPS (Learned Perceptual Image Patch Similarity)

Figure 3: Overview of VTBench construction. (a) VTBench consists of three core tasks for evaluat-
ing visual tokenizers. (b) Evaluation include both image quality metrics and text-specific metrics.

structure, object boundaries, or spatial layout – this loss is irreversible, regardless of the strength of
the downstream generative model.

To isolate the intrinsic capacity of each VT, we assess image reconstruction performance indepen-
dent of generation. Specifically, we evaluate three settings designed to test robustness across res-
olution and scale: (1) ImageNet (model-specific input size), (2) High Resolution (1024 × 1024
inputs), and (3) Varying Resolution (images with diverse, unconstrained dimensions), as illustrated
in Figure 3(a).

ImageNet. We begin with the validation subset of the standard ImageNet-1k dataset (Russakovsky
et al., 2015), containing 50,000 images. This benchmark serves as a canonical reference point, as
most open-source VTs are evaluated on it. The task assesses whether the VT preserves general
semantics and structural integrity in a typical low-resolution setting. In this subtask, all images are
center-cropped and resized to model-specific input sizes as listed in Table 1.

High Resolution. To evaluate scalability, we synthesize 100 high-resolution images (1024× 1024)
using GPT-4o, and assess the quality of their reconstructions. This setting exposes limitations in the
VT’s ability to preserve visual fidelity across larger spatial extents, where coarse quantization or res-
olution mismatches often degrade reconstruction quality. The full high-resolution image synthesis
process is detailed in Appendix C.

Varying Resolution. In real-world scenarios, image resolutions vary widely, posing challenges for
models that assume fixed-size inputs. To evaluate the robustness of VTs under such conditions,
we use a mixed-resolution dataset, specifically the test subset of DIV2K (Agustsson & Timofte,
2017), which includes 100 high-quality images with a broad range of dimensions. Unlike continuous
VAEs, most discrete tokenizers are not resolution-agnostic and require fixed-size inputs. This task
quantifies how such constraints affect reconstruction accuracy and the model’s flexibility in handling
diverse input sizes, with a detailed architectural analysis presented in Appendix E.

3.2 TASK 2: DETAIL PRESERVATION

While overall reconstruction quality is important, many downstream tasks, such as object recogni-
tion, editing, and captioning, depend on the preservation of fine-grained visual details. These include
textures, facial features, edges, and small objects that may occupy only a few pixels. Such details
are often the first to be degraded or lost during quantization, especially when the codebook or token
representation lacks sufficient expressiveness. A VT that fails to preserve these features will funda-
mentally limit the quality and realism of generated images. Therefore, this task focuses on measur-
ing how well VTs retain high-frequency information crucial for perceptual fidelity. We follow the
same high-resolution synthesis procedure described in Appendix C, using GPT-4o to generate 100
images rich in detailed, high-frequency semantic content. We provide a more detailed definition of
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Figure 4: Examples of task 1: (1) ImageNet, (2) High Resolution and (3) Varying Resolution.
FlowMo Hi produces corrupted images in High Resolution and Varying Resolution, while Janus
Pro, LlamaGen, and Chameleon generate images with incorrect resolution and distorted semantics.

“visual details” and quantify that images in Task 2 contain more fine-grained information than other
tasks in Appendix D.

3.3 TASK 3: TEXT PRESERVATION

Text is a uniquely challenging and critical element in many real-world images, especially in domains
such as documents, signage, user interfaces, and multimodal reasoning. Unlike general textures, text
requires pixel-level precision, minor distortions can render characters unreadable, break words, or
alter semantics entirely. Furthermore, text carries symbolic meaning that must be preserved for
models to support language-image alignment, OCR, or instruction-following. However, most VTs
are not optimized for symbolic preservation, especially in multilingual or high-density settings. This
task evaluates how VTs preserve textual content under varying complexity and linguistic diversity.

Movie Posters (Easy). In this subtask, we synthesize 100 images of movie posters. Using GPT-4o,
we first generate descriptions for 100 fictional movies along with corresponding slogans, and then
produce a poster for each movie. Each poster features a prominent title in large text, a slogan in
smaller text, and a background that visually reflects the movie’s theme or genre. Details of synthesis
are provided in Appendix C. The dataset spans a wide variety of movie types, providing diverse yet
structured visual compositions. A strong VT should preserve both the overall image quality and the
legibility of embedded text. Example posters are shown in Figure 3.

ArXiv Abstracts (Hard). In addition to the movie posters, we introduce a more challenging sub-
task consisting of 100 images that render academic paper abstracts. These abstracts feature long
sentences, dense layouts, varied font styles, and small font sizes, making this setting particularly de-
manding. The goal of this task is to evaluate the tokenizer’s ability to preserve fine-grained textual
content and maintain layout fidelity under complex visual conditions. To synthesize this dataset, we
retrieved abstracts from papers published on April 16, 2025 to ensure that the rendered text images
were not included in the training data of any existing VT models.

Multilingual (Non-Latin). To evaluate the cross-lingual robustness of visual tokenizers, we con-
struct a multilingual benchmark consisting of non-Latin scripts, including Chinese, Hindi, Japanese,
and Korean. Specifically, we translate the ArXiv abstract texts into each target language using GPT-
4o, and then render the translated content into images following the same formatting and layout
procedures as in the English version. For each language, we generate 100 text-rich images that re-
flect real-world typographic complexity. This subtask assesses whether VTs can preserve diverse
character sets, linguistic structures, and writing systems that differ from Latin-based scripts.
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Table 1: Evaluation of VTs across three reconstruction settings in Task 1.
Method Params Type ImageNet High Resolution Varying Resolution

Resolution PSNR↑ SSIM↑ LPIPS↓ FID↓ Resolution PSNR↑ SSIM↑ LPIPS↓ FID↓ PSNR↑ SSIM↑ LPIPS↓ FID↓
FlowMo Lo 945M LFQ 256× 256 20.2232 0.5878 0.1031 0.8227 1024× 1024 11.3631 0.3644 0.6913 465.3528 11.4990 0.2854 0.7379 442.0812
FlowMo Hi 946M LFQ 256× 256 22.4923 0.7103 0.0684 0.4834 1024× 1024 11.3077 0.3874 0.6937 439.7494 11.4571 0.2862 0.7353 412.3167
MaskBiT 16bit 54M LFQ 256× 256 19.6448 0.5259 0.1246 1.1473 1024× 1024 28.6892 0.9074 0.0313 24.2461 23.9538 0.8037 0.0405 22.4535
MaskBiT 18bit 55M LFQ 256× 256 19.7695 0.5352 0.1197 1.0334 1024× 1024 28.9353 0.9135 0.0295 23.3024 23.9289 0.8070 0.0394 23.3959
Titok-l32 641M VQ 256× 256 15.0997 0.3533 0.2922 1.8181 1024× 1024 - - - - - - - -
Titok-b64 204M VQ 256× 256 16.1520 0.3903 0.2285 1.3542 1024× 1024 - - - - - - - -
Titok-s128 83M VQ 256× 256 16.7386 0.4123 0.1898 1.4186 1024× 1024 - - - - - - - -
Titok-bl64 390M VQ 256× 256 17.3930 0.4321 0.1926 1.7696 1024× 1024 - - - - - - - -
Titok-bl128 390M VQ 256× 256 18.4675 0.4877 0.1468 1.2328 1024× 1024 - - - - - - - -
Titok-sl256 330M VQ 256× 256 19.6375 0.5514 0.1108 0.8112 1024× 1024 - - - - - - - -
OpenMagViT2 115M LFQ 256× 256 20.0090 0.5786 0.1028 1.0598 1024× 1024 30.7770 0.9344 0.0232 18.6649 24.2372 0.8133 0.0383 20.3403
LlamaGen ds8 70M VQ 256× 256 22.4021 0.6995 0.0592 0.4597 1024× 1024 33.5435 0.9693 0.0112 10.1195 13.6772 0.2735 0.5401 330.8865
BSQ-VIT 174M RBS 256× 256 25.8646 0.8331 0.0359 0.4586 1024× 1024 - - - - - - - -
VAR-256 109M RVQ 256× 256 20.3693 0.6035 0.0933 0.9080 1024× 1024 - - - - - - - -
Janus Pro 1B/7B 72M VQ 384× 384 22.4485 0.6793 0.0819 0.7111 1024× 1024 29.0476 0.9208 0.0299 24.4655 13.1547 0.2342 0.5137 324.0125
Chameleon 68M VQ 512× 512 23.5837 0.7164 0.0672 0.8061 1024× 1024 29.3743 0.9062 0.0279 22.6725 12.7700 0.2051 0.5206 331.3999
LlamaGen ds16 72M VQ 512× 512 24.2199 0.7568 0.0630 0.5441 1024× 1024 28.6424 0.9148 0.0328 25.0529 13.3258 0.2413 0.5171 327.8920
LlamaGen ds16 T2I 72M VQ 512× 512 24.0192 0.7493 0.0647 0.5528 1024× 1024 29.0061 0.9206 0.0300 24.5831 13.1604 0.2344 0.5137 324.4282
VAR-512 109M RVQ 512× 512 22.3828 0.7636 0.0727 0.7719 1024× 1024 - - - - - - - -
Infinity-d32 110M RBSQ 1024× 1024 33.4850 0.9582 0.0109 0.1002 1024× 1024 35.5645 0.9732 0.0080 8.3090 - - - -
Infinity-d64 110M RBSQ 1024× 1024 36.0010 0.9766 0.0067 0.0511 1024× 1024 37.5937 0.9823 0.0053 5.8734 - - - -

SD3.5L 83M Continuous 1024× 1024 38.8208 0.9836 0.0013 0.0121 1024× 1024 38.4653 0.9839 0.0012 0.9787 30.6413 0.9507 0.0075 3.1084
FLUX.1-dev 83M Continuous 1024× 1024 41.6134 0.9932 0.0006 0.0050 1024× 1024 41.4870 0.9921 0.0005 0.4466 30.9502 0.9594 0.0068 2.7123
GPT-4o - - 1024× 1024 19.3828 0.5769 0.1463 39.5056 1024× 1024 15.3835 0.4642 0.2077 78.4113 - - - -

3.4 EVALUATION METRICS

To comprehensively evaluate VTs across the three core tasks of VTBench, we adopt a combination
of standard and task-specific metrics to capture different dimensions of quality.

Image Quality. To assess how well a VT reconstructs the original image from its tokenized repre-
sentation, we employ four metrics: (1) PSNR (Peak Signal-to-Noise Ratio): Measures pixel-level
fidelity between original and reconstructed images. Higher values indicate better reconstruction.
(2) SSIM (Structural Similarity Index): Quantifies structural similarity by comparing luminance,
contrast, and texture, and is more perceptually aligned than PSNR. (3) LPIPS (Learned Percep-
tual Image Patch Similarity): A perceptual similarity metric based on features from pretrained
networks (Zhang et al., 2018), correlating well with human judgment. (4) FID (Fréchet Inception
Distance): Measures distributional distance between reconstructed images in the feature space of
an Inception network. Lower FID indicates higher quality.

Text Quality. Preserving text in images is critical for multimodal reasoning and OCR-related tasks.
To quantify this, we apply OCR to the reconstructed images and compare the results to the OCR
result of the original image using: (1) CER (Character Error Rate): The Levenshtein distance be-
tween predicted and ground truth characters, normalized by total character count. (2) WER (Word
Error Rate): Similar to CER but computed over word sequences. It is particularly sensitive to
segmentation and spelling accuracy. For OCR-based evaluation, we use Gemma 3 (Kamath et al.,
2025), a SOTA multimodal model, to extract content from original and reconstructed images to
calculate WER and CER. Details of OCR and WER/CER computation are included in Appendix F.

These metrics allow us to analyze not only how much information is retained by the VT, but also
what types of information (structural, perceptual, or symbolic) are lost in the tokenization process.

4 EXPERIMENTAL RESULTS & ANALYSIS

Models. We evaluate a diverse set of VTs spanning multiple quantization paradigms, including
VQ, LFQ, BSQ, RVQ, and RBSQ. Our benchmark covers a wide range of SOTA models such
as FlowMo (Sargent et al., 2025), MaskBiT (Weber et al., 2024), Titok (Yu et al., 2024b), Open-
MagViT2 (Luo et al., 2024), LlamaGen (Sun et al., 2024), BSQ-ViT (Zhao et al., 2024), VAR (Tian
et al., 2024), Janus Pro (Chen et al., 2025b), Chameleon (Team, 2024), and Infinity (Han et al.,
2024). In our experiments, we specifically evaluate the VT component in isolation, without modify-
ing or including the downstream generation models. This design choice allows us to focus purely on
the tokenizer’s ability to preserve visual information. For comparison, we also include continuous
VAEs used in diffusion models (e.g., SD3.5L (Rombach et al., 2022), FLUX.1-dev (Labs, 2024))
and provide results from GPT-4o (OpenAI, 2025) as a reference, although its tokenizer architecture
remains undisclosed (Yan et al., 2025). For GPT-4o, we use the prompt “Please recreate the exact
same image without any alterations and preserve the original resolution.” to reconstruct images. Ta-
ble 1 summarizes all evaluated models with their parameter counts and quantization types. Detailed
experimental settings and environments are reported in Appendix H.

4.1 TASK 1: IMAGE RECONSTRUCTION

In this task, we evaluate image reconstruction across three subtasks: (1) ImageNet: Images are
center-cropped and resized to match each model’s required input size. (2) High Resolution: All
images are set to a fixed size of 1024 × 1024, and we retain this resolution for all models without
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Infinity-d32 LlamaGen ds16 T2I

FlowMo Lo Titok-bl128

GPT-4o SD3.5L FLUX.1 Janus Pro Infinity-d64 LlamaGen ds6

Chameleon FlowMo Hi OpenMagViT 2 Maskbit-18bit Titok-sl256 VAR-512 BSQ-VIT
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FlowMo Lo Titok-bl128
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FlowMo Lo Titok-bl128

Figure 5: Visualize qualitative results of detail preservation and text preservation.

Table 2: Evaluation of VTs on task 2.
Method Image Size PSNR↑ SSIM↑ LPIPS↓ FID↓
FlowMo Lo 256× 256 17.0642 0.3578 0.1344 64.2895
FlowMo Hi 256× 256 19.0346 0.5578 0.0845 44.5536
MaskBiT 16bit 256× 256 17.2804 0.2644 0.1803 98.5133
MaskBiT 18bit 256× 256 17.3603 0.2728 0.1745 91.3108
Titok-l32 256× 256 15.0325 0.1609 0.3474 169.2162
Titok-b64 256× 256 15.3827 0.1666 0.2767 124.9069
Titok-s128 256× 256 15.6532 0.1828 0.2316 107.7550
Titok-bl64 256× 256 15.7606 0.1894 0.2334 121.5447
Titok-bl128 256× 256 16.3017 0.2373 0.1808 93.1151
Titok-sl256 256× 256 17.1632 0.3091 0.1413 69.7221
OpenMagViT 256× 256 17.0070 0.3278 0.1406 70.6742
LlamaGen ds8 256× 256 19.1859 0.5144 0.0852 42.8318
BSQ-VIT 256× 256 22.4836 0.7487 0.0496 28.5461
VAR-256 256× 256 17.8223 0.3960 0.1207 53.6363

Janus Pro 1B/7B 384× 384 20.4726 0.4908 0.1174 59.6669

Chameleon 512× 512 20.5686 0.5089 0.1182 67.0157
LlamaGen ds16 512× 512 21.8902 0.5903 0.0972 51.3484
LlamaGen ds16 T2I 512× 512 21.9694 0.6029 0.0947 51.0251
VAR-512 512× 512 21.5492 0.6537 0.1000 57.3488

Infinity-d32 1024× 1024 29.1329 0.9052 0.0269 21.0871
Infinity-d64 1024× 1024 31.1374 0.9396 0.0188 16.7424

SD3.5L 1024× 1024 37.4365 0.9774 0.0028 4.5717
FLUX.1-dev 1024× 1024 41.5280 0.9908 0.0011 2.1202
GPT-4o 1024× 1024 15.8109 0.3000 0.2156 75.8916

resizing. (3) Varying Resolution: This subset contains
images with diverse, non-uniform resolutions, and we
preserve their original sizes for evaluation. We assess re-
construction quality using PSNR, SSIM, LPIPS, and FID.
The results, presented in Table 1, reveal a substantial per-
formance gap between all discrete visual tokenizers and
continuous VAEs, with the latter consistently achieving
better fidelity and perceptual quality. Notably, results
from the High Resolution and Varying Resolution settings
highlight that most VTs are limited to model-specific in-
put sizes and fail to generalize to arbitrary resolutions,
unlike continuous VAEs, which naturally support flexible
image dimensions.

Figure 4 presents qualitative examples illustrating recon-
struction quality across different VTs. We observe consistent semantic degradations in discrete
VT outputs. For example, red crosses on ambulances are missing or blurred (ImageNet), rooftops
are distorted, and facial details, and expressions are noticeably altered (High Resolution). In the
Varying Resolution, background textures and object boundaries become heavily corrupted. While
models such as Janus Pro, LlamaGen, Chameleon, and FlowMo do not raise runtime errors, they fail
to generate correct semantic content, highlighting the inherent limitations of current VTs, especially
under high or non-regular resolutions.

4.2 TASK 2: DETAIL PRESERVATION

In this task, we evaluate the ability of each VT to retain high-frequency visual information using a
dataset of patterned and texture-rich images. As shown in Table 2, continuous VAEs again lead in
all metrics. Among discrete VTs, Infinity-d64 demonstrate the strongest performance, suggesting
that residual spherical normalization are effective for preserving detailed structures. We further
visualize qualitative results in Figure 5. While continuous models such as SD3.5L, and FLUX.1
closely resemble the original, many VTs introduce visible distortions, such as blurred lines, broken
shapes, and color bleeding. These results highlight the limitations of current discrete tokenization
schemes in retaining local textures and structural integrity.

4.3 TASK 3: TEXT PRESERVATION

This task evaluates how well VTs preserve text content in images – a crucial capability for OCR,
document understanding, and multimodal reasoning. We consider three increasingly challenging
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Table 3: Evaluation of task 3 across three different settings.
Movie Posters (Easy) ArXiv Abstracts (Hard) Multilingual (Non-Latin)

Method Image Size PSNR↑ SSIM↑ LPIPS↓ FID↓ CER↓ WER↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ CER↓ WER↓ PSNR↑ SSIM↑ LPIPS↓ FID↓ CER↓
(Chinese)

CER↓
(Hindi)

CER↓
(Japanese)

CER↓
(Korean)

FlowMo Lo 256× 256 24.1178 0.7471 0.0645 55.0685 0.6458 3.7022 14.4979 0.5961 0.0703 9.1933 0.8337 6.0968 13.3470 0.5694 0.1187 23.0079 1.2564 1.0397 1.3614 1.2823
FlowMo Hi 256× 256 27.4186 0.8403 0.0380 40.7009 0.4169 2.5639 15.8510 0.7262 0.0493 6.6921 0.7046 5.3013 14.4191 0.6932 0.0896 11.8131 1.1279 0.9374 1.0281 0.9981
MaskBiT 16bit 256× 256 21.0962 0.6748 0.0992 67.3479 0.7315 4.2234 14.3909 0.4616 0.1945 27.9940 1.3801 9.2146 13.2634 0.4157 0.3184 42.6548 3.1298 1.1953 2.0821 2.1311
MaskBiT 18bit 256× 256 21.2932 0.6876 0.0928 64.0766 0.7910 4.8894 14.7015 0.4978 0.2436 26.2086 1.2828 9.2956 13.4963 0.4450 0.3450 59.1847 3.4889 1.1867 1.9445 2.3713
Titok-l32 256× 256 15.5164 0.4595 0.2616 124.7412 1.2254 7.8547 12.2423 0.2390 0.2513 60.0889 1.1178 8.5836 11.6064 0.2440 0.3557 78.3890 3.0154 1.1907 1.9135 1.7847
Titok-b64 256× 256 16.9423 0.5273 0.1939 101.7892 1.0189 6.7070 12.9500 0.3068 0.2470 49.4931 1.2414 10.0394 11.7051 0.2557 0.3163 82.9833 3.5650 1.4384 2.0044 2.3986
Titok-s128 256× 256 17.0506 0.5427 0.1598 88.7466 1.2478 6.2260 12.9276 0.3297 0.2691 56.6373 1.4054 8.6644 11.7860 0.2710 0.3131 64.4152 2.7573 1.1329 1.6614 1.9083
Titok-bl64 256× 256 18.2597 0.5963 0.1584 95.2880 1.1421 6.7044 13.4414 0.4535 0.1398 26.4375 1.2385 9.9727 12.1882 0.3908 0.1801 38.8779 3.6473 1.2105 2.8315 2.5622
Titok-bl128 256× 256 19.8102 0.6502 0.1159 77.7980 1.5956 5.0851 13.5015 0.4810 0.1235 24.1506 1.0432 7.6730 12.5783 0.4306 0.2012 36.9834 2.3695 0.9719 2.1597 1.8533
Titok-sl256 256× 256 21.4568 0.7151 0.0841 61.0830 0.7850 4.5561 13.4954 0.4996 0.1122 19.0590 1.2131 8.2139 12.7078 0.4669 0.1589 26.0457 2.2980 1.2338 1.9775 1.7088
OpenMagViT 256× 256 22.5337 0.7440 0.0741 52.7153 0.7385 4.2419 13.6459 0.5472 0.0900 19.0211 1.0400 7.7046 12.3496 0.4874 0.1498 25.5786 2.5913 1.1622 2.0300 1.9826
LlamaGen ds8 256× 256 26.0990 0.8288 0.0371 31.4534 0.5066 2.9620 16.0494 0.7003 0.0648 25.1991 0.9769 7.1170 14.5250 0.6513 0.1024 19.2362 1.1408 1.0250 1.0505 1.1342
BSQ-VIT 256× 256 30.7305 0.9135 0.0172 25.6235 0.1102 0.5763 20.3628 0.8910 0.0270 4.7719 0.0459 0.3234 17.9849 0.8544 0.0582 10.2721 0.7858 0.4722 0.3827 0.5919
VAR-256 256× 256 23.6215 0.7349 0.0602 50.2971 0.6391 3.7266 15.2481 0.6799 0.0569 23.1849 1.0170 7.3612 13.1452 0.5672 0.1165 19.0211 2.3378 1.1118 1.8972 1.5754

Janus Pro 1B/7B 384× 384 25.2793 0.8203 0.0545 45.4080 0.6628 3.7549 17.0286 0.6535 0.1003 38.3604 1.0645 7.8280 15.7220 0.6223 0.1367 53.0056 1.5413 1.1578 1.3463 1.3333

Chameleon 512× 512 27.1939 0.8358 0.0430 39.8786 0.5782 3.1359 18.1545 0.7503 0.0588 8.1713 0.7158 5.1867 15.3719 0.6370 0.0977 15.5254 1.9706 0.9171 1.5444 1.4047
LlamaGen ds16 512× 512 27.3778 0.8717 0.0440 40.9660 0.4914 2.8774 19.0951 0.7601 0.0601 18.1659 0.9527 6.8741 17.2316 0.7068 0.1141 38.2967 1.2307 1.0938 1.0343 1.1108
LlamaGen ds16 T2I 512× 512 27.4929 0.8697 0.0411 38.2986 0.4842 2.5741 18.8911 0.7735 0.0567 20.8214 0.9010 6.1850 17.2267 0.7400 0.0869 45.0646 0.9993 1.0305 0.8139 0.9775
VAR-512 512× 512 26.4574 0.8331 0.0486 46.6674 0.1949 1.1867 21.0023 0.8561 0.0553 5.3145 0.1341 0.9829 17.7790 0.7687 0.1012 22.1121 0.8398 0.6873 0.6552 0.7067
Infinity-d32 1024× 1024 37.7533 0.9669 0.0063 10.5845 0.0790 0.4371 31.7028 0.9896 0.0049 0.7982 0.0017 0.0162 30.2736 0.9892 0.0086 2.2108 0.1758 0.0352 0.0661 0.0924
Infinity-d64 1024× 1024 39.3334 0.9774 0.0048 8.6894 0.0439 0.2978 35.0924 0.9952 0.0026 0.7426 0.0019 0.0165 34.5168 0.9959 0.0035 1.1291 0.1372 0.0604 0.0617 0.0582

SD3.5L 1024× 1024 38.9058 0.9650 0.0011 1.6215 0.0002 0.0000 40.1536 0.9988 0.0005 0.1331 0.0001 0.0010 39.6703 0.9989 0.0011 0.4205 0.0973 0.0310 0.1047 0.0545
FLUX.1-dev 1024× 1024 44.3863 0.9862 0.0005 0.8993 0.0521 0.4872 52.1000 0.9999 0.0001 0.0256 0.0018 0.0112 51.9243 0.9999 0.0001 0.0457 0.1220 0.0272 0.0614 0.0506
GPT-4o 1024× 1024 17.7677 0.6006 0.1388 63.7351 0.0180 0.0836 11.3299 0.1516 0.1929 32.5382 0.4928 3.5292 10.4376 0.1761 0.2291 20.0185 0.8096 0.6414 0.7219 0.6478

scenarios: (1) Movie Posters with clean, short English text; (2) ArXiv Abstracts containing dense,
long-form academic writing; and (3) Multilingual Text rendered in non-Latin scripts (Chinese,
Hindi, Japanese, Korean). We use Character Error Rate (CER) and Word Error Rate (WER), based
on OCR outputs from the Gemma 3 model, to quantify text preservation. As shown in Table 3 and
Figure 5, continuous VAEs such as FLUX.1-dev and SD3.5L consistently outperform discrete tok-
enizers across conditions. Notably, many VTs fail to reconstruct slogans or titles in the Movie Poster
setting, and perform worse on academic layouts or multilingual scripts. These results highlight the
limitations of discrete tokenization methods in preserving symbolic fidelity, particularly under com-
plex formatting and linguistic diversity. Additional experiments with alternative OCR backends are
reported in Appendix G, confirming these findings robust to the choice of OCR system.

5 DISCUSSION

Limitation of Existing VTs. Discrete VTs fall significantly behind continuous VAEs in reconstruc-
tion fidelity, detail preservation, and symbolic accuracy, particularly for high-resolution, variable-
size, and multilingual inputs. Many models are constrained by fixed input sizes and struggle to retain
semantic structure in complex settings. Moreover, the absence of a strong, open-source VT limits
progress in large-scale AR models. While LLMs continue to scale and improve, their performance
is increasingly bottlenecked by the quality of visual tokenization. There is an urgent need for a
resolution-flexible, semantically robust, and reusable VT that can keep pace with the capabilities of
modern LLMs. We hope that VTBench can help accelerate research in this direction by providing a
unified framework for diagnosis, comparison, and future development.

Insights from GPT-4o Image Generation. We present additional experiments comparing GPT-
4o’s image generation quality with that of diffusion models in Appendix I. The results suggest
that GPT-4o may employ an autoregressive generation mechanism, aligning with prior research
hypotheses (Yan et al., 2025). GPT-4o appears to inherit the knowledge and reasoning capabilities of
LLMs while achieving strong visual synthesis quality, indicating its potential as a unified multimodal
model. Although the exact architecture of GPT-4o’s VT remains undisclosed, the high quality of its
generated images implies a highly capable VT design. Based on qualitative analysis, we hypothesize
that GPT-4o may use a residual next-scale VAE (RVAE) (Tian et al., 2024; Han et al., 2024) or a
diffusion-based encoder-decoder (Yan et al., 2025). We consider the former more likely, as residual
tokenization naturally aligns with the input-output format of LLMs and supports AR generation
within a unified framework. This structure would allow the model to seamlessly integrate image
understanding and generation, facilitating effective multimodal learning.

6 CONCLUSION

In this paper, we introduce VTBench, a comprehensive benchmark designed to systematically evalu-
ate the performance of VTs in AR image generation pipelines. Our benchmark spans three tasks: Im-
age Reconstruction, Detail Preservation, and Text Preservation, covering diverse scenarios. Through
extensive experiments on a wide range of SOTA VTs, we uncover that discrete VTs fall substantially
behind continuous VAEs, particularly in reconstruction fidelity, symbolic accuracy, and spatial con-
sistency. These limitations are further magnified under complex visual conditions. By providing a
unified evaluation framework, VTBench aims to bridge the gap between visual and language modali-
ties, encourage the development of strong open-source VTs, and support the broader goal of building
unified, multimodal generative algorithms.
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matic prompts; no human subjects or personal data are involved. For arXiv abstracts, we reference
public identifiers and provide rendering code rather than redistributing restricted text. We took care
to avoid harmful or offensive content in the synthetic sets and to document fonts and layouts for
multilingual renders to mitigate script-specific bias. Third-party models and assets are used under
their respective licenses and appropriately credited. There are no conflicts of interest or external
sponsorship influencing this work. We will release the dataset variants produced for VTBench and
the full codebase to support transparency and community scrutiny.

REPRODUCIBILITY STATEMENT

We provide an anonymized repository with complete evaluation code, configuration files, and in-
structions to reproduce all figures and tables. The repository includes exact preprocessing, met-
ric implementations (PSNR, SSIM, LPIPS, FID, CER, WER), fixed splits for each task, prompts
and rendering pipelines for synthetic data, and pointers or scripts to obtain any licensed sources.
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Aäron van den Oord, Oriol Vinyals, and Koray Kavukcuoglu. Neural discrete representation learn-
ing. In Advances in Neural Information Processing Systems 30: Annual Conference on Neural
Information Processing Systems 2017, December 4-9, 2017, Long Beach, CA, USA, pp. 6306–
6315, Long Beach, CA, 2017.

Guangzhi Wang, Yixiao Ge, Xiaohan Ding, Mohan S. Kankanhalli, and Ying Shan. What makes for
good visual tokenizers for large language models? CoRR, abs/2305.12223, 2023.

Mark Weber, Lijun Yu, Qihang Yu, Xueqing Deng, Xiaohui Shen, Daniel Cremers, and Liang-Chieh
Chen. Maskbit: Embedding-free image generation via bit tokens. CoRR, abs/2409.16211, 2024.

Junfeng Wu, Yi Jiang, Chuofan Ma, Yuliang Liu, Hengshuang Zhao, Zehuan Yuan, Song Bai,
and Xiang Bai. Liquid: Language models are scalable multi-modal generators. arXiv preprint
arXiv:2412.04332, 2024a.

Yecheng Wu, Zhuoyang Zhang, Junyu Chen, Haotian Tang, Dacheng Li, Yunhao Fang, Ligeng Zhu,
Enze Xie, Hongxu Yin, Li Yi, Song Han, and Yao Lu. VILA-U: a unified foundation model
integrating visual understanding and generation. CoRR, abs/2409.04429, 2024b.

Jinheng Xie, Weijia Mao, Zechen Bai, David Junhao Zhang, Weihao Wang, Kevin Qinghong Lin,
Yuchao Gu, Zhijie Chen, Zhenheng Yang, and Mike Zheng Shou. Show-o: One single transformer
to unify multimodal understanding and generation. CoRR, abs/2408.12528, 2024.

Zhiyuan Yan, Junyan Ye, Weijia Li, Zilong Huang, Shenghai Yuan, Xiangyang He, Kaiqing Lin, Jun
He, Conghui He, and Li Yuan. Gpt-imgeval: A comprehensive benchmark for diagnosing gpt4o
in image generation. arXiv preprint arXiv:2504.02782, 2025.

Ling Yang, Zhilong Zhang, Yang Song, Shenda Hong, Runsheng Xu, Yue Zhao, Wentao Zhang,
Bin Cui, and Ming-Hsuan Yang. Diffusion models: A comprehensive survey of methods and
applications. ACM Comput. Surv., 56(4):105:1–105:39, 2024.
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Yue Zhao, Yuanjun Xiong, and Philipp Krähenbühl. Image and video tokenization with binary
spherical quantization. CoRR, abs/2406.07548, 2024.

A THE USE OF LLMS

Large Language Models (LLMs) were used solely to aid and polish the writing of this paper, im-
proving grammar, clarity, and readability. They were not involved in research ideation, experimental
design, implementation, or analysis. The authors bear full responsibility for all content presented.

B EXTENDED BACKGROUND ON VISUAL TOKENIZERS

While the main text provides a brief overview of VTs, this section offers a more detailed explanation
of representative visual tokenizers, including both continuous and discrete variants. We present for-
mal definitions and architectural insights for each method, laying the groundwork for understanding
their differences in performance and suitability for autoregressive image generation.

Continuous VAE. In diffusion models, a common approach is to use a continuous Variational Au-
toencoder (VAE) (Rombach et al., 2022; Peebles & Xie, 2023) as a feature compressor as shown
in Figure 2(a). These VAEs encode the input image into a continuous latent space, typically using
convolutional encoders and decoders, enabling high-quality image reconstructions. Formally, let
x ∈ RH×W×3 be the input image, where H and W denote the image’s height and width, respec-
tively. The encoder E maps x to a latent representation z = E(x) ∈ Rh×w×d, where h and w are
the spatial dimensions of the latent space (typically downsampled from H and W ), and d is the la-
tent channel dimension. The decoder D reconstructs the image as x̂ = D(z). However, AR models
require inputs in the form of discrete token sequences, motivating the development of discrete visual
tokenizers.

VQ-VAE. Vector Quantized Variational Autoencoder (VQ-VAE) (van den Oord et al., 2017) is one
of the earliest and most widely adopted discrete visual tokenizers. It encodes an image into a latent
feature map and then quantizes each spatial location to the closest vector in a learned codebook.
The resulting discrete indices form a token grid that can be used in AR models. Given an input
image x ∈ RH×W×3, the encoder E produces a latent map z = E(x) ∈ Rh×w×d. Each latent
vector zi,j is replaced by its nearest neighbor in the codebook C = {c1, c2, . . . , cK} ⊂ Rd, qi,j =
argmink ||zi,j − ck||22, ẑi,j = cqi,j . The quantized latent ẑ is then decoded via D to reconstruct the
image x̂ = D(ẑ). While VQ-VAE enables discrete tokenization suitable for AR models, it suffers
from limited expressivity, codebook collapse, and scalability issues when handling high-resolution
or diverse image content.

LFQ-VAE. Lookup-Free Quantization (LFQ) (Yu et al., 2024a) eliminates the nearest-neighbor
lookup and codebook structure by directly projecting latent features into a binary latent space using
a learnable mapping. The encoder E produces z = E(x) ∈ Rh×w×d. Each element zi,j,k is
quantized using a sign function: ẑi,j,k = sign(zi,j,k) ∈ {−1,+1}. The binary representation can be
interpreted as a discrete token mask m, where each binary vector at location (i, j) is mapped to an
integer token using mi,j =

∑d
k=1 2

k−11zi,j,k>0.

BSQ-VAE. Binary Spherical Quantization (BSQ) (Zhao et al., 2024) builds upon LFQ by incorporat-
ing ℓ2 normalization before quantization: ẑi,j,k = 1

|
√
d| sign( zi,j,k|zi,j | ).This constrains the representation

to a unit hypersphere, effectively reducing quantization error and leading to smoother latent spaces.
BSQ allows for finer-grained tokenization while maintaining efficient binary encoding, which is
beneficial for downstream tasks sensitive to visual detail.
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Residual Next-Scale VAE introduces hierarchical tokenization by progressively quantizing residual
information across multiple spatial scales (Tian et al., 2024). Let s ∈ {1, 2, . . . , n} denote the scale
index, where n is the total number of scales. Each scale s corresponds to a predefined spatial
resolution (hs, ws), with hs ≤ h and ws ≤ w. During encoding, a sequence of quantized tokens
ẑ = {ẑ(1), ẑ(2), . . . , ẑ(n)} is computed as follows:z = r(0) = E(x) ∈ Rh×w×d

ẑ(s) = Q
(
↓(hs,ws)

(
r(s−1)

))
, r(s) = z− ↑(h,w)

(
D
(
ẑ(s)
))

, s = 1, . . . , n
(1)

Here, Q and D represent the quantization and dequantization functions, respectively, which may be
implemented using VQ, LFQ, BSQ, or similar methods. The operators ↓(hs,ws) (·) and ↑(h,w) (·)
denote downsampling to and upsampling from the specified resolution. During decoding, the final
image is reconstructed by aggregating and decoding all quantized components:

x̂ = D

(
n∑

s=1

↑(h,w)

(
D(ẑ(s))

))
(2)

This coarse-to-fine scheme preserves spatial structure and enables the model to capture both global
context and fine-grained details, making it effective for high-resolution image reconstruction.

C IMAGE SYNTHESIS

In this section, we detail the procedure for synthesizing high-resolution and detailed images.

Generally, in our experiments, we utilized the openai.images.edit API with the
gpt-image-1 model. For GPT-4o, we retried the API call until a successful image generation
was achieved. Fortunately, we encountered no issues aside from occasional connection or timeout
errors, which were typically resolved within one or two attempts. As image generation with GPT-4o
is nondeterministic and the API does not allow setting the temperature or a random seed, we con-
sistently used the first successfully generated image for evaluation. Notably, we observed that the
images generated from the same input were generally similar in appearance.

High Resolution Images. To generate diverse scene descriptions, we use the prompt: “I want to
generate high-resolution images with a size of 1024 × 1024. Please directly create 10 different fic-
tional scenes for me and output them in JSONL format.” This prompt is repeated 10 times, resulting
in 100 unique scene descriptions. Each description is then passed to GPT-4o’s image generation API
to produce 100 corresponding images, each with a resolution of 1024× 1024.

Detailed Images. Following a similar approach to high-resolution image synthesis, we employed
the following prompt: “I want to design a richly detailed dataset, featuring abundant lines, color
blocks, textures, or various forms of high-frequency information. The scenes do not need to be
realistic. I plan to use image generation algorithms to produce these images. Please help me
design 5 different prompts and output them in JSONL format.” This prompt is issued 10 times to
generate a total of 100 unique scene descriptions. Each description is then used with GPT-4o’s
image generation API to synthesize 100 corresponding images at a resolution of 1024× 1024.

Movie Poster Synthesis To synthesize movie posters, we first generate fictional movie titles and
subtitles using the prompt: “Please generate a fictional movie titles of different types, along with
subtitles, and output them in JSONL format.” These synthetic titles and subtitles are then used in
a second prompt to create the corresponding posters: ‘Generate a 1024×1024 movie poster for the
film titled (movie title), incorporating the text: (subtitle). The title and slogan should blend naturally
into the poster design. This process is repeated 100 times to produce 100 unique movie posters.

D DEFINITION OF VISUAL DETAILS

The goal of Task 2 is to evaluate the ability of VTs to retain image details. In this section, we define
what is meant by “details” in the context of Task 2.

What Is “Detail”? In the context of VTBench, we define “visual detail” as high-frequency visual
information that is essential for preserving the local semantic integrity of an image. Concretely,
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we categorize details into the following visual elements: (1) Fine textures (e.g., fabric weave, hair
strands, foliage patterns); and (2)Sharp edges and contours (e.g., architectural lines, object bound-
aries). These are typically spatially localized, semantically significant, and vulnerable to information
loss during quantization. Unlike global semantics (e.g., category labels), these details are often non-
redundant and not easily recoverable once degraded, especially in AR generation pipelines where
token quality directly determines synthesis fidelity.

Why This Definition Matters for Tokenization? Discrete VT compress image features into finite
token vocabularies. During this compression, high-frequency information is the first to be lost, par-
ticularly under quantization or low expressiveness of token representations. This directly impacts
downstream generation quality by perceptual degradation (textures appear smoothed, edges blurred,
and small features missed) Therefore, evaluating a VT’s ability to retain such localized, semanti-
cally relevant details is essential for both perceptual quality and task-level accuracy in multimodal
applications.

Unlike global semantic content, such as scene category or layout, these local features are often non-
redundant and highly sensitive to quantization errors. Preserving them is essential for perceptual
quality and for downstream tasks that rely on accurate image content.

To make this definition operational and measurable, we designed Task 2: Detail Preservation specif-
ically to target and evaluate a model’s ability to retain such features. To validate that Task 2 indeed
focuses on detail-rich content, we computed three standard image analysis metrics across all tasks
as show in Table 4:

• High-Frequency Energy (%): This measures the proportion of image energy in high-
frequency components (computed via FFT), indicating the global presence of textures and
patterns.

• Laplacian Variance: This quantifies the overall sharpness of an image by measuring the vari-
ance of the Laplacian response, a standard proxy for edge clarity and detail strength.

• Edge Density (%): This captures the spatial density of edges in an image, revealing how
concentrated and frequent fine structures are within a scene.

Table 4: Verification that Task 2 images contain richer details.
Task Subtask HighFreq Energy(%) ↑ Laplacian Variance ↑ Edge Density(%) ↑

Task 1
Imagenet 40.7911 2735.9673 11.0883
High Resolution 40.3702 940.7714 5.0195
Varying Resolution 34.1957 1188.534 9.3666

Task 2 Detail Preservation 48.931 12852.3598 23.6103

Task 3

Movie Posters 44.2046 1288.8568 2.3493
Arxiv Abstracts 39.6323 9857.1757 9.1615
Multilingual (Chinese) 31.5059 8212.4345 10.1427
Multilingual (Hindi) 31.7221 8087.6291 9.0816
Multilingual (Japanese) 32.3393 8691.5516 9.6565
Multilingual (Korean) 29.983 6847.8147 9.5393

As shown in Table 4, among all benchmark tasks, Task 2 exhibits the highest values across all
three indicators. Specifically, it has a High-Frequency Energy of 48.93%, a Laplacian Variance of
12,852.36, and an Edge Density of 23.61%. These values far exceed those of Task 1 (ImageNet-Val),
which show only 40.79%, 2735.97, and 11.09%, respectively, as well as all variants of Task 3. For
example, even the ArXiv Abstracts test set, which contains visually complex scientific documents,
reaches only 39.63% High-Frequency Energy and 9.16% Edge Density.

This quantitative evidence demonstrates that Task 2 is constructed to challenge models on their
ability to preserve fine-grained, localized, and perceptually significant visual features. By combining
these measurements with perceptual similarity metrics such as LPIPS in evaluation, we ensure a
rigorous and reproducible assessment of detail preservation quality.
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E RESOLUTION LIMITATIONS OF DISCRETE VTS

Although discrete visual tokenizers (VTs) and continuous variational autoencoders (VAEs) share
a similar high-level encoder–decoder paradigm, their behavior diverges substantially when han-
dling arbitrary image resolutions. In practice, current discrete VTs exhibit several architectural and
training limitations that hinder their ability to generalize across resolutions, in contrast to the fully
convolutional structure of continuous VAEs.

Input Size Constraints. Many discrete VTs, particularly those based on vector quantization (e.g.,
VQ-VAE, LFQ), require fixed input sizes during both training and inference. This constraint arises
from codebook usage, patchification schemes, and decoder assumptions (e.g., flattening 2D grids
into token sequences of fixed length). For example, models such as Janus support only predefined
square resolutions (e.g., 256× 256, 384× 384, or 512× 512). Processing unseen resolutions often
results in runtime errors or corrupted outputs, as illustrated in Figure 4.

Decoder Design Dependency. The decoders of discrete VTs typically assume a token grid shape
to map sequences back into spatial layouts. This coupling binds input resolution to the decoder
architecture. In contrast, convolution-based VAEs, such as those employed in diffusion models,
naturally support arbitrary resolutions because of their fully convolutional encoder–decoder design.

Token Flattening and Positional Encoding. Autoregressive models built on discrete tokens usu-
ally flatten spatial grids into one-dimensional sequences. This flattening exacerbates resolution sen-
sitivity: token grid dimensions change with input size, but positional embeddings and transformer
blocks are rarely designed to handle such variation. Consequently, discrete VTs exhibit reduced
robustness when applied to arbitrary resolutions.

In summary, while quantization itself is not inherently resolution-sensitive, current implementations
of discrete VTs are limited in practice by input size assumptions, decoder rigidity, and positional
encoding designs. These architectural constraints make discrete VTs significantly less robust to
varying resolutions compared to continuous VAEs.

F TEXT QUALITY EVALUATION

Evaluating the ability of a VT to preserve text content is critical for many downstream applications
such as OCR, document generation/understanding, and multimodal reasoning. In VTBench, we
quantify this ability by applying Optical Character Recognition (OCR) to both original and recon-
structed images, and computing standard text similarity metrics based on the OCR outputs.

Optical Character Recognition (OCR) We use a SOTA multimodal model, Gemma 3 (Kamath
et al., 2025), to extract textual content from both the original image x and the reconstructed image
x̂. Let Torig and Trecon denote the sequences obtained from x and x̂, respectively. All evaluations are
performed under the same OCR configuration to ensure consistency.

Character Error Rate (CER) The Character Error Rate measures the normalized edit distance
between two character sequences. Given the ground-truth sequence Torig and the predicted sequence
Trecon, CER is computed as:

CER =
Dchar(Torig, Trecon)

|Torig|
(3)

where Dchar(·, ·) denotes the Levenshtein distance (i.e., the minimum number of insertions, dele-
tions, and substitutions needed to convert one character sequence to another), and |Torig| is the num-
ber of characters in the ground-truth sequence.

Word Error Rate (WER). Word Error Rate is similar to CER, but computed at the word level. Let
Worig and Wrecon be the sequences of words extracted from the original and reconstructed images,
respectively. The WER is defined as:
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WER =
Dword(Worig,Wrecon)

|Worig|
(4)

where Dword(·, ·) is the Levenshtein distance between word sequences, and |Worig| is the number of
words in the ground-truth text.

As with CER, WER can also exceed 1 in extreme failure cases, where the number of incorrect or
missing words far surpasses the original word count. These metrics jointly capture both low-level
character accuracy and higher-level semantic correctness. High CER or WER indicates that the
visual tokenizer has failed to preserve text layout or visual clarity during reconstruction, especially
in multilingual or high-density text scenarios.

G ROBUSTNESS OF TEXT PRESERVATION TO OCR CHOICE

Our text preservation evaluation in Task 3 relies on OCR outputs to compute character er-
ror rate (CER) and word error rate (WER). A natural concern is whether the results are sen-
sitive to the choice of OCR system. To investigate this, we conducted a follow-up experi-
ment with two additional OCR backends beyond Gemma 3: Qwen2.5-VL-7B-Instruct and
nanonets/Nanonets-OCR-s. The CER/WER results across all three OCR systems are sum-
marized in Table 5.

Table 5: Comparison of OCR sensitivity in text preservation evaluation. Results are consistent
across Gemma 3, Qwen2.5-VL-7B-Instruct, and Nanonets-OCR-s.

Method Gemma 3 Qwen2.5-VL-7B-Instruct Nanonets-OCR-s
CER WER CER WER CER WER

FlowMo Lo 0.6458 3.7022 0.5969 3.4291 0.5861 3.3744
FlowMo Hi 0.4169 2.5639 0.4148 2.3856 0.3987 2.2985
MaskBiT 16bit 0.7315 4.2234 0.7679 4.4453 1.0437 6.0299
MaskBiT 18bit 0.7910 4.8894 0.7599 4.3905 0.7330 4.2090
Titok-l32 1.2254 7.8547 0.9549 5.5398 2.1851 10.1903
Titok-b64 1.0189 6.7070 1.1570 5.5000 1.3111 7.5522
Titok-s128 1.2478 6.2260 0.9538 8.1082 1.1665 6.7177
Titok-bl64 1.1421 6.7044 1.1605 6.7313 1.9725 6.4577
Titok-bl128 1.5956 5.0851 1.2116 7.8060 2.6343 15.3209
Titok-sl256 0.7850 4.5561 0.7634 4.4179 0.7377 4.2376
OpenMagViT 0.7385 4.2419 0.6932 4.0100 0.8561 4.9428
LlamaGen ds8 0.5066 2.9620 0.5471 3.1679 0.4913 2.8445
BSQ-VIT 0.1102 0.5763 0.1059 0.6480 0.0659 0.3495
VAR-256 0.6391 3.7266 0.6243 3.6206 0.6130 3.5448
Janus Pro 1B/7B 0.6628 3.7549 0.6488 3.7920 1.0328 4.7400
Chameleon 0.5782 3.1359 0.5369 3.1295 0.7092 4.0871
LlamaGen ds16 0.4914 2.8774 0.5112 2.9676 0.4704 2.6841
LlamaGen ds16 T2I 0.4842 2.5741 0.4868 2.7983 0.4470 2.5734
VAR-512 0.1949 1.1867 0.1263 0.7472 0.1121 0.6281
Infinity-d32 0.0790 0.4371 0.0098 0.0548 0.0026 0.0025
Infinity-d64 0.0439 0.2978 0.0043 0.0237 0.0019 0.0000
SD3.5L 0.0002 0.0000 0.0004 0.0025 0.0045 0.0062
FLUX.1-dev 0.0521 0.4872 0.0004 0.0025 0.0013 0.0012
GPT-4o 0.0180 0.0836 0.0186 0.1034 0.0173 0.0784

Despite differences in absolute CER/WER values, the relative ranking of visual tokenizers remains
stable across all three OCR systems. High-performing VTs such as BSQ-VIT, Infinity-d64, and
FLUX.1-dev consistently outperform weaker tokenizers such as Titok variants or MaskBiT. These
results confirm that the trends reported in Table 3 are robust to the choice of OCR backend, and our
conclusions regarding text preservation are not artifacts of a particular OCR model.
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Original GPT-4oInstructPix2Pix Step1X-Edit IC-Edit GPT-4o-OCR (Extract from original image)

[2023-04-16]

We present a geometry-driven method for normalizing dysarthric speech using local Lie group 

transformations of spectrograms. Time, frequency, and amplitude distortions are modeled as smooth, 

invertible deformations, parameterized by scalar fields and applied via exponential maps. A neural network 

is trained to infer these fields from unpaired utterances of typical speech without using any pathological 

data. At test time, the model applies an approximate inversion near dysarthric inputs. Despite zero-shot 

generalization, we observe substantial ASR gains, including up to 16 percentage points WER reduction on 

challenging TORGO samples, with no degradation on clean speech. This work introduces a principled, 

interpretable approach for robust speech recognition under motor speech distortions.

[2022-04-16]

Automatic speech recognition (ASR) is crucial for human-machine interaction in diverse applications like 

conversational agents, household robots, call center automation, and automated subtitling. However, 

developing high-performance ASR models remains challenging, particularly for low-resource languages 

like Arabic, due to the scarcity of large, labeled speech datasets, which are costly and time-intensive to 

produce. In this work, we employ weakly supervised learning to train an Arabic ASR model using the 

Conformer architecture. Our model is trained from scratch on 13,000 hours of weakly annotated speech 

data covering both Modern Standard Arabic (MSA) and Dialectal Arabic (DA), eliminating the need for 

costly manual transcriptions. Despite the absence of human-verified labels, our approach attains state-of-

the-art (SOTA) performance, exceeding all previous efforts in the field of Arabic ASR on the standard 

benchmarks. By demonstrating the effectiveness of weak supervision as a scalable, cost-effective 

alternative to traditional supervised approaches, paving the way for improved ASR systems in

[2023-04-16]                                                                                    

We introduce H3Net b1.59 2847: the first open-source, native 3-bit Large Language Model (LLM) at the 2-

billion parameter scale. Trained on a corpus of a trillion tokens, the model has been rigorously evaluated 

across benchmarks covering language understanding, mathematical reasoning, coding proficiency, and 

conversational ability. Our results demonstrate that H3Net b1.59 2847 achieves performance on par with 

leading open-weight, full-precision LLMs of similar size, while offering significant advantages in 

computational efficiency, including substantially reduced memory footprint, energy consumption, and 

decoding latency. To facilitate further research and adoption, the quantized weights are released via 

Hugging Face along with open-source reference implementations for both GPU and CPU architectures.

Figure 6: Comparison of image editing using the prompt “Please recreate the exact same image
without any alterations.” with the original image. The original images contain blurred text that
is not recognizable to humans. The rightmost column displays the OCR-extracted text from the
original image using GPT-4o using the prompt “Directly output what is written in the image.”

H EXPERIMENTAL SETTINGS AND ENVIRONMENTS

Experimental Settings. We evaluate a range of SOTA VTs across the three core tasks in VT-
Bench: Image Reconstruction, Detail Preservation, and Text Preservation. For each task, we use
a fixed evaluation protocol to ensure consistency across models. All tokenizers are evaluated in
an inference-only setting using publicly available pretrained weights. Where applicable, we fol-
low each model’s official preprocessing pipeline and input size specification (see Table 1). For text
preservation evaluation, OCR is applied to both original and reconstructed images before computing
CER and WER. We use the same set of 50,000 ImageNet validation images and 100 samples per
text benchmark (movie posters, abstracts, multilingual) for all models.

Environments. All experiments are conducted using 4 NVIDIA A100 80GB GPUs with 251GB
memory. Image preprocessing, reconstruction, and OCR evaluation are run on a standardized, re-
producible pipeline. All results are collected on the same hardware and software stack to ensure fair
comparisons.

I ADDITIONAL EXPERIMENTS OF GPT-4O IMAGE GENERATION

To further understand the GPT-4o’s architecture and VT, we conducted a set of controlled experi-
ments focused on its capabilities in font recognition and fine-grained text editing. These experiments
are designed to isolate and probe the internal mechanisms behind GPT-4o’s image generation and
editing abilities, specifically evaluating the underlying VT’s expressiveness and semantic alignment.

I.1 IMAGE RECONSTRUCTION FROM LOW-QUALITY INPUTS

In this experiment, we provided GPT-4o with an intentionally degraded input image containing
heavily distorted or unreadable text. Our prompt explicitly instructed the model to recreate the
image exactly without any alteration. Interestingly, unlike diffusion-based models, which tend to
replicate the visual noise and illegibility, GPT-4o instead produced an image where the text had
been cleanly restored into readable, coherent sentences, as shown in Figure 6.

This behavior strongly deviates from the expected literal replication and instead suggests that GPT-
4o engaged in a form of semantic hallucination. We hypothesize that GPT-4o first attempts to under-
stand the image content through an internal representation, and in doing so, “fills in” the missing or
noisy parts based on learned linguistic priors. To test this hypothesis, we queried GPT-4o to extract
text from the original distorted image. Surprisingly, the model returned well-formed and highly
plausible text, even though no readable characters are actually present in the image. Moreover, the
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Original GPT-4oInstructPix2Pix Step1X-Edit IC-Edit

Prompt: Add text "We introduce VTBench, a comprehensive benchmark that systematically evaluates VTs across three core tasks: Image Reconstruction, 
Detail Preservation, and Text Preservation, and covers a diverse range of evaluation scenarios." to the blackboard.

Prompt: Remove the text "and covers a diverse range of evaluation scenarios." from the blackboard.

Figure 7: Text editing comparison across models, showing both text insertion (top) and removal
(bottom) on a blackboard.

extracted text closely matched the regenerated image, indicating a strong coupling between image
understanding and generation.

These observations suggest that GPT-4o has inherited a strong capacity for image understanding.
The model does not simply replicate noisy input, but instead attempts to semantically interpret and
“restore” the image content, even when such interpretation involves hallucination. This behavior
implies that GPT-4o’s backbone is not a generic image generation model, but one that possesses
robust multimodal reasoning capabilities. We hypothesize that this capability arises either from: (1)
A shared autoregressive backbone pretrained or co-trained for both language and vision tasks, en-
abling semantic-level image understanding and generation, or (2) A language-centric model (e.g.,
GPT-4) that has been subsequently fine-tuned on multimodal tasks, thereby acquiring the ability to
parse and reconstruct image content via linguistic priors.

In either case, the consistency between the model’s interpretation and generation of text, despite
degraded visual input, strongly supports the view that GPT-4o performs image generation not as a
pixel-to-pixel transformation task, but as a language-informed semantic generation process.

I.2 TEXT ADDITION AND DELETION IN SCENE CONTEXT

To further explore GPT-4o’s ability to understand and manipulate visual content, we conducted a
series of experiments focused on localized text editing – inserting and removing words from realistic
visual scenes, such as blackboards and signage. These tasks require not only accurate prompt-
following, but also semantic understanding of scene layout, font style, and background context.

In the text addition experiments, GPT-4o was prompted to insert specific phrases into designated
regions of an image, as shown in Figure 7. The results show remarkable spatial precision and stylistic
coherence: the added text matched the surrounding content in font, size, alignment, and even lighting
and shading. In the deletion experiments, GPT-4o is instructed to remove certain words. Rather than
crudely masking out regions, the model naturally inpaint the background, reconstructing the texture
and structure behind the deleted text with minimal artifacts.

These results reveal several important properties of GPT-4o’s architecture:

• Semantic-level image editing: The model does not simply manipulate pixels, but appears to
operate at a higher level of abstraction. It understands which parts of the image correspond to
the textual prompt and modifies them while preserving global visual coherence.

• Language-conditioned spatial reasoning: The edits are guided by natural language, which
suggests a strong alignment between textual and visual representations. This is indicative of a
shared or tightly coupled multimodal representation space.
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a) GPT-4o Image Generation (Hypothesis)

<BOS>

<EOS>

Pretrained Language Model

Decoder

Image with Clear Text

Encoder

Image with Unreadable Text

Prompt: Please recreate the exact 

same image without any alterations.

Text Tokenizer

b) Diffusion Model

Denoising Model

Image

Encoder

Image with Unreadable Text

Prompt: Please recreate 

the exact same image 

without any alterations.

Text

Encoder

Image 

Decoder

Generated Image

Figure 8: Comparison of two hypothesized architectures for image generation.

• Unified generation and understanding backbone: The precision and fidelity of the edits, es-
pecially the seamless integration of new content, suggest that the same underlying autoregres-
sive model is responsible for both interpreting the image and generating the modified output.
This unified design contrasts with traditional pipelines that separate perception and generation.

Together with the hallucination behavior observed in the font reconstruction experiment, these find-
ings support the view that GPT-4o integrates image understanding and image generation into a sin-
gle, coherent process. It reasons about images in a way that is language-centric, and its visual
tokenizer must be capable of encoding not only fine-grained appearance but also semantic structure
and spatial context.

I.3 AUTOREGRESSIVE VS. DIFFUSION: IMPLICATIONS FOR GPT-4.

As summarized in Figure 8, we hypothesize that GPT-4o adopts a unified autoregressive architecture
rather than a diffusion-based pipeline. This hypothesis is supported by the following observations:

• Semantic hallucination through language priors: GPT-4o’s tendency to “restore” unread-
able text into coherent language, despite prompts requesting exact replication suggests that its
image understanding is conditioned by a language model prior. Such behavior is natural in an
autoregressive framework where image and text tokens are processed in a shared sequence and
jointly influenced by a pretrained language model.

• Language-grounded editing and generation: The model demonstrates precise text insertion
and deletion aligned with natural language instructions, which requires not only generation ca-
pability but also deep semantic understanding of both visual context and instruction intent. This
is hard to achieve in diffusion models, where the denoising model lacks linguistic grounding or
token-level reasoning.

• Modality reuse and efficiency: The autoregressive formulation allows GPT-4o to reuse the
same pretrained language model for both textual and visual reasoning, leveraging strong LLM
priors for multimodal understanding. In contrast, diffusion models typically require separate
encoders and decoders for each modality, making such deep integration more difficult.

• Failure mode contrast: Diffusion models tend to replicate noise patterns or preserve unread-
ability when asked to reconstruct degraded text, faithfully following low-level visual patterns.
GPT-4o, on the other hand, produces semantically enriched outputs, even when that contradicts
pixel-level fidelity, indicative of language-centric generation.

Together, these insights point toward GPT-4o employing an autoregressive backbone with a high-
capacity visual tokenizer that supports semantic, instruction-driven generation. This structure allows
GPT-4o to unify image understanding and image synthesis in a way that is tightly aligned with
language modeling capabilities.
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I.4 GPT-4O’S VISUAL TOKENIZER

Despite the impressive capabilities exhibited by GPT-4o in both image understanding and genera-
tion, its VT remains proprietary and undisclosed. Nevertheless, its behavior provides strong indirect
evidence of a highly expressive VT design: it preserves fine-grained textual structure, aligns visual
and linguistic semantics, and supports high-resolution, editable image representations. Unlike many
existing discrete tokenizers that struggle with text reconstruction and spatial fidelity, GPT-4o’s VT
appears to encode images in a way that is not only compact, but also semantically rich and compat-
ible with autoregressive decoding.

To replicate such a tokenizer, future work must prioritize three core capabilities:

• High-fidelity image reconstruction: The tokenizer should retain sufficient visual detail to
allow accurate reconstruction of the input image, ideally matching the performance of state-of-
the-art continuous VAEs in terms of perceptual quality and structure preservation.

• Resolution scalability: It should generalize across varying image sizes and support high-
resolution inputs without introducing artifacts or requiring fixed input dimensions, a common
limitation of many existing discrete tokenizers.

• Compatibility with downstream language models: The output token sequences must be
structurally and semantically aligned with the expectations of large language models (LLMs),
enabling seamless integration into autoregressive multimodal frameworks for joint reasoning
and generation.

Architectures such as residual next-scale VAEs, hierarchical quantization, or continuous tokeniza-
tion may serve as promising directions. Given the lack of public access to GPT-4o’s VT, bench-
marks like VTBench offer a practical path forward: by systematically evaluating VT components
in isolation, researchers can identify weaknesses, measure progress, and guide the development of
open-source alternatives that approach or surpass GPT-4o’s performance.

J ADDITIONAL VISUALIZE QUALITATIVE RESULTS

To complement the quantitative evaluations presented in the main paper, we provide additional qual-
itative results that illustrate the reconstruction quality, text preservation, and detail retention of vari-
ous visual tokenizers, from Figure 9 to 13.
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Chameleon FlowMo Hi OpenMagViT 2 Maskbit-18bit Titok-sl256 VAR-512 BSQ-VIT

GPT-4o SD3.5L FLUX.1 Janus Pro Infinity-d64 LlamaGen T2IOriginal

Chameleon FlowMo Hi OpenMagViT 2 Maskbit-18bit Titok-sl256 VAR-512 BSQ-VIT

GPT-4o SD3.5L FLUX.1 Janus Pro Infinity-d64 LlamaGen T2IOriginal

Chameleon FlowMo Hi OpenMagViT 2 Maskbit-18bit Titok-sl256 VAR-512 BSQ-VIT

GPT-4o SD3.5L FLUX.1 Janus Pro Infinity-d64 LlamaGen T2IOriginal

Chameleon FlowMo Hi OpenMagViT 2 Maskbit-18bit Titok-sl256 VAR-512 BSQ-VIT

GPT-4o SD3.5L FLUX.1 Janus Pro Infinity-d64 LlamaGen T2IOriginal

Chameleon FlowMo Hi OpenMagViT 2 Maskbit-18bit Titok-sl256 VAR-512 BSQ-VIT

GPT-4o SD3.5L FLUX.1 Janus Pro Infinity-d64 LlamaGen T2IOriginal

Figure 9: Additional visualize qualitative results for imagenet of task 1.
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Original SD3.5L FLUX.1 Janus Pro Infinity-d64 LlamaGen Chameleon FlowMo HiGPT-4o OpenMagViT Maskbit-18bitOriginal SD3.5L FLUX.1 Janus Pro Infinity-d64 LlamaGen Chameleon FlowMo HiGPT-4o OpenMagViT Maskbit-18bit

SD3.5L FLUX.1-dev Janus Pro LlamaGen Chameleon FlowMo Hi OpenMagViT2 Maskbit-18bitOriginal

Original SD3.5L FLUX.1 Janus Pro Infinity-d64 LlamaGen Chameleon FlowMo HiGPT-4o OpenMagViT Maskbit-18bit

Original SD3.5L FLUX.1 Janus Pro Infinity-d64 LlamaGen Chameleon FlowMo HiGPT-4o OpenMagViT Maskbit-18bit

Original SD3.5L FLUX.1 Janus Pro Infinity-d64 LlamaGen Chameleon FlowMo HiGPT-4o OpenMagViT Maskbit-18bit

Original SD3.5L FLUX.1 Janus Pro Infinity-d64 LlamaGen Chameleon FlowMo HiGPT-4o OpenMagViT Maskbit-18bit

Original SD3.5L FLUX.1 Janus Pro Infinity-d64 LlamaGen Chameleon FlowMo HiGPT-4o OpenMagViT Maskbit-18bit

SD3.5L FLUX.1-dev Janus Pro LlamaGen Chameleon FlowMo Hi OpenMagViT2 Maskbit-18bitOriginal

SD3.5L FLUX.1-dev Janus Pro LlamaGen Chameleon FlowMo Hi OpenMagViT2 Maskbit-18bitOriginal

SD3.5L FLUX.1-dev Janus Pro LlamaGen Chameleon FlowMo Hi OpenMagViT2 Maskbit-18bitOriginal

SD3.5L FLUX.1-dev Janus Pro LlamaGen Chameleon FlowMo Hi OpenMagViT2 Maskbit-18bitOriginal

SD3.5L FLUX.1-dev

Janus Pro LlamaGen Chameleon

FlowMo Hi OpenMagViT2 Maskbit-18bitOriginal

Figure 10: Visualized examples for high-resolution (top) and varying-resolution (bottom) of task 1.
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GPT-4o SD3.5L FLUX.1 Janus Pro Infinity-d64 LlamaGen ds6

Chameleon FlowMo Hi OpenMagViT 2 Maskbit-18bit Titok-sl256 VAR-512 BSQ-VIT

Original Infinity-d32 LlamaGen ds16 T2I

FlowMo Lo Titok-bl128

GPT-4o SD3.5L FLUX.1 Janus Pro Infinity-d64 LlamaGen ds6

Chameleon FlowMo Hi OpenMagViT 2 Maskbit-18bit Titok-sl256 VAR-512 BSQ-VIT

Original Infinity-d32 LlamaGen ds16 T2I

FlowMo Lo Titok-bl128

GPT-4o SD3.5L FLUX.1 Janus Pro Infinity-d64 LlamaGen ds6

Chameleon FlowMo Hi OpenMagViT 2 Maskbit-18bit Titok-sl256 VAR-512 BSQ-VIT

Original Infinity-d32 LlamaGen ds16 T2I

FlowMo Lo Titok-bl128

GPT-4o SD3.5L FLUX.1 Janus Pro Infinity-d64 LlamaGen ds6

Chameleon FlowMo Hi OpenMagViT 2 Maskbit-18bit Titok-sl256 VAR-512 BSQ-VIT

Original Infinity-d32 LlamaGen ds16 T2I

FlowMo Lo Titok-bl128

GPT-4o SD3.5L FLUX.1 Janus Pro Infinity-d64 LlamaGen ds6

Chameleon FlowMo Hi OpenMagViT 2 Maskbit-18bit Titok-sl256 VAR-512 BSQ-VIT

Original Infinity-d32 LlamaGen ds16 T2I

FlowMo Lo Titok-bl128

GPT-4o SD3.5L FLUX.1 Janus Pro Infinity-d64 LlamaGen ds6

Chameleon FlowMo Hi OpenMagViT 2 Maskbit-18bit Titok-sl256 VAR-512 BSQ-VIT

Original Infinity-d32 LlamaGen ds16 T2I

FlowMo Lo Titok-bl128

Figure 11: Additional visualize qualitative results for detail reservation (task 2).
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Figure 12: Additional visualize qualitative results for movie posters of task 3. The corresponding
model names are listed in the first row.
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Figure 13: Additional qualitative results showing one ArXiv abstract and its corresponding multi-
lingual versions (Chinese, Japanese, Korean, and Hindi) reconstructed by various visual tokenizers.
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