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ABSTRACT

Autoregressive (AR) models have recently shown strong performance in image
generation, where a critical component is the visual tokenizer (VT) that maps
continuous pixel inputs to discrete token sequences. The quality of the VT largely
defines the upper bound of AR model performance. However, current discrete
VTs fall significantly behind continuous variational autoencoders (VAEs), lead-
ing to degraded image reconstructions and poor preservation of details and text.
Existing benchmarks focus on end-to-end generation quality, without isolating
VT performance. To address this gap, we introduce VTBench, a comprehen-
sive benchmark that systematically evaluates VTs across three core tasks: Image
Reconstruction, Detail Preservation, and Text Preservation, and covers a diverse
range of evaluation scenarios. We systematically assess state-of-the-art VTs us-
ing a set of metrics to evaluate the quality of reconstructed images. Our findings
reveal that continuous VAEs produce superior visual representations compared to
discrete VTs, particularly in retaining spatial structure and semantic detail. In
contrast, the degraded representations produced by discrete VTs often lead to dis-
torted reconstructions, loss of fine-grained textures, and failures in preserving text
and object integrity. Furthermore, we conduct experiments on GPT-40 image gen-
eration and discuss its potential AR nature, offering new insights into the role of
visual tokenization. We release our benchmark and codebase publicly to support
further research and call on the community to develop strong, general-purpose
open-source VTs.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated impressive generalization across a wide range
of task, including reasoning (Ning et al.|[2024; [Plaat et al.| 2024)), question answering (Zhang et al.,
2024;Sima et al., [2024)) and text generation (Touvron et al., [2023; [DeepSeek-Al et al., [2024} Jiang
et al.l 2024)). Recent advances suggest that integrating visual understanding and generation into the
LLM framework could lead to unified, general-purpose multimodal models (Fan et al., [2024; |Lu
et al., [2024; Team, [2024; | Xie et al., [2024; |Ge et al., [2024).

Visual Tokenizer. In diffusion-based image generation, images are typically compressed into a
continuous latent space using a variational autoencoder (VAE), allowing the model to operate in a
lower-dimensional but still continuous domain (Ho et al., 2020; [Rombach et al., |2021). However,
when integrating visual understanding and generation into LLMs, images must be converted into
discrete token sequences, similar to word or subword tokens in natural language processing (Esser
et al., 2021} |Chang et al., 2022; Wang et al., [2023)). Figure [2|illustrates various visual tokenizer
architectures and the autoregressive modeling used for image generation.

Vector Quantized Tokenization. To enable such tokenization of visual inputs, Vector Quantized
Variational Autoencoder (VQ-VAE) is proposed to encode images into a continuous latent space and
then map each latent vector to the nearest entry in a learned codebook, producing a discrete index per
spatial location (van den Oord et al.,|2017; |[Esser et al.,[2021)). However, scaling the codebook often
leads to codebook collapse, where only a small portion of entries are used, reducing representa-
tional capacity. Additionally, nearest-neighbor search introduces computational inefficiency during
generation (Yu et al.,2024aj; Han et al.,|2024)). To address these limitations, Lookup-Free Quantiza-
tion (LFQ) eliminates the embedding lookup by projecting continuous features into a binary latent
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Figure 1: Image generation and reconstruction across different models. (Top) Images generated
from prompts using various models. (Bottom) Reconstructions of the ground truth image using
VTs from different models. PSNR 7 values (shown in white) indicates reconstruction fidelity.

space, enabling discrete tokenization without explicit search (Yu et al.| 2024a). To constrain error
and enhance stability, Binary Spherical Quantization (BSQ) introduces ¢ normalization, smoothing

the representation and facilitating optimization (Zhao et al.| 2024).

Next-Scale Tokenization. However, AR modeling with existing visual tokenizers often violates the
unidirectional dependency assumption and disrupts spatial locality due to the flattening of 2D token
grids. To overcome these limitations, (2024) proposed Visual Autoregressive Modeling
(VAR), which encodes images into multiple levels of tokens by progressively quantizing the resid-
ual information at each scale. This hierarchical tokenization preserves spatial structure and allows
the model to capture fine-grained details in a coarse-to-fine manner. In Figure [2] we refer to this
architecture as “Residual Next-Scale VAE”. Building on this foundation, Infinity enhances visual
tokenization by integrating BSQ, enabling extremely large vocabularies and efficient scaling. This
allows Infinity to generate high-resolution images with unprecedented detail [2024).

Despite the growing number of AR models for image generation (Li et al 2024} [Bie et all, 2025}
Wu et al 2024b), most existing methods are still limited to relatively simple datasets such as
ImageNet and fall significantly behind diffusion models in terms of generation quality and detail
preservation. As shown in Figure [I(Top), which presents outputs from several SOTA text-to-image
models prompted with highly detailed descriptions, only the images generated by diffusion models
(SD3.5L (Rombach et al}, and FLUX.1-dev 2024)) and GPT-4o (architecture currently
undisclosed (Yan et al., 2025; |Li et al} 2025))) exhibit high-quality synthesis. We hypothesize that
the visual tokenizer plays a critical role in this quality gap. To investigate this, we conduct a re-
construction experiment using the images generated by GPT-40 as the ground truth. As shown
in Figure [T(Bottom), we reconstruct the ground truth image using different VTs from various AR
models. The results reveal substantial information loss, including blurred or unreadable text, loss
of fine-grained visual details, and noticeable structural distortions. These failures indicate that cur-
rent VTs struggle to generate accurate and expressive latent representations, which limits the overall
image generation quality of AR models.

Why Benchmarking VT Matters? The reconstruction failures observed in Figure [T] highlight a
fundamental issue: current visual tokenizers often fail to preserve fine-grained details and semantic
integrity during the quantization process (Yu et al.,[2024a};[Zhao et al.}[2024). This failure propagates
through the entire AR generation pipeline, ultimately degrading image quality regardless of the
downstream model’s capacity. Despite their central role, existing evaluation protocols focus almost
exclusively on end-to-end generation quality, without isolating the contribution or limitations of the
VT itself. This leaves several critical issues unaddressed: (1) Lack of VT-Specific Evaluation: The
performance of the VT often determines the upper bound of AR model quality 2024a). Yet,
most VTs are only evaluated on limited datasets like ImageNet (Russakovsky et al.,2015)), and there
is a lack of dedicated benchmarks designed specifically to measure VT effectiveness across diverse
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Figure 2: Overview of visual tokenizer architectures and integration with AR image generation.

scenarios. (2) Benchmark Misalignment: Existing benchmarks evaluate overall image generation
(e.g., ImageNet (Russakovsky et al., 2015), GenEval (Ghosh et al., [2023)), T2i-compbench (Huang
et al., 2023 2025))), rather than isolating the visual tokenizer contribution, making it difficult to
diagnose or improve this key component. (3) Inadequate Evaluation Metrics: Commonly used
metrics such as FID are insufficient to capture fine-grained failures like high-frequency detail loss
or incorrect text reconstruction, which are essential for many multimodal and LLM-centric tasks.

To address these issues, in this paper, we introduce VTBench, a comprehensive benchmark specifi-
cally designed to evaluate visual tokenizers across a broad range of tasks, datasets, and conditions.
VTBench provides a systematic framework for understanding and improving VTs as standalone
components in AR image generation pipelines. Through extensive experiments on a wide range
of VTs used in SOTA AR models, we uncover the following key findings: (1) Existing discrete
VTs fall significantly behind continuous VAEs used in diffusion models, particularly in terms of
reconstruction quality, detail preservation, and text accuracy. (2) None of the existing VTs can ro-
bustly handle arbitrary resolutions, unlike continuous VAEs, although VAR (Tian et al., 2024) and
Infinity (Han et al.,[2024) are restricted to a fixed set of predefined input sizes. (3) Many AR mod-
els (e.g., Chameleon (Team) |2024), Liquid (Wu et al,, [2024a), Anole (Chern et al., 2024)) reuse
the same open-source VT, yet there is currently no strong, general-purpose VT available for reuse,
highlighting the lack of a reliable, high-quality open-source solution in this space.

Contributions. The main contributions of this paper are:

* We introduce VTBench, a high-quality and comprehensive benchmark designed specifically

for evaluating VTs in the context of AR image generation.

We design three tasks: Image Reconstruction, Detail Preservation, and Text Preservation, col-

lectively providing a multi-faceted framework for assessing visual tokenizers. These tasks

cover diverse evaluation aspects, including high-resolution inputs, multilingual text scenarios

(Chinese, Korean, Japanese, Hindi), and varying-resolution conditions.

* We conduct extensive experiments on VTs used in SOTA AR models, including continuous
VAE, GPT4o0, VQVAE, etc. Our evaluation is designed to assess both image quality and text
preservation through a diverse set of quantitative metrics.

* We provide an in-depth comparison and discussion of current VTs and contrast their behavior
with the emerging capabilities of GPT-40’s VT. We identify fundamental gaps and discuss
directions for future tokenizer development.

* We open-source both the codebase and the VTBench dataset to foster further research in visual
tokenization for autoregressive image generation. Our codebase is designed to be lightweight
and easy to run, requiring minimal setup and no complex configuration.

2 BACKGROUND

In this section, we introduce image generation methods, focusing on both diffusion and AR mod-
els. We then discuss the role of visual tokenizers in AR pipelines, reviewing several architectures
including VQ-VAE, LFQ-VAE, BSQ-VAE, and Residual Next-Scale VAE, as illustrated in Figure[2]
Finally, we highlight recent advances in image generation with GPT-40, which motivate the need for
deeper evaluation of visual tokenization quality.

2.1 IMAGE GENERATION: DIFFUSION VS. AUTOREGRESSIVE MODELS

Modern image generation methods are mainly dominated by two families: diffusion mod-
els (Croitoru et al.| 2023 |Yang et al.| 2024) and AR models (Fan et al., 2025} |Chen et al., [2025a; Yu
et al., [2024b)). Diffusion models learn to iteratively denoise a sample from pure noise to a realistic
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image using a learned reverse diffusion process, such as Stable Diffusion (Rombach et al. [2022),
which have demonstrated SOTA performance in high-quality image synthesis. In contrast, AR mod-
els decompose image generation into a sequence modeling problem, where an image is represented
as a sequence of discrete tokens predicted one at a time (Ma et al., 2025} |Luo et al.,[2024; |Yu et al.,
2023)), as shown in Figure[2f). AR models benefit from the scaling properties of LLMs and enable
seamless integration with multimodal pipelines. However, AR image generation relies heavily on
high-quality visual tokenization to convert pixel data into token sequences and reconstruct images
from these tokens, making the design of effective visual tokenizers a central challenge in AR-based
image generation.

2.2 VISUAL TOKENIZERS

To enable AR models to process image inputs, images must be converted into discrete token se-
quences. This is achieved via visual tokenizers that compress high-dimensional image data into
compact, symbolic representations. In this section, we briefly introduce several representative tok-
enization approaches. We briefly introduce representative tokenization approaches here; a detailed
version with mathematical formulations is included in Appendix

¢ Continuous VAE. In diffusion models, a common approach is to use a continuous Variational
Autoencoder (VAE) (Rombach et al.l [2022; |Peebles & Xiel [2023)) as a feature compressor as
shown in Figure 2Ja). These VAEs encode the input image into a continuous latent space, typi-
cally using convolutional encoders and decoders, enabling high-quality image reconstructions.

¢ VQ-VAE. Vector Quantized Variational Autoencoder (VQ-VAE) (van den Oord et al.,[2017) is
one of the earliest and most widely adopted discrete visual tokenizers. It encodes an image into
a latent feature map and then quantizes each spatial location to the closest vector in a learned
codebook. The resulting discrete indices form a token grid that can be used in AR models.

* LFQ-VAE. Lookup-Free Quantization (LFQ) (Yu et al.,|2024a) eliminates the nearest-neighbor
lookup and codebook by projecting features into a binary latent space by a learnable mapping.

* BSQ-VAE. Binary Spherical Quantization (BSQ) (Zhao et al.,|2024) extends LFQ by applying
¢5 normalization to the latent features before quantization. This constrains the representation
to a unit hypersphere, effectively reducing quantization error and leading to smoother latent
spaces. BSQ allows for finer-grained tokenization while maintaining efficient binary encoding,
which is beneficial for downstream tasks sensitive to visual detail.

* Residual Next-Scale VAE. applies hierarchical tokenization by encoding images in a coarse-
to-fine manner. It quantizes residual information across multiple spatial scales, enabling preser-
vation of structure and fine details, especially in high-resolution settings (Tian et al., 2024)).

2.3 GPT-40 IMAGE GENERATION

OpenAl recently introduced new image generation and editing capabilities in GPT-40 (OpenAl,
2025)), showcasing remarkable performance in both tasks. Although the precise architecture and
workflow of GPT-40 remain undisclosed, recent studies suggest that the model may employ an
autoregressive backbone in conjunction with a diffusion-based decoder for image synthesis(Yan
et al.,[2025;|Li et al.,2025)). In this paper, we present extensive experiments on GPT-4o to investigate
its architecture and workflow, with a focus on how the visual tokenizer influences image quality.

3 VTBENCH: TASK SETTINGS & EVALUATION METRICS

To systematically evaluate VTs in AR image generation pipelines, we propose VTBench, a compre-
hensive benchmark that isolates and diagnoses the capabilities and limitations of VTs across three
critical tasks: (1) Image Reconstruction, (2) Detail Preservation, and (3) Text Preservation. Each
task is designed to stress different aspects of tokenization quality, using diverse data conditions.

3.1 TASK 1: IMAGE RECONSTRUCTION

This task evaluates the fundamental ability of a VT to reconstruct an image from its tokenized repre-
sentation. As the interface between high-dimensional pixel inputs and the discrete token sequences
consumed by AR models, the VT plays a critical role in determining the upper bound of image gen-
eration quality. If the tokenizer discards or distorts essential visual information, such as fine-grained
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Figure 3: Overview of VTBench construction. (a) VTBench consists of three core tasks for evaluat-
ing visual tokenizers. (b) Evaluation include both image quality metrics and text-specific metrics.

structure, object boundaries, or spatial layout — this loss is irreversible, regardless of the strength of
the downstream generative model.

To isolate the intrinsic capacity of each VT, we assess image reconstruction performance indepen-
dent of generation. Specifically, we evaluate three settings designed to test robustness across res-
olution and scale: (1) ImageNet (model-specific input size), (2) High Resolution (1024 x 1024
inputs), and (3) Varying Resolution (images with diverse, unconstrained dimensions), as illustrated
in Figure3|a).

ImageNet. We begin with the validation subset of the standard ImageNet-1k dataset
2015), containing 50,000 images. This benchmark serves as a canonical reference point, as
most open-source VTs are evaluated on it. The task assesses whether the VT preserves general
semantics and structural integrity in a typical low-resolution setting. In this subtask, all images are
center-cropped and resized to model-specific input sizes as listed in Table|[T]

High Resolution. To evaluate scalability, we synthesize 100 high-resolution images (1024 x 1024)
using GPT-40, and assess the quality of their reconstructions. This setting exposes limitations in the
VT’s ability to preserve visual fidelity across larger spatial extents, where coarse quantization or res-
olution mismatches often degrade reconstruction quality. The full high-resolution image synthesis
process is detailed in Appendix [C]

Varying Resolution. In real-world scenarios, image resolutions vary widely, posing challenges for
models that assume fixed-size inputs. To evaluate the robustness of VTs under such conditions,
we use a mixed-resolution dataset, specifically the test subset of DIV2K (Agustsson & Timofte,
[2017), which includes 100 high-quality images with a broad range of dimensions. Unlike continuous
VAESs, most discrete tokenizers are not resolution-agnostic and require fixed-size inputs. This task
quantifies how such constraints affect reconstruction accuracy and the model’s flexibility in handling
diverse input sizes, with a detailed architectural analysis presented in Appendix [E]

3.2 TASK 2: DETAIL PRESERVATION

While overall reconstruction quality is important, many downstream tasks, such as object recogni-
tion, editing, and captioning, depend on the preservation of fine-grained visual details. These include
textures, facial features, edges, and small objects that may occupy only a few pixels. Such details
are often the first to be degraded or lost during quantization, especially when the codebook or token
representation lacks sufficient expressiveness. A VT that fails to preserve these features will funda-
mentally limit the quality and realism of generated images. Therefore, this task focuses on measur-
ing how well VTs retain high-frequency information crucial for perceptual fidelity. We follow the
same high-resolution synthesis procedure described in Appendix [C| using GPT-4o to generate 100
images rich in detailed, high-frequency semantic content. We provide a more detailed definition of
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Figure 4: Examples of task 1: (1) ImageNet, (2) High Resolution and (3) Varying Resolution.
FlowMo Hi produces corrupted images in High Resolution and Varying Resolution, while Janus
Pro, LlamaGen, and Chameleon generate images with incorrect resolution and distorted semantics.

“visual details” and quantify that images in Task 2 contain more fine-grained information than other
tasks in Appendix

3.3 TASK 3: TEXT PRESERVATION

Text is a uniquely challenging and critical element in many real-world images, especially in domains
such as documents, signage, user interfaces, and multimodal reasoning. Unlike general textures, text
requires pixel-level precision, minor distortions can render characters unreadable, break words, or
alter semantics entirely. Furthermore, text carries symbolic meaning that must be preserved for
models to support language-image alignment, OCR, or instruction-following. However, most VTs
are not optimized for symbolic preservation, especially in multilingual or high-density settings. This
task evaluates how VTs preserve textual content under varying complexity and linguistic diversity.

Movie Posters (Easy). In this subtask, we synthesize 100 images of movie posters. Using GPT-4o,
we first generate descriptions for 100 fictional movies along with corresponding slogans, and then
produce a poster for each movie. Each poster features a prominent title in large text, a slogan in
smaller text, and a background that visually reflects the movie’s theme or genre. Details of synthesis
are provided in Appendix [C] The dataset spans a wide variety of movie types, providing diverse yet
structured visual compositions. A strong VT should preserve both the overall image quality and the
legibility of embedded text. Example posters are shown in Figure[3]

ArXiv Abstracts (Hard). In addition to the movie posters, we introduce a more challenging sub-
task consisting of 100 images that render academic paper abstracts. These abstracts feature long
sentences, dense layouts, varied font styles, and small font sizes, making this setting particularly de-
manding. The goal of this task is to evaluate the tokenizer’s ability to preserve fine-grained textual
content and maintain layout fidelity under complex visual conditions. To synthesize this dataset, we
retrieved abstracts from papers published on April 16, 2025 to ensure that the rendered text images
were not included in the training data of any existing VT models.

Multilingual (Non-Latin). To evaluate the cross-lingual robustness of visual tokenizers, we con-
struct a multilingual benchmark consisting of non-Latin scripts, including Chinese, Hindi, Japanese,
and Korean. Specifically, we translate the ArXiv abstract texts into each target language using GPT-
40, and then render the translated content into images following the same formatting and layout
procedures as in the English version. For each language, we generate 100 text-rich images that re-
flect real-world typographic complexity. This subtask assesses whether VTs can preserve diverse
character sets, linguistic structures, and writing systems that differ from Latin-based scripts.
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Table 1: Evaluation of VTs across three reconstruction settings in Task 1.

Method params  Type ImageNet High Resolution Varying Resolution

s P Resolution  PSNRT  SSIM{ LPIPS|  FID| | Resolution PSNRT SSIM{ LPIPS|  FID| | PSNRt SSIMt LPIPS|  FID)
FlowMo Lo 945M LFQ 256 % 256 202232 0.5878 0.1031 08227 | 10241024 113631 03644 06913 4653528 | 114990 02854 07379 4420812
FlowMo Hi 946M LFQ 256 % 256 224923 07103 00684 04834 | 1024x 1024 113077 03874 06937 4397494 | 114571 02862 07353 4123167
MaskBiT 16bit 54M LFQ 256 % 256 19.6448 0.5259 01246 11473 | 1024 x 1024 286892 09074 0.0313 242461 |23.9538 0.8037 0.0405 224535
MaskBiT 18bit 55M LFQ 256 % 256 197695 0.5352 01197 10334 | 1024 x 1024 289353 09135 00205 233024 | 23.9289 08070 0.0394 233959
Titok-132 641M vQ 256 % 256 150997 03533 02922 1.8181 | 1024 x 1024 - - - - - - - -
Titok-b64 204M vQ 256 % 256 16,1520 03903 02285  1.3542 | 1024 x 1024
Titok-s128 83M vQ 256 % 256 167386 0.4123 01898  1.4186 | 1024 x 1024
Titok-bl64 390M vQ 256 % 256 17.3930 04321 01926  1.7696 | 1024 x 1024
Titok-bl128 390M vQ 256 % 256 184675 04877 01468  1.2328 | 1024 x 1024
Titok-sI256 330M vQ 256 % 256 19.6375 0.5514 01108  0.8112 | 1024 x 1024 - - - - - - - -
OpenMagViT2 115M LFQ 256 % 256 200000 0.5786  0.1028  1.0598 | 1024 x 1024 307770 09344 00232 18.6649 | 242372 08133 00383  20.3403
LlamaGen ds§ 70M vQ 256 % 256 224021 0.6995 00592 04597 | 1024 1024 335435 09693 00112 10.1195 | 136772 02735 0.5401  330.8865
BSQ-VIT 174M RBS 256 % 256 258646 0.8331 00359  0.4586 | 1024 x 1024 - - - - - - - -
VAR-256 109M RVQ 256 % 256 20.3693  0.6035  0.0933  0.9080 | 1024 x 1024 - - - - - - - -
Tanus Pro TB/7B TIM vQ 38T 381 224485 0.6793 00819 07111 | 1024 x 1024 29.0476 09208 0.0299  24.4655 | 13.1547 02342 05137 324.0125
Chameleon 68M vQ S1Z% 512 235837 07164 00672 08061 | 1024 x 1024 293743 09062 00279  22.6725 | 127700 02051 05206 331.3999
LlamaGen ds16 M vQ 5 2 242199 07568 0.0630 05441 | 1024 1024 286424 09148 00328 250529 | 133258 02413 05171  327.8920
LlamaGen ds16 T21  72M vQ 2240192 07493 00647 05528 | 1024 1024 29.0061 09206 00300 245831 | 13.1604 02344 05137 3244282
VAR-512 109M RVQ 512 x 512 223828 07636 0.0727 07719 | 1024 x 1024 - - - - - - - -
Tnfinity-d32 TIOM  RBSQ | 1024 x 1021 334850 09582 00109 0.1002 | 1024 x 1024 355645 09732 0.0080  8.3090
Infinity-d64 110M RBSQ | 1024 x 1024 36.0010 09766 0.0067 00511 | 1024 x 1024 375937 09823 00053 58734 - - - -
SD3.5L 83M  Continuous | 1024 x 1024 388208 09836 00013 00121 | 1024 x 1024 384653 09839 00012 09787 |30.6413 09507 00075  3.1084
FLUX.1-dev 83M  Continuous | 1024 x 1024 416134 09932  0.0006  0.0050 | 1024 x 1024 41.4870 0.9921  0.0005  0.4466 | 30.9502 0.9594 0.0068 27123
GPT-4o - - 1024 % 1024 193828 0.5769 01463 39.5056 | 1024 x 1024 153835 04642 02077 784113 - - - -

3.4 EVALUATION METRICS

To comprehensively evaluate VTs across the three core tasks of VIBench, we adopt a combination
of standard and task-specific metrics to capture different dimensions of quality.

Image Quality. To assess how well a VT reconstructs the original image from its tokenized repre-
sentation, we employ four metrics: (1) PSNR (Peak Signal-to-Noise Ratio): Measures pixel-level
fidelity between original and reconstructed images. Higher values indicate better reconstruction.
(2) SSIM (Structural Similarity Index): Quantifies structural similarity by comparing luminance,
contrast, and texture, and is more perceptually aligned than PSNR. (3) LPIPS (Learned Percep-
tual Image Patch Similarity): A perceptual similarity metric based on features from pretrained
networks (Zhang et al., [2018), correlating well with human judgment. (4) FID (Fréchet Inception
Distance): Measures distributional distance between reconstructed images in the feature space of
an Inception network. Lower FID indicates higher quality.

Text Quality. Preserving text in images is critical for multimodal reasoning and OCR-related tasks.
To quantify this, we apply OCR to the reconstructed images and compare the results to the OCR
result of the original image using: (1) CER (Character Error Rate): The Levenshtein distance be-
tween predicted and ground truth characters, normalized by total character count. (2) WER (Word
Error Rate): Similar to CER but computed over word sequences. It is particularly sensitive to
segmentation and spelling accuracy. For OCR-based evaluation, we use Gemma 3 (Kamath et al.,
2025)), a SOTA multimodal model, to extract content from original and reconstructed images to
calculate WER and CER. Details of OCR and WER/CER computation are included in Appendix [F

These metrics allow us to analyze not only how much information is retained by the VT, but also
what types of information (structural, perceptual, or symbolic) are lost in the tokenization process.

4 EXPERIMENTAL RESULTS & ANALYSIS

Models. We evaluate a diverse set of VTs spanning multiple quantization paradigms, including
VQ, LFQ, BSQ, RVQ, and RBSQ. Our benchmark covers a wide range of SOTA models such
as FlowMo (Sargent et al., [2025)), MaskBiT (Weber et al.| |2024), Titok (Yu et al.,[2024b), Open-
MagViT2 (Luo et al.} 2024), LlamaGen (Sun et al., [2024)), BSQ-ViT (Zhao et al.,[2024), VAR (Tian
et al 2024), Janus Pro (Chen et al., |2025b), Chameleon (Team), [2024), and Infinity (Han et al.,
2024). In our experiments, we specifically evaluate the VT component in isolation, without modify-
ing or including the downstream generation models. This design choice allows us to focus purely on
the tokenizer’s ability to preserve visual information. For comparison, we also include continuous
VAEs used in diffusion models (e.g., SD3.5L (Rombach et al.| [2022), FLUX.1-dev (Labs} 2024))
and provide results from GPT-40 (OpenAlL |[2025) as a reference, although its tokenizer architecture
remains undisclosed (Yan et al., 2025). For GPT-40, we use the prompt “Please recreate the exact
same image without any alterations and preserve the original resolution.” to reconstruct images. Ta-
ble[T] summarizes all evaluated models with their parameter counts and quantization types. Detailed
experimental settings and environments are reported in Appendix [H]

4.1 TASK 1: IMAGE RECONSTRUCTION

In this task, we evaluate image reconstruction across three subtasks: (1) ImageNet: Images are
center-cropped and resized to match each model’s required input size. (2) High Resolution: All
images are set to a fixed size of 1024 x 1024, and we retain this resolution for all models without
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Figure 5: Visualize qualitative results of detail preservation and text preservation.

resizing. (3) Varying Resolution: This subset contains _Table 2: Evaluation of VTs on task 2.

. . . . . Method Image Size ~ PSNRT  SSIM{ LPIPS|  FID|
images with diverse, non-uniform resolutions, and we - B T Iy e
preserve their original sizes for evaluation. We assess re- ~ feuMoli HOCIO (o000 0T8O gadse
construction quality using PSNR, SSIM, LPIPS, and FID. ~ ¥aii ™" 2000 11002 0t oami isome
The results, presented in Table[T] reveal a substantial per-  mxuss F o L N A P
. . . Titok-bl64 256 x 256 15.7606  0.1894  0.2334  121.5447

formance gap between all discrete visual tokenizers and  mioksizs 256 %256 163017 02373 0.1808  93.1151
. . . . . Titok-s1256 256 x 256 17.1632 03091  0.1413 69.7221
continuous VAEs, with the latter consistently achieving  openvagvir 2356256 170070 03278 0.1406 70,6742
. . LlamaGen ds8 256 x 256 19.1859 05144  0.0852  42.8318

better fidelity and perceptual quality. Notably, results ssovir 256256 224836 07487 0.0496 285461
. . . . . 'VAR-256 256 x 256 17.8223 03960  0.1207 53.6363
from the High Resolution and Varying Resolution Settings  uuweomm st 20a2 04005 01178 596660
highlight that most V'Ts are limited to model-specific in- ok ™ 71351 33 s o113 i
put sizes and fail to generalize to arbitrary resolutions, — LumGendsioT2i  512x512 21963 06029 00947 SL.0281
unlike continuous VAEs, which naturally support flexible —mniy-ax 10241024 291320 09052 00269 210871
. . . Infinity-d64 1024 x 1024 31.1374  0.9396  0.0188 16.7424
1mage dimensions. SD3.5L 1024 1024 374365 09774 00028 45717
FLUX.1-dev 1024 x 1024 41.5280 0.9908  0.0011 21202
GPT-40 1024 x 1024 15.8109 0.3000 0.2156 75.8916

Figure [ presents qualitative examples illustrating recon-
struction quality across different VTs. We observe consistent semantic degradations in discrete
VT outputs. For example, red crosses on ambulances are missing or blurred (ImageNet), rooftops
are distorted, and facial details, and expressions are noticeably altered (High Resolution). In the
Varying Resolution, background textures and object boundaries become heavily corrupted. While
models such as Janus Pro, LlamaGen, Chameleon, and FlowMo do not raise runtime errors, they fail
to generate correct semantic content, highlighting the inherent limitations of current VTs, especially
under high or non-regular resolutions.

4.2 TASK 2: DETAIL PRESERVATION

In this task, we evaluate the ability of each VT to retain high-frequency visual information using a
dataset of patterned and texture-rich images. As shown in Table[2] continuous VAEs again lead in
all metrics. Among discrete VTs, Infinity-d64 demonstrate the strongest performance, suggesting
that residual spherical normalization are effective for preserving detailed structures. We further
visualize qualitative results in Figure [S| While continuous models such as SD3.5L, and FLUX.1
closely resemble the original, many VTs introduce visible distortions, such as blurred lines, broken
shapes, and color bleeding. These results highlight the limitations of current discrete tokenization
schemes in retaining local textures and structural integrity.

4.3 TASK 3: TEXT PRESERVATION

This task evaluates how well VTs preserve text content in images — a crucial capability for OCR,
document understanding, and multimodal reasoning. We consider three increasingly challenging



Under review as a conference paper at ICLR 2026

Table 3: Evaluation of task 3 across three different settings.

Movie Posters (Easy) ArXiv Abstracts (Hard) Multilingual (Non-Latin)
Method Image Size | PSNRT SSIMT LPIPS|  FID|  CERL WERL | PSNRT SSIMT LPIPS| FID, CERL WERL | PSNRT SSIMT LPIPS, FIDL i ‘f,ﬁ:‘df' “fpff“;e' ‘E(ES:M
FlowMo Lo 256 %236 | 241178 07471 00645 550685 06458 37022 | 144979 05961 00703 91933 08337 60968 | 133470 05694 0.1187 230079 12564 10397 13614 12823
FlowMo Hi 256 % 256 | 27.4186 08403 00380 407009 04169 25639 | 158510 07262 00493 66921 07046 53013 | 144191 06932 00896 118131 11279 09374 10281 09981
MaskBiT 16bit 256 % 256 | 210962 0.6748 00992  67.3479 07315 42234 | 143909 04616 0.1945 27.9940 13801 92146 | 132634 04157 03184 426548 31298 11953 20821 21311
MaskBiT 18bit 256 x 256 | 212932 06876 00928 640766 07910 48894 | 147015 04978 02436 262086 12828 92956 | 134963 04450 03450 S59.1847 34889 11867 19445 23713
Titok-132 256 % 256 | 155164 04595 02616 1247412 12254 78547 | 122423 02390 02513 600889 L1178 85836 | 11.6064 02440 03557 783890 30154 11907 19135 17847
Titok-b64. 256 % 256 | 169423 0.5273 01939 1017892 1.0189 67070 | 129500 03068 02470 494931 12414 100394 | 117051 02557 03163 829833 35650 14384 20044 23986
Titok-s128 256 x 256 | 170506 05427 0.1598 887466 12478 62260 | 129276 03297 02691 566373 14054 86644 | 117860 02710 03131 644152 27573 11329 16614 19083
Titok-ble4 256 % 256 | 182597 05963 01584 952880 11421 67044 | 134414 04535 0.1398 264375 12385 99727 | 121882 03908 0801 388779 36473 12105 28315 25622
Titok-bl128 256 x 256 | 198102 06502 0.1159 777980 15956 50851 [ 135015 04810 01235 241506 10432 7.6730 | 125783 04306 02012 369834 23695 09719 21597 18533
Titok-s1256 256 x 256 | 214568 07151 00841 610830 07850 4.5561 | 134954 04996 01122 190590 12131 82139 | 127078 04669 0.1589 260457 22980 12338 19775 17088
OpenMagViT 256 % 256 | 225337 07440 00741 527153 07385 42419 | 136459 05472 00900 190211 10400 77046 | 123496 04874 01498 255786 25913 11622 20300 19826
LlamaGen ds§ 256 % 236 | 260990 08288 00371 314534 05066 29620 | 160494 07003 00648 251991 09769 7.1170 | 145250 06513 01024 192362 11408 10250 10505 11342
BSQ-VIT 256 % 256 | 30.7305 09135 00172 256235 01102 05763 | 203628 0.8910 00270 47719  0.0459 03234 | 179849 08544 00582 102721 07858 04722 03827 0.5919
VAR-256 256 % 256 | 23,6215 07349 00602 502971 0.6391 37266 | 152481 06799 00569 23.1849 10170 73612 | 131452 05672 0.1165 190211 23378  L11I§ 18972 15754
Janus Pro 1B/7B 384 x 384 | 252793 08203 00545 454080 06628 37549 | 170286 0.6535 0003 383604 1.0645 7.8280 | 157220 06223 0367 530056 15413 L1578 13463 13333
Chameleon 512x512 [ 271939 08358 00430 39.8786 05782 3.1359 | 181545 07503 00588 81713 07158 51867 | 153719 06370 00977 155254 19706 09171 15444 14047

nds16 512512 | 273778 08717 00440 409660 04914 28774 | 19.0951 07601 00601 181659 09527 68741 | 17.2316 07068 01141 382967 12307 10938 10343 L1108
ndsI6 T2 512x 512 | 274929 08697 0.0411 382986 04842 25741 | 188911 07735 00567 208214 09010 61850 | 172267 07400 0.0869 450646 09993 10305 08139 09775

Llam:
Llam:

VAR 512x 512 | 264574 08331 0.0486 466674 0.1949 11867 | 210023 08561 0.0553 53145 0.1341 09829 | 177790 07687 0.1012 221121 08398  0.6873 06552  0.7067
Infinity-d32 1024 1024 [ 37.7533 09669  0.0063 105845 00790 04371 | 31.7028 09896 00049 07982 00017 00162 | 302736 09892 00086 22108  0.1758 00352 00661 00924
Infinity-d64. 1024 % 1024 | 393334 09774 00048 86894  0.0439 02978 | 35.0024 09952 00026 07426 00019 00165 | 345168 09959 00035 11291  0.I372 00604 00617  0.0582
SD3.5L 1024 % 1024 | 389058 09650 00011 16215  0.0002 0.0000 | 40.1536 09988 00005 0.1331 0.0001 0.0010 | 39.6703 09989 0.0011 04205 00973 00310  0.1047  0.0545
FLUX.I-dev 1024 % 1024 | 443863 0.9862  0.0005 08993 00521 04872 | 52.1000 09999 0.0001 0.0256 00018 00112 | 519243 0999 00001 0.0457 01220 00272  0.0614  0.0506
GPT-40 1024 % 1024 | 17.7677  0.6006  0.1388 637351 0.0180 00836 | 11.3299 0.1516  0.1929 325382 04928 3.5292 | 104376 0.1761 02291 200185 08096 06414 07219 06478

scenarios: (1) Movie Posters with clean, short English text; (2) ArXiv Abstracts containing dense,
long-form academic writing; and (3) Multilingual Text rendered in non-Latin scripts (Chinese,
Hindi, Japanese, Korean). We use Character Error Rate (CER) and Word Error Rate (WER), based
on OCR outputs from the Gemma 3 model, to quantify text preservation. As shown in Table [3]and
Figure 5] continuous VAEs such as FLUX.1-dev and SD3.5L consistently outperform discrete tok-
enizers across conditions. Notably, many VTs fail to reconstruct slogans or titles in the Movie Poster
setting, and perform worse on academic layouts or multilingual scripts. These results highlight the
limitations of discrete tokenization methods in preserving symbolic fidelity, particularly under com-
plex formatting and linguistic diversity. Additional experiments with alternative OCR backends are
reported in Appendix [G] confirming these findings robust to the choice of OCR system.

5 DISCUSSION

Limitation of Existing VTs. Discrete VTs fall significantly behind continuous VAEs in reconstruc-
tion fidelity, detail preservation, and symbolic accuracy, particularly for high-resolution, variable-
size, and multilingual inputs. Many models are constrained by fixed input sizes and struggle to retain
semantic structure in complex settings. Moreover, the absence of a strong, open-source VT limits
progress in large-scale AR models. While LLLMs continue to scale and improve, their performance
is increasingly bottlenecked by the quality of visual tokenization. There is an urgent need for a
resolution-flexible, semantically robust, and reusable VT that can keep pace with the capabilities of
modern LLMs. We hope that VTBench can help accelerate research in this direction by providing a
unified framework for diagnosis, comparison, and future development.

Insights from GPT-40 Image Generation. We present additional experiments comparing GPT-
40’s image generation quality with that of diffusion models in Appendix [l The results suggest
that GPT-40 may employ an autoregressive generation mechanism, aligning with prior research
hypotheses (Yan et al., 2025). GPT-40 appears to inherit the knowledge and reasoning capabilities of
LLMs while achieving strong visual synthesis quality, indicating its potential as a unified multimodal
model. Although the exact architecture of GPT-40’s VT remains undisclosed, the high quality of its
generated images implies a highly capable VT design. Based on qualitative analysis, we hypothesize
that GPT-40 may use a residual next-scale VAE (RVAE) (Tian et al., 2024; Han et al.| [2024)) or a
diffusion-based encoder-decoder (Yan et al.,[2025). We consider the former more likely, as residual
tokenization naturally aligns with the input-output format of LLMs and supports AR generation
within a unified framework. This structure would allow the model to seamlessly integrate image
understanding and generation, facilitating effective multimodal learning.

6 CONCLUSION

In this paper, we introduce VTBench, a comprehensive benchmark designed to systematically evalu-
ate the performance of VTs in AR image generation pipelines. Our benchmark spans three tasks: Im-
age Reconstruction, Detail Preservation, and Text Preservation, covering diverse scenarios. Through
extensive experiments on a wide range of SOTA VTs, we uncover that discrete VTs fall substantially
behind continuous VAEs, particularly in reconstruction fidelity, symbolic accuracy, and spatial con-
sistency. These limitations are further magnified under complex visual conditions. By providing a
unified evaluation framework, VTBench aims to bridge the gap between visual and language modali-
ties, encourage the development of strong open-source VTs, and support the broader goal of building
unified, multimodal generative algorithms.



Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All authors have read and will adhere to the ICLR Code of Ethics. Our study uses publicly available
datasets (ImageNet-1k val, DIV2K test) and synthetically generated images created via program-
matic prompts; no human subjects or personal data are involved. For arXiv abstracts, we reference
public identifiers and provide rendering code rather than redistributing restricted text. We took care
to avoid harmful or offensive content in the synthetic sets and to document fonts and layouts for
multilingual renders to mitigate script-specific bias. Third-party models and assets are used under
their respective licenses and appropriately credited. There are no conflicts of interest or external
sponsorship influencing this work. We will release the dataset variants produced for VTBench and
the full codebase to support transparency and community scrutiny.

REPRODUCIBILITY STATEMENT

We provide an anonymized repository with complete evaluation code, configuration files, and in-
structions to reproduce all figures and tables. The repository includes exact preprocessing, met-
ric implementations (PSNR, SSIM, LPIPS, FID, CER, WER), fixed splits for each task, prompts
and rendering pipelines for synthetic data, and pointers or scripts to obtain any licensed sources.
Software and hardware details and versioning are documented, and random seeds are fixed where
applicable; sources of nondeterminism (e.g., external image APIs) are noted with our selection pro-
tocol. Upon publication, we will open-source both the VTBench dataset and the code to facilitate
independent verification and extension.
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A THE USE OF LLMS

Large Language Models (LLMs) were used solely to aid and polish the writing of this paper, im-
proving grammiar, clarity, and readability. They were not involved in research ideation, experimental
design, implementation, or analysis. The authors bear full responsibility for all content presented.

B EXTENDED BACKGROUND ON VISUAL TOKENIZERS

While the main text provides a brief overview of VTs, this section offers a more detailed explanation
of representative visual tokenizers, including both continuous and discrete variants. We present for-
mal definitions and architectural insights for each method, laying the groundwork for understanding
their differences in performance and suitability for autoregressive image generation.

Continuous VAE. In diffusion models, a common approach is to use a continuous Variational Au-
toencoder (VAE) (Rombach et al., 2022} Peebles & Xie, [2023) as a feature compressor as shown
in Figure [J(a). These VAEs encode the input image into a continuous latent space, typically using
convolutional encoders and decoders, enabling high-quality image reconstructions. Formally, let
x € RIXWXS3 pe the input image, where H and W denote the image’s height and width, respec-
tively. The encoder £ maps x to a latent representation z = F(x) € R"*%>4 where h and w are
the spatial dimensions of the latent space (typically downsampled from H and W), and d is the la-
tent channel dimension. The decoder D reconstructs the image as & = D(z). However, AR models
require inputs in the form of discrete token sequences, motivating the development of discrete visual
tokenizers.

VQ-VAE. Vector Quantized Variational Autoencoder (VQ-VAE) (van den Oord et al., [2017) is one
of the earliest and most widely adopted discrete visual tokenizers. It encodes an image into a latent
feature map and then quantizes each spatial location to the closest vector in a learned codebook.
The resulting discrete indices form a token grid that can be used in AR models. Given an input
image x € R¥XW X3 the encoder F produces a latent map z = E(x) € R"*¥*d  Each latent
vector z; ; is replaced by its nearest neighbor in the codebook C = {c1,¢9,...,¢x} C R¢, Gij =
argming ||z; ; — cx|l3, Zj = ¢q, ,. The quantized latent Z is then decoded via D to reconstruct the
image & = D(2). While VQ-VAE enables discrete tokenization suitable for AR models, it suffers
from limited expressivity, codebook collapse, and scalability issues when handling high-resolution
or diverse image content.

LFQ-VAE. Lookup-Free Quantization (LFQ) (Yu et al.l 2024a) eliminates the nearest-neighbor
lookup and codebook structure by directly projecting latent features into a binary latent space using
a learnable mapping. The encoder E produces z = FE(x) € R"*¥*d  Each element 2k 18
quantized using a sign function: 2; ; = sign(z; ; x) € {—1,+1}. The binary representation can be
interpreted as a discrete token mask m, where each binary vector at location (4, j) is mapped to an
integer token using m; ; = Y ¢_, 2611, 0.

BSQ-VAE. Binary Spherical Quantization (BSQ) (Zhao et al.,2024) builds upon LFQ by incorporat-
ing /2 normalization before quantization: 2; j , = T}E\Sign( T2k ) This constrains the representation

2,51
to a unit hypersphere, effectively reducing quantization error and leading to smoother latent spaces.
BSQ allows for finer-grained tokenization while maintaining efficient binary encoding, which is
beneficial for downstream tasks sensitive to visual detail.
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Residual Next-Scale VAE introduces hierarchical tokenization by progressively quantizing residual
information across multiple spatial scales (Tian et al., 2024). Let s € {1,2,...,n} denote the scale
index, where n is the total number of scales. Each scale s corresponds to a predefined spatial
resolution (h, ws), with hy < h and ws < w. During encoding, a sequence of quantized tokens
5 ={zM1 2@ 20} is computed as follows:

y = ’I"(O) _ E(.’l?) c thwxd

Here, Q and D represent the quantization and dequantization functions, respectively, which may be
implemented using VQ, LFQ, BSQ, or similar methods. The operators |(j_ ) () and T(h,w) ()
denote downsampling to and upsampling from the specified resolution. During decoding, the final
image is reconstructed by aggregating and decoding all quantized components:

i=D <§i: T (D(é%)) @

This coarse-to-fine scheme preserves spatial structure and enables the model to capture both global
context and fine-grained details, making it effective for high-resolution image reconstruction.

(D

C IMAGE SYNTHESIS

In this section, we detail the procedure for synthesizing high-resolution and detailed images.

Generally, in our experiments, we utilized the openai.images.edit APl with the
gpt-image-1 model. For GPT-40, we retried the API call until a successful image generation
was achieved. Fortunately, we encountered no issues aside from occasional connection or timeout
errors, which were typically resolved within one or two attempts. As image generation with GPT-4o
is nondeterministic and the API does not allow setting the temperature or a random seed, we con-
sistently used the first successfully generated image for evaluation. Notably, we observed that the
images generated from the same input were generally similar in appearance.

High Resolution Images. To generate diverse scene descriptions, we use the prompt: “I want to
generate high-resolution images with a size of 1024 x 1024. Please directly create 10 different fic-
tional scenes for me and output them in JSONL format.” This prompt is repeated 10 times, resulting
in 100 unique scene descriptions. Each description is then passed to GPT-40’s image generation API
to produce 100 corresponding images, each with a resolution of 1024 x 1024.

Detailed Images. Following a similar approach to high-resolution image synthesis, we employed
the following prompt: “I want to design a richly detailed dataset, featuring abundant lines, color
blocks, textures, or various forms of high-frequency information. The scenes do not need to be
realistic. I plan to use image generation algorithms to produce these images. Please help me
design 5 different prompts and output them in JSONL format.” This prompt is issued 10 times to
generate a total of 100 unique scene descriptions. Each description is then used with GPT-40’s
image generation API to synthesize 100 corresponding images at a resolution of 1024 x 1024.

Movie Poster Synthesis To synthesize movie posters, we first generate fictional movie titles and
subtitles using the prompt: “Please generate a fictional movie titles of different types, along with
subtitles, and output them in JSONL format.” These synthetic titles and subtitles are then used in
a second prompt to create the corresponding posters: ‘Generate a 1024x1024 movie poster for the
film titled (movie title), incorporating the text: (subtitle). The title and slogan should blend naturally
into the poster design. This process is repeated 100 times to produce 100 unique movie posters.

D DEFINITION OF VISUAL DETAILS

The goal of Task 2 is to evaluate the ability of VTs to retain image details. In this section, we define
what is meant by “details” in the context of Task 2.

What Is “Detail”’? In the context of VTBench, we define “visual detail” as high-frequency visual
information that is essential for preserving the local semantic integrity of an image. Concretely,
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we categorize details into the following visual elements: (1) Fine textures (e.g., fabric weave, hair
strands, foliage patterns); and (2)Sharp edges and contours (e.g., architectural lines, object bound-
aries). These are typically spatially localized, semantically significant, and vulnerable to information
loss during quantization. Unlike global semantics (e.g., category labels), these details are often non-
redundant and not easily recoverable once degraded, especially in AR generation pipelines where
token quality directly determines synthesis fidelity.

Why This Definition Matters for Tokenization? Discrete VT compress image features into finite
token vocabularies. During this compression, high-frequency information is the first to be lost, par-
ticularly under quantization or low expressiveness of token representations. This directly impacts
downstream generation quality by perceptual degradation (textures appear smoothed, edges blurred,
and small features missed) Therefore, evaluating a VT’s ability to retain such localized, semanti-
cally relevant details is essential for both perceptual quality and task-level accuracy in multimodal
applications.

Unlike global semantic content, such as scene category or layout, these local features are often non-
redundant and highly sensitive to quantization errors. Preserving them is essential for perceptual
quality and for downstream tasks that rely on accurate image content.

To make this definition operational and measurable, we designed Task 2: Detail Preservation specif-
ically to target and evaluate a model’s ability to retain such features. To validate that Task 2 indeed
focuses on detail-rich content, we computed three standard image analysis metrics across all tasks
as show in Table [}

* High-Frequency Energy (%): This measures the proportion of image energy in high-
frequency components (computed via FFT), indicating the global presence of textures and
patterns.

» Laplacian Variance: This quantifies the overall sharpness of an image by measuring the vari-
ance of the Laplacian response, a standard proxy for edge clarity and detail strength.

* Edge Density (%): This captures the spatial density of edges in an image, revealing how
concentrated and frequent fine structures are within a scene.

Table 4: Verification that Task 2 images contain richer details.

Task Subtask HighFreq Energy(%) 1 Laplacian Variance T Edge Density(%) 1
Imagenet 40.7911 2735.9673 11.0883
Task 1  High Resolution 40.3702 940.7714 5.0195
Varying Resolution 34.1957 1188.534 9.3666
Task 2 Detail Preservation 48.931 12852.3598 23.6103
Movie Posters 44.2046 1288.8568 2.3493
Arxiv Abstracts 39.6323 9857.1757 9.1615
Task 3 Multilingual (Chinese) 31.5059 8212.4345 10.1427
Multilingual (Hindi) 31.7221 8087.6291 9.0816
Multilingual (Japanese) 32.3393 8691.5516 9.6565
Multilingual (Korean) 29.983 6847.8147 9.5393

As shown in Table E], among all benchmark tasks, Task 2 exhibits the highest values across all
three indicators. Specifically, it has a High-Frequency Energy of 48.93%, a Laplacian Variance of
12,852.36, and an Edge Density of 23.61%. These values far exceed those of Task 1 (ImageNet-Val),
which show only 40.79%, 2735.97, and 11.09%, respectively, as well as all variants of Task 3. For
example, even the ArXiv Abstracts test set, which contains visually complex scientific documents,
reaches only 39.63% High-Frequency Energy and 9.16% Edge Density.

This quantitative evidence demonstrates that Task 2 is constructed to challenge models on their
ability to preserve fine-grained, localized, and perceptually significant visual features. By combining
these measurements with perceptual similarity metrics such as LPIPS in evaluation, we ensure a
rigorous and reproducible assessment of detail preservation quality.
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E RESOLUTION LIMITATIONS OF DISCRETE VTS

Although discrete visual tokenizers (VTs) and continuous variational autoencoders (VAEs) share
a similar high-level encoder—decoder paradigm, their behavior diverges substantially when han-
dling arbitrary image resolutions. In practice, current discrete VTs exhibit several architectural and
training limitations that hinder their ability to generalize across resolutions, in contrast to the fully
convolutional structure of continuous VAEs.

Input Size Constraints. Many discrete VTs, particularly those based on vector quantization (e.g.,
VQ-VAE, LFQ), require fixed input sizes during both training and inference. This constraint arises
from codebook usage, patchification schemes, and decoder assumptions (e.g., flattening 2D grids
into token sequences of fixed length). For example, models such as Janus support only predefined
square resolutions (e.g., 256 x 256, 384 x 384, or 512 x 512). Processing unseen resolutions often
results in runtime errors or corrupted outputs, as illustrated in Figure [

Decoder Design Dependency. The decoders of discrete VTs typically assume a token grid shape
to map sequences back into spatial layouts. This coupling binds input resolution to the decoder
architecture. In contrast, convolution-based VAEs, such as those employed in diffusion models,
naturally support arbitrary resolutions because of their fully convolutional encoder—decoder design.

Token Flattening and Positional Encoding. Autoregressive models built on discrete tokens usu-
ally flatten spatial grids into one-dimensional sequences. This flattening exacerbates resolution sen-
sitivity: token grid dimensions change with input size, but positional embeddings and transformer
blocks are rarely designed to handle such variation. Consequently, discrete VTs exhibit reduced
robustness when applied to arbitrary resolutions.

In summary, while quantization itself is not inherently resolution-sensitive, current implementations
of discrete VTs are limited in practice by input size assumptions, decoder rigidity, and positional
encoding designs. These architectural constraints make discrete VTs significantly less robust to
varying resolutions compared to continuous VAEs.

F TEXT QUALITY EVALUATION

Evaluating the ability of a VT to preserve text content is critical for many downstream applications
such as OCR, document generation/understanding, and multimodal reasoning. In VTBench, we
quantify this ability by applying Optical Character Recognition (OCR) to both original and recon-
structed images, and computing standard text similarity metrics based on the OCR outputs.

Optical Character Recognition (OCR) We use a SOTA multimodal model, Gemma 3 (Kamath
et al.} 2025), to extract textual content from both the original image = and the reconstructed image
2. Let Torg and Tiecon denote the sequences obtained from x and 2, respectively. All evaluations are
performed under the same OCR configuration to ensure consistency.

Character Error Rate (CER) The Character Error Rate measures the normalized edit distance
between two character sequences. Given the ground-truth sequence Tqy, and the predicted sequence
Trecons CER is computed as:

Dchar (Torig 5 Trecon )

CER =
| Torig ‘

3)

where D, (-, -) denotes the Levenshtein distance (i.e., the minimum number of insertions, dele-
tions, and substitutions needed to convert one character sequence to another), and |T0rig| is the num-
ber of characters in the ground-truth sequence.

Word Error Rate (WER). Word Error Rate is similar to CER, but computed at the word level. Let
Worig and Wiecon be the sequences of words extracted from the original and reconstructed images,
respectively. The WER is defined as:
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Dword ( Worig ) I/Vrecon)

WER =
| Worig ‘

“4)

where Dyora(+, +) is the Levenshtein distance between word sequences, and |Worig\ is the number of
words in the ground-truth text.

As with CER, WER can also exceed 1 in extreme failure cases, where the number of incorrect or
missing words far surpasses the original word count. These metrics jointly capture both low-level
character accuracy and higher-level semantic correctness. High CER or WER indicates that the
visual tokenizer has failed to preserve text layout or visual clarity during reconstruction, especially
in multilingual or high-density text scenarios.

G ROBUSTNESS OF TEXT PRESERVATION TO OCR CHOICE

Our text preservation evaluation in Task 3 relies on OCR outputs to compute character er-
ror rate (CER) and word error rate (WER). A natural concern is whether the results are sen-
sitive to the choice of OCR system. To investigate this, we conducted a follow-up experi-
ment with two additional OCR backends beyond Gemma 3: Qwen2.5-VL-7B-Instruct and
nanonets/Nanonets—-OCR-s. The CER/WER results across all three OCR systems are sum-
marized in Table

Table 5: Comparison of OCR sensitivity in text preservation evaluation. Results are consistent
across Gemma 3, Qwen2.5-VL-7B-Instruct, and Nanonets-OCR-s.

Method Gemma 3 Qwen2.5-VL-7B-Instruct | Nanonets-OCR-s
CER WER CER WER CER WER
FlowMo Lo 0.6458 3.7022 | 0.5969 3.4291 0.5861 3.3744
FlowMo Hi 0.4169 2.5639 | 0.4148 2.3856 0.3987  2.2985
MaskBiT 16bit 0.7315 4.2234 | 0.7679 4.4453 1.0437  6.0299
MaskBiT 18bit 0.7910 4.8894 | 0.7599 4.3905 0.7330  4.2090
Titok-132 1.2254 7.8547 | 0.9549 5.5398 2.1851 10.1903
Titok-b64 1.0189 6.7070 | 1.1570 5.5000 13111 7.5522
Titok-s128 1.2478 6.2260 | 0.9538 8.1082 1.1665 6.7177
Titok-bl64 1.1421 6.7044 | 1.1605 6.7313 1.9725 64577
Titok-bl1128 1.5956 5.0851 | 1.2116 7.8060 2.6343  15.3209
Titok-s1256 0.7850 4.5561 | 0.7634 4.4179 0.7377  4.2376
OpenMagViT 0.7385 4.2419 | 0.6932 4.0100 0.8561  4.9428
LlamaGen ds8 0.5066 2.9620 | 0.5471 3.1679 0.4913  2.8445
BSQ-VIT 0.1102 0.5763 | 0.1059 0.6480 0.0659  0.3495
VAR-256 0.6391 3.7266 | 0.6243 3.6206 0.6130  3.5448
Janus Pro 1B/7B 0.6628 3.7549 | 0.6488 3.7920 1.0328  4.7400
Chameleon 0.5782 3.1359 | 0.5369 3.1295 0.7092  4.0871
LlamaGen ds16 0.4914 2.8774 | 0.5112 2.9676 0.4704  2.6841
LlamaGen ds16 T2I | 0.4842 2.5741 | 0.4868 2.7983 0.4470 2.5734
VAR-512 0.1949 1.1867 | 0.1263 0.7472 0.1121  0.6281
Infinity-d32 0.0790  0.4371 | 0.0098 0.0548 0.0026  0.0025
Infinity-d64 0.0439 0.2978 | 0.0043 0.0237 0.0019  0.0000
SD3.5L 0.0002  0.0000 | 0.0004 0.0025 0.0045  0.0062
FLUX.1-dev 0.0521 0.4872 | 0.0004 0.0025 0.0013  0.0012
GPT-4o 0.0180 0.0836 | 0.0186 0.1034 0.0173  0.0784

Despite differences in absolute CER/WER values, the relative ranking of visual tokenizers remains
stable across all three OCR systems. High-performing VTs such as BSQ-VIT, Infinity-d64, and
FLUX.1-dev consistently outperform weaker tokenizers such as Titok variants or MaskBiT. These
results confirm that the trends reported in Table 3 are robust to the choice of OCR backend, and our
conclusions regarding text preservation are not artifacts of a particular OCR model.
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Figure 6: Comparison of image editing using the prompt “Please recreate the exact same image
without any alterations.” with the original image. The original images contain blurred text that
is not recognizable to humans. The rightmost column displays the OCR-extracted text from the
original image using GPT-40 using the prompt “Directly output what is written in the image.”

H EXPERIMENTAL SETTINGS AND ENVIRONMENTS

Experimental Settings. We evaluate a range of SOTA VTs across the three core tasks in VT-
Bench: Image Reconstruction, Detail Preservation, and Text Preservation. For each task, we use
a fixed evaluation protocol to ensure consistency across models. All tokenizers are evaluated in
an inference-only setting using publicly available pretrained weights. Where applicable, we fol-
low each model’s official preprocessing pipeline and input size specification (see Table[T). For text
preservation evaluation, OCR is applied to both original and reconstructed images before computing
CER and WER. We use the same set of 50,000 ImageNet validation images and 100 samples per
text benchmark (movie posters, abstracts, multilingual) for all models.

Environments. All experiments are conducted using 4 NVIDIA A100 80GB GPUs with 251GB
memory. Image preprocessing, reconstruction, and OCR evaluation are run on a standardized, re-
producible pipeline. All results are collected on the same hardware and software stack to ensure fair
comparisons.

I ADDITIONAL EXPERIMENTS OF GPT-40 IMAGE GENERATION

To further understand the GPT-40’s architecture and VT, we conducted a set of controlled experi-
ments focused on its capabilities in font recognition and fine-grained text editing. These experiments
are designed to isolate and probe the internal mechanisms behind GPT-40’s image generation and
editing abilities, specifically evaluating the underlying VT’s expressiveness and semantic alignment.

I.1 IMAGE RECONSTRUCTION FROM LOW-QUALITY INPUTS

In this experiment, we provided GPT-40 with an intentionally degraded input image containing
heavily distorted or unreadable text. Our prompt explicitly instructed the model to recreate the
image exactly without any alteration. Interestingly, unlike diffusion-based models, which tend to
replicate the visual noise and illegibility, GPT-40 instead produced an image where the text had
been cleanly restored into readable, coherent sentences, as shown in Figure @

This behavior strongly deviates from the expected literal replication and instead suggests that GPT-
40 engaged in a form of semantic hallucination. We hypothesize that GPT-4o first attempts to under-
stand the image content through an internal representation, and in doing so, “fills in” the missing or
noisy parts based on learned linguistic priors. To test this hypothesis, we queried GPT-4o0 to extract
text from the original distorted image. Surprisingly, the model returned well-formed and highly
plausible text, even though no readable characters are actually present in the image. Moreover, the
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Original InstructPix2Pix Step1X-Edit

Prompt: Add text "We introduce VTBench, a comprehensive benchmark that systematically evaluates VTs across three core tasks: Image Reconstruction,
Detail Preservation, and Text Preservation, and covers a diverse range of evaluation scenarios." to the blackboard.

Prompt: Remove the text "and covers a diverse range of evaluation scenarios." from the blackboard.

Figure 7: Text editing comparison across models, showing both text insertion (top) and removal
(bottom) on a blackboard.

extracted text closely matched the regenerated image, indicating a strong coupling between image
understanding and generation.

These observations suggest that GPT-40 has inherited a strong capacity for image understanding.
The model does not simply replicate noisy input, but instead attempts to semantically interpret and
“restore” the image content, even when such interpretation involves hallucination. This behavior
implies that GPT-40’s backbone is not a generic image generation model, but one that possesses
robust multimodal reasoning capabilities. We hypothesize that this capability arises either from: (1)
A shared autoregressive backbone pretrained or co-trained for both language and vision tasks, en-
abling semantic-level image understanding and generation, or (2) A language-centric model (e.g.,
GPT-4) that has been subsequently fine-tuned on multimodal tasks, thereby acquiring the ability to
parse and reconstruct image content via linguistic priors.

In either case, the consistency between the model’s interpretation and generation of text, despite
degraded visual input, strongly supports the view that GPT-40 performs image generation not as a
pixel-to-pixel transformation task, but as a language-informed semantic generation process.

1.2 TEXT ADDITION AND DELETION IN SCENE CONTEXT

To further explore GPT-40’s ability to understand and manipulate visual content, we conducted a
series of experiments focused on localized text editing — inserting and removing words from realistic
visual scenes, such as blackboards and signage. These tasks require not only accurate prompt-
following, but also semantic understanding of scene layout, font style, and background context.

In the text addition experiments, GPT-40 was prompted to insert specific phrases into designated
regions of an image, as shown in Figure[7] The results show remarkable spatial precision and stylistic
coherence: the added text matched the surrounding content in font, size, alignment, and even lighting
and shading. In the deletion experiments, GPT-4o is instructed to remove certain words. Rather than
crudely masking out regions, the model naturally inpaint the background, reconstructing the texture
and structure behind the deleted text with minimal artifacts.

These results reveal several important properties of GPT-40’s architecture:

* Semantic-level image editing: The model does not simply manipulate pixels, but appears to
operate at a higher level of abstraction. It understands which parts of the image correspond to
the textual prompt and modifies them while preserving global visual coherence.

» Language-conditioned spatial reasoning: The edits are guided by natural language, which
suggests a strong alignment between textual and visual representations. This is indicative of a
shared or tightly coupled multimodal representation space.
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Figure 8: Comparison of two hypothesized architectures for image generation.

* Unified generation and understanding backbone: The precision and fidelity of the edits, es-
pecially the seamless integration of new content, suggest that the same underlying autoregres-
sive model is responsible for both interpreting the image and generating the modified output.
This unified design contrasts with traditional pipelines that separate perception and generation.

Together with the hallucination behavior observed in the font reconstruction experiment, these find-
ings support the view that GPT-4o integrates image understanding and image generation into a sin-
gle, coherent process. It reasons about images in a way that is language-centric, and its visual
tokenizer must be capable of encoding not only fine-grained appearance but also semantic structure
and spatial context.

1.3 AUTOREGRESSIVE VS. DIFFUSION: IMPLICATIONS FOR GPT-4.

As summarized in Figure[8] we hypothesize that GPT-40 adopts a unified autoregressive architecture
rather than a diffusion-based pipeline. This hypothesis is supported by the following observations:

¢ Semantic hallucination through language priors: GPT-40’s tendency to “restore” unread-
able text into coherent language, despite prompts requesting exact replication suggests that its
image understanding is conditioned by a language model prior. Such behavior is natural in an
autoregressive framework where image and text tokens are processed in a shared sequence and
jointly influenced by a pretrained language model.

Language-grounded editing and generation: The model demonstrates precise text insertion
and deletion aligned with natural language instructions, which requires not only generation ca-
pability but also deep semantic understanding of both visual context and instruction intent. This
is hard to achieve in diffusion models, where the denoising model lacks linguistic grounding or
token-level reasoning.

Modality reuse and efficiency: The autoregressive formulation allows GPT-40 to reuse the
same pretrained language model for both textual and visual reasoning, leveraging strong LLM
priors for multimodal understanding. In contrast, diffusion models typically require separate
encoders and decoders for each modality, making such deep integration more difficult.

Failure mode contrast: Diffusion models tend to replicate noise patterns or preserve unread-
ability when asked to reconstruct degraded text, faithfully following low-level visual patterns.
GPT-40, on the other hand, produces semantically enriched outputs, even when that contradicts
pixel-level fidelity, indicative of language-centric generation.

Together, these insights point toward GPT-40 employing an autoregressive backbone with a high-
capacity visual tokenizer that supports semantic, instruction-driven generation. This structure allows
GPT-4o0 to unify image understanding and image synthesis in a way that is tightly aligned with
language modeling capabilities.
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1.4 GPT-40’s VISUAL TOKENIZER

Despite the impressive capabilities exhibited by GPT-40 in both image understanding and genera-
tion, its VT remains proprietary and undisclosed. Nevertheless, its behavior provides strong indirect
evidence of a highly expressive VT design: it preserves fine-grained textual structure, aligns visual
and linguistic semantics, and supports high-resolution, editable image representations. Unlike many
existing discrete tokenizers that struggle with text reconstruction and spatial fidelity, GPT-40’s VT
appears to encode images in a way that is not only compact, but also semantically rich and compat-
ible with autoregressive decoding.

To replicate such a tokenizer, future work must prioritize three core capabilities:

* High-fidelity image reconstruction: The tokenizer should retain sufficient visual detail to
allow accurate reconstruction of the input image, ideally matching the performance of state-of-
the-art continuous VAEs in terms of perceptual quality and structure preservation.

* Resolution scalability: It should generalize across varying image sizes and support high-
resolution inputs without introducing artifacts or requiring fixed input dimensions, a common
limitation of many existing discrete tokenizers.

e Compatibility with downstream language models: The output token sequences must be
structurally and semantically aligned with the expectations of large language models (LLMs),
enabling seamless integration into autoregressive multimodal frameworks for joint reasoning
and generation.

Architectures such as residual next-scale VAEs, hierarchical quantization, or continuous tokeniza-
tion may serve as promising directions. Given the lack of public access to GPT-40’s VT, bench-
marks like VTBench offer a practical path forward: by systematically evaluating VT components
in isolation, researchers can identify weaknesses, measure progress, and guide the development of
open-source alternatives that approach or surpass GPT-40’s performance.

J ADDITIONAL VISUALIZE QUALITATIVE RESULTS

To complement the quantitative evaluations presented in the main paper, we provide additional qual-
itative results that illustrate the reconstruction quality, text preservation, and detail retention of vari-
ous visual tokenizers, from Figure [9]to
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Figure 13: Additional qualitative results showing one ArXiv abstract and its corresponding multi-
lingual versions (Chinese, Japanese, Korean, and Hindi) reconstructed by various visual tokenizers.
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