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Abstract
Estimating the effects of multi-dimensional treat-
ments (i.e., joint treatment effects) is critical in
many data-intensive domains, including genetics
and drug evaluation. The main challenges for
studying the joint treatment effects include the
need for large sample sizes to explore different
treatment combinations as well as potentially un-
safe treatment interactions. In this paper, we de-
velop machinery for estimating joint treatment ef-
fects by combining data from multiple experimen-
tal datasets. In particular, first, we develop new
identification conditions for determining whether
a joint treatment effect can be computed in terms
of multiple interventional distributions under var-
ious scenarios. Further, we develop estimators
with statistically appealing properties, including
consistency and robustness to model misspecifica-
tion and slow convergence. Finally, we perform
simulation studies, which corroborate the effec-
tiveness of the proposed methods.

1. Introduction
A large body of scientific research is concerned with es-
timating the effect of multi-dimensional treatments. For
example, Genome-Wide Association Studies (GWAS) in
computational biology application study the effect of mul-
tiple combinations of genes (Tam et al., 2019). As another
example, estimating the multi-dimensional treatment effects
is essential in the pharmaceutical industry because poten-
tial treatment-treatment interactions can lead to harmful
effects to patients, potentially lethal in some situations. Con-
sider two real-world scenarios in which understanding the
treatment-treatment interaction is critical:

Example TTI (Treatment-Treatment-Interaction (Lee
et al., 2019)). Many experimental studies have been con-
ducted on the effects of antihypertensive drugs (X1) on
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blood pressure (W ) with baseline characteristics (C1) (e.g.,
(Hansson et al., 1999)) and on the effects of anti-diabetic
drugs (X2) on cardiovascular disease (Y ) with baseline char-
acteristics (C2) (e.g., (Ajjan & Grant, 2006)). Other studies
reported that simultaneously taking both durgs was harm-
ful to the population (Ferrannini & Cushman, 2012). This
leaves open the question on how to evaluate the joint effect
of antihypertensive and anti-diabetic medications from data
coming from individual randomized studies. ■

Example MTI (Multiple Treatments Interactions). Many
experimental studies have been conducted on the effects of
(1) taking an aspirin (X1) on blood pressure (W1) (e.g.,
(Hansson et al., 1998); (2) taking acetaminophen (X2) on
blood coagulation (W2) (e.g., (Gazzard et al., 1974)); and
(3) taking the ibuprofen (X3) on the gastrointestinal disease
(Y ) (e.g., (Lesko & Mitchell, 1995)). Other more recent
studies reported adverse drug reactions to taking ibuprofen
with aspirins and acetaminophen (Moore et al., 2015). What
are the causal effects of the combinations of such drugs? ■

Despite their critical importance, the analysis of multi-
dimensional effects remains underrepresented compared
to the vast literature on single-treatment experiments. This
is primarily due to two major challenges: the need for large
sample sizes to investigate all possible treatment combina-
tions and the possibility of unsafe or unethical treatment
interactions (Examples TTI and MTI). It is, therefore, of
great importance to investigate the possibility of estimat-
ing joint treatment effects by combining data from multiple
marginal experiments, which refer to experiments on a sub-
set of treatments (e.g., a single treatment). In this paper,
we present novel methods for estimating joint effects given
data from multiple marginal experiments and a qualitative
description of the underlying causal system articulated in
the form of a causal graph. Specifically,

1. We develop nonparametric identification criteria de-
termining whether a joint treatment effect can be expressed
through an adjustment formula using distributions from
marginal experiments.

2. We construct estimators for the joint treatment effects
using samples from marginal experiments and provide learn-
ing guarantees for the estimators. We illustrate the empirical
validity of the estimators through simulations.
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The proofs are provided in Appendix C in suppl. material.

1.1. Related Work

Causal Effect Identification and Estimation. Recent ad-
vances in the literature of generalized causal effect identifica-
tion (g-ID) lead to algorithmic solutions for determining the
identification of a causal effect from a set of observational
and experimental studies given a causal graph (Bareinboim
& Pearl, 2012a; 2016; Lee et al., 2019; Lee & Bareinboim,
2020; Lee et al., 2020; Correa et al., 2021). In addition,
recent progress has been made in developing estimators for
any causal effects identifiable from observational data in
a causal graph (Jung et al., 2020; 2021a;b; Bhattacharya
et al., 2022; Jung et al., 2022). However, these estimators
are not applicable to g-ID settings that involve multiple
experimental distributions.

On a different thread, estimating causal effects from mul-
tiple experiments and observations has been investigated
for some specific settings. For example, the problems of
estimating the long-term effect of a single treatment by
combining multiple short-term experimental studies into a
surrogate variable have been recently studied (e.g., Barein-
boim & Pearl (2012b); Athey et al. (2019; 2020); Imbens
et al. (2022)). In epidemiology, estimators for causal effects
in a target domain by combining multiple experiments in
different source domains have been developed (e.g., Da-
habreh et al. (2019); Colnet et al. (2020); Degtiar & Rose
(2021); Shi et al. (2022)). However, these methods are not
applicable when the goal is to estimate the joint treatment
effects from multiple marginal experiments.

Treatment Combinations. The aforementioned examples
are related to the analysis of treatment combinations which
aims to attribute the joint treatment effects to either the ef-
fect of treatment combination or marginal treatment effects
(e.g., VanderWeele & Knol (2014); Egami & Imai (2018);
Parbhoo et al. (2021)). Existing literature commonly relies
on the back-door criterion. Such assumptions, however, are
not satisfied when latent confounders exist, as illustrated in
Examples (TTI, MTI) and Figs. (1a, 2a).

Closer to our work is Saengkyongam & Silva (2020), which
investigates the identifiability of joint effects in the additive
models with Gaussian noises and continuous treatments by
entangling observations and marginal experiments. How-
ever, their approach is inapplicable when the treatment vari-
ables are discrete, which is common in many applications.
In contrast to their methods, we provide nonparametric iden-
tifiability criteria for the joint effects from marginal experi-
ments based on a causal graph without imposing constraints
on the data-generating processes. Additionally, we develop
estimators for joint treatment effects having statistically
desirable properties.

2. Preliminaries
Notations. Each variable is represented with a capital letter
(X) and its realized value with a small letter (x). We use
bold letters (X) to denote a random vector. Given an ordered
set X = (X1, · · · , Xn) such that Xi ≺ Xj for i < j,
we denote X(i) = {X1, · · · , Xi}. For a graph G over
V and disjoint vectors X1,X2 ⊆ V, we will use GX1X2

as a subgraph of G in which all incoming edges to the
node in X1 and all outgoing edges to the node in X2 are
cut. For a discrete (e.g., binary) random vector X and
its realized value x ∈ DX where DX is the domain of
X, we use 1x(X) to represent the indicator function such
that 1x(X) = 1 if X = x; 1x(X) = 0 otherwise. For a
random vector X, we use P (X) to denote its distribution
and p(x) as a corresponding density function at X = x.
For a function f , EP [f(X)] :=

∫
SX

f(x)p(x) d[x] where
SX is the support for X. For a sample set D := {V(i)}ni=1

where V(i) denotes the ith samples, we use ED [f(V)] :=

(1/n)
∑n

i=1 f(V(i)). We use ∥f∥P :=
√

EP [(f(X))2]. If
a function f̂ is a consistent estimator of f having a rate rn,
we will use f̂−f = oP (rn). We will say f̂ is L2-consistent
if ∥f̂ −f∥P = oP (1). We will use f̂ −f = OP (1) if f̂ −f

is bounded in probability. Also, f̂ − f is said to be bounded
in probability at rate rn if f̂ − f = OP (rn). Throughout
the paper, we assume that samples D are independent.

Structural Causal Models. We use Structural Causal
Models (SCMs) as our framework (Pearl, 2000; Barein-
boim et al., 2022). An SCM M is a quadruple M =
⟨U,V, P (U), F ⟩. U is a set of exogenous (latent) variables
following a joint distribution P (U). V is a set of endoge-
nous (observable) variables whose values are determined
by functions F = {fVi

}Vi∈V such that Vi ← fVi
(pai, ui)

where PAi ⊆ V and Ui ⊆ U . Each SCM M induces a
distribution P (V) and a causal graph G = G(M) over V
in which there exists a directed edge from every variable in
PAi to Vi and dashed-bidirected arrows encode common
latent variables (e.g., see Fig. 1a). Performing an interven-
tion fixing X = x is represented through the do-operator,
do(X = x), which encodes the operation of replacing the
original equations of X (i.e., fX(pax, ux)) by the constant
x ∈ DX for all X ∈ X and induces an interventional
distribution P (V|do(x)). We will sometimes employ the
shorthand notation Px(y) to represent P (y|do(x)). We
will use Prand(X)(Y) := {Px(Y)}x∈SX

. For a sample set
D := {V(i)}ni=1, D is said to follow Prand(X)(V) if each
subsamples Dx := {V(i)}V(i)∈D,X(i)=x follows Px(V).

3. Combining Two Experiments
In this section, we address the challenge of estimating the
combined effects by leveraging the results of two distinct
experiments. In Section 3.1, we delve into the estimation
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of treatment-treatment interactions (TTI) based on the out-
comes of two separate marginal experiments. Then, in
Section 3.2, we extend our investigation to accommodate
scenarios where the treatments in the source and target ex-
periments may not align perfectly.

3.1. Treatment-Treatment Interaction

Our goal is to estimate joint effects by combining two ran-
domized controlled experiments, as formally defined below.

Task TTI (Treatment-Treatment Interaction (TTI)). The
task of estimating the treatment-treatment interactions (TTI)
from two marginal experiments composes of

• Input: Two sets of samples, D1 and D2, which fol-
low interventional distributions Prand(X1)(C1, X1,W ) and
Prand(X2)(C1,W,X1, X2, Y ), respectively. C1 is a covari-
ate for the experiment randomizing X1 (i.e., rand(X1)), and
W and Y represent the outcomes of the experiments ran-
domizing X1 (rand(X1)) and X2 (rand(X2)), respectively.

• Query: Estimation of E [Y |do(x1, x2)].

3.1.1. ADJUSTMENT CRITERION FOR TTI (AC-TTI)

A sufficient graphical criterion for identifying the treatment-
treatment interaction is the following:
Definition 1 (Adjustment criterion for Treatment-Treat-
ment Interaction (AC-TTI)). A set {C1,W} is said to
satisfy the adjustment criterion for treatment-treatment in-
teraction (AC-TTI) w.r.t {(X1, X2), Y } in G if

1. ({C1,W} ⊥⊥ X2|X1)GX1,X2

, i.e., there are no direct

paths from X2 to {C1,W} in GX1,X2
; and

2. (Y ⊥⊥ X1|C1,W,X2)GX1X2

, i.e., the back-door

paths from X1 to Y are blocked by {C1,W} in GX2
.

We make the following positivity assumption:
Assumption 1 (Positivity Assumption for AC-TTI).
Px1(C1,W ), Px2(C1,W ), Px2(X1|C1,W ) are strictly
positive distributions ∀x1, x2 ∈ DX1,X2

.

Under AC-TTI and Assumption 1, the joint treatment effect
E [Y |do(x1, x2)] is identifiable and given as follows:
Theorem 1 (Identification through AC-TTI). Suppose
AC-TTI in Def. 1 and Assumption 1 hold. Then,
E [Y |do(x1, x2)] is identifiable from Prand(X1)(C1,W ) and
Prand(X2)(C1,W,X1, Y ) and the expression is:

E [Y |do(x1, x2)] = EPx1

[
EPx2

[Y |C1,W, x1]
]
. (1)

For example, in Fig. 1a, {C1,W} satisfies AC-TTI
w.r.t. {(X1, X2), Y }. Therefore, with Assumption. 1,
E [Y |do(x1, x2)] is identifiable from Prand(X1)(C1,W ) and
Prand(X2)(C1,W,X1, Y ) as in Eq. (1).

X1

X2

W
Y

C1

C2

(a) Task TTI

X0

Z1

Z2

W

Y

C

(b) Task gTTI

Figure 1: Example causal graphs for Section 3. Nodes
representing the treatment and outcome are marked in blue
and red respectively.

3.1.2. ESTIMATORS FOR AC-TTI

We define the nuisance functionals for estimating the AC-
TTI functional in Eq. (1) as follows:

Definition 2 (Nuisance for AC-TTI). Nuisance functions
for the AC-TTI functional in Eq. (1) are defined as follows:
For a fixed x1, x2 ∈ DX1,X2 where x1, x2 are specified
in Eq. (1), π0 := π0(C1, X1,W ) :=

Px1
(W |C1)

Px2
(W,X1|C1)

. Also,
µ0 := µ0(C1, X1,W ) := EPx2

[Y |X1,W,C1]. We will
use π := π(C1, X1,W ) > 0 and µ := µ(C1, X1,W ) to
denote arbitrary1 finite functions.

Now, we construct regression-based (‘REG’), probability
weighting (‘PW’), and double/debiased machine learning
(‘DML’) (Chernozhukov et al., 2018) based estimators:

Definition 3 (AC-TTI estimators). Let D1 and D2 de-
note two separate samples following the distributions
Prand(X1)(C1,W ) and Prand(X2)(C1,W,X1, Y ), respec-
tively. For fixed x1, x2 ∈ DX1,X2

, we define Dx1
and

Dx2 as subsamples of D1 and D2 such that X1 = x1 and
X2 = x2. Let µ and π denote the nuisances as defined in
Definition 2. We now introduce the {REG, PW, DML} esti-
mators for the AC-TTI-functional specified in Equation (1)
as follows:

T reg := EDx1
[µ(W,C1, x1))] ,

T pw := EDx2
[π(W,C1, X1)1x1(X1)Y ] ,

T dml := EDx1
[π1x1

(X1){Y − µ}] + ED1
[µ(W,C1, x1))] .

We assume that samples used for training the nuisance func-
tions and evaluating the nuisances are independent:

Assumption 2 (Sample-splitting). Samples for training
nuisances and evaluating the estimators equipped with the
trained nuisance are separate and independent2.

1Throughout the paper, µ, π are understood as estimated nui-
sances for µ0, π0.

2This assumption is satisfied by applying cross-fitting algo-
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We assume that nuisances can be estimated L2 consistently.
In practice, this assumption can be easily satisfied by em-
ploying flexible machine learning models.

Assumption 3 (L2 consistency of nuisances). Estimated
nuisances are L2 consistent; i.e., ∀i ∈ {1, 2},∀xi ∈ DXi

,

∥µ(W,C1, x1)− µ0(W,C1, x1)∥Pxi
= oPxi

(1),

∥π(W,C1, X1)− π0(W,C1, X1)∥Px2
= oPx2

(1).

We also assume that the baseline covariates have the same
distribution over all marginal experiments. Specifically,

Assumption 4 (Shared Covariates). The distributions
of the covariates C1 are the same; i.e., for all x1, x2 ∈
DX1,X2 , Px1(C1) = Px2(C1).

In practice, this assumption may not hold due to “covariate
shift”. We discuss relaxing Assumption 4 in Appendix F.1.

Then, the errors for each estimator are given as follows:

Theorem 2 (Error analysis for AC-TTI estimators). Un-
der Assumptions (1,2,3,4) and AC-TTI in Def. 1, the er-
ror of the estimators in Def. 3, denoted ϵest := T est −
E [Y |do(x1, x2)] for est ∈ {reg, pw, dml} are:

ϵreg = R1 +OPx1
(∥µ− µ0∥) ,

ϵpw = R2 +OPx2
(∥π − π0∥) ,

ϵdml = R1 +R2 +OPx2
(∥π − π0∥ ∥µ− µ0∥) ,

where Ri is a random variable such that
√
niRi converges

in distribution to a zero-mean normal random variable,
where ni := |Dxi | for i ∈ {1, 2}.

We highlight that the DML estimator T dml exhibits robust-
ness property since ϵdml is bounded in probability at n−1/2

rate (for n = min{n1, n2}) whenever ∥π − π0∥Px2
=

OPx2
(n−1/4) and ∥µ − µ0∥Px2

= OPx2
(n−1/4). Further-

more, the DML estimator displays the following doubly
robustness property:

Corollary 2 (Doubly robustness of the DML estimators
(Corollary of Thm. 2)). Suppose Assumptions (1,2,3,4) and
AC-TTI in Def. 1 hold. Suppose either π = π0 or µ = µ0.
Then, T dml is an unbiased estimator of E [Y |do(x1, x2)].

3.2. Combining Two Arbitrary Experiments

In this section, we extend Task TTI to cases where the
effect with two or more treatments (i.e., |X| ≥ 2) can be
identified from two arbitrary experiments. For example,
let’s consider a scenario extending Example TTI where

rithms (e.g., (Klaassen, 1987; Robins & Ritov, 1997; Zheng &
van der Laan, 2011; Chernozhukov et al., 2018)), which split the
samples and using one for training nuisances and another for eval-
uating the trained nuisances.

we are interested in studying the effect of three factors:
the antihypertensive drug (Z1), the anti-diabetic drug (Z2),
and the individual’s diet habits (X0), on the occurrence of
cardiovascular disease (as depicted in Fig. 1b) when we are
given two marginal experiments randomizing Z1 and Z2

respectively. This extended task is referred to as generalized
treatment-treatment interactions (gTTI) and is defined as
follows:

Task gTTI (Generalized TTI). The task of generalized
TTI composes of

• Input: Two sets of samples D1, D2 following distribu-
tions Prand(Z1)(V) and Prand(Z2)(V), respectively.

• Query: Estimation of E [Y |do(x)].

We note that Task gTTI generalizes Task TTI in the sense
that it does not require that X is identical to Z1 ∪ Z2.

3.2.1. ADJUSTMENT CRITERION FOR GTTI (AC-GTTI)

A graphical criterion for identifying E [Y |do(x)] from two
distributions Prand(Z1)(V) and Prand(Z2)(V) is the follow-
ing:

Definition 4 (Adjustment criterion for combining two
experiments (AC-gTTI)). A set of variables A is said to
satisfy adjustment criterion for generalized TTI (AC-gTTI)
w.r.t (X, Y ) in G if

1. Z1 ⊆ X and (A ⊥⊥ X\Z1|Z1)GX
, i.e., there are no

direct paths from X\Z1 to A in GX; and

2. Z2 ⊆ X and (Y ⊥⊥ X\Z2|A, Z2)GX\Z2Z2

, i.e., the

back-door paths from X\Z2 to Y are blocked by A in GZ2
.

We make the following positivity assumption:

Assumption 5 (Positivity Assumption for AC-gTTI).
Pz1(A), Pz2(A), Pz2(X\Z2|A) are strictly positive distri-
butions ∀z1, z2 ∈ DZ1,Z2 .

Under AC-gTTI, the joint treatment effect E [Y |do(x)] is
identifiable and given as follows:

Theorem 3 (Identification through AC-gTTI). Suppose
AC-gTTI in Def. 4 and Assumption 5 hold. Then, the
query E [Y |do(x)] is identifiable from Prand(Z1)(A) and
Prand(Z2)(A,X, Y ) and given as follows:

E [Y |do(x)] = EPz1

[
EPz2

[Y |A,x\z2]
]
. (2)

For example, in Fig. 1b, A := {W,C} satisfies AC-gTTI
criterion w.r.t. {X = (X0, Z1, Z2), Y }. Therefore, under
positivity, E [Y |do(x)] is expressible as in Eq. (2).
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3.2.2. ESTIMATORS FOR AC-GTTI

We define the nuisance functionals for the AC-gTTI func-
tional in Eq. (2) as follows:

Definition 5 (Nuisances for AC-gTTI). Nuisance func-
tions for estimating AC-gTTI functional in Eq. (2) are de-
fined as follows: For a fixed z1, z2 ∈ DZ1,Z2

where z1, z2

are specified in Eq. (2), π0 := π0(A,X) :=
Pz1

(A)

Pz2 (A,X\Z2)
,

and µ0 := µ0(A,X) := EPz2
[Y |X\Z2,A]. We will use

π := π(A,X) > 0 and µ := µ(A,X) to denote estimated
nuisances.

Now, we construct regression-based (‘REG’), probability
weighting (‘PW’), and double/debiased machine learning
(‘DML’) estimators:

Definition 6 (AC-gTTI estimators). Let D1, D2 denote
two sample sets following distributions Prand(Z1)(A) and
Prand(Z2)(A,X, Y ), respectively. For a fixed z1, z2 ∈
DZ1,Z2 , we define Dz1 and Dz2 as subsamples of D1 and
D2 such that Z1 = z1 and Z2 = z2. Let µ, π denote
nuisances defined in Def. 5. Then, {REG, PW, DML} esti-
mators for the AC-gTTI functional are defined as follows:

T reg := EDz1
[µ(A,x))] ,

T pw := EDz2
[π(A,X)1x(X)Y ] ,

T dml := EDz2
[π1x(X){Y − µ}] + EDz1

[µ(A,x))] .

We assume that nuisances can be estimated L2 consistently.

Assumption 6 (L2 consistency of nuisances). Estimated
nuisances are L2 consistent; i.e., ∀i ∈ {1, 2},∀zi ∈ DZi

,

∥µ(A,x)− µ0(A,x)∥Pzi
= oPzi

(1),

∥π(A,X)− π0(A,X)∥Pz2
= oPz2

(1).

Then, the error of each estimator is given as follows:

Theorem 4 (Error analysis for AC-gTTI estimators). Un-
der Assumptions (2,5,6) and AC-gTTI in Def. 4, the errors of
the estimators in Def. 6, denoted ϵest := T est − E [Y |do(x)]
for est ∈ {reg, pw, dml}, are:

ϵreg = R1 +OPz1
(∥µ− µ0∥) ,

ϵpw = R2 +OPz2
(∥π − π0∥) ,

ϵdml = R1 +R2 +OPz2
(∥π − π0∥ ∥µ− µ0∥) ,

where Ri is a random variable such that
√
niRi converges

in distribution to a zero-mean normal random variable,
where ni := |Dzi |.

We highlight that the DML estimator T dml exhibits robust-
ness property since ϵdml is bounded in probability at n−1/2

(for n = min{n1, n2}) rate whenever ∥π − π0∥Pz2
=

OPz2
(n−1/4) and ∥µ − µ0∥Pz2

= OPz2
(n−1/4). Further-

more, the DML estimator displays the following doubly
robustness property:

Corollary 4 (Doubly robustness of the DML estimators
(Corollary of Thm. 4)). Suppose Assumptions (2,5,6) and
AC-gTTI in Def. 4 hold. Suppose either π = π0 or µ = µ0.
Then, T dml is an unbiased estimator of E [Y |do(x)].

4. Combining Multiple (≥ 2) Experiments
In this section, we address the estimation of joint effects by
leveraging multiple (more than two) experiments. Specifi-
cally, in Sec. 4.1, we focus on estimating multiple treatment
interactions (MTI) using multiple marginal experiments. In
Sec. 4.2, we extend this setting to estimate multiple treat-
ment effects from multiple experiments that are not neces-
sarily over each element in X.

4.1. Multiple Treatment Interaction

We first introduce the formal version of the task.

Task MTI (Multiple-Treatment Interaction (MTI)). Es-
timating multiple treatment interaction (MTI) composes of

• Input: Multiple sets of samples {Di}mi=1 drawn
from a sequence of interventional distributions
{Prand(Xi)(C

(i),W(i),X(i))}mi=1. {Ci, Xi,Wi} for
i = 1, · · · ,m is the ith triplet corresponding to the
covariate, the treatment, and the outcome.

• Query: Estimation of E [Y |do(x)] where x =
{xi}mi=1 is a realization of the ordered set X :=
{X1, · · · , Xm}, and Y := Wm.

4.1.1. ADJUSTMENT CRITERION FOR MTI (AC-MTI)

A sufficient graphical criterion for identifying the multiple
treatment interaction is the following:

Definition 7 (Adjustment criterion for Multiple
Treatment Interaction (AC-MTI)). An ordered set
{C1,W1, C2,W2, · · · , Cm−1,Wm−1} satisfies adjustment
criterion for multiple treatment interaction (AC-MTI) w.r.t.
{X, Y } for X = {Xi}mi=1 in G if, for i = 1, 2, · · · ,m,

1. {Xj}j>i is non-ancestor of {X(i),W(i),C(i)}; and

2. (Y ⊥⊥ Xi|C(i−1),X(i−1),W(i),X>i)G
Xi,X

>i
, i.e.,

the back-door paths from Xi to Y are blocked by
C(i−1),X(i−1),W(i),X>i in the graph G

X>i .

We make the following positivity assumption:

Assumption 7 (Positivity Assumption for
AC-MTI). {Pxi(Wi, Ci|W(i−1),C(i−1),X(i−1))}mi=1,
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Pxi+1
(Xi|W(i),C(i),X(i−1)) for i = 1, · · · ,m − 1 are

strictly positive ∀x ∈ DX.

Under AC-MTI, the joint treatment effects E [Y |do(x)] is
identifiable and given as follows:
Theorem 5 (Identification through AC-MTI). Suppose
AC-MTI in Def. 7 and Assumption 7 hold. Then, E [Y (x)]
is identifiable from {Prand(Xi)(C

(i),W(i),X(i−1))}mi=1 as
follows: Let µm

0 := EPxm

[
Y |W(m−1),C(m−1),X(m−1)

]
,

and for i = m− 1, · · · , 2,

µi
0 := EPxi

[
µi+1
0 |W(i−1),C(i−1),X(i−1)

]
,

where µi+1
0 := µi+1

0 (W(i),C(i), xi,X
(i−1)). Then,

E [Y (x)] = EPx1

[
µ2
0(W1, C1, x1)

]
. (3)

For example, in Fig. 2a, {C1,W1, C2,W2} satisfies AC-
MTI w.r.t. {(X1, X2), Y } in Def. 7. Therefore, with the pos-
itivity assumption in Assumption. 7, E [Y |do(x)] is identifi-
able from {Prand(Xi)(C

(i),W(i),X(i−1))}mi=1 as in Eq. (3).

4.1.2. ESTIMATORS FOR AC-MTI

We define the nuisance functionals for estimating the AC-
MTI functional in Eq. (3) as follows:
Definition 8 (Nuisances for AC-MTI). Nuisance func-
tions for AC-MTI are defined as follows: For a fixed
x := {x1, · · · , xm} ∈ DX, let {µi}mi=2 and {µi}mi=2

be the nuisances defined in Thm. 5. For i =

1, · · · ,m − 1, πi
0 :=

Pxi
(Wi|Ci,C

(i−1),X(i−1),W(i−1))

Pxm (Wi,Xi|Ci,C(i−1),X(i−1),W(i−1))
,

and π
(i)
0 :=

∏i
j=1 π

j
0(W

(j),C(j),X(j)). We will use
πi(W(i),C(i),X(i)) > 0 and µi(W(i−1),C(i−1),X(i−1))
to denote estimated nuisances.

Now, we construct regression-based (‘REG’), probability
weighting (‘PW’), and double/debiased machine learning
(‘DML’) estimators:
Definition 9 (AC-MTI estimators). Let Di denote samples
following Prand(Xi)(C

(i),W(i),X(i)) for i = 1, 2, · · · ,m.
For a fixed xi ∈ DXi , let Dxi denote the subsamples of
Di such that Xi = xi. Let Ai := {Wi, Ci} and Vi :=
{Ai, Xi}. Let µm+1 := Y . Let 1i−1

x := 1x(i−1)(X(i−1))
for i = 2, · · · ,m. Then {REG, PW, DML} estimators are
defined as follows:

T reg := EDx1

[
µ2(W1, C1, x1))

]
,

T pw := EDxm

[
π(m−1)

1x(X)Y
]
,

T dml :=

m∑
i=2

EDxi

[
π(i−1)

1
i−1
x {µi+1 − µi}

]
+ EDx1

[
µ2

]
.

We assume that nuisances can be estimated L2 consistently.

X1

X2

X3

W1

W2

Y

C1

C2

C3

(a) Task MTI

X0

Z1
Z2

Z3

W1

W2

Y

C1

C2

(b) Task gMTI

Figure 2: Example causal graphs for Section 4.

Assumption 8 (L2 consistency of nuisances). Estimated
nuisances are L2-consistent; specifically,

∥µi+1 − µi+1
0 ∥Pxi

= oPxi
(1), ∀i ∈ {1, 2, · · · ,m− 1}

∥µi − µi
0∥Pxi

= oPxi
(1), ∀i ∈ {2, · · · ,m}

∥πi − πi∥Pxi+1
= oPxi+1

(1), ∀i ∈ {1, · · · ,m− 1}.

We assume that the baseline covariates Ci in the ith experi-
ment follow the same distribution as in the jth experiment
for j > i:

Assumption 9 (Shared Covariates). For any fixed i, j ∈
{1, 2, · · · ,m − 1} s.t. j > i and any fixed xi, xj ∈
DXi,Xj

, the baseline covariates Ci’s distribution satis-
fies the following: Pxi

(Ci|C(i−1),X(j−1),W(j−1)) =
Pxj (Ci|C(i−1),X(i−1),W(i−1)).

We discuss the relaxation of Assumption 9 in Appendix F.2.

Theorem 6 (Error analysis of AC-MTI estimators). Un-
der Assumptions (2,7,8,9) and AC-MTI in Def. 7, the er-
rors of the estimators in Def. 9, denoted ϵest := T est −
E [Y |do(x)] for est ∈ {reg, pw, dml}, are:

ϵreg = R1 +OPx1

(
∥µ1 − µ1

0∥
)
,

ϵpw = Rm +OPxm
(∥π(m−1) − π

(m−1)
0 ∥),

ϵdml =

m∑
i=1

Ri +

m∑
i=2

OPxi

(
∥µi − µi

0∥∥πi−1 − πi−1
0 ∥

)
,

where Ri is a random variable such that
√
niRi converges

in distribution to a zero-mean normal random variable,
where ni := |Dxi | for i ∈ {1, · · · ,m}.

We highlight that the DML estimator T dml in Def. 9
exhibits robustness property since the error ϵdml is
bounded in probability at a rate OPxi

(n−1/2) (for n =

min{n1, n2, · · · , nm}) rate whenever ∥µi − µi
0∥Pxi

=

OPxi
(n−1/4) and ∥πi−1 − πi−1

0 ∥Pxi
= OPxi

(n−1/4). Fur-
thermore, the DML estimator displays the following multi-
ply robustness property:

Corollary 6 (Multiply robustness of the DML estimators
(Corollary of Thm. 6)). Suppose Asumptions (2,7,8,9) and
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AC-MTI in Def. 7 hold. For i = 2, · · · ,m − 1, suppose
either πi−1 = πi−1

0 or µi = µi
0. Then, T dml in Def. 9 is an

unbiased estimator of E [Y |do(x)].

4.2.Combining Multiple Arbitrary Experiments

In this section, we generalize Task MTI to the case where
multiple treatment effects E [Y |do(x)] can be identified
from arbitrary sets of experiments. We label this task as
‘generalized multiple-teratment-interaction (gMTI)’:

Task gMTI (Generalized MTI). The task of generaliazed
MTI composes of

• Input: Multiple sets of samples {Di}mi=1 following
distributions {Prand(Zi)(V)}mi=1.

• Query: Estimation of E [Y |do(x)].

We note that Task gMTI is a generalization of Task MTI
since X is not necessarily identical to ∪iZi.

4.2.1. ADJUSTMENT CRITERION FOR GMTI

A graphical criterion for identifying the effect E [Y |do(x)]
is the following:

Definition 10 (Adjustment criterion for gMTI
(AC-gMTI)). Let Z := {Z1, · · · , Zm} ⊆ X denote
the subset of treatments. Let {ℓi}mi=1 ⊆ {1, 2, · · · , |X|}
denote the index of Z; i.e., Z = {Xℓ1 , · · · , Xℓm}.
Let X1 := {Xj}j≤ℓ1 , Xm+1 := {Xj}j>ℓm , and
Xi := {Xj}ℓi−1<j≤ℓi for i = 2, 3, · · · ,m. An ordered set
A := {A1,A2, · · · ,Am} satisfies adjustment criterion for
combining multiple experiments (AC-gMTI) w.r.t. (X, Y )
in G if, for i = 1, 2, · · · ,m− 1,

1. (Ai ⊥⊥ X
>i−1\Zi|X

(i−1)
,A(i−1), Zi)G

X>i−1
;

2. (Y ⊥⊥ Xi|A(i),X
(i−1)

,X
>i
)G

Xi,X
>i

; and

3. (Y ⊥⊥ X
≥m\Zm|A(m−1),X

(m−1)
, Zm)G

Zm,X≥m\Zm
.

We make the following positivity assumption:

Assumption 10 (Positivity Assumption for
AC-gMTI). Pzm(Xm\Zm, Xm+1|A(m−1),X

(m−1)
) and

{Pzi(Ai|A(i−1),X
(i−1)

), Pzi+1
(Ai|A(i−1),X

(i−1)
)}m−1

i=1 ,

{P i+1(Xi|A(i),X
(i−1)

)}m−1
i=1 are strictly positive distri-

butions ∀i ∈ {1, · · · ,m},∀zi ∈ DZi
.

Under AC-gMTI in Def. 10, E [Y |do(x)] is identifiable and
given as follows:

Theorem 7 (Identification through AC-gMTI). Suppose
AC-gMTI in Def. 10 and Assumption 10 hold. Then,

E [Y |do(x)] is identifiable from {Prand(Zi)(A
(i),X

(i)
)}mi=1

and given as follows. Denote

µm
0 := EPzm

[
Y |A(m−1),X\Zm

]
µm
0 := EPzm

[
Y |A(m−1),xm−1:m+1,X

(m−2)
]

µm−1
0 := EPzm−1

[
µm
0

∣∣∣A(m−2),X
(m−2)

]
,

where Xm−1:m+1 := {Xm−1, Xm, Xm+1}. For i = m−
2, · · · , 2,

µi
0 := EPzi

[
µi+1(A(i), xi,X

(i−1)
)
∣∣∣A(i−1),X

(i−1)
]
,

and µi+1
0 := µi+1

0 (A(i), xi,X
(i−1)

). Then,

E [Y (x)] = EPz1

[
µ2
0

]
. (4)

For example, in Fig. 2b, {A1,A2} where A1 := {C1,W1}
and A2 := {C2,W2} satisfies AC-gMTI criterion in Def. 10
w.r.t. {X, Y } where X := {X0, Z1, Z2, Z3}. Therefore,
with the positivity in Assumption 10, E [Y |do(x)] is identi-

fiable from {Pzi(A
(i),X

(i)
)}mi=1 as in Eq. (4).

4.2.2. ESTIMATORS FOR AC-GMTI

We define the nuisance functionals for estimating the AC-
gMTI functional in Eq. (4) as follows:

Definition 11 (Nuisances for AC-gMTI). Nui-
sance functions for AC-gMTI are defined as fol-
lows: For a fixed z := {z1, · · · , zm} ∈ DZ, let
{µi

0}mi=2 be the nuisances defined in Thm. 7. For

i = 1, · · · ,m − 2, πi
0 :=

Pzi
(Ai|A(i−1),X

(i−1)
)

Pzm (Ai,Xi|A(i−1),X
(i−1)

)
,

and π
(i)
0 :=

∏i
j=1 π

j
0(A

(j),X
(j)

). Also,

πm−1
0 :=

Pzm−1
(Am−1|A(m−2),X

(m−2)
)

Pzm (Am−1,Xm−1:m+1|A(m−2),X
(m−2)

)
, and

pi
(m−1)
0 := π

(m−2)
0 × πm−1

0 , where Xm−1:m+1 :=
{Xm−1, Xm, Xm+1}. For all i = 1, 2, · · · ,m − 1, we
will use πi(W(i),C(i),X(i)) > 0 and µi and µi to denote
estimated nuisances.

Now, we construct regression-based (‘REG’), probability
weighting (‘PW’), and double/debiased machine learning
(‘DML’) estimators:

Definition 12 (AC-gMTI estimators). Let Di denote sam-
ples following Prand(Zi)(V) for i = 1, 2, · · · ,m. For a fixed
zi ∈ DZi

, let Dzi denote the subsamples of Di such that

Zi = zi. Let µm+1 := Y . Let 1i−1
x := 1x(i−1)(X

(i−1)
).
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Fig. 1a

(TTI)

Case 1 Case 2 Case 3 Case 4

Fig. 1b

(gTTI)

Fig. 2a

(MTI)

Fig. 2b

(gMTI)

Figure 3: AAE Plots for Figs. (1a, 1b, 2a, 2b) for Cases {1,2,3,4} depicted in the Experimental Setup section. The x-axis
and y-axis are the number of samples and AAE, respectively. Plots can be zoomed in.

Then {REG, PW, DML} estimators are defined as:

T reg := EDz1

[
µ2(A1, x1))

]
,

T pw := EDzm

[
π(m−1)(A(m−1),X)1x(X)Y

]
,

T dml :=

m∑
i=2

EDzi

[
π(i−1)

1
i−1
x {µi+1 − µi}

]
+ EDz1

[
µ2

]
.

We assume that nuisances can be estimated L2 consistently.

Assumption 11 (L2 consistency of nuisances). Estimated
nuisances {µi}mi=2 and {πi}m−1

i=1 are L2 consistent; specifi-
cally,

∥µi+1 − µi+1
0 ∥Pzi

= oPzi
(1), ∀i ∈ {1, 2, · · · ,m− 1}

∥µi − µi
0∥Pzi

= oPzi
(1), ∀i ∈ {2, · · · ,m}

∥πi − πi∥Pzi+1
= oPzi+1

(1), ∀i ∈ {1, · · · ,m− 1}.

Theorem 8 (Error analysis of the AC-gMTI estimators).
Under Assumptions (2,10,11) and AC-gMTI in Def. 10, the
errors of the estimators in Def. 12, denoted ϵest := T est −
E [Y |do(x)] for est ∈ {reg, pw, dml}, are:

ϵreg = R1 +OPz1
(∥µ1 − µ1

0∥),

ϵpw = Rm +OPzm
(∥π(m−1) − π

(m−1)
0 ∥),

ϵdml =

m∑
i=1

Ri +

m∑
i=2

OPzi
(∥µi − µi

0∥∥πi−1 − πi−1
0 ∥),

where Ri is a variable such that
√
niRi converges in dis-

tribution to a zero-mean normal random variable, where
ni := |Di| for i ∈ {1, · · · ,m}.

We highlight that the DML estimator T dml in Def. 12
exhibits robustness property since the error ϵdml is
bounded in probability at a rate OPzi

(n−1/2) (for n =

min{n1, n2, · · · , nm}) rate whenever ∥µi − µi
0∥Pzi

=

OPzi
(n−1/4) and ∥πi−1 − πi−1

0 ∥Pzi
= OPzi

(n−1/4). Fur-
thermore, the DML estimator displays the following multi-
ply robustness property:

Corollary 8 (Multiply robustness of the DML estimators
(Corollary of Thm. 8)). Suppose Assumptions (2,10,11) and
AC-gMTI in Def. 10 hold. For i = 2, · · · ,m− 1, suppose
either πi−1 = πi−1

0 or µi = µi
0. Then, T dml in Def. 12 is

an unbiased estimator of E [Y |do(x)].

5. Experiments
In this section, we demonstrate the proposed estimators in
Defs. (3,6) for combining two experiments and those in
Defs. (9,12) for combining multiple experiments. We first
compared the estimators on synthetic data. The synthetic
data analysis provided evidence of fast convergence and
doubly robustness behaviors of the proposed estimators. We
then applied the estimators on a real-world dataset Project
STAR (Krueger & Whitmore, 2001; Schanzenbach, 2006).

We will use the notations T est(x) for est ∈ {reg, pw, dml}

8
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to represent the estimators {REG,PW,DML} for the joint
treatment effects E [Y |do(x)]. To assess the quality of each
estimator est ∈ {reg, pw, dml}, we compute the average ab-
solute error (AAE) as AAEest = 1

|DX|
∑

x∈DX
|T est(x)−

E [Y |do(x)] |, where |DX| is the cardinality of DX. The
box plots for AAE values for each estimator are referred
to as “AAE-plots”. We used XGBoost (Chen & Guestrin,
2016) to estimate nuisances.

5.1. Sythetic Dataset Analysis

Experimental Setup. We ran 100 simulations for each
N = {2000, 4000, 6000, 8000, 10000} where N is the sam-
ple size. We measure the AAEest for each four scenarios:
(Case 1) there were no noises nor misspecification in es-
timating nuisances; (Case 2); The ‘converging noise’ ϵ,
decaying at a N−α rate (i.e., ϵ ∼ Normal(N−α, N−2α))
for α = 1/4, was added in estimating nuisances; (Case
3) Nuisances {µi}mi=2 are wrongly estimated; (Case 4)
{πi}m−1

i=1 are wrongly estimated. Case 2 is a scenario to
highlight fast convergence property of the DML estima-
tor implied in Thms. (2,4,6,8) where T dml converges faster
(n−1/2-rate) when other estimators T reg, T pw converge at
n−1/4-rate. Cases {3,4} are designed to exhibit doubly ro-
bustness property of T dml formalized in Corolaries (2,4,6,8).
Details of the experiments are provided in Appendix E.

Experimental Results. The AAE plots for all cases are
presented in Fig. 3. All {DML, REG, IPW} estimators con-
verges in Case 1 as the sample size grows. In Case 2 where
the estimated nuisances are controlled to converge at n−1/4

rate, the DML estimators T dml outperform the other two es-
timators by achieving a fast convergence. This result corrob-
orates the robustness property in Thms. (2,4,6,8). In Cases
(3,4) where the estimated nuisances for {µi}mi=2 or {πi}m−1

i=1

are wrongly specified, the DML estimator T dml converges
while other estimators fail to converge. This result corro-
brates the doubly robustness property in Coros. (2,4,6,8).

5.2. Project STAR Dataset

This section provides an overview of the analysis conducted
on the Project STAR dataset. The detailed procedures
and results can be found in Appendix D. Project STAR
investigated the impact of teacher/student ratios on aca-
demic achievement for students in kindergarten through
third grade. The dataset, denoted as D, includes variables
such as class size for kindergarten (X1), academic out-
come in kindergarten (W ), class size for third grade (X2),
academic outcome in third grade (Y ), and pre-treatment
variables (C). Project STAR is a longitudinal experimen-
tal study, with samples for the variables {C,X1,W} fol-
lowing a distribution Prand(X1)(C,X1,W ) and samples for
the variables {C,X1,W,X2, Y } following a distribution
Prand(X1,X2)(C,X1,W,X2, Y ). We assume that the SCM

X1

X2

W

Y

C

(a) Graph (b) AAE Plot

Figure 4: A graph and the AAE-plot for Project STAR.

M generating D induces a causal graph in Figure 4a.

Experimental Setup. To simulate Task TTI, we generate
two datasets D1 and D2 from the original dataset D. D1

is a random subsample of D with only {C,X1,W} and
follows Prand(X1)(C,X1,W ). D2 is constructed by resam-
pling from D in a way that the confounding bias between
X1 and W presents, following Prand(X2)(C,X1,W,X2, Y ).
We conducted 100 simulations by generating new instances
of D1 and D2 to create the AAE plot. Estimators were con-
structed solely from D1 and D2, with D used exclusively to
construct the ground-truth estimate. In this empirical study,
we aim to study E [Y |do(x1, x2)].

Experimental Results. We evaluated the AAEest of esti-
mators T est for est ∈ {reg, pw, dml}. The AAE plot is in
Fig. 4b. Our findings indicate that the proposed estimators,
especially T reg and T dml, consistently provided reliable es-
timates for the ground-truth quantity. Finally, additional
simulations in Appendix D demonstrated the fast conver-
gence and doubly robustness properties of T dml.

6. Conclusions
We proposed a set of identification conditions for estimat-
ing joint causal effects E [Y |do(x)] by combining multiple
marginal experiments (Thms (1,3,5,7)). Next, we devel-
oped corresponding estimators (Defs (3,6,9,12)) that are
robust to model misspecification and slow convergence in
learning nuisance (Thms (2,4,6,8) and Coros (2,4,6,8)) for
Tasks (TTI,gTTI,MTI,gMTI). Our experimental results cor-
roborate theories. We hope this work can help data scientists
to estimate joint treatment effects from multiple experiments
in a more principled and efficient manner.
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A. Preliminaries

In this section, we present the preliminary concepts and notation used in this paper. Let W and X be sets of variables that
are subsets of V, which are induced from the structural causal model (SCM)M. Given a realization x of X, we denote
W(x) as the counterfactual W under the hypothetical scenario where X takes the value x. In other words, W(x) represents
a random vector generated by the submodelMx.

A.1. The Axioms of Structural Counterfactuals

Definition A.1 (The Axioms of Structural Counterfactuals (Pearl, 2000, Chapter 7.3.1)). For any three sets of endogenous
variables X,Y,W in a causal model and x,w ∈ DX,W, the following holds:

• Composition: W(x) = w =⇒ Y(x,w) = Y(x).

• Effectiveness: X(w,x) = x.

• Reversibility: Y(x,w) = y and W(x,y) = w =⇒ Y(x) = y.

Theorem A.1 (Soundness and Completeness of the Axioms (Pearl, 2000, Theorems {7.3.3, 7.3.6})). The Axioms of
structural counterfactuals in Def. A.1 are sound and complete for all causal models.

Remark 1 ((Pearl, 2000, page 230)). In the recursive (acyclic) system, Reversibility is followed from Composition. Therefore,
Composition and Effectiveness are sound and complete.

Definition A.2 (Potential Response, Counterfactuals (Pearl, 2000, Def. 7.1.4)). Let (X,Y) ⊆ V generated by the SCM
M. The counterfactual of Y at x, denoted Y(x), is the variable Y induced by the submodelMx.

In this section, we will use Prand(X)(V) := {P (V(x))}x∈DX
to denote a collection of counterfactual distributions P (V(x))

over all possible realizations x ∈ DX. We will denote the density of P as p.

B. Identification based on Potential Outcome Framework

In this section, we introduce more results on identifying causal effects. For x ∈ DX, we use (W\X)(x) to denote the
counterfactual of W\X at x. We use (w\x)(x) to denote its realization.

B.1. Treatment-Treatment Interaction based on Potential Outcome Framework

We present a sufficient identification criterion for estimating treatment-treatment interactions using potential outcome
frameworks based on two marginal experiments.

Definition B.1 (Adjustment criterion for treatment-treatment-interaction – Potential Outcome (AC-TTI-PO)). A set of
variables {C1,W} is said to satisfy the adjustment criterion for treatment-treatment interaction (AC-TTI) w.r.t. discrete treat-
ments (X1, X2) and the outcome Y from two sets of distributions Prand(X1)(C1, X1,W ) and Prand(X2)(C1, X1,W,X2, Y )

if

1. W (x1, x2) = W (x1), C1(x1, x2) = C1(x1); i.e., the outcome W and the covariate C1 is invariant of the second
intervention X2 = x2.

2. Y (x1, x2) ⊥⊥ X1(x2)|W1(x1, x2), C1(x1, x2); i.e., the first intervention X1 = x1 is non-informative to the joint
experimental outcome Y (x1, x2) given covariates C1(x1, x2) and the first outcome W (x1, x2).

The treatment-treatment interaction can be identified as follow:

Theorem B.1 (Identification through AC2-TTI-PO). Suppose the condition AC-TTI-PO in Def. B.1 holds. For any fixed
x1, x2 ∈ DX1,X2 , define P 1 := Px1 ∈ Prand(X1) and P 2 := Px2 ∈ Prand(X2). Assume the following positivity condition
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holds for ∀x1, x2, w, c1 ∈ DX1,X2,W,C1
:

p2(w, c1)

p2(w, c1)
p2(X1 = x1|w, c1) > 0. (B.1)

Then, the query E [Y (x1, x2)] is identifiable from two distributions P 1, P 2 and given as follow:

E [Y (x1, x2)] = EP 1 [EP 2 [Y |W,C1, X1 = x1]] . (B.2)

Proof of Theorem B.1.

E [Y (x1, x2)] = E [E [Y (x1, x2)|W (x1, x2), C1(x1, x2)]]

1
= E [E [Y (x1, x2)|W (x1, x2), C1(x1, x2), X1(x2) = x1]]

2
= E [E [Y (x1, x2)|W (x1), C1(x1), X1(x2) = x1]]

3
= E [E [Y (x2)|W (x1), C1(x1), X1(x2) = x1]]

4
= EP 1 [E [Y (x2)|W,C1, X1(x2) = x1]] ,

where

• 1
= holds by the given condition that Y (x1, x2) ⊥⊥ X1(x2)|W (x1, x2), C1(x1, x2) and the positivity
P (X1(x2) = x1|W (x1, x2), C1(x1, x2)) > 0 for any x1, x2. To witness, it suffices to show that
pX1(x2)|W (x1,x2),C1(x1,x2)(x1|w, c1) > 0.

pX1(x2)|W (x1,x2),C1(x1,x2)(x1|w, c1)

=
pX1(x2),W (x1,x2),C1(x1,x2)(x1, w, c1)

pW (x1,x2),C1(x1,x2)(w, c1)

1a
=

pX1(x2),W (x1,x2),C1(x1,x2)(x1, w, c1)

pW (x1),C1(x1)(w, c1)

1b
=

pX1(x2),W (x2),C1(x2)(x1, w, c1)

pW (x1),C1(x1)(w, c1)

=
pX1(x2),W (x2),C1(x2)(x1, w, c1)

pW (x1),C1(x1)(w, c1)

pW (x2),C1(x2)(w, c1)

pW (x2),C1(x2)(w, c1)

=
pW (x2),C1(x2)(w, c1)

pW (x1),C1(x1)(w, c1)
pX1(x2)|W (x2),C1(x2)(x1|w, c1)

=
p2W,C1

(w, c1)

p1W,C1
(w, c1)

p2X1|W,C1
(x1|w, c1)

1c
> 0,

where

– 1a
= holds by the first condition of the AC-TTI-PO in Def. B.1, stating that W (x1, x2) = W (x1) and C1(x1, x2) =

C1(x1).

– 1b
= holds by the Composition axiom in Def. A.1. Specifically, X1(x2) = x1 implies W (x1, x2) = W (x2) and
C1(x1, x2) = C1(x2).

–
1c
> holds by the given assumption.

• 2
= holds since W (x1, x2) = W (x1) and C1(x1, x2) = C1(x1) by the first condition of the AC-TTI-PO in Def. B.1.
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• 3
= holds by the Composition axiom in Def. A.1. Specifically, X1(x2) = x1 implies Y (x1, x2) = Y (x2).

• 4
= by the definition of P 1.

We note that E [Y (x2)|W (x1), C1(x1), X1(x2) = x1] is estimable from P 2(Y |W,C1, X1) since

P 2(Y |W,C1, X1 = x1)
5
= P (Y (x2)|W (x2), C1(x2), X1(x2) = x1)

6
= P (Y (x2)|W (x1, x2), C1(x1, x2), X1(x2) = x1)

7
= P (Y (x2)|W (x1), C1(x1), X1(x2) = x1),

where

• 5
= holds by the definition of P 2.

• 6
= holds since W (x1, x2) = W (x2) and C1(x1, x2) = C1(x2) when X1(x2) = x1 by Composition axiom in Def. A.1.

• 7
= holds by the first condition of the AC-TTI-PO in Def. B.1, stating that W (x1, x2) = W (x1) and C1(x1, x2) =

C1(x1).

Therefore,

EP 1 [E [Y (x2)|W,C1, X1(x2) = x1]] = EP 1 [EP 2 [Y |W,C1, X1 = x1]] .

B.2. Combining Two Experiments based on Potential Outcome Framework

We provide an adjustment criterion based on potential outcome frameworks for combining two experiments as follow:

Definition B.2 (Adjustment criterion for combining two experiments – Potential Outcome (AC2-PO)). A set of
variables A is said to satisfy the adjustment criterion (AC2) w.r.t discrete treatments X and the outcome Y from two sets of
distributions Prand(Z1)(A) and Prand(Z2)(A,X, Y ) if

1. A(x) = A(z1); i.e., Z1 ⊆ X and X\Z1 is causally irrelevant to A given Z1;

2. Z2 ⊆ X and Y (x) ⊥⊥ (X\Z2)(z2)|A(x).

Under Def. B.2, the causal effect is identified as follows:

Theorem B.2 (Identification through AC2-PO). Suppose the condition AC2-PO in Def. B.2 holds. Let

P 1(A) := P (A(z1))

P 2(Y,X\Z2,A) := P (Y (z2), (X\Z2)(z2),A(z2)),

and p1, p2 are densities for distributions P 1, P 2. Assume the following positivity condition:

p2(a)

p1(a)
p2(X\Z2 = x\z2|a), ∀x,a ∈ X ×A. (B.3)

Then, the query E [Y (x)] is identifiable from two distributions P 1, P 2 and given as follow:

E [Y (x)] = EP 1 [EP 2 [Y |A,x\z2]] . (B.4)
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Proof of Theorem B.2.

E [Y (x)] = E [E [Y (x)|A(x)]]

1
= E [E [Y (x)|A(x), (X\Z2)(z2) = x\z2]]
2
= E [E [Y (x)|A(z1), (X\Z2)(z2) = x\z2]]
3
= E [E [Y (z2)|A(z1), (X\Z2)(z2) = x\z2]]
4
= EP1

[E [Y (z2)|A, (X\Z2)(z2) = x\z2]] ,

where

• 1
= holds since Y (x) ⊥⊥ (X\Z2)(z2)|A(x), and the positivity P ((X\Z2)(z2)|A(x)) > 0 for any x. To witness, it
suffices to show that p(X\Z2)(z2)|A(x)(x\z2|a) > 0.

p(X\Z2)(z2)|A(x)(x\z2|a) =
pX\Z2,A(x)(x\z2,a)

pA(x)(a)

1a
=

p(X\Z2)(z2),A(x)(x\z2,a)
pA(z1)(a)

1b
=

p(X\Z2)(z2),A(z2)(x\z2,a)
pA(z1)(a)

=
p(X\Z2)(z2),A(z2)(x\z2,a)

pA(z1)(a)

pA(z2)(a)

pA(z2)(a)

=
pA(z2)(a)

pA(z1)(a)
p(X\Z2)(z2)|A(z2)(x\z2|a)

=
p2(a)

p1(a)
p2(x\z2|a)

1c
> 0,

where

– 1a
= holds by the first condition of the AC2-PO in Def. B.2, stating that A(x) = A(z1).

– 1b
= holds by the Composition axiom in Def. A.1. Specifically, (X\Z2)(z2) = x\z2 implies A(x) = A(z2).

–
1c
> holds by the given assumption.

• 2
= holds since A(x) = A(z2).

• 3
= holds by the Composition axiom in Def. A.1. Specifically, (X\Z2)(z2) = x\z2 implies Y (x) = Y (z2).

• 4
= holds by the definition of P 1.

We note that E [Y (z2)|A(z1), (X\Z2)(z2) = x\z2] is estimable from P2(Y |A,X\Z2) since

P2(Y |A,X\Z2 = x\z2)
5
= P (Y (z2)|A(z2), (X\Z2)(z2) = x\z2)
6
= P (Y (z2)|A(x), (X\Z2)(z2) = x\z2)
7
= P (Y (z2)|A(z1), (X\Z2)(z2) = x\z2),

where

• 5
= holds by the definition.
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• 6
= holds since A(x) when (X\Z2)(z2) = x\z2 by Composition axiom in Def. A.1.

• 7
= holds since A(z1) = A(x).

Therefore,

EP 1 [E [Y (x2)|A, (X\Z2)(z2) = x\z2]] = EP 1 [EP 2 [Y |A,x\z2]] .

B.3. Multiple Treatment Interaction based on Potential Outcome Framework

We first provide a sufficient identification criterion based on potential outcome frameworks for estimating multiple treatment
interaction from multiple marginal experiments.

Definition B.3 (Adjustment Criterion for MTI – Potential Outcome (AC-MTI-PO)). A set of variables {C,W} is said
to satisfy the adjustment criterion for multiple treatment interaction (AC-MTI-PO) w.r.t. discrete treatments x = {xi}mi=1

and the outcome Y from multiple distributions {Pxi(V)}mi=1 if

1. Wi(x) = Wi(x
(i)), Ci(x) = Ci(x

(i)) for i = 1, 2, · · · ,m − 1; i.e., the ith joint outcome Wi(x) and the covariate
Ci(x) are invariant to the next interventions Xi+1, · · · , Xm.

2. For all i = 1, 2, · · · ,m − 1, Xi = Xi(x
(i+1:k)), ∀k ∈ {i + 1, · · · ,m}; i.e., Xi is invariant to any intervention

Xk = xk for k > i.

3. Y (x) ⊥⊥ Xi|C(i)(x),X(i−1),W(i)(x) for i = 1, 2, · · · ,m − 1; i.e., the ith intervention Xi = xi is non-
informative to the joint outcome Y (x) given the ith outcome Wi(x), covariate Ci(x) and previous observations
X(i−1),W(i−1),C(i−1).

Under Def. B.3, the causal effect E
[
Y (x)|A(i−1)(x),X(i−1)

]
for i = 1, 2, · · · ,m− 1 can be expressed in a recursive form

as follow:

Lemma B.1. Suppose the condition AC-MTI-PO in Def. B.3 holds. Let Ai := {Wi, Ci}. Assume the following positivity
condition holds: For i = 1, 2, · · · ,m− 1

pXi|A(i)(x),X(i−1)(xi|a(i),x(i−1)) > 0, ∀a,x ∈ DA,X. (B.5)

Then,

E
[
Y (x)

∣∣∣∣A(i−1)(x),X(i−1)

]
= E

[
E
[
Y (x)|A(i)(x), Xi = xi,X

(i−1)
] ∣∣A(i−1)(x),X(i−1)

]
,

where A0 := ∅ and X0 := ∅.

Proof of Lemma B.1.

E
[
Y (x)

∣∣∣∣A(i−1)(x),X(i−1)

]
1
= E

[
E
[
Y (x)

∣∣∣∣A(i)(x),X(i−1)

] ∣∣∣∣A(i−1)(x),X(i−1)

]
2
= E

[
E
[
Y (x)

∣∣∣∣A(i)(x), Xi = xi,X
(i−1)

] ∣∣∣∣A(i−1)(x),X(i−1)

]
,

where

• 1
= holds by marginalizing over Ai(x).

18



Estimating Joint Treatment Effects by Combining Multiple Experiments

• 2
= holds by the condition in the AC-MTI-PO; i.e., Y (x) ⊥⊥ Xi|A(i)(x),X(i−1) for i = 1, 2, · · · ,m− 1, and the given
positivity condition in Eq. (B.5).

Corollary B.1 (Corollary of Lemma B.1). Suppose the condition AC-MTI-PO in Def. B.3 holds. Let Ai := {Wi, Ci}.
Assume the positivity condition given in Eq. (B.5). Let

νi0(A
(i−1)(x),X(i−1)) := E

[
Y (x)|A(i−1)(x),X(i−1)

]
, for i = m,m− 1, · · · , 2.

Then,

νi0(A
(i−1)(x),X(i−1)) = E

[
νi+1
0 (A(i)(x), xi,X

(i−1))
∣∣∣A(i−1)(x),X(i−1)

]
for i = m− 1, · · · , 2,

where A0 := ∅ and X0 := ∅. Furthermore,

E [Y (x)] = E
[
ν20(A

(1)(x), x1)
]
.

Proof of Corollary B.1. We first note that the equations

νi0(A
(i−1)(x),X(i−1)) := E

[
Y (x)|A(i−1)(x),X(i−1)

]
, for i = m,m− 1, · · · , 2,

is immediately followed by Lemma B.1. Therefore, it only suffices to show the following:

E [Y (x)] = E
[
ν20(A

(1)(x), x1)
]
.

To witness,

E [Y (x)] = E
[
E
[
Y (x)|A(1)(x)

]]
= E

[
E
[
Y (x)|A(1)(x), X1 = x1

]]
= E

[
ν20(A

(1)(x), x1)
]
,

where the second equation holds by the condition in the AC-MTI-PO; i.e., Y (x) ⊥⊥ Xi|A(i)(x),X(i−1) for i =

1, 2, · · · ,m− 1, and the given positivity condition in Eq. (B.5).

Lemma B.2. Suppose the condition AC-MTI-PO in Def. B.3 holds. Let Ai := {Wi, Ci}. Assume the positivity condition
given in Eq. (B.5). For i = m, · · · , 1, and

νi0(A
(i−1)(x),X(i−1)) := E

[
Y (x)|A(i−1)(x),X(i−1)

]
.

For i = 1, 2, · · · ,m, let P i denote a distribution defined as follow:

P i(W(i),C(i),X(i)) := P (W(i)(xi),C
(i)(xi),X

(i)(xi)),

and p1, · · · , pm−1 are densities for distributions P 1, · · · , Pm. Let

µm
0 (A(m−1),X(m−1)) := EPm

[
Y |A(m−1),X(m−1)

]
,
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and for i = m− 1, · · · , 1,

µi
0(A

(i−1),X(i−1)) := EP i

[
µi+1
0 (A(i), xi,X

(i−1))
∣∣∣A(i−1),X(i−1)

]
.

Then, for i = m, · · · , 1,

µi
0(A

(i−1)(x),x(i−1)) = νi0(A
(i−1)(x),x(i−1)).

Proof of Lemma B.2. We first show that

µm
0 (A(m−1),x(m−1)) = νm0 (A(m−1)(x),x(m−1)).

To witness,

νm0 (A(m−1)(x),x(m−1)) := E
[
Y (x)

∣∣A(m−1)(x),X(m−1) = x(m−1)
]

1
= E

[
Y (x)

∣∣A(m−1)(x),X(m−1)(xm) = x(m−1)
]

2
= E

[
Y (xm)|A(m−1)(x),X(m−1)(xm) = x(m−1)

]
3
= E

[
Y (xm)|A(m−1)(xm),X(m−1)(xm) = x(m−1)

]
= EPm

[
Y |A(m−1),X(m−1) = x(m−1)

]
=: µm

0 (A(m−1),x(m−1)),

where

• 1
= holds since X(m−1)(xm) = X(m−1) by the condition of the AC-MTI-PO in Def. B.3 stating that treatment variables
are invariant to the next interventions.

• 2
= holds since

X(m−1)(xm) = x(m−1) =⇒ Y (x) = Y (x(m−1), xm) = Y (xm),

by Composition axiom in Axiom A.1.

• 3
= holds since

X(m−1)(xm) = x(m−1) =⇒ A(m−1)(x) = A(m−1)(x(m−1), xm) = A(m−1)(xm),

by Composition axiom in Axiom A.1.

We now make an induction hypothesis as follow: For any given i ∈ {2, · · · ,m− 1} suppose the following holds:

µi+1
0 (A(i),x(i)) = νi+1

0 (A(i)(x),x(i)).
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Then,

νi0(A
(i−1)(x),x(i−1))

4
= E

[
νi+1
0 (A(i)(x), xi,X

(i−1))
∣∣A(i−1)(x),X(i−1) = x(i−1)

]
= E

[
νi+1
0 (A(i)(x),x(i))

∣∣A(i−1)(x),x(i−1)
]

5
= E

[
µi+1
0 (A(i),x(i))

∣∣A(i−1)(x),x(i−1)
]

6
= E

[
µi+1
0 (A(i)(xi),x

(i))
∣∣A(i−1)(xi),x

(i−1)(xi)
]

= EP i

[
µi+1
0 (A(i),x(i))|A(i−1),x(i−1)

]
= µi

0(A
(i−1),x(i−1)),

where

• 4
= implies from Corollary B.1.

• 5
= because of the induction hypothesis.

• 6
= holds because X(i−1) = X(i−1)(xi) by the Composition Axiom in Def. A.1, and

X(i−1)(xi) = x(i−1) =⇒ A(i−1)(x) = A(i−1)(x(i−1)) = A(i−1)(X(i−1)(xi) = x(i−1), xi) = A(i−1)(xi)

by applying the Composition Axiom in Def. A.1.

This proves that, for i = m,m− 1, · · · , 1,

µi
0(A

(i−1),x(i−1)) = νi0(A
(i−1)(x),x(i−1)).

Theorem B.3 (Identification through AC-MTI-PO). Suppose the condition AC-MTI-PO in Def. B.3 holds. For i =

1, 2, · · · ,m, let P i denote a distribution defined as follow:

P i(W(i),C(i),X(i)) := P (W(i)(xi),C
(i)(xi)),X

(i)(xi)),

and p1, · · · , pm−1 are densities for distributions P 1, · · · , Pm. Assume the following positivity condition holds: For all
i = 1, 2, · · · ,m− 1

pi+1(wi, ci|w(i−1), c(i−1),x(i−1))

pi(wi, ci|w(i−1), c(i−1),x(i−1))
pi+1(Xi = xi|w(i), c(i),x(i−1)) > 0; ∀w, c,x ∈ DW,C,X. (B.6)

Then, the query E [Y (x)] is identifiable from distributions P 1, · · · , Pm, and given as follow: Let

µm
0 (A(m−1),X(m−1)) := EPm

[
Y |A(m−1),X(m−1)

]
,

and for i = m− 1,m− 2, · · · , 2,

µi
0(A

(i−1),X(i−1)) := EP i

[
µi+1
0 (A(i), xi,X

(i−1))|A(i−1),X(i−1)
]
.

Then,

E [Y (x)] = EP 1

[
µ2
0(A

(1),x(1))
]
.
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Proof of Theorem B.3. Suppose the positivity condition in Eq. (B.5) is equivalent to the condition in Eq. (B.6). Then,
Theorem B.3 is implied by Lemmas (B.1, B.2) and Corollary B.1.

The equivalence between Eq. (B.5) and Eq. (B.6) are the following. We will use Ai := {Wi, Ci}. Then,

pXi|A(i)(x),X(i−1)(xi|a(i),x(i−1))

=
pXi,Ai(x)|A(i−1)(x),X(i−1)(xi, ai|a(i−1),x(i−1))

pAi(x)|A(i−1)(x),X(i−1)(ai|a(i−1),x(i−1))

=
pXi(xi+1),Ai(xi+1)|A(i−1)(xi+1),X(i−1)(xi+1)(xi, ai|a(i−1),x(i−1))

pAi(xi)|A(i−1)(xi),X(i−1)(xi)(ai|a(i−1),x(i−1))

=
pXi(xi+1),Ai(xi+1)|A(i−1)(xi+1),X(i−1)(xi+1)(xi, ai|a(i−1),x(i−1))

pAi(xi)|A(i−1)(xi),X(i−1)(xi)(ai|a(i−1),x(i−1))

pAi(xi+1)|A(i−1)(xi+1),X(i−1)(xi+1)(ai|a
(i−1),x(i−1))

pAi(xi+1)|A(i−1)(xi+1),X(i−1)(xi+1)(ai|a(i−1),x(i−1))

=
pAi(xi+1)|A(i−1)(xi+1),X(i−1)(xi+1)(ai|a

(i−1),x(i−1))

pAi(xi)|A(i−1)(xi),X(i−1)(xi)(ai|a(i−1),x(i−1))
pXi(xi+1)|A(i)(xi+1),X(i−1)(xi+1)(xi|a(i),x(i−1))

=
pi+1(wi, ci|w(i−1), c(i−1),x(i−1))

pi(wi, ci|tw(i−1), c(i−1),x(i−1))
pi+1(Xi = xi|w(i), c(i),x(i−1)).

B.4. Combining Multiple Experiments based on Potential Outcome Framework

We provide an adjustment criterion based on potential outcome frameworks for combining two experiment as follow:

Definition B.4 (Adjustment criterion for combining multiple experiments – Potential Outcome (AC-gMTI-PO)).
Let X := {X1, · · · , Xmx

} and Y denote an ordered treatments and outcome variables. Let Z := {Z1, · · · , Zm} ⊆ X

denote the subset of treatments. Let {ℓi}mi=1 ⊆ {1, 2, · · · ,mx} denote the index of Z; i.e., Z = {Xℓ1 , · · · , Xℓm}.
Let X1 := {Xj}j≤ℓ1 , Xm+1 := {Xj}j>ℓm , and Xi := {Xj}ℓi−1<j≤ℓi for i = 2, 3, · · · ,m. A set of topologically
ordered variables A := {A1,A2, · · · ,Am} is said to satisfy the adjustment criterion for combining multiple experiments

(AC-gMTI-PO) w.r.t. treatments x = {xi}mx
i=1 and the outcome Y from multiple distributions {Pzi(A

(i),X
(i)
)}mi=1 if

1. Ai(x) = Ai(z
(i)) for i = 1, 2, · · · ,m− 1 and Xi(zj) = Xi for all i.j ∈ {1, 2, · · · ,m} where i ≤ j.

2. Y (x) ⊥⊥ Xi|A(i)(x),X
(i−1)

for i = 1, 2, · · · ,m− 1

3. Y (x) ⊥⊥ {Xm\Zm, Xm+1(zm)}|A(m−1)(x),X
(m−1)

.

We first note that the causal effect E [Y (x)] can be represented in a recursive form as follow:

Lemma B.3. Suppose the condition AC-gMTI-PO in Def. B.4 holds. Assume the following positivity condition holds: For
∀xm, xm+1,a

(m−1),x(m−1) ∈ D
Xm,Xm+1,A(m−1),X

(m−1) ,

p
Xm\Zm,Xm+1(zm)|A(m−1)(x),X

(m−1)(xm\zm, xm+1|a(m−1),x(m−1)) > 0, (B.7)

and for i = 1, 2, · · · ,m− 1

p
Xi|A(i)(x),X

(i−1)(xi|a(i),x(i−1)) > 0, ∀a(i),x(i) ∈ A(i) ×X (i). (B.8)

Let

νm0 (A(m−1)(x),x\zm) := E
[
Y (x)|A(m−1)(x), (X\Zm)(zm) = x\zm

]
νm−1
0 (A(m−2)(x),x(m−2)) := E

[
νm0 (A(m−1)(x),x\zm)

∣∣∣A(m−2)(x),x(m−2)
]
,
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and for i = m− 2, · · · , 2,

νi0(A
(i−1)(x),x(i−1)) := E

[
νi+1
0 (A(i)(x),x(i))

∣∣∣A(i−1)(x),x(i−1)
]
.

Then,

E [Y (x)] = E
[
ν2(A1(x), x1)

]
.

Proof of Lemma B.3. Let

ηi+1
0 (A(i)(x),x(i)) := E

[
Y (x)|A(i)(x),x(i)

]
, for i = 1, 2, · · · ,m− 1.

Then, the causal effect can be written as

E [Y (x)] = E
[
η20(A1(x), x1)

]
,

since

E [Y (x)] = E [E [Y (x)|A1(x)]] = E [E [Y (x)|x1, A1(x)]] = E
[
η2(A1(x), x1)

]
,

where the second equation holds since Y (x) ⊥⊥ Xi|A(i)(x),X
(i−1)

for i = 1, 2, · · · ,m− 1 by Def. B.4 and the positivity
condition in Eq. (B.8).

We will show the following:

ηm0 (A(m−1)(x),x(m−1)) = νm0 (A(m−1)(x),x\zm)

ηi+1
0 (A(i)(x),x(i)) = νi+1

0 (A(i)(x),x(i)) for i = m− 2, · · · , 1.

First equation can be witnessed by

ηm0 (A(m−1)(x),x(m−1)) = E
[
Y (x)|A(m−1)(x),x(m−1)

]
2
= E

[
Y (x)|A(m−1)(x),x(m−1), {Xm\Zm = xm\zm, Xm+1(zm) = xm+1}

]
3
= E

[
Y (x)|A(m−1)(x), (X\Zm)(zm) = x\zm

]
,

= νm0 (A(m−1)(x),x\zm),

where

• 2
= holds by Y (x) ⊥⊥ {Xm\Zm, Xm+1(zm)}|A(m−1)(x),X

(m−1)
in Def. B.4 and the positivity condition in Eq. (B.7).

• 3
= holds since Xi(zj) = Xi for all i, j, as given in Def. B.4.
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The second equation can be witnessed as follow:

ηm−1
0 (A(m−2)(x),x(m−2)) := E

[
Y (x)

∣∣∣A(m−2)(x),x(m−2)
]

= E
[
E
[
Y (x)|A(m−1)(x),x(m−2)

] ∣∣∣A(m−2)(x),X
(m−2)

]
4
= E

[
E
[
Y (x)|A(m−1)(x),x(m−1)

] ∣∣∣A(m−2)(x),x(m−2)
]

= E
[
ηm0 (A(m−1)(x),x(m−1))

∣∣∣A(m−2)(x),x(m−2)
]

5
= E

[
νm(A(m−1)(x),x(m−1))

∣∣∣A(m−2)(x),x(m−2)
]

= νm−1
0 (A(m−2)(x),x(m−2)),

where

• 4
= holds since Y (x) ⊥⊥ Xi|A(i)(x),X

(i−1)
for i = 1, 2, · · · ,m − 1 by Def. B.4 and the positivity condition in

Eq. (B.8).

• 5
= holds since ηm(A(m−1)(x),x(m−1)) = νm0 (A(m−1)(x),x(m−1)).

Now, we make an induction hypothesis as follow: For any i+ 1 ∈ {m− 1 · · · , 3}, suppose the following holds:

ηi+1
0 (A(i)(x),x(i)) = νi+1

0 (A(i)(x),x(i)).

Then,

ηi0(A
(i−1)(x),x(i−1)) := E

[
Y (x)|A(i−1)(x),x(i−1)

]
= E

[
E
[
Y (x)|A(i)(x),x(i−1)

] ∣∣∣A(i−1)(x),x(i−1)
]

7
= E

[
E
[
Y (x)|A(i)(x),x(i)

] ∣∣∣A(i−1)(x),x(i−1)
]

= E
[
ηi+1
0 (A(i)(x),x(i))

∣∣∣A(i−1)(x),x(i−1)
]

8
= E

[
νi+1
0 (A(i)(x),x(i))

∣∣∣A(i−1)(x),x(i−1)
]

= νi0(A
(i−1)(x),X

(i−1)
, xi\zi),

where

• 7
= holds since Y (x) ⊥⊥ Xi|A(i)(x),X

(i−1)
for i = 1, 2, · · · ,m − 1 by Def. B.4 and the positivity condition in

Eq. (B.8).

• 8
= by induction hypothesis.

Therefore, ηi = νi for all i = 1, 2, · · · ,m. This completes the proof.

Theorem B.4 (Identification through AC-gMTI-PO). Suppose the condition AC-gMTI-PO in Def. B.4 holds. For
i = 1, 2, · · · ,m, let P i denote a distribution defined as follow:

P i(A(i),X
(i)\Zi) := P (A(i)(zi), (X

(i)\Zi)(zi)), for i = 1, 2, · · · ,m− 1

Pm(A(m),X\Zm, Y ) := P (A(m)(zm), (X\Z)(zm), Y (zm)).
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Assume the following positivity condition holds: For ∀xm, xm+1,a
(m−1),x(m−1) ∈ D

Xm,Xm+1,A(m−1),X
(m−1) ,

pm
Xm\Zm,Xm+1|A(m−1),X

(m−1)(xm\zm, xm+1|a(m−1),x(m−1)) > 0, (B.9)

and for i = 1, 2, · · · ,m− 1,

pi+1(ai|a(i−1),x(i−1))

pi(ai|a(i−1),x(i−1))
pi+1(xi|a(i),x(i−1)) > 0, ∀a(i−1),x(i) ∈ X (i) ×A(i−1). (B.10)

Then, the query E [Y (x)] is identifiable from distributions P 1, · · · , Pm, and given as follow: Let

µm
0 (A(m−1),x\zm) := EPm

[
Y |A(m−1),x\zm

]
µm−1
0 (A(m−2),x(m−2)) := EPm−1

[
µm
0 (A(m−1),x\zm)

∣∣∣A(m−2),x(m−2)
]
,

and for i = m− 2, · · · , 2

µi
0(A

(i−1),x(i−1)) := EP i

[
µi+1(A(i),x(i))

∣∣∣A(i−1),x(i−1)
]
.

Then,

E [Y (x)] = EP 1

[
µ2(A1, x1)

]
.

Proof of Theorem B.4. We first show that the positivity conditions in Eqs (B.7, B.8) match with Eqs. (B.9, B.10).

Eq. (B.7) = Eq. (B.9) holds since

Eq. (B.7) = p
(Xm\Zm(zm),Xm+1(zm)|A(m−1)(x),X

(m−1)(xm\zm, xm+1|a(m−1),x(m−1))

= p
(Xm\Zm(zm),Xm+1(zm)|A(m−1)(x(m−1)),X

(m−1)(xm\zm, xm+1|a(m−1),x(m−1))

= p
(Xm\Zm(zm),Xm+1(zm)|A(m−1),X

(m−1)(xm\zm, xm+1|a(m−1),x(m−1))

= p
(Xm\Zm(zm),Xm+1(zm)|A(m−1)(zm),X

(m−1)
(zm)

(xm\zm, xm+1|a(m−1),x(m−1))

= Eq. (B.9).
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Eq. (B.8) = Eq. (B.10) holds since

Eq. (B.8)

=
p
Xi,Ai(x)|A(i−1)(x),X

(i−1)(xi, ai|a(i−1),x(i−1))

p
Ai(x)|A(i−1)(x),X

(i−1)(ai|a(i−1),x(i−1))

=
p
Xi,Ai(z(i))|A(i−1)(z(i−1)),X

(i−1)(xi, ai|a(i−1),x(i−1))

p
Ai(z(i))|A(i−1)(z(i−1)),X

(i−1)(ai|a(i−1),x(i−1))

=
p
Xi,Ai|A(i−1),X

(i−1)(xi, ai|a(i−1),x(i−1))

p
Ai(z(i))|A(i−1),X

(i−1)(ai|a(i−1),x(i−1))

=
p
Xi(zi+1),Ai(zi+1)|A(i−1)(zi+1),X

(i−1)
(zi+1)

(xi, ai|a(i−1),x(i−1))

p
Ai(zi)|A(i−1)(zi),X

(i−1)
(zi),

(ai|a(i−1),x(i−1))

=
p
Xi(zi+1),Ai(zi+1)|A(i−1)(zi+1),X

(i−1)
(zi+1)

(xi, ai|a(i−1),x(i−1))

p
Ai(zi)|A(i−1)(zi),X

(i−1)
(zi),

(ai|a(i−1),x(i−1))
×

p
Ai(zi+1)|A(i−1)(zi+1),X

(i−1)
(zi+1)

(ai|a(i−1),x(i−1))

p
Ai(zi+1)|A(i−1)(zi+1),X

(i−1)
(zi+1)

(ai|a(i−1),x(i−1))

=
p
Ai(zi+1)|A(i−1)(zi+1),X

(i−1)
(zi+1)

(ai|a(i−1),x(i−1))

p
Ai(zi)|A(i−1)(zi),X

(i−1)
(zi)

(ai|a(i−1),x(i−1))
p
Xi(zi+1)|A(i)(zi+1),X

(i−1)
(zi+1)

(xi|a(i),x(i−1))

=
pi+1(ai|a(i−1),x(i−1))

pi(ai|a(i−1),x(i−1))
pi+1(xi|a(i),x(i−1)) =: Eq. (B.10).

Now, it suffices to show that

νm0 (A(m−1)(x),x\zm) = µm
0 (A(m−1)(x),x\zm)

νi+1
0 (A(i)(x),x(i)) = µi+1

0 (A(i),x(i)), for i = m− 2, · · · , 1,

where νi for i = m, · · · , 2 are defined in Lemma B.3.

First,

νm0 (A(m−1)(x),x\zm) := E
[
Y (x)|A(m−1)(x), (X\Zm)(zm) = x\zm

]
= E

[
Y (zm)|A(m−1)(zm), (X\Zm)(zm) = x\zm

]
= EPm

[
Y |A(m−1),x\zm

]
=: µm(A(m−1),x\zm).

Also,

νm−1
0 (A(m−2)(x),x(m−2)) := E

[
νm0 (A(m−1)(x),x\zm)

∣∣∣A(m−2)(x),x(m−2)
]
,

= E
[
µm
0 (A(m−1),x\zm)

∣∣∣A(m−2)(x),x(m−2)
]

= E
[
µm
0 (A(m−1)(z(m−1)),x\zm)

∣∣∣A(m−2)(x),x(m−2)
]

= E
[
µm
0 (A(m−1)(zm−1),x\zm)

∣∣∣A(m−2)(zm−1),X
(m−2)

(zm−1) = x(m−1)
]

= EPm−1

[
µm
0 (A(m−1),x\zm)

∣∣∣A(m−2),x(m−2)
]

=: µm−1
0 (A(m−2),x(m−2)).
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Finally, for i+ 1 ∈ {m− 1, · · · , 3}, suppose

νi+1
0 (A(i)(x),x(i)) = µi+1

0 (A(i),x(i)).

Then,

νi0(A
(i−1)(x),x(i−1)) = E

[
νi+1
0 (A(i)(x),x(i))

∣∣∣A(i−1)(x),x(i−1)
]

= E
[
µi+1
0 (A(i),x(i))

∣∣∣A(i−1)(x),x(i−1)
]

= E
[
µi+1
0 (A(i)(zi),x

(i))
∣∣∣A(i−1)(zi),X

(i−1)
(zi) = x(i−1)

]
= EP i

[
µi+1
0 (A(i),x(i))

∣∣∣A(i−1),x(i−1)
]

= µi
0(A

(i−1),x(i−1)).

C. Proofs

C.1. Preliminaries

Lemma C.1 (Continuous Mapping Theorem for L2(P )). Let Xn, X denote a random sequence defined on a metric
space S. Suppose a function g : S → S′ (where S′ is another metric space) is continuous almost everywhere. Suppose g is
bounded. Then,

Xn
L2(P )→ X =⇒ g(Xn)

L2(P )→ g(X).

Proof of Lemma C.1. We first note that Xn
L2(P )→ X implies Xn

p→ X . Then, by continuous mapping theorem, g(Xn)
p→

g(X). Then,

lim
n→∞

∥g(Xn)− g(X)∥2 = lim
n→∞

∫
X
|g(Xn)− g(X)|2 d[P ]

∗
=

∫
X

lim
n→∞

|g(Xn)− g(X)|2 d[P ] = 0,

where the equation ∗
= holds by dominated convergence theorem in L2(P ) space, which is applicable since g(Xn), g(X) are

bounded functions (from the given condition) and Xn
p→ X .

Lemma C.2 (Asymptotic Unbiasedness implies Consistency). Suppose an estimator TN is asymptotically unbiased to µ;
i.e., EP [TN − µ] → 0 as N → ∞. Suppose an estimator has vanishing variance; i.e., var(TN ) → 0 as N → ∞. Then,
TN is a consistent estimator of µ.

Proof of Lemma C.2. By Markov inequality,

P (|TN − µ| > ϵ) = P ((TN − µ)2 > ϵ2) ≤ EP

[
(TN − µ)2

]
/ϵ2.

Also, for µN := EP [TN ],

EP

[
(TN − µ)2

]
≤ 2EP

[
(TN − µN )2

]
+ 2(µN − µ)2

= 2VP [TN ] + 2(µN − µ)2

→ 0.

where var(TN ) + (µN − µ) → 0 by the given assumptions that var(TN ) → 0 and EP [TN − µ] = µN − µ → 0 as
N →∞.
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Lemma C.3 (Decomposition (Kennedy et al., 2020, Lemma 2)). Let fη ≡ f(V; η) denote a finite and continuous
functional and η denote its nuisances. For some samples D ∼ P , let T ≡ ED [fη]. Let θ0 ≡ EP [fη0

] for some η0. Let
ED−P [fη] ≡ ED [fη]− EP [fη]. Then, the following decomposition holds:

ED [fη]− θ0 = ED−P [fη0
] + ED−P [fη − fη0

] + EP [fη − fη0
] . (C.1)

Suppose further that

1. Samples used for estimating η are independent and separate from D; and

2. ∥η − η0∥ = oP (1).

Then, Eq. (C.1) reduces to

ED [fη]− θ0 = R+ EP [fη − fη0
] , (C.2)

where R is a random variable such that
√
nR converges in distribution to a mean-zero normal random variable, where

n ≡ |D|.

Proof of Lemma C.3. We first prove the equality in Eq. (C.1).

ED [fη]− θ0 = ED [fη]− EP [fη0
]

= ED−P [fη] + EP [fη − fη0 ]

= ED−P [fη0 ]︸ ︷︷ ︸
≡A

+ED−P [fη − fη0 ]︸ ︷︷ ︸
≡B

+EP [fη − fη0 ] .

We now prove Eq. (C.2).

• A converges in distribution to the zero-mean normal distribution at
√
n rate by the central limit theorem.

• We note that a given condition ∥η − η0∥ = oP (1) implies ∥fη − fη0
∥ = oP (1) by continuous mapping theorem for

L2(P ) in Lemma C.1. In particular, Lemma C.1 is applicable since fη, fη0
is a bounded and continuous function, and

∥η − η0∥ = oP (1). Then, B converges to zero at oP (1/
√
N) rate by (Kennedy et al., 2020, Lemma 2).

Finally, define R ≡ A+B. Then, the proof completes by applying Slutsky’s theorem.

C.2. Proof of Theorem 1

Definition 1 (Adjustment criterion for Treatment-Treatment Interaction (AC-TTI)). A set {C1,W} is said to satisfy
the adjustment criterion for treatment-treatment interaction (AC-TTI) w.r.t {(X1, X2), Y } in G if

1. ({C1,W} ⊥⊥ X2|X1)GX1,X2

, i.e., there are no direct paths from X2 to {C1,W} in GX1,X2
; and

2. (Y ⊥⊥ X1|C1,W,X2)GX1X2

, i.e., the back-door paths from X1 to Y are blocked by {C1,W} in GX2
.

Assumption 1 (Positivity Assumption for AC-TTI). Px1(C1,W ), Px2(C1,W ), Px2(X1|C1,W ) are strictly positive
distributions ∀x1, x2 ∈ DX1,X2 .

Theorem 1 (Identification through AC-TTI). Suppose AC-TTI in Def. 1 and Assumption 1 hold. Then, E [Y |do(x1, x2)]

is identifiable from Prand(X1)(C1,W ) and Prand(X2)(C1,W,X1, Y ) and the expression is:

E [Y |do(x1, x2)] = EPx1

[
EPx2

[Y |C1,W, x1]
]
. (1)
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Proof of Theorem 1.

E [Y |do(x1, x2)] = E [E [Y |do(x1, x2), C1,W ] |do(x1, x2)]

1
= E [E [Y |do(x2), x1, C1,W ] |do(x1, x2)]

= E
[
EPx2

[Y |x1, C1,W ]
∣∣do(x1, x2)

]
2
= E

[
EPx2

[Y |x1, C1,W ]
∣∣do(x1)

]
= EPx1

[
EPx2

[Y |x1, C1,W ]
]
,

where 1
= holds by the condition 2 which implies Rule 2 of do-calculus, and 2

= holds by the condition 1 in AC-TTI which
implies Rule 3 of do-calculus.

C.3. Proof of Theorem 2 and Corollary 2

Definition 2 (Nuisances for TTI). Nuisance functions for the AC-TTI functional in Eq. (1) are defined as follows:
For a fixed x1, x2 ∈ DX1,X2 where x1, x2 are specified in Eq. (1), π0 := π0(C1, X1,W ) :=

Px1 (W |C1)

Px2
(W,X1|C1)

. Also,
µ0 := µ0(C1, X1,W ) := EPx2

[Y |X1,W,C1]. We will use π := π(C1, X1,W ) > 0 and µ := µ(C1, X1,W ) to denote
arbitrary3 finite functions.

Definition 3 (Estimators for TTI). Let D1 and D2 denote two separate samples following the distributions
Prand(X1)(C1,W ) and Prand(X2)(C1,W,X1, Y ), respectively. For fixed x1, x2 ∈ DX1,X2

, we define Dx1
and Dx2

as
subsamples of D1 and D2 such that X1 = x1 and X2 = x2. Let µ and π denote the nuisances as defined in Definition 2.
We now introduce the {REG, PW, DML} estimators for the AC-TTI-functional specified in Equation (1) as follows:

T reg := EDx1
[µ(W,C1, x1))] ,

T pw := EDx2
[π(W,C1, X1)1x1

(X1)Y ] ,

T dml := EDx1
[π1x1(X1){Y − µ}] + ED1 [µ(W,C1, x1))] .

Assumption 2 (Sample-splitting). Samples for training nuisances and evaluating the estimators equipped with the trained
nuisance are separate and independent.

Assumption 3 (L2 consistency of nuisances). Estimated nuisances are L2 consistent; i.e., ∀i ∈ {1, 2},∀xi ∈ DXi
,

∥µ(W,C1, x1)− µ0(W,C1, x1)∥Pxi
= oPxi

(1),

∥π(W,C1, X1)− π0(W,C1, X1)∥Px2
= oPx2

(1).

Theorem 2 (Error analysis of the estimators). Under Assumptions (1,2,3,4) and AC-TTI in Def. 1, the error of the
estimators in Def. 3, denoted ϵest := T est − E [Y |do(x1, x2)] for est ∈ {reg, pw, dml} are:

ϵreg = R1 +OPx1
(∥µ− µ0∥) ,

ϵpw = R2 +OPx2
(∥π − π0∥) ,

ϵdml = R1 +R2 +OPx2
(∥π − π0∥ ∥µ− µ0∥) ,

where Ri is a random variable such that
√
niRi converges in distribution to a zero-mean normal random variable, where

ni := |Dxi
| for i ∈ {1, 2}.

Proof of Theorem 2. We provide error analyses for each estimators:

Analysis for T reg .
3Throughout the paper, µ, π are understood as estimated nuisances for µ0, π0.
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We first note that

EPx1
[µ0(W,C1,x)] = EPx1

[
EPx2

[Y |W,C1, x1]
]
= E [Y |do(x1, x2)] ,

where the last equation holds by Theorem 1. By Lemma C.3,

T reg − E [Y |do(x1, x2)]

= T reg − EPx1
[µ0(W,C1,x)]

= EPx1
−Dx1

[µ0(W,C1,x)] + EPx1
−Dx1

[µ(W,C1,x)− µ0(W,C1,x)]︸ ︷︷ ︸
:=R1

+EPx1
[µ(W,C1,x)− µ0(W,C1,x)]

1
= R1 + EPx1

[µ(W,C1,x)− µ0(W,C1,x)]

2
= R1 +OPx1

(∥µ0 − µ∥) ,

where

• 1
= holds by Lemma C.3.

• 2
= holds by Cauchy-Schwartz inequality.

Analysis for T pw.

We first note that

EPx2
[π0(W,C1, X1)1x1

(X1)Y ] = EPx2
[π0(W,C1, X1)1x1

(X1)µ0(W,C1, X1)]

= EPx2

[
Px1(W |C1)

Px2
(W,X1|C1)

1x1
(X1)µ0(W,C1, X1)

]
3
= EPx2

[
Px1

(W |C1)Px1
(C1)

Px2(W,X1|C1)Px2(C1)
1x1

(X1)µ0(W,C1, X1)

]
= EPx2

[
Px1(W,C1)

Px2
(X1|W,C1)Px2

(W,C1)
1x1(X1)µ0(W,C1, X1)

]
= EPx2

[
Px1

(W,C1)

Px2
(W,C1)

µ0(W,C1, x1)

]
= EPx1

[µ0(W,C1, x1)]

4
= E [Y |do(x1, x2)] ,

where

• 3
= holds by Assumption 4.

• 4
= holds by Theorem 1.
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By applying Lemma C.3,

T pw − E [Y |do(x1, x2)]

= T pw − EPx2
[π0(W,C1, X1)1x1(X1)Y ]

= EPx2
−Dx2

[π0(W,C1, X1)1x1
(X1)Y ] + EPx2

−Dx2
[{π0(W,C1, X1)− π(W,C1, X1)}1x1

(X1)Y ]︸ ︷︷ ︸
:=R2

+ EPx2
[{π0(W,C1, X1)− π(W,C1, X1)}1x1

(X1)Y ]

5
= R2 + EPx2

[{π0(W,C1, X1)− π(W,C1, X1)}1x1(X1)Y ]

6
= R2 +OPx2

(∥π0 − π∥) ,

• 5
= holds by Assumption 4.

• 6
= holds by Cauchy-Schwartz inequality and the setting where Y has a finite variance.

Analysis for T dml.

Let

T dml := EDx2
[π(W,C1, X1)1x1

(X1){Y − µ(W,C1, X1)}]︸ ︷︷ ︸
:=Tdml,1

+EDx1
[µ(W,C1, x1))]︸ ︷︷ ︸
:=Tdml,2

.

Let

T dml,1
0 := EPx2

[π0(W,C1, X1)1x1(X1){Y − µ0(W,C1, X1)}]

T dml,2
0 := EPx1

[µ0(W,C1, x1))] .

We note that T dml
0 := T dml,1

0 +T dml,2
0 = E [Y |do(x1, x2)]. We first apply the Lemma C.3 to T dml,1 and T dml,2 separately.

T dml,1 − T dml,1
0

= EPx2−Dx2
[π0(W,C1, x1)1x1

(X1){Y − µ0(W,C1, X1)}]
+ EPx2

−Dx2
[π0(W,C1, x1)1x1(X1){Y − µ0(W,C1, X1)} − π(W,C1, x1)1x1(X1){Y − µ(W,C1, X1)}]

+ EPx2
[π(W,C1, x1)1x1(X1){Y − µ(W,C1, X1)}]

= R2 + EPx2
[π(W,C1, x1)1x1

(X1){Y − µ(W,C1, X1)}] ,

where

R2 := EPx2
−Dx2

[π0(W,C1, x1)1x1(X1){Y − µ0(W,C1, X1)}]
+ EPx2

−Dx2
[π0(W,C1, x1)1x1(X1){Y − µ0(W,C1, X1)} − π(W,C1, x1)1x1(X1){Y − µ(W,C1, X1)}] .

Also, by the proof for analyzing the error of T reg ,

T dml,2 − T dml,2
0 = R1 + EPx1

[µ(W,C1, x1)− µ0(W,C1, x1)] .

Then,

T dml − E [Y |do(x1, x2)]

= T dml,1 + T dml,2 − T dml,1
0 − T dml,2

0

= R1 +R2 + EPx2
[π(W,C1, x1)1x1

(X1){Y − µ(W,C1, X1)}] + EPx1
[µ(W,C1, x1)− µ0(W,C1, x1)] .
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Note that

EPx1
[µ(W,C1, x1)− µ0(W,C1, x1)]

= EPx1

[
1x1

(X1)

Px1
(X1|W,C1)

{µ(W,C1, X1)− µ0(W,C1, X1)}
]

= EPx2

[
Px1

(W,C1, X1)

Px2(W,C1, X1)

1x1
(X1)

Px1(X1|W,C1)
{µ(W,C1, X1)− µ0(W,C1, X1)}

]
= EPx2

[
Px1(W,C1)1x1(X1)

Px2
(W,C1, X1)

{µ(W,C1, X1)− µ0(W,C1, X1)}
]

7
= EPx2

[
Px1

(W |C1)1x1
(X1)

Px2
(W,X1|C1)

{µ(W,C1, X1)− µ0(W,C1, X1)}
]

= EPx2
[π0(W,C1, X1)1x1(X1) {µ(W,C1, X1)− µ0(W,C1, X1)}] ,

where 7
= holds by Assumption 4. Then,

EPx2
[π(W,C1, x1)1x1(X1){Y − µ(W,C1, X1)}] + EPx1

[µ(W,C1, x1)− µ0(W,C1, x1)]

= EPx2
[π(W,C1, x1)1x1

(X1){Y − µ(W,C1, X1)}] + EPx2
[π0(W,C1, X1)1x1

(X1) {µ(W,C1, X1)− µ0(W,C1, X1)}]
= EPx2

[1x1
(X1) (π(W,C1, x1){µ0(W,C1, X1)− µ(W,C1, X1)}+ π0(W,C1, X1) {µ(W,C1, X1)− µ0(W,C1, X1)})]

= EPx2
[1x1

(X1) {µ0(W,C1, X1)− µ(W,C1, X1)} {π0(W,C1, X1)− π(W,C1, X1)}]
= OPx2

(∥µ− µ0∥ ∥π − π0∥) .

Therefore,

T dml − E [Y |do(x1, x2)] = R1 +R2 +OPx2
(∥µ− µ0∥ ∥π − π0∥) .

Corollary 2 (Doubly robustness of the DML estimators (Corollary of Thm. 2)). Suppose Assumptions (1,2,3,4) and
AC-TTI in Def. 1 hold. Suppose either π = π0 or µ = µ0. Then, T dml is an unbiased estimator of E [Y |do(x1, x2)].

Proof of Corollary 2. Let π and µ denote the limiting estimator for π0 and µ0.

T dml := EDx2
[π(W,C1, X1)1x1

(X1){Y − µ(W,C1, X1)}]︸ ︷︷ ︸
:=Tdml,1

+EDx1
[µ(W,C1, x1))]︸ ︷︷ ︸
:=Tdml,2

.

Let

T dml,1
0 := EPx2

[π0(W,C1, X1)1x1
(X1){Y − µ0(W,C1, X1)}]

T dml,2
0 := EPx1

[µ0(W,C1, x1))] .

Under the assumption that

EPx2

[
T dml,1

]
= EPx2

[π(W,C1, X1)1x1
(X1) {Y − µ(W,C1, X1)}]

EPx1

[
T dml,2

]
= EPx1

[µ(W,C1, x1)]

= EPx2
[π0(W,C1, X1)1x1(X1)µ(W,C1, X1)] .
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Then,

EPx2

[
T dml,1

]
+ EPx1

[
T dml,2

]
− EPx2

[
T dml,1
0

]
+ EPx1

[
T dml,2
0

]
= EPx2

[π(W,C1, X1)1x1
(X1){Y − µ(W,C1, X1)}+ π0(W,C1, X1)1x1

(X1) {µ(W,C1, X1)− µ0(W,C1, X1)}]
= EPx2

[1x1
(X1) {µ0(W,C1, X1)− µ(W,C1, X1)} {π0(W,C1, X1)− π(W,C1, X1)}]

= OPx2
(∥µ− µ0∥ ∥π − π0∥)

= 0,

where the last equation holds under the given condition.

C.4. Proof of Theorem 3

Definition 4 (Adjustment criterion for combining two experiments (AC-gTTI)). A set of variables A is said to satisfy
adjustment criterion for generalized TTI (AC-gTTI) w.r.t (X, Y ) in G if

1. Z1 ⊆ X and (A ⊥⊥ X\Z1|Z1)GX
, i.e., there are no direct paths from X\Z1 to A in GX; and

2. Z2 ⊆ X and (Y ⊥⊥ X\Z2|A, Z2)GX\Z2Z2

, i.e., the back-door paths from X\Z2 to Y are blocked by A in GZ2
.

Assumption 5 (Positivity Assumption for AC-gTTI). Pz1(A), Pz2(A), Pz2(X\Z2|A) are strictly positive distributions
∀z1, z2 ∈ DZ1,Z2

.

Theorem 3 (Identification through AC-gTTI). Suppose AC-gTTI in Def. 4 and Assumption 5 hold. Then, the query
E [Y |do(x)] is identifiable from Prand(Z1)(A) and Prand(Z2)(A,X, Y ) and given as follows:

E [Y |do(x)] = EPz1

[
EPz2

[Y |A,x\z2]
]
. (2)

Proof of Theorem 3.

E [Y |do(x)] = E [E [Y |do(x),A] |do(x)]
1
= E [E [Y |do(z2),x\z2,A] |do(x)]
= E

[
EPz2

[Y |x\z2,A]
∣∣do(x)]

2
= E

[
EPz2

[Y |x\z2,A]
∣∣do(z1)]

= EPz1

[
EPz2

[Y |x\z2,A]
]
,

where 1
= holds by the condition 2 which implies Rule 2 of do-calculus, and 2

= holds by the condition 1 in AC-gTTI which
implies Rule 3 of do-calculus.

C.5. Proof of Theorem 4 and Corollary 4

Definition 5 (Nuisances for gTTI). Nuisance functions for estimating AC-gTTI functional in Eq. (2) are defined as
follows: For a fixed z1, z2 ∈ DZ1,Z2

where z1, z2 are specified in Eq. (2), π0 := π0(A,X) :=
Pz1

(A)

Pz2 (A,X\Z2)
, and

µ0 := µ0(A,X) := EPz2
[Y |X\Z2,A]. We will use π := π(A,X) > 0 and µ := µ(A,X) to denote estimated nuisances.

Definition 6 (Estimators for gTTI). Let D1, D2 denote two sample sets following distributions Prand(Z1)(A) and
Prand(Z2)(A,X, Y ), respectively. For a fixed z1, z2 ∈ DZ1,Z2 , we define Dz1 and Dz2 as subsamples of D1 and D2

such that Z1 = z1 and Z2 = z2. Let µ, π denote nuisances defined in Def. 5. Then, {REG, PW, DML} estimators for the
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AC-gTTI functional are defined as follows:

T reg := EDz1
[µ(A,x))] ,

T pw := EDz2
[π(A,X)1x(X)Y ] ,

T dml := EDz2
[π1x(X){Y − µ}] + EDz1

[µ(A,x))] .

Assumption 2 (Sample-splitting). Samples for training nuisances and evaluating the estimators equipped with the trained
nuisance are separate and independent

Assumption 6 (L2 consistency of nuisances). Estimated nuisances are L2 consistent; i.e., ∀i ∈ {1, 2},∀zi ∈ DZi ,

∥µ(A,x)− µ0(A,x)∥Pzi
= oPzi

(1),

∥π(A,X)− π0(A,X)∥Pz2
= oPz2

(1).

Theorem 4 (Error analysis of the estimators). Under Assumptions (2,5,6) and AC-gTTI in Def. 4, the errors of the
estimators in Def. 6, denoted ϵest := T est − E [Y |do(x)] for est ∈ {reg, pw, dml}, are:

ϵreg = R1 +OPz1
(∥µ− µ0∥) ,

ϵpw = R2 +OPz2
(∥π − π0∥) ,

ϵdml = R1 +R2 +OPz2
(∥π − π0∥ ∥µ− µ0∥) ,

where Ri is a random variable such that
√
niRi converges in distribution to a zero-mean normal random variable, where

ni := |Dzi |.

Proof of Theorem 4. We provide error analyses for each estimators:

Analysis for T reg .

We first note that

EPz1
[µ0(A,x)] = EPz1

[
EPz2

[Y |A,x\z2]
]
= E [Y |do(x)] ,

where the last equation holds by Theorem 3. By Lemma C.3,

T reg − E [Y |do(x)]
= T reg − EPz1

[µ0(A,x)]

= EPz1
−D1 [µ0(A,x)] + EPz1

−D1 [µ(A,x)− µ0(A,x)]︸ ︷︷ ︸
:=R1

+EPz1
[µ(A,x)− µ0(A,x)]

1
= R1 + EPz1

[µ(A,x)− µ0(A,x)]

2
= R1 +OPz1

(∥µ0 − µ∥) ,

where

• 1
= holds by Lemma C.3.

• 2
= holds by Cauchy-Schwartz inequality.

Analysis for T pw.
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We first note that

EPz2
[π0(A,X)1x(X)Y ] = EPz2

[π0(A,X)1x(X)µ0(A,X)]

= EPz2

[
Pz1(A)

Pz2(A,X\Z2)
1x(X)µ0(A,X)

]
= EPz1

[1x(X)µ0(A,X)]

= EPz1
[µ0(A,x)]

3
= E [Y |do(x)] ,

where 3
= holds by Theorem 3. By applying Lemma C.3,

T pw − E [Y |do(x)]
= T pw − EPz2

[π0(A,X)1X(X)Y ]

= EPz2
−D2

[π0(A,X)1x(X)Y ] + EPz2
−D2

[{π0(A,X)− π(A,X)}1x(X)Y ]︸ ︷︷ ︸
:=R2

+ EPz2
[{π0(A,X)− π(A,X)}1x(X)Y ]

4
= R2 + EPz2

[{π0(A,X)− π(A,X)}1x(X)Y ]

5
= R2 +OPz2

(∥π0 − π∥) ,

• 4
= holds by Lemmas (C.1, C.3).

• 5
= holds by Cauchy-Schwartz inequality and the setting where Y has a finite variance.

Analysis for T dml.

Let

T dml := ED2 [π(A,X)1x(X){Y − µ(A,X)}]︸ ︷︷ ︸
:=Tdml,1

+ED1 [µ(A,x))]︸ ︷︷ ︸
:=Tdml,2

.

Let

T dml,1
0 := EPz2

[π0(A,X)1x(X){Y − µ0(A,X)}]

T dml,2
0 := EPz1

[µ0(A,x))] .

We note that T dml
0 := T dml,1

0 + T dml,2
0 = E [Y |do(x)]. We first apply the Lemma C.3 to T dml,1 and T dml,2 separately.

T dml,1 − T dml,1
0

= EPz2
−D2 [π0(A,x)1x(X){Y − µ0(A,X)}]

+ EPz2
−D2

[π0(A,x)1x(X){Y − µ0(A,X)} − π(A,x)1x(X){Y − µ(A,X)}]
+ EPz2

[π(A,x)1x(X){Y − µ(A,X)}]
= R2 + EPz2

[π(A,x)1x(X){Y − µ(A,X)}] ,

where

R2 := EPz2
−D2 [π0(A,x)1x(X){Y − µ0(A,X)}]

+ EPz2
−D2

[π0(A,x)1x(X){Y − µ0(A,X)} − π(A,x)1x(X){Y − µ(A,X)}] .
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Also, by the proof for analyzing the error of T reg,

T dml,2 − T dml,2
0 = R1 + EPz1

[µ(A,x)− µ0(A,x)] .

Finally,

T dml − E [Y |do(x)]

= T dml,1 + T dml,2 − T dml,1
0 − T dml,2

0

= R1 +R2 + EPz2
[π(A,x)1x(X){Y − µ(A,X)}] + EPz1

[µ(A,x)− µ0(A,x)] .

We note that Ri for i ∈ {1, 2} is a variable such that
√
niRi converges in distribution to the normal random variable, where

ni := |Dzi |, by Lemmas (C.1, C.3). Note that

EPz1
[µ(A,x)− µ0(A,x)]

= EPz1

[
1x(X)

Pz1(X|A)
{µ(A,X)− µ0(A,X)}

]
= EPz2

[
Pz1(A,X)

Pz2(A,X)

1x(X)

Pz1(X|A)
{µ(A,X)− µ0(A,X)}

]
= EPz2

[
Pz1(A)1x(X)

Pz2(A,X\Z2)
{µ(A,X)− µ0(A,X)}

]
= EPz2

[π0(A,X)1x(X) {µ(A,X)− µ0(A,X)}] .

Then,

EPz2
[π(A,x)1x(X){Y − µ(A,X)}] + EPz1

[µ(A,x)− µ0(A,x)]

= EPz2
[π(A,x)1x(X){Y − µ(A,X)}] + EPz2

[π0(A,X)1x(X) {µ(A,X)− µ0(A,X)}]
= EPz2

[1x(X) (π(A,x){µ0(A,X)− µ(A,X)}+ π0(A,X) {µ(A,X)− µ0(A,X)})]
= EPz2

[1x(X) {µ0(A,X)− µ(A,X)} {π0(A,X)− π(A,X)}]
= OPz2

(∥µ− µ0∥ ∥π − π0∥) .

Therefore,

T dml − E [Y |do(x)] = R1 +R2 +OPz2
(∥µ− µ0∥ ∥π − π0∥) .

Corollary 4 (Doubly robustness of the DML estimators (Corollary of Thm. 4)). Suppose Assumptions (2,5,6) and
AC-gTTI in Def. 4 hold. Suppose either π = π0 or µ = µ0. Then, T dml is an unbiased estimator of E [Y |do(x)].

Proof of Corollary 4. Let π and µ denote the limiting estimator for π0 and µ0.

T dml := ED2 [π(A,X)1x(X){Y − µ(A,X)}]︸ ︷︷ ︸
:=Tdml,1

+ED1 [µ(A,x))]︸ ︷︷ ︸
:=Tdml,2

.

Let

T dml,1
0 := EPz2

[π0(A,X)1x(X){Y − µ0(A,X)}]

T dml,2
0 := EPz1

[µ0(A,x))] .
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Under the assumption that samples are i.i.d.,

EPz2

[
T dml,1

]
= EPz2

[π(A,X)1x(X) {Y − µ(A,X)}]
EPz1

[
T dml,2

]
= EPz1

[µ(A,x)]

= EPz2
[π0(A,X)1x(X)µ(A,X)] .

Then,

EPz2

[
T dml,1

]
+ EPz1

[
T dml,2

]
− EPz2

[
T dml,1
0

]
+ EPz1

[
T dml,2
0

]
= EPz2

[π(A,X)1x(X){Y − µ(A,X)}+ π0(A,X)1x(X) {µ(A,X)− µ0(A,X)}]
= EPz2

[1x(X) {µ0(A,X)− µ(A,X)} {π0(A,X)− π(A,X)}]
= 0,

where the last equation holds under the given condition.

C.6. Proof of Theorem 5

Definition 7 (Adjustment criterion for Multiple Treatment Interaction (AC-MTI)). An ordered set
{C1,W1, C2,W2, · · · , Cm−1,Wm−1} satisfies adjustment criterion for multiple treatment interaction (AC-MTI) w.r.t.
{X, Y } for X = {Xi}mi=1 in G if, for i = 1, 2, · · · ,m,

1. {Xj}j>i is non-ancestor of {X(i),W(i),C(i)}; and

2. (Y ⊥⊥ Xi|C(i−1),X(i−1),W(i),X>i)G
Xi,X

>i
, i.e., the back-door paths from Xi to Y are blocked by

C(i−1),X(i−1),W(i),X>i in the graph G
X>i .

Assumption 7 (Positivity Assumption for AC-MTI). {Pxi
(Wi, Ci|W(i−1),C(i−1),X(i−1))}mi=1,

Pxi+1
(Xi|W(i),C(i),X(i−1)) for i = 1, · · · ,m− 1 are strictly positive ∀x ∈ DX.

Theorem 5 (Identification through AC-MTI). Suppose AC-MTI in Def. 7 and Assumption 7 hold. Then, E [Y (x)] is
identifiable from {Prand(Xi)(C

(i),W(i),X(i−1))}mi=1 as follows: Let µm
0 := EPxm

[
Y |W(m−1),C(m−1),X(m−1)

]
, and

for i = m− 1, · · · , 2,

µi
0 := EPxi

[
µi+1
0 |W(i−1),C(i−1),X(i−1)

]
,

where µi+1
0 := µi+1

0 (W(i),C(i), xi,X
(i−1)). Then,

E [Y (x)] = EPx1

[
µ2
0(W1, C1, x1)

]
. (3)

Proof of Theorem 5. Let Ai := {Wi, Ci} in this proof. Then, it suffices to show the following equation: For all i =

1, 2, · · · ,m− 1,

E
[
Y
∣∣do(x≥i),A(i−1),x(i−1)

]
= E

[
E
[
Y
∣∣do(x≥i+1),A(i),x(i)

] ∣∣∣∣do(xi),A
(i−1),x(i−1)

]
.
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It holds as follow:

E
[
Y
∣∣do(x≥i),A(i−1),x(i−1)

]
1
= E

[
E
[
Y
∣∣do(x≥i),A(i),x(i−1)

] ∣∣∣∣do(x≥i),A(i−1),x(i−1)

]
2
= E

[
E
[
Y
∣∣do(x≥i+1),A(i),x(i)

] ∣∣∣∣do(x≥i),A(i−1),x(i−1)

]
3
= E

[
E
[
Y
∣∣do(x≥i+1),A(i),x(i)

] ∣∣∣∣do(xi),A
(i−1),x(i−1)

]
,

where

• 1
= holds by marginalizing over Ai.

• 2
= holds as follow:

E
[
Y
∣∣do(x≥i),A(i),x(i−1)

]
= E

[
Y
∣∣do(x≥i+1),A(i),x(i)

]
,

since (Y ⊥⊥ Xi|A(i),X(i−1),X≥i+1)G
Xi,X

≥i+1
by the given condition and the positivity condition.

• 3
= holds because X≥i+1 is not an ancestor of A(i),X(i).

C.7. Proof of Theorem 6 and Corollary 6

Definition 8 (Nuisances for MTI). Nuisance functions for AC-MTI are defined as follows: For a fixed x :=

{x1, · · · , xm} ∈ DX, let {µi}mi=2 and {µi}mi=2 be the nuisances defined in Thm. 5. For i = 1, · · · ,m − 1,

πi
0 :=

Pxi
(Wi|Ci,C

(i−1),X(i−1),W(i−1))

Pxm (Wi,Xi|Ci,C(i−1),X(i−1),W(i−1))
, and π

(i)
0 :=

∏i
j=1 π

j
0(W

(j),C(j),X(j)). We will use πi(W(i),C(i),X(i)) > 0

and µi(W(i−1),C(i−1),X(i−1)) to denote estimated nuisances.

Definition 9 (AC-MTI estimators). Let Di denote samples following Prand(Xi)(C
(i),W(i),X(i)) for i = 1, 2, · · · ,m. For

a fixed xi ∈ DXi
, let Dxi

denote the subsamples of Di such that Xi = xi. Let Ai := {Wi, Ci} and Vi := {Ai, Xi}. Let
µm+1 := Y . Let 1i−1

x := 1x(i−1)(X(i−1)) for i = 2, · · · ,m. Then {REG, PW, DML} estimators are defined as follows:

T reg := EDx1

[
µ2(W1, C1, x1))

]
,

T pw := EDxm

[
π(m−1)

1x(X)Y
]
,

T dml :=

m∑
i=2

EDxi

[
π(i−1)

1
i−1
x {µi+1 − µi}

]
+ EDx1

[
µ2

]
.

Assumption 2 (Sample-splitting). Samples for training nuisances and evaluating the estimators equipped with the trained
nuisance are separate and independent

Assumption 8 (L2 consistency of nuisances). Estimated nuisances are L2-consistent; specifically,

∥µi+1 − µi+1
0 ∥Pxi

= oPxi
(1), ∀i ∈ {1, 2, · · · ,m− 1}

∥µi − µi
0∥Pxi

= oPxi
(1), ∀i ∈ {2, · · · ,m}

∥πi − πi∥Pxi+1
= oPxi+1

(1), ∀i ∈ {1, · · · ,m− 1}.

Assumption 9 (Multiple experiments represent the same population). For any fixed i, j ∈ {1, 2, · · · ,m − 1}
s.t. j > i and any fixed xi, xj ∈ DXi,Xj , the baseline covariates Ci’s distribution satisfies the following:
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Pxi
(Ci|C(i−1),X(j−1),W(j−1)) = Pxj

(Ci|C(i−1),X(i−1),W(i−1)).

Lemma C.4 (Error analysis of the REG estimator for MTI). Suppose Assumptions (2,8) hold. Let T reg denote the
estimator defined in Def. 9. Then,

T reg − E [Y |do(x)] = R1 +OPx1
(
∥∥µ2 − µ2

0

∥∥),
where R1 is the random variable such that

√
n1R1 converges in distribution to the mean-zero normal random variable,

where n1 := |Dx1
|.

Proof of Lemma C.4. We first note that, by Theorem 5,

EPx1

[
µ2
0(W1, C1, x1)

]
= E [Y |do(x)] .

By Lemma C.3,

T reg − E [Y |do(x)]
= T reg − EPx1

[
µ2
0(W1, C1, x1)

]
1
= EPx1

−Dx1

[
µ2
0(W1, C1, x1)

]
+ EPx1

−Dx1

[
µ2
0(W1, C1, x1)− µ2(W1, C1, x1)

]︸ ︷︷ ︸
:=R1

+ EPx1

[
µ2
0(W1, C1, x1)− µ2(W1, C1, x1)

]
= R1 + EPx1

[
µ2
0(W1, C1, x1)− µ2(W1, C1, x1)

]
= R1 +OPx1

(∥µ2 − µ2
0∥).

1
= holds by Lemmas (C.1, C.3), and the last equation holds by Cauchy-Schwartz inequality.

Lemma C.5 (Error analysis of the PW estimator for MTI). Suppose Assumptions (2,8,9) hold. Let T pw denote the
estimator defined in Def. 9. Then,

T pw − E [Y |do(x)] = Rm +OPxm
(∥π(m−1) − π

(m−1)
0 ∥),

where Rm is the random variable such that
√
nmRm converges in distribution to the mean-zero normal random variable,

where nm := |Dxm
|.

Proof of Lemma C.5. Throughout the proof, we set Ai := {Ci,Wi} for all i = 1, 2, · · · ,m. We will use Vi := {Ai, Xi}.
In the proof, we tentatively assume

EPxm

[
π
(m−1)
0 (W(m−1),C(m−1),X(m−1))1x(X)Y

]
= E [Y |do(x)] . (C.3)

Then, by Lemma C.3,

T pw − E [Y |do(x)]

= T pw − EPxm

[
π
(m−1)
0 (W(m−1),C(m−1),X(m−1))1x(X)Y

]
1
= EPxm−Dxm

[
π
(m−1)
0 (V(m−1))1x(X)Y

]
+ EPxm−Dxm

[{
π
(m−1)
0 (V(m−1))− π(m−1)(V(m−1))

}
1x(X)Y

]
︸ ︷︷ ︸

:=Rm

+ EPxm

[{
π
(m−1)
0 (V(m−1))− π(m−1)(V(m−1))

}
1x(X)Y

]
= Rm + EPxm

[{
π
(m−1)
0 (V(m−1))− π(m−1)(V(m−1))

}
1x(X)Y

]
= Rm +OPxm

(∥π(m−1) − π
(m−1)
0 ∥),
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where 1
= holds by Lemmas (C.1, C.3). The last equation holds by Cauchy-Schwartz inequality.

We now prove Eq. (C.3). We first show the following: For i = 2, · · · ,m,

E [Y |do(x)] = EPxi

i−1∏
j=1

Pxj (A
(j),X(j−1))

Pxj+1(A
(j),X(j))

µi
0(A

(i−1),X(i−1))1x(i−1)(X(i−1))

 . (C.4)

It holds for i = 2 as follow:

EPx2

[
Px1

(A1)

Px2(A1, X1)
µ2
0(A1, X1)1x1(X1)

]
= EPx1

[
µ2
0(A1, x1)

]
= E [Y |do(x)] ,

where the last equation holds by Lemma C.4. Now, we make the following induction hypothesis: For some i − 1 ∈
{2, 3, · · · ,m− 1}, suppose

E [Y |do(x)] induction hypothesis
= EPxi−1

i−2∏
j=1

Pxj (A
(j),X(j−1))

Pxj+1(A
(j),X(j))

µi−1
0 (A(i−2),X(i−2))1x(i−2)(X(i−2))

 .

Then,

EPxi−1

i−2∏
j=1

Pxj (A
(j),X(j−1))

Pxj+1(A
(j),X(j))

µi−1
0 (A(i−2),X(i−2))1x(i−2)(X(i−2))


= EPxi−1

i−2∏
j=1

Pxj (A
(j),X(j−1))

Pxj+1(A
(j),X(j))

EPxi−1

[
µi
0(A

(i−1), xi−1,X
(i−2))|A(i−2),X(i−2)

]
1x(i−2)(X(i−2))


1
= EPxi−1

i−2∏
j=1

Pxj (A
(j),X(j−1))

Pxj+1(A
(j),X(j))

µi
0(A

(i−1), xi−1,X
(i−2))1x(i−2)(X(i−2))


2
= EPxi−1

i−2∏
j=1

Pxj
(A(j),X(j−1))

Pxj+1
(A(j),X(j))

µi
0(A

(i−1),X(i−1))1x(i−1)(X(i−1))


= EPxi

i−2∏
j=1

Pxj
(A(j),X(j−1))

Pxj+1
(A(j),X(j))

Pxi−1(A
(i−1),X(i−2))

Pxi
(A(i−1),X(i−1))

µi
0(A

(i−1),X(i−1))1x(i−1)(X(i−1))


= EPxi

i−1∏
j=1

Pxj
(A(j),X(j−1))

Pxj+1
(A(j),X(j))

µi
0(A

(i−1),X(i−1))1x(i−1)(X(i−1))

 ,

where

• 1
= holds by the law of total expectation.

• 2
= holds since the expectation is over Pxi−1 .
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Therefore, Eq. (C.4) holds. By plugging i = m, we have

E [Y |do(x)] = EPxm

m−1∏
j=1

Pxj
(A(j),X(j−1))

Pxj+1
(A(j),X(j))

µm
0 (A(m−1),X(m−1))1x(m−1)(X(m−1))


= EPxm

m−1∏
j=1

Pxj
(A(j),X(j−1))

Pxj+1
(A(j),X(j))

EPxm

[
Y |A(m−1),X(m−1)

]
1x(m−1)(X(m−1))


= EPxm

m−1∏
j=1

Pxj
(A(j),X(j−1))

Pxj+1
(A(j),X(j))

1x(m−1)(X(m−1))Y

 .

Finally,

m−1∏
j=1

Pxj (A
(j),X(j−1))

Pxj+1(A
(j),X(j))

=
Px1

(A(1))Px2
(A(2),X(1)) · · ·Pxm−1

(A(m−1),X(m−2))

Px2(A
(1),X(1))Px3(A

(2),X(2)) · · ·Pxm−1
(A(m−2),X(m−2))Pxm

(A(m−1),X(m−1))

=
1

Pxm(A(m−1),X(m−1))

m−1∏
j=1

Pxj
(Aj |A(j−1),X(j−1))

=

m−1∏
j=1

Pxj
(Aj |A(j−1),X(j−1))

Pxm
(Aj , Xj |A(j−1),X(j−1))

=

m−1∏
j=1

Pxj
(Cj ,Wj |A(j−1),X(j−1))

Pxm
(Cj ,Wj , Xj |A(j−1),X(j−1))

=

m−1∏
j=1

Pxj (Wj |Cj ,A
(j−1),X(j−1))Pxj (Cj |A(j−1),X(j−1))

Pxm(Wj , Xj |Cj ,A(j−1),X(j−1))Pxm
(Cj |A(j−1),X(j−1))

=

m−1∏
j=1

Pxj (Wj |Cj ,A
(j−1),X(j−1))

Pxm(Wj , Xj |Cj ,A(j−1),X(j−1))

= π
(m−1)
0 (A(m−1),X(m−1)).

Lemma C.6 (Bias Analysis of the DML estimator for MTI). Suppose Assumptions (2,8,9) hold. For i = 1, 2, · · · ,m,
let Ai := {Ci,Wi} and Vi := {Ai, Xi}. For i = 1, · · · ,m, let Bi := {Ai, Xi−1} where X0 := ∅. Let
T dml({πk}m−1

k=1 , {µk}mk=2) be defined as follow:

T dml({πk}m−1
k=1 , {µk}mk=2)

:=

m∑
i=2

EPxi

[
π(i−1)(V(i−1))1x(i−1)(X(i−1))

{
µi+1(B(i), xi)− µi(B(i−1), Xi−1)

}]
+ EPx1

[
µ2(B(1), x1)

]
. (C.5)

Then,

T dml({πk}m−1
k=1 , {µk}mk=2)− E [Y |do(x)] =

m∑
i=2

OPxi

(∥∥µi − µi
0

∥∥∥∥πi−1 − πi−1
0

∥∥) (C.6)

Proof. We follow the proof technique used in (Rotnitzky et al., 2017). We first note that

T dml({πk
0}m−1

k=1 , {µk
0}mk=2) = E [Y |do(x)] . (C.7)
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It’s easy to witness Eq. (C.7) because, for i = 2, 3, · · · ,m,

EPxi

[
π
(i−1)
0 (V(i−1))1x(i−1)(X(i−1))

{
µi+1
0 (B(i), xi)− µi

0(B
(i−1), Xi−1)

}]
1
= EPxi

[
EPxi

[
π
(i−1)
0 (V(i−1))1x(i−1)(X(i−1))

{
µi+1
0 (B(i), xi)− µi

0(B
(i−1), Xi−1)

} ∣∣∣∣B(i−1), Xi−1

]]
= EPxi

[
π
(i−1)
0 (V(i−1))1x(i−1)(X(i−1))

{
EPxi

[
µi+1
0 (B(i), xi)|B(i−1), Xi−1

]
− µi

0(B
(i−1), Xi−1)

}]
= EPxi

[
π
(i−1)
0 (V(i−1))1x(i−1)(X(i−1))

{
µi
0(B

(i−1), Xi−1)− µi
0(B

(i−1), Xi−1)
}]

= 0,

where the equation 1
= holds by the law of total expectation. Therefore,

T dml({πk
0}m−1

k=1 , {µk
0}mk=2) = EPx1

[
µ2
0(B

(1), x1)
]
= E [Y |do(x)] ,

where the second equation holds by Lemma C.4. Therefore, it suffices to prove the following to show Eq. (C.6):

T dml({πk}m−1
k=1 , {µk}mk=2)− T dml({πk

0}m−1
k=1 , {µk

0}mk=2) =

m∑
i=2

OPxi

(∥∥µi − µi
0

∥∥∥∥πi−1 − πi−1
0

∥∥) . (C.8)

For i = 1, 2, · · · ,m− 1, we define a quantity

ωi
0(B

(i)) :=
Pxi(B

(i))

Pxm
(B(i))

.

We note that ωi
0(B

(i)) is related with π as follow:

ωi
0(B

(i)) = πi
0(V

(i))Pxm
(Xi|B(i)). (C.9)

To witness, consider the following:

ωi
0(B

(i)) =
Pxi(Ai|V(i−1))Pxi(V

(i−1))

Pxm
(Ai|V(i−1))Pxm

(V(i−1))

2
=

Pxi
(Ai|V(i−1))

Pxm(Ai|V(i−1))

=
Pxi

(Wi, Ci|W(i−1),C(i−1),X(i−1))

Pxm
(Wi, Ci|W(i−1),C(i−1),X(i−1))

3
=

Pxi
(Wi|Ci,W

(i−1),C(i−1),X(i−1))

Pxm
(Wi|Ci,W(i−1),C(i−1),X(i−1))

= πi
0(W

(i),C(i),X(i))
Pxm(Wi, Xi|Ci,W

(i−1),C(i−1),X(i−1))

Pxm
(Wi|Ci,W(i−1),C(i−1),X(i−1))

= πi
0(V

(i))Pxm(Xi|B(i)),

where

• 2
= holds since Xi is non-descendent to V(i−1), so that Pxi

(V(i−1)) = Pxm
(V(i−1)).

• 3
= holds by Assumption 9.

To simplify the notation, we sometimes simply denote ωi
0(B

(i)) as ωi
0; µi(B(i−1), Xi−1) as µi; µi(B(i−1), xi−1) as µi;
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and πi(V(i)) as πi.

Then, T dml({πk}m−1
k=1 , {µk}mk=2) in Eq. (C.5) can be rewritten as

T dml({πk}m−1
k=1 , {µk}mk=2) =

m∑
i=2

EPxm

[
ωi
0π

(i−1)
1x(i−1)(X(i−1))

{
µi+1 − µi

}
+ ω1

0µ
2
]
, (C.10)

where µm+1 := Y .

For each k = 1, 2, · · · ,m, we define a quantity Qk as follow:

Qk := Qk({πj}m−1
j=k , {µj}mj=k+1) := ωk

0µ
k+1 +

m∑
i=k+1

ωi
0π

(k:i−1)
1x(k:i−1)(X(k:i−1))

{
µi+1 − µi

}
. (C.11)

Note Qm = Y and EPxm
[Q1] = T dml({πk}m−1

k=1 , {µk}mk=2) defined in Eq. (C.10). We note that

EPxm

[
Q1 − ω1

0µ
2
0

] 4
= T dml({πk}m−1

k=1 , {µk}mk=2)− EPx1

[
µ2
0(B

(1), x1)
]

5
= T dml({πk}m−1

k=1 , {µk}mk=2)− E [Y |do(x)]
= l.h.s. of Eq. (C.6),

where

• 4
= holds since EPxm

[
ω1
0(B

(1))µ2(B(1), x1)
]
= EPx1

[
µ1(B(1), x1)

]
.

• 5
= holds by Lemma C.4.

Motivating from the fact that EPxm

[
Q1 − ω1

0µ
2
0

]
= l.h.s. of Eq. (C.6), we establish a following induction hypothesis. For

P
i−1

xm
:= Pxm(·|V(i−1)), the induction hypothesis is given as follow:

Hypothesis: E
P

k−1
xm

[
Qk − ωk

0µ
k+1
0

]
=

m∑
i=k+1

O
P

k−1
xi

(∥∥µi − µi
0

∥∥∥∥πi−1 − πi−1
0

∥∥) , for k ∈ {2, · · · ,m− 1} (C.12)

We first verify the hypothesis Eq. (C.12) for k = m− 1.

E
P

m−2
xm

[
Qm−1 − ωm−1

0 µm
0

]
= E

P
m−2
xm

[
ωm−1
0 µm + πm−1

1xm−1
(Xm−1) {Y − µm} − ωm−1

0 µm
0

]
6
= E

P
m−2
xm

[
ωm−1
0 µm + πm−1

1xm−1
(Xm−1) {µm

0 − µm} − ωm−1
0 µm

0

]
= E

P
m−2
xm

[
ωm−1
0 {µm − µm

0 }+ πm−1
1xm−1(Xm−1) {µm

0 − µm}
]

7
= E

P
m−2
xm

[
ωm−1
0

1xm−1
(Xm−1)

Pxm(Xm−1|B(m−1))
{µm − µm

0 }+ πm−1
1xm−1

(Xm−1) {µm
0 − µm}

]
8
= E

P
m−2
xm

[
πm−1
0 1xm−1

(Xm−1) {µm − µm
0 }+ πm−1

1xm−1
(Xm−1) {µm

0 − µm}
]

= E
P

m−2
xm

[
1xm−1(Xm−1) {µm − µm

0 }
{
πm−1
0 − πm−1

}]
= EPxm

[
1xm−1

(Xm−1) {µm − µm
0 }

{
πm−1
0 − πm−1

} ∣∣∣V(m−2)
]

9
= O

P
m−2
xm

(
∥µm − µm

0 ∥
∥∥πm−1 − πm−1

0

∥∥) ,
where
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• 6
= holds by the total law of expectation.

• 7
= holds since

EPxm

[
µm−1(B(m−1), xm−1)

∣∣∣V(m−2)
]
= EPxm

[
µm−1(B(m−1), Xm−1)

1xm−1
(Xm−1)

Pxm
(Xm−1|B(m−1))

∣∣∣V(m−2)

]
.

• 8
= holds by the definition of ωm−1

0 .

• 9
= holds by applying Cauchy-Schwarz inequality.

Now, we suppose Eq. (C.12) holds for some k + 1 ∈ {2, · · · ,m − 1}. Then, we will show that Eq. (C.12) holds for k.
Toward this end, we first rewrite Qk in Eq. (C.11) in a recursive form. For any k + 1 ∈ {2, · · · ,m − 1}, the following
relation can be derived from Eq. (C.11):

πk
1xk

(Xk)
{
Qk+1 − ωk+1

0 µk+2
}
=

m∑
i=k+2

ωi
0π

(k:i−1)
1x(k:i−1)(X(k:i−1))

{
µi+1 − µi

}
.

Therefore, for each k = 1, 2, · · · ,m− 1,

Qk({πj}m−1
j=k , {µj}mj=k+1) = ωk

0µ
k+1 + ωk+1

0 πk
1xk

(Xk)
{
µk+2 − µk+1

}
+ πk

1xk
(Xk)

{
Qk+1 − ωk+1

0 µk+2
}
.

Then,

E
P

k−1
xm

[
Qk − ωk

0µ
k+1
0

]
= E

P
k−1
xm

[
ωk
0µ

k+1 + ωk+1
0 πk

1xk
(Xk)

{
µk+2 − µk+1

}
+ πk

1xk
(Xk)

{
Qk+1 − ωk+1

0 µk+2
}
− ωk

0µ
k+1
0

]
= E

P
k−1
xm

[
ωk
0µ

k+1 + ωk+1
0 πk

1xk
(Xk)

{
µk+2 − µk+1

}
+ ωk+1

0 πk
1xk

(Xk)
{
µk+2
0 − µk+2

}
− ωk

0µ
k+1
0

]
+ E

P
k−1
xm

[
πk
1xk

(Xk)
{
Qk+1 − ωk+1

0 µk+2
0

}]
= E

P
k−1
xm

[
ωk
0µ

k+1 + ωk+1
0 πk

1xk
(Xk)

{
µk+2
0 − µk+1

}
− ωk

0µ
k+1
0

]
+ E

P
k−1
xm

[
πk
1xk

(Xk)
{
Qk+1 − ωk+1

0 µk+2
0

}]
= E

P
k−1
xm

[
ωk
0

{
µk+1 − µk+1

0

}
+ ωk+1

0 πk
1xk

(Xk)
{
µk+2
0 − µk+1

}]
+ E

P
k−1
xm

[
πk
1xk

(Xk)
{
Qk+1 − ωk+1

0 µk+2
0

}]
10
= E

P
k−1
xm

[
ωk
0

{
µk+1 − µk+1

0

}
+ πk

1xk
(Xk)

{
µk+1
0 − µk+1

}]
+ E

P
k−1
xm

[
πk
1xk

(Xk)
{
Qk+1 − ωk+1

0 µk+2
0

}]
11
= E

P
k−1
xm

[
πk
01xk

(Xk)
{
µk+1 − µk+1

0

}
+ πk

1xk
(Xk)

{
µk+1
0 − µk+1

}]
+ E

P
k−1
xm

[
πk
1xk

(Xk)
{
Qk+1 − ωk+1

0 µk+2
0

}]
= E

P
k−1
xm

[
1xk

(Xk)
{
µk+1 − µk+1

0

}{
πk
0 − πk

}]
+ E

P
k−1
xm

[
πk
1xk

(Xk)
{
Qk+1 − ωk+1

0 µk+2
0

}]
12
= E

P
k−1
xm

[
ωk+1
0 1xk

(Xk)
{
µk+1 − µk+1

0

}{
πk
0 − πk

}]
+ E

P
k−1
xm

[
πk
1xk

(Xk)
{
Qk+1 − ωk+1

0 µk+2
0

}]
13
= E

P
k−1
xk+1

[
1xk

(Xk)
{
µk+1 − µk+1

0

}{
πk
0 − πk

}]
+ E

P
k−1
xm

[
πk
1xk

(Xk)
{
Qk+1 − ωk+1

0 µk+2
0

}]
14
= E

P
k−1
xk+1

[
1xk

(Xk)
{
µk+1 − µk+1

0

}{
πk
0 − πk

}]
+

m∑
i=k+2

O
P

k
xi

(∥∥µi − µi
0

∥∥∥∥πi−1 − πi−1
0

∥∥)
15
= OP

x
k−1
k+1

(∥∥µk+1 − µk+1
0

∥∥∥∥πk − πk
0

∥∥)+ m∑
i=k+2

O
P

k
xi

(∥∥µi − µi
0

∥∥ ∥∥πi−1 − πi−1
0

∥∥)
=

m∑
i=k+1

O
P

k−1
xi

(∥∥µi − µi
0

∥∥∥∥πi−1 − πi−1
0

∥∥) ,
where
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• 10
= holds since

EPxm

[
ωk+1
0 (B(k+1))πk(V(k))1xk

(Xk)µ
k+2
0 (B(k+1), xk+1)

∣∣∣V(k−1)
]

= EPxm

[
EPxm

[
ωk+1
0 (B(k+1))πk(V(k))1xk

(Xk)µ
k+2
0 (B(k+1), xk+1)

∣∣∣V(k)
] ∣∣∣V(k−1)

]
= EPxm

[
πk(V(k))1xk

(Xk)EPxm

[
ωk+1
0 (B(k+1))µk+2

0 (B(k+1), xk+1)
∣∣∣V(k)

] ∣∣∣V(k−1)
]

= EPxm

[
πk(V(k))1xk

(Xk)EPxm

[
Pxk+1

(B(k+1))

Pxm(B(k+1))
µk+2
0 (B(k+1), xk+1)

∣∣∣V(k)

] ∣∣∣V(k−1)

]
= EPxm

[
πk(V(k))1xk

(Xk)EPxk+1

[
µk+2
0 (B(k+1), xk+1)

∣∣∣V(k)
] ∣∣∣V(k−1)

]
= EPxm

[
πk(V(k))1xk

(Xk)µ
k+1
0 (V(k))

∣∣∣V(k−1)
]
.

• 11
= holds since

EPxm

[
ωk
0 (B

(k))
{
µk+1(B(k), xk)− µk+1

0 (B(k), xk)
} ∣∣∣V(k−1)

]
= EPxm

[
ωk
0 (B

(k))
1xk

(Xk)

Pxm
(Xk|B(k))

{
µk+1(B(k), Xk)− µk+1

0 (B(k), Xk)
} ∣∣∣V(k−1)

]
= EPxm

[
πk
0 (V

(k))Pxm
(Xk|B(k))

1xk
(Xk)

Pxm(Xk|B(k))

{
µk+1(B(k), Xk)− µk+1

0 (B(k), Xk)
} ∣∣∣V(k−1)

]
= EPxm

[
πk
0 (V

(k))1xk
(Xk)

{
µk+1(B(k), Xk)− µk+1

0 (B(k), Xk)
} ∣∣∣V(k−1)

]
.

• 12
= and 13

= hold since

EPxm

[
1xk

(Xk)
{
µk+1(V(k))− µk+1

0 (V(k))
}{

πk
0 (V

(k))− πk(V(k))
} ∣∣∣V(k−1)

]
= EPxm

[
ωk+1
0 (V(k))1xk

(Xk)
{
µk+1(V(k))− µk+1

0 (V(k))
}{

πk
0 (V

(k))− πk(V(k))
} ∣∣∣V(k−1)

]
= EPxm

[
Pxk+1

(V(k))

Pxm(V(k))
1xk

(Xk)
{
µk+1(V(k))− µk+1

0 (V(k))
}{

πk
0 (V

(k))− πk(V(k))
} ∣∣∣V(k−1)

]
= EPxk+1

[
1xk

(Xk)
{
µk+1(V(k))− µk+1

0 (V(k))
}{

πk
0 (V

(k))− πk(V(k))
} ∣∣∣V(k−1)

]
,

where the second equation hold since

ωk+1
0 (V(k)) =

Pxk+1
(V(k))

Pxm(V(k))
= 1

since Xk+1, Xm are non-descendants of V(k) so that Pxk+1
(V(k)) = Pxm

(V(k)).

• 14
= holds by the induction hypothesis.

• 15
= holds by Cauchy-Schwarz inequality.

Therefore, the induction hypothesis in Eq. (C.12) holds for all k = 1, 2, · · ·m− 1. Therefore,

l.h.s. of Eq. (C.6) = EPxm

[
Q1 − ω1

0µ
2
0

]
=

m∑
i=2

OPxi

(∥∥µi − µi
0

∥∥∥∥πi−1 − πi−1
0

∥∥) ,
where the second equation holds by plugging k = 1 into the verified hypothesis in Eq. (C.12). This completes the proof.
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Lemma C.7 (Error analysis of the DML estimator for MTI). Suppose Assumptions (2,8,9) hold. Let T dml denote the
estimator defined in Def. 9. Then,

T dml − E [Y |do(x)] =
m∑
i=1

Ri +

m∑
i=2

OPxi

(∥∥µi − µi
0

∥∥ ∥∥πi−1 − πi−1
0

∥∥) ,
where Ri for i = 1, 2, · · · ,m are variables converging in mean-zero normal distribution at n−1/2

i rates.

Proof of Lemma C.7. Throughout the proof, we set Ai := {Ci,Wi} for all i = 1, 2, · · · ,m. We will use Vi := {Ai, Xi}
or all i = 1, 2, · · · ,m. We will use Bi := {Ai, Xi−1} or all i = 1, 2, · · · ,m, where X0 := ∅. To simplify the notation, we
sometimes simply denoteµi(B(i−1), Xi−1) as µi; µi(B(i−1), xi−1) as µi; and πi(V(i)) as πi.

Let T dml({πk}m−1
k=1 , {µk}mk=2) be a quantity defined in Eq. (C.5). We first note that

T dml({πk
0}m−1

k=1 , {µk
0}mk=2) = E [Y |do(x)]

by Eq. (C.7). Then, by Lemma C.3,

T dml − E [Y |do(x)]
= T dml − T dml({πk

0}m−1
k=1 , {µk

0}mk=2)

=

m∑
i=2

EPxi
−Dxi

[
π
(i−1)
0 1x(i−1)(X(i−1))

{
µi+1
0 − µi

0

}]
+ EPx1

−Dx1

[
µ2
0

]
(C.13)

+

m∑
i=2

EPxi
−Dxi

[
π
(i−1)
0 1x(i−1)(X(i−1))

{
µi+1
0 − µi

0

}
− π(i−1)

1x(i−1)(X(i−1))
{
µi+1 − µi

}]
+ EPx1

−Dx1

[
µ2
0 − µ2

0

]
(C.14)

+

m∑
i=2

EPxi

[
π(i−1)

1x(i−1)(X(i−1))
{
µi+1 − µi

}]
+ EPx1

[
µ2 − µ2

0

]
. (C.15)

We first note that

Eq. (C.14) =
m∑
i=1

OPxi
(n

−1/2
i )

under Assumptions (2,8) by Lemma C.3.

Then,

Eq. (C.13) + Eq. (C.14) =
m∑
i=1

Ri,

where Ri for i = 1, 2, · · · ,m are variables converging in mean-zero normal distribution, by the central limit theorem and
Slutsky’s theorem.

Finally

Eq. (C.15) = T dml({πk}m−1
k=1 , {µk}mk=2)− E [Y |do(x)]

=

m∑
i=k+1

O
P

k−1
xi

(∥∥µi − µi
0

∥∥∥∥πi−1 − πi−1
0

∥∥) ,
where the second equation holds by Lemma C.6.
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Theorem 6 (Error analysis of the estimators for MTI). Under Assumptions (2,7,8,9) and AC-MTI in Def. 7, the errors of
the estimators in Def. 9, denoted ϵest := T est − E [Y |do(x)] for est ∈ {reg, pw, dml}, are:

ϵreg = R1 +OPx1

(
∥µ1 − µ1

0∥
)
,

ϵpw = Rm +OPxm
(∥π(m−1) − π

(m−1)
0 ∥),

ϵdml =

m∑
i=1

Ri +

m∑
i=2

OPxi

(
∥µi − µi

0∥∥πi−1 − πi−1
0 ∥

)
,

where Ri is a random variable such that
√
niRi converges in distribution to a zero-mean normal random variable, where

ni := |Dxi
| for i ∈ {1, · · · ,m}.

Proof of Theorem 6. The proof is complete by Lemmas (C.4, C.5, C.7).

Corollary 6 (Multiply robustness of the DML estimators (Corollary of Thm. 6)). Suppose Asumptions (2,7,8,9) and
AC-MTI in Def. 7 hold. For i = 2, · · · ,m−1, suppose either πi−1 = πi−1

0 or µi = µi
0. Then, T dml in Def. 9 is an unbiased

estimator of E [Y |do(x)].

Proof of Corollary 6. Let T dml({πk}m−1
k=1 , {µk}mk=2) be a quantity defined in Eq. (C.5). Let

T dml,i := EDi

[
π(i−1)(V(i−1))1x(i−1)(X(i−1))

{
µi+1(B(i), xi)− µi(V(i))

}]
, i = 2, · · · ,m

and

T dml,1 := ED1

[
µ2(B1, x1)

]
.

Under the assumption that samples are i.i.d.,

m∑
i=1

EPxi

[
T dml,i

]
= T dml({πk}m−1

k=1 , {µk}mk=2).

Then,

m∑
i=1

EPxi

[
T dml,i

]
− E [Y |do(x)]

= T dml({πk}m−1
k=1 , {µk}mk=2)− E [Y |do(x)]

=

m∑
i=2

OPxi

(∥∥µi − µi
0

∥∥∥∥πi−1 − πi−1
0

∥∥)
= 0,

where the third equation holds by Lemma C.6, and the last equation holds under the given condition.

C.8. Proof of Theorem 7

Definition 10 (Adjustment criterion for gMTI (AC-gMTI)). Let Z := {Z1, · · · , Zm} ⊆ X denote the subset of
treatments. Let {ℓi}mi=1 ⊆ {1, 2, · · · , |X|} denote the index of Z; i.e., Z = {Xℓ1 , · · · , Xℓm}. Let X1 := {Xj}j≤ℓ1 ,
Xm+1 := {Xj}j>ℓm , and Xi := {Xj}ℓi−1<j≤ℓi for i = 2, 3, · · · ,m. An ordered set A := {A1,A2, · · · ,Am} satisfies
adjustment criterion for combining multiple experiments (AC-gMTI) w.r.t. (X, Y ) in G if, for i = 1, 2, · · · ,m− 1,

1. (Ai ⊥⊥ X
>i−1\Zi|X

(i−1)
,A(i−1), Zi)G

X>i−1
;

2. (Y ⊥⊥ Xi|A(i),X
(i−1)

,X
>i
)G

Xi,X
>i

; and
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3. (Y ⊥⊥ X
≥m\Zm|A(m−1),X

(m−1)
, Zm)G

Zm,X≥m\Zm
.

Assumption 10 (Positivity Assumption for AC-gMTI). Pzm(Xm\Zm, Xm+1|A(m−1),X
(m−1)

) and

{Pzi(Ai|A(i−1),X
(i−1)

), Pzi+1
(Ai|A(i−1),X

(i−1)
)}m−1

i=1 , {P i+1(Xi|A(i),X
(i−1)

)}m−1
i=1 are strictly positive dis-

tributions ∀i ∈ {1, · · · ,m},∀zi ∈ DZi
.

Theorem 7 (Identification through AC-gMTI). Suppose AC-gMTI in Def. 10 and Assumption 10 hold. Then, E [Y |do(x)]
is identifiable from {Prand(Zi)(A

(i),X
(i)
)}mi=1 and given as follows. Denote

µm
0 := EPzm

[
Y |A(m−1),X\Zm

]
µm
0 := EPzm

[
Y |A(m−1),xm−1:m+1,X

(m−2)
]

µm−1
0 := EPzm−1

[
µm
0

∣∣∣A(m−2),X
(m−2)

]
,

where Xm−1:m+1 := {Xm−1, Xm, Xm+1}. For i = m− 2, · · · , 2,

µi
0 := EPzi

[
µi+1(A(i), xi,X

(i−1)
)
∣∣∣A(i−1),X

(i−1)
]
,

and µi+1
0 := µi+1

0 (A(i), xi,X
(i−1)

). Then,

E [Y (x)] = EPz1

[
µ2
0

]
. (4)

Proof of Theorem 7. We first note that

E
[
Y |do(x\x(m−1)

),x(m−1),A(m−1)
]
= E

[
Y |do(xm\zm, zm, xm+1),x

(m−1),A(m−1)
]

1
= E

[
Y |do(zm), xm\zm, xm+1,x

(m−1),A(m−1)
]

= E
[
Y |do(zm),x\zm,A(m−1)

]
= µm

0 (A(m−1),x\zm),

where

• 1
= holds by the condition

(
Y ⊥⊥ {Xm\Zm, Xm+1}|A(m−1)(x),X

(m−1)
, Zm

)
GZm,Xm\Zm,Xm+1

in Def. 10. Specifi-

cally, the condition is an application of Rule 2 of do-calculus (Pearl, 2000).

We also note that

E
[
Y |do(x\x(m−2)

),x(m−2),A(m−2)
]

= E
[
E
[
Y |do(x\x(m−2)

),x(m−2),A(m−1)
] ∣∣∣do(x\x(m−2)

),x(m−2),A(m−2)
]

2
= E

[
E
[
Y |do(x\x(m−1)

),x(m−1),A(m−1)
] ∣∣∣do(x\x(m−2)

),x(m−2),A(m−2)
]

= E
[
µm
0 (A(m−1),x\zm)

∣∣∣do(x\x(m−2)
),x(m−2),A(m−2)

]
= E

[
µm
0 (A(m−1),x\zm)

∣∣∣do(x>m−1\zm−1, zm−1),x
(m−2),A(m−2)

]
3
= E

[
µm
0 (A(m−1),x\zm)

∣∣∣do(zm−1),x
(m−2),A(m−2)

]
= µm−1

0 (A(m−2),x(m−2)),
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where

• 2
= holds since (Y ⊥⊥ Xi|A(i),X

(i−1)
,X

>i
)G

Xi,X
>i

in Def. 10 and the given positivity condition.

• 3
= hold since

(
Ai ⊥⊥ X

>i−1\Zi|X
(i−1)

,A(i−1), Zi

)
G

X≥i−1

in Def. 10, X
>i−1\Zi is non-ancestral to X

(i−1)
,A(i−1)

and the given positivity condition.

Finally, for i+ 1 ∈ {m− 2, · · · , 3}, suppose

E
[
Y |do(x\x(i)

),x(i),A(i)
]
= µi+1

0 (A(i),x(i)).

Then,

E
[
Y |do(x\x(i−1)

),x(i−1),A(i−1)
]

= E
[
E
[
Y |do(x\x(i−1)

),x(i−1),A(i)
] ∣∣∣do(x\x(i−1)

),x(i−1),A(i−1)
]

4
= E

[
E
[
Y |do(x\x(i)

),x(i),A(i)
] ∣∣∣do(x\x(i−1)

),x(i−1),A(i−1)
]

= E
[
µi+1
0 (A(i),x(i))

∣∣∣do(x\x(i−1)
),x(i−1),A(i−1)

]
= E

[
µi+1
0 (A(i),x(i))

∣∣∣do(x≥i\zi, zi),x(i−1),A(i−1)
]

5
= E

[
µi+1
0 (A(i),x(i))

∣∣∣do(zi),x(i−1),A(i−1)
]

= µi
0(A

(i−1),x(i−1)),

where

• 4
= holds since (Y ⊥⊥ Xi|A(i),X

(i−1)
,X

>i
)G

Xi,X
>i

in Def. 10 and the given positivity condition.

• 5
= holds since

(
Ai ⊥⊥ X

>i−1\Zi|X
(i−1)

,A(i−1), Zi

)
G

X≥i−1

in Def. 10, X
>i−1\Zi is non-ancestral to

X
(i−1)

,A(i−1) and the given positivity condition.

Therefore, for all i = m− 2, · · · , 2.

E
[
Y |do(x\x(i)

),x(i),A(i)
]
= µi+1

0 (A(i),x(i)).

Finally,

E [Y |do(x)] = E [E [Y |do(x), A1] |do(x)]
6
= E [E [Y |do(x\x1), x1, A1] |do(x)]
= E

[
µ2
0(A1, x1)|do(x)

]
= E

[
µ2
0(A1, x1)|do(x\z1, z1)

]
7
= E

[
µ2
0(A1, x1)|do(z1)

]
= EPz1

[
µ2
0(A1, x1)

]
,

where

• 6
= holds since (Y ⊥⊥ Xi|A(i),X

(i−1)
,X

>i
)G

Xi,X
>i

in Def. 10 and the given positivity condition.
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• 7
= holds since

(
Ai ⊥⊥ X

>i−1\Zi|X
(i−1)

,A(i−1), Zi

)
G

X≥i−1

in Def. 10, X
>i−1\Zi is non-ancestral to

X
(i−1)

,A(i−1) and the given positivity condition.

C.9. Proof of Theorem 8 and Corollary 8

Definition 11 (Nuisances for AC-gMTI). Nuisance functions for AC-gMTI are defined as follows: For a fixed z :=

{z1, · · · , zm} ∈ DZ, let {µi
0}mi=2 be the nuisances defined in Thm. 7. For i = 1, · · · ,m−2, πi

0 :=
Pzi

(Ai|A(i−1),X
(i−1)

)

Pzm (Ai,Xi|A(i−1),X
(i−1)

)
,

and π
(i)
0 :=

∏i
j=1 π

j
0(A

(j),X
(j)

). Also, πm−1
0 :=

Pzm−1
(Am−1|A(m−2),X

(m−2)
)

Pzm (Am−1,Xm−1:m+1|A(m−2),X
(m−2)

)
, and pi

(m−1)
0 := π

(m−2)
0 × πm−1

0 ,

where Xm−1:m+1 := {Xm−1, Xm, Xm+1}. For all i = 1, 2, · · · ,m − 1, we will use πi(W(i),C(i),X(i)) > 0 and µi

and µi to denote estimated nuisances.

Definition 12 (AC-gMTI estimators). Let Di denote samples following Prand(Zi)(V) for i = 1, 2, · · · ,m. For a fixed

zi ∈ DZi
, let Dzi denote the subsamples of Di such that Zi = zi. Let µm+1 := Y . Let 1i−1

x := 1x(i−1)(X
(i−1)

). Then
{REG, PW, DML} estimators are defined as:

T reg := EDz1

[
µ2(A1, x1))

]
,

T pw := EDzm

[
π(m−1)(A(m−1),X)1x(X)Y

]
,

T dml :=

m∑
i=2

EDzi

[
π(i−1)

1
i−1
x {µi+1 − µi}

]
+ EDz1

[
µ2

]
.

Assumption 11 (L2 consistency of nuisances). Estimated nuisances {µi}mi=2 and {πi}m−1
i=1 are L2 consistent; specifically,

∥µi+1 − µi+1
0 ∥Pzi

= oPzi
(1), ∀i ∈ {1, 2, · · · ,m− 1}

∥µi − µi
0∥Pzi

= oPzi
(1), ∀i ∈ {2, · · · ,m}

∥πi − πi∥Pzi+1
= oPzi+1

(1), ∀i ∈ {1, · · · ,m− 1}.

Lemma C.8 (Error analysis of the REG estimator for AC-gMTI). Suppose Assumptions (2,11) hold. Let T reg denote
the estimator defined in Def. 12. Then,

T reg − E [Y |do(x)] = R1 +OPz1
(
∥∥µ2 − µ2

0

∥∥)
Proof of Lemma C.8. We first note that, by Theorem 7,

EPz1

[
µ2
0(A1, x1)

]
= E [Y |do(x)] .

By Lemma C.3,

T reg − E [Y |do(x)]
= T reg − EPz1

[
µ2
0(A1, x1)

]
= EPz1

−D1

[
µ2
0(A1, x1)

]
+ EPz1

−D1

[
µ2
0(A1, x1)− µ2(A1, x1)

]︸ ︷︷ ︸
:=R1

+ EPz1

[
µ2
0(A1, x1)− µ2(A1, x1)

]
= R1 + EPz1

[
µ2
0(A1, x1)− µ2(A1, x1)

]
= R1 +OPz1

(
∥∥µ2 − µ2

0

∥∥),
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where R1 is a variable such that
√
n1R1 converges in distribution to the normal random variable. The last equation holds by

Cauchy-Schwartz inequality.

Lemma C.9 (Error analysis of the PW estimator for AC-gMTI). Suppose Assumptions (2,11) hold. Let T pw denote the
estimator defined in Def. 12. Then,

T pw − E [Y |do(x)] = Rm +OPzm
(∥π(m−1) − π

(m−1)
0 ∥)

Proof of Lemma C.9. In the proof, we will use X̃i := Xi for i = 1, 2, · · · ,m− 2, and X̃m−1 := {Xm−1, Xm, Xm+1}.
Therefore, X̃i partitions X. In the proof, we tentatively assume

EPzm

[
π
(m−1)
0 (V(m−1))1x(X)Y

]
= E [Y |do(x)] . (C.16)

Then, by Lemma C.3,

T pw − E [Y |do(x)]

= T pw − EPzm

[
π
(m−1)
0 (V(m−1))1x(X)Y

]
= EPzm−Dm

[
π
(m−1)
0 (V(m−1))1x(X)Y

]
+ EPzm−Dm

[{
π
(m−1)
0 (V(m−1))− π(m−1)(V(m−1))

}
1x(X)Y

]
︸ ︷︷ ︸

:=Rm

+ EPzm

[{
π
(m−1)
0 (V(m−1))− π(m−1)(V(m−1))

}
1x(X)Y

]
= Rm + EPxm

[{
π
(m−1)
0 (V(m−1))− π(m−1)(V(m−1))

}
1x(X)Y

]
= R1 +OPzm

(
∥∥∥π(m−1) − π

(m−1)
0

∥∥∥),
where Rm is a variable converging in distribution to the normal distribution at

√
nm-rate. The last equation holds by

Cauchy-Schwartz inequality.

We now prove Eq. (C.16). We first show the following: For i = 2, · · · ,m,

E [Y |do(x)] = EPzi

i−1∏
j=1

Pzj (Aj |A(j−1), X̃(j−1))

Pzj+1
(Aj , X̃j |A(j−1), X̃(j−1))

µi
0(A

(i−1), X̃(i−1))1x̃(i−1)(X̃(i−1))

 . (C.17)

It holds for i = 2 as follow:

EPz2

[
Pz1(A1)

Pz2(A1, X̃1)
µ2
0(A1, X̃1)1x̃1

(X̃1)

]
= EPz1

[
µ2
0(A1, x̃1)

]
= E [Y |do(x)] ,

where the last equation holds by Lemma C.8. Now, we make a following induction hypothesis: For some i ∈ {2, · · · ,m−1},
suppose

E [Y |do(x)] induction hypothesis
= EPzi−1

i−2∏
j=1

Pzj (Aj |A(j−1), X̃(j−1))

Pzj+1(Aj , X̃j |A(j−1), X̃(j−1))
µi−1
0 (A(i−2), X̃(i−2))1x̃(i−2)(X̃(i−2))

 .
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Then,

EPzi−1

i−2∏
j=1

Pzj (Aj |A(j−1), X̃(j−1))

Pzj+1(Aj , X̃j |A(j−1), X̃(j−1))
µi−1
0 (A(i−2), X̃(i−2))1x̃(i−2)(X̃(i−2))


= EPzi−1

i−2∏
j=1

Pzj (Aj |A(j−1), X̃(j−1))

Pzj+1(Aj , X̃j |A(j−1), X̃(j−1))
EPzi−1

[
µi
0(A

(i−1), x̃i−1, X̃
(i−2))|A(i−2), X̃(i−2)

]
1x̃(i−2)(X̃(i−2))


1
= EPzi−1

i−2∏
j=1

Pzj (Aj |A(j−1), X̃(j−1))

Pzj+1(Aj , X̃j |A(j−1), X̃(j−1))
µi
0(A

(i−1), x̃i−1, X̃
(i−2))1x̃(i−2)(X̃(i−2))


= EPzi−1

i−2∏
j=1

Pzj (Aj |A(j−1), X̃(j−1))

Pzj+1
(Aj , X̃j |A(j−1), X̃(j−1))

1x̃i−1
(X̃i−1)

Pzi−1
(X̃i−1\Zi−1|A(i−1), X̃(i−2))

µi
0(A

(i−1), X̃(i−1))1x̃(i−2)(X̃(i−2))


= EPzi

i−2∏
j=1

Pzj (Aj |A(j−1), X̃(j−1))

Pzj+1
(Aj , X̃j |A(j−1), X̃(j−1))

Pzi−1
(Ai−1|A(i−2), X̃(i−2))

Pzi(Ai−1, X̃i−1|A(i−2), X̃(i−2))
µi
0(A

(i−1), X̃(i−1))1x̃(i−1)(X̃(i−1))


= EPzi

i−1∏
j=1

Pzj (Aj |A(j−1), X̃(j−1))

Pzj+1
(Aj , X̃j |A(j−1), X̃(j−1))

µi
0(A

(i−1), X̃(i−1))1x̃(i−1)(X̃(i−1))

 .

where 1
= holds by the law of total expectation. Therefore, Eq. (C.17) holds. By plugging i = m, we have

E [Y |do(x)] = EPzm

m−1∏
j=1

Pzj (Aj |A(j−1), X̃(j−1))

Pzm(Aj , X̃j |A(j−1), X̃(j−1))
µm
0 (A(m−1), X̃(m−1))1x̃(m−1)(X̃(m−1))


= EPzm

[
πm−1
0 (A(m−1), X̃(m−1))µm

0 (A(m−1), X̃(m−1))1x(X)
]

= EPzm

[
πm−1
0 A(m−1), X̃(m−1))Ezm

[
Y |A(m−1), X̃(m−1)

]
1x(X)

]
= EPzm

[
πm−1
0 (A(m−1), X̃(m−1))1x(X)Y

]
.

Lemma C.10 (Bias Analysis of the DML estimator for AC-gMTI). Suppose Assumptions (2,8) hold. Let µm+1 := Y .
Let X̃i := Xi for i = 1, 2, · · · ,m− 2, and X̃m−1 := {Xm−1, Xm, Xm+1}. Let Vi := {Ai, X̃i} for i = 1, 2, · · · ,m− 1.
Let Bi := {Ai, X̃i−1} for i = 1, 2, · · · ,m where X̃0 := ∅. Let T dml({πk}m−1

k=1 , {µk}mk=2) be defined as follow:

T dml({πk}m−1
k=1 , {µk}mk=2)

:=

m∑
i=2

EPzi

[
π(i−1)(V(i−1))1x̃(i−1)(X̃(i−1))

{
µi+1(B(i), x̃i)− µi(B(i−1), X̃i−1)

}]
+ EPz1

[
µ2(B(1), x̃1)

]
. (C.18)

Then,

T dml({πk}m−1
k=1 , {µk}mk=2)− E [Y |do(x)] =

m∑
i=2

OPzi

(∥∥µi − µi
0

∥∥∥∥πi−1 − πi−1
0

∥∥) (C.19)

Proof of Lemma C.10. We follow the proof technique used in (Rotnitzky et al., 2017). To simplify the notation, we
sometimes simply denote µi(B(i−1), X̃i−1) as µi; µi(B(i−1), x̃i−1) as µi; and πi(V(i)) as πi.
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We first note that

T dml({πk
0}m−1

k=1 , {µk
0}mk=2) = E [Y |do(x)] . (C.20)

It’s easy to witness Eq. (C.20) because, for i = 2, 3, · · · ,m,

EPzi

[
π
(i−1)
0 (V(i−1))1x̃(i−1)(X̃(i−1))

{
µi+1
0 (B(i), x̃i)− µi

0(B
(i−1), X̃i−1)

}]
1
= EPzi

[
EPzi

[
π
(i−1)
0 (V(i−1))1x̃(i−1)(X̃(i−1))

{
µi+1
0 (B(i), x̃i)− µi

0(B
(i−1), X̃i−1)

} ∣∣∣∣B(i−1), X̃i−1

]]
= EPzi

[
π
(i−1)
0 (V(i−1))1x̃(i−1)(X̃(i−1))

{
EPzi

[
µi+1
0 (B(i), x̃i)|B(i−1), X̃i−1

]
− µi

0(B
(i−1), Xi−1)

}]
= EPzi

[
π
(i−1)
0 (V(i−1))1x̃(i−1)(X̃(i−1))

{
µi
0(B

(i−1), X̃i−1)− µi
0(B

(i−1), X̃i−1)
}]

= 0,

where the equation 1
= holds by the law of total expectation. Therefore,

T dml({πk
0}m−1

k=1 , {µk
0}mk=2) = EPx1

[
µ2
0(B

(1), x1)
]
= E [Y |do(x)] ,

where the second equation holds by Lemma C.8. Therefore, it suffices to prove the following to show Eq. (C.19):

T dml({πk}m−1
k=1 , {µk}mk=2)− T dml({πk

0}m−1
k=1 , {µk

0}mk=2) =

m∑
i=2

OPzi

(∥∥µi − µi
0

∥∥∥∥πi−1 − πi−1
0

∥∥) . (C.21)

For i = 1, 2, · · · ,m− 1, we define a quantity

ωi
0(B

(i)) :=
Pzi(B

(i))

Pzm(B(i))
.

We note that ωi
0(B

(i)) is related with π as follow:

ωi
0(B

(i)) = πi
0(V

(i))Pzm(X̃i|B(i)). (C.22)

To witness, consider the following:

ωi
0(B

(i)) =
Pzi(Ai|V(i−1))Pzi(V

(i−1))

Pzm(Ai|V(i−1))Pzm(V(i−1))

2
=

Pzi(Ai|V(i−1))

Pzm(Ai|V(i−1))

= πi
0(V

(i))
Pzm(Ai, X̃i|V(i−1))

Pzm(Ai|V(i−1))

= πi
0(V

(i))Pzm(X̃i|B(i)),

where

• 2
= holds since X̃i is non-descendent to V(i−1), so that Pzi(V

(i−1)) = Pzm(V(i−1)).

To simplify the notation, we sometimes simply denote ωi
0(B

(i)) as ωi
0; µi(B(i−1), Xi−1) as µi; µi(B(i−1), x̃i−1) as µi;

and πi(V(i)) as πi.
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Then, T dml({πk}m−1
k=1 , {µk}mk=2) in Eq. (C.18) can be rewritten as

T dml({πk}m−1
k=1 , {µk}mk=2) =

m∑
i=2

EPzm

[
ωi
0π

(i−1)
1x̃(i−1)(X̃(i−1))

{
µi+1 − µi

}
+ ω1

0µ
2
]
, (C.23)

where µm+1 := Y .

For each k = 1, 2, · · · ,m, we define a quantity Qk as follow:

Qk := Qk({πj}m−1
j=k , {µj}mj=k+1) := ωk

0µ
k+1 +

m∑
i=k+1

ωi
0π

(k:i−1)
1x̃(k:i−1)(X̃(k:i−1))

{
µi+1 − µi

}
. (C.24)

Note Qm = Y and EPxm
[Q1] = T dml({πk}m−1

k=1 , {µk}mk=2) defined in Eq. (C.23). We note that

EPxm

[
Q1 − ω1

0µ
2
0

] 4
= T dml({πk}m−1

k=1 , {µk}mk=2)− EPz1

[
µ2
0(B

(1), x̃1)
]

5
= T dml({πk}m−1

k=1 , {µk}mk=2)− E [Y |do(x)]
= l.h.s. of Eq. (C.19),

where

• 4
= holds since EPzm

[
ω1
0(B

(1))µ2(B(1), x̃1)
]
= EPz1

[
µ1(B(1), x̃1)

]
.

• 5
= holds by Lemma C.8.

Motivating from the fact that EPzm

[
Q1 − ω1

0µ
2
0

]
= l.h.s. of Eq. (C.19), we establish a following induction hypothesis. For

P
i−1

zm
:= Pzm(·|V(i−1)), the induction hypothesis is given as follow:

Hypothesis: E
P

k−1
zm

[
Qk − ωk

0µ
k+1
0

]
=

m∑
i=k+1

O
P

k−1
zi

(∥∥µi − µi
0

∥∥∥∥πi−1 − πi−1
0

∥∥) , for k ∈ {2, · · · ,m− 1} (C.25)

We first verify the hypothesis Eq. (C.25) for k = m− 1.

E
P

m−2
zm

[
Qm−1 − ωm−1

0 µm
0

]
= E

P
m−2
zm

[
ωm−1
0 µm + πm−1

1x̃m−1
(X̃m−1) {Y − µm} − ωm−1

0 µm
0

]
6
= E

P
m−2
zm

[
ωm−1
0 µm + πm−1

1x̃m−1
(X̃m−1) {µm

0 − µm} − ωm−1
0 µm

0

]
= E

P
m−2
zm

[
ωm−1
0 {µm − µm

0 }+ πm−1
1x̃m−1(X̃m−1) {µm

0 − µm}
]

7
= E

P
m−2
zm

[
ωm−1
0

1x̃m−1
(X̃m−1)

Pzm(X̃m−1|B(m−1))
{µm − µm

0 }+ πm−1
1x̃m−1(X̃m−1) {µm

0 − µm}

]
8
= E

P
m−2
zm

[
πm−1
0 1x̃m−1

(X̃m−1) {µm − µm
0 }+ πm−1

1x̃m−1
(X̃m−1) {µm

0 − µm}
]

= E
P

m−2
zm

[
1x̃m−1(X̃m−1) {µm − µm

0 }
{
πm−1
0 − πm−1

}]
= EPxm

[
1x̃m−1

(X̃m−1) {µm − µm
0 }

{
πm−1
0 − πm−1

} ∣∣∣V(m−2)
]

9
= O

P
m−2
zm

(
∥µm − µm

0 ∥
∥∥πm−1 − πm−1

0

∥∥) ,
where
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• 6
= holds by the total law of expectation.

• 7
= holds since

EPzm

[
µm−1(B(m−1), x̃m−1)

∣∣∣V(m−2)
]
= EPzm

[
µm−1(B(m−1), X̃m−1)

1x̃m−1(X̃m−1)

Pzm(X̃m−1|B(m−1))

∣∣∣V(m−2)

]
.

• 8
= holds by the definition of ωm−1

0 .

• 9
= holds by applying Cauchy-Schwartz inequality.

Now, we suppose Eq. (C.25) holds for some k + 1 ∈ {2, · · · ,m − 1}. Then, we will show that Eq. (C.25) holds for k.
Toward this end, we first rewrite Qk in Eq. (C.24) in a recursive form. For any k + 1 ∈ {2, · · · ,m − 1}, the following
relation can be derived from Eq. (C.24):

πk
1x̃k

(X̃k)
{
Qk+1 − ωk+1

0 µk+2
}
=

m∑
i=k+2

ωi
0π

(k:i−1)
1x̃(k:i−1)(X̃(k:i−1))

{
µi+1 − µi

}
.

Therefore, for each k = 1, 2, · · · ,m− 1,

Qk({πj}m−1
j=k , {µj}mj=k+1) = ωk

0µ
k+1 + ωk+1

0 πk
1x̃k

(X̃k)
{
µk+2 − µk+1

}
+ πk

1x̃k
(X̃k)

{
Qk+1 − ωk+1

0 µk+2
}
.

Then,

E
P

k−1
zm

[
Qk − ωk

0µ
k+1
0

]
= E

P
k−1
zm

[
ωk
0µ

k+1 + ωk+1
0 πk

1x̃k
(X̃k)

{
µk+2 − µk+1

}
+ πk

1x̃k
(X̃k)

{
Qk+1 − ωk+1

0 µk+2
}
− ωk

0µ
k+1
0

]
= E

P
k−1
zm

[
ωk
0µ

k+1 + ωk+1
0 πk

1x̃k
(X̃k)

{
µk+2 − µk+1

}
+ ωk+1

0 πk
1x̃k

(X̃k)
{
µk+2
0 − µk+2

}
− ωk

0µ
k+1
0

]
+ E

P
k−1
zm

[
πk
1x̃k

(X̃k)
{
Qk+1 − ωk+1

0 µk+2
0

}]
= E

P
k−1
zm

[
ωk
0µ

k+1 + ωk+1
0 πk

1x̃k
(X̃k)

{
µk+2
0 − µk+1

}
− ωk

0µ
k+1
0

]
+ E

P
k−1
zm

[
πk
1x̃k

(X̃k)
{
Qk+1 − ωk+1

0 µk+2
0

}]
= E

P
k−1
zm

[
ωk
0

{
µk+1 − µk+1

0

}
+ ωk+1

0 πk
1x̃k

(X̃k)
{
µk+2
0 − µk+1

}]
+ E

P
k−1
zm

[
πk
1x̃k

(X̃k)
{
Qk+1 − ωk+1

0 µk+2
0

}]
10
= E

P
k−1
zm

[
ωk
0

{
µk+1 − µk+1

0

}
+ πk

1x̃k
(X̃k)

{
µk+1
0 − µk+1

}]
+ E

P
k−1
zm

[
πk
1x̃k

(X̃k)
{
Qk+1 − ωk+1

0 µk+2
0

}]
11
= E

P
k−1
zm

[
πk
01x̃k

(X̃k)
{
µk+1 − µk+1

0

}
+ πk

1x̃k
(X̃k)

{
µk+1
0 − µk+1

}]
+ E

P
k−1
zm

[
πk
1x̃k

(X̃k)
{
Qk+1 − ωk+1

0 µk+2
0

}]
= E

P
k−1
zm

[
1x̃k

(X̃k)
{
µk+1 − µk+1

0

}{
πk
0 − πk

}]
+ E

P
k−1
zm

[
πk
1x̃k

(X̃k)
{
Qk+1 − ωk+1

0 µk+2
0

}]
12
= E

P
k−1
zm

[
ωk+1
0 1x̃k

(X̃k)
{
µk+1 − µk+1

0

}{
πk
0 − πk

}]
+ E

P
k−1
zm

[
πk
1x̃k

(X̃k)
{
Qk+1 − ωk+1

0 µk+2
0

}]
13
= E

P
k−1
zk+1

[
1x̃k

(x̃k)
{
µk+1 − µk+1

0

}{
πk
0 − πk

}]
+ E

P
k−1
zm

[
πk
1x̃k

(X̃k)
{
Qk+1 − ωk+1

0 µk+2
0

}]
14
= E

P
k−1
zk+1

[
1x̃k

(X̃k)
{
µk+1 − µk+1

0

}{
πk
0 − πk

}]
+

m∑
i=k+2

O
P

k
zi

(∥∥µi − µi
0

∥∥∥∥πi−1 − πi−1
0

∥∥)
15
= OP

z
k−1
k+1

(∥∥µk+1 − µk+1
0

∥∥∥∥πk − πk
0

∥∥)+ m∑
i=k+2

O
P

k
zi

(∥∥µi − µi
0

∥∥∥∥πi−1 − πi−1
0

∥∥)
=

m∑
i=k+1

O
P

k−1
zi

(∥∥µi − µi
0

∥∥∥∥πi−1 − πi−1
0

∥∥) ,
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where

• 10
= holds since

EPzm

[
ωk+1
0 (B(k+1))πk(V(k))1x̃k

(X̃k)µ
k+2
0 (B(k+1), xk+1)

∣∣∣V(k−1)
]

= EPzm

[
EPzm

[
ωk+1
0 (B(k+1))πk(V(k))1x̃k

(X̃k)µ
k+2
0 (B(k+1), x̃k+1)

∣∣∣V(k)
] ∣∣∣V(k−1)

]
= EPzm

[
πk(V(k))1x̃k

(X̃k)EPzm

[
ωk+1
0 (B(k+1))µk+2

0 (B(k+1), x̃k+1)
∣∣∣V(k)

] ∣∣∣V(k−1)
]

= EPzm

[
πk(V(k))1x̃k

(X̃k)EPzm

[
Pzk+1

(B(k+1))

Pzm(B(k+1))
µk+2
0 (B(k+1), x̃k+1)

∣∣∣V(k)

] ∣∣∣V(k−1)

]
= EPzm

[
πk(V(k))1x̃k

(X̃k)EPzk+1

[
µk+2
0 (B(k+1), x̃k+1)

∣∣∣V(k)
] ∣∣∣V(k−1)

]
= EPzm

[
πk(V(k))1x̃k

(X̃k)µ
k+1
0 (V(k))

∣∣∣V(k−1)
]
.

• 11
= holds since

EPzm

[
ωk
0 (B

(k))
{
µk+1(B(k), x̃k)− µk+1

0 (B(k), x̃k)
} ∣∣∣V(k−1)

]
= EPzm

[
ωk
0 (B

(k))
1x̃k

(X̃k)

Pzm(X̃k|B(k))

{
µk+1(B(k), X̃k)− µk+1

0 (B(k), X̃k)
} ∣∣∣V(k−1)

]

= EPzm

[
πk
0 (V

(k))Pzm(X̃k|B(k))
1x̃k

(X̃k)

Pzm(X̃k|B(k))

{
µk+1(B(k), X̃k)− µk+1

0 (B(k), X̃k)
} ∣∣∣V(k−1)

]
= EPzm

[
πk
0 (V

(k))1x̃k
(X̃k)

{
µk+1(B(k), X̃k)− µk+1

0 (B(k), X̃k)
} ∣∣∣V(k−1)

]
.

• 12
= and 13

= hold since

EPzm

[
1x̃k

(X̃k)
{
µk+1(V(k))− µk+1

0 (V(k))
}{

πk
0 (V

(k))− πk(V(k))
} ∣∣∣V(k−1)

]
= EPzm

[
ωk+1
0 (V(k))1x̃k

(X̃k)
{
µk+1(V(k))− µk+1

0 (V(k))
}{

πk
0 (V

(k))− πk(V(k))
} ∣∣∣V(k−1)

]
= EPzm

[
Pzk+1

(V(k))

Pzm(V(k))
1x̃k

(X̃k)
{
µk+1(V(k))− µk+1

0 (V(k))
}{

πk
0 (V

(k))− πk(V(k))
} ∣∣∣V(k−1)

]
= EPzk+1

[
1x̃k

(X̃k)
{
µk+1(V(k))− µk+1

0 (V(k))
}{

πk
0 (V

(k))− πk(V(k))
} ∣∣∣V(k−1)

]
,

where the second equation hold since

ωk+1
0 (V(k)) =

Pzk+1
(V(k))

Pzm(V(k))
= 1

since Zk+1, Zm are non-descendants of V(k) so that Pzk+1
(V(k)) = Pzm(V(k)).

• 14
= holds by the induction hypothesis.

• 15
= holds by Cauchy-Schwartz inequality.
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Therefore, the induction hypothesis in Eq. (C.25) holds for all k = 1, 2, · · ·m− 1. Therefore,

l.h.s. of Eq. (C.19) = EPzm

[
Q1 − ω1

0µ
2
0

]
=

m∑
i=2

OPzi

(∥∥µi − µi
0

∥∥∥∥πi−1 − πi−1
0

∥∥) ,
where the second equation holds by plugging k = 1 into the verified hypothesis in Eq. (C.25). This completes the proof.

Lemma C.11 (Error analysis of the DML estimator for AC-gMTI). Suppose Assumptions (2,11) hold. Let T dml denote
the estimator defined in Def. 12. Then,

T dml − E [Y |do(x)] =
m∑
i=1

Ri +

m∑
i=2

OPzi

(∥∥µi − µi
0

∥∥∥∥πi−1 − πi−1
0

∥∥) ,
where Ri for i = 1, 2, · · · ,m are variables converging in mean-zero normal distribution at n−1/2

i rates.

Proof of Lemma C.11. In the proof, we will use X̃i := Xi for i = 1, 2, · · · ,m− 2, and X̃m−1 := {Xm−1, Xm, Xm+1}.
Therefore, X̃i partitions X. We will use Bi := {Ai, X̃i−1} or all i = 1, 2, · · · ,m, where X0 := ∅. To simplify the notation,
we sometimes simply denote µi(B(i−1), X̃i−1) as µi; µi(B(i−1), x̃i−1) as µi; and πi(V(i)) as πi.

Let T dml({πk}m−1
k=1 , {µk}mk=2) be a quantity defined in Eq. (C.18). We first note that

T dml({πk
0}m−1

k=1 , {µk
0}mk=2) = E [Y |do(x)]

by Eq. (C.7). Then, by Lemma C.3,

T dml − E [Y |do(x)]
= T dml − T dml({πk

0}m−1
k=1 , {µk

0}mk=2)

=

m∑
i=2

EPxi
−Di

[
π
(i−1)
0 1x(i−1)(X(i−1))

{
µi+1
0 − µi

0

}]
+ EPx1

−D1

[
µ2
0

]
(C.26)

+

m∑
i=2

EPxi
−Di

[
π
(i−1)
0 1x(i−1)(X(i−1))

{
µi+1
0 − µi

0

}
− π(i−1)

1x(i−1)(X(i−1))
{
µi+1 − µi

}]
+ EPx1−D1

[
µ2
0 − µ2

0

]
(C.27)

+

m∑
i=2

EPxi

[
π(i−1)

1x(i−1)(X(i−1))
{
µi+1 − µi

}]
+ EPx1

[
µ2 − µ2

0

]
. (C.28)

We first note that

Eq. (C.14) =
m∑
i=1

oPxi
(n

−1/2
i )

under Assumptions (2,8) by Lemma C.3.

Then,

Eq. (C.13) + Eq. (C.14) =
m∑
i=1

Ri,

where Ri for i = 1, 2, · · · ,m are variables converging in mean-zero normal distribution, by the central limit theorem and
Slutsky’s theorem.
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Finally

Eq. (C.15) = T dml({πk}m−1
k=1 , {µk}mk=2)− E [Y |do(x)]

=

m∑
i=k+1

O
P

k−1
xi

(∥∥µi − µi
0

∥∥∥∥πi−1 − πi−1
0

∥∥) ,
where the second equation holds by Lemma C.6.

Theorem 6 (Error analysis of the estimators for MTI). Under Assumptions (2,7,8,9) and AC-MTI in Def. 7, the errors of
the estimators in Def. 9, denoted ϵest := T est − E [Y |do(x)] for est ∈ {reg, pw, dml}, are:

ϵreg = R1 +OPx1

(
∥µ1 − µ1

0∥
)
,

ϵpw = Rm +OPxm
(∥π(m−1) − π

(m−1)
0 ∥),

ϵdml =

m∑
i=1

Ri +

m∑
i=2

OPxi

(
∥µi − µi

0∥∥πi−1 − πi−1
0 ∥

)
,

where Ri is a random variable such that
√
niRi converges in distribution to a zero-mean normal random variable, where

ni := |Dxi | for i ∈ {1, · · · ,m}.

Proof of Theorem 6. The proof is complete by Lemmas (C.4, C.5, C.7).

Corollary 6 (Multiply robustness of the DML estimators (Corollary of Thm. 6)). Suppose Asumptions (2,7,8,9) and
AC-MTI in Def. 7 hold. For i = 2, · · · ,m−1, suppose either πi−1 = πi−1

0 or µi = µi
0. Then, T dml in Def. 9 is an unbiased

estimator of E [Y |do(x)].

Proof of Corollary 6. Let T dml({πk}m−1
k=1 , {µk}mk=2) be a quantity defined in Eq. (C.5). Let

T dml,i := EDi

[
π(i−1)(V(i−1))1x(i−1)(X(i−1))

{
µi+1(B(i), xi)− µi(V(i))

}]
, i = 2, · · · ,m

and

T dml,1 := ED1

[
µ2(B1, x1)

]
.

Under the assumption that samples are i.i.d.,

m∑
i=1

EPxi

[
T dml,i

]
= T dml({πk}m−1

k=1 , {µk}mk=2).

Then,

m∑
i=1

EPxi

[
T dml,i

]
− E [Y |do(x)]

= T dml({πk}m−1
k=1 , {µk}mk=2)− E [Y |do(x)]

=

m∑
i=2

OPxi

(∥∥µi − µi
0

∥∥∥∥πi−1 − πi−1
0

∥∥)
= 0,

where the third equation holds by Lemma C.6, and the last equation holds under the given condition.
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Theorem 8 (Error analysis of the AC-gMTI estimators). Under Assumptions (2,10,11) and AC-gMTI in Def. 10, the
errors of the estimators in Def. 12, denoted ϵest := T est − E [Y |do(x)] for est ∈ {reg, pw, dml}, are:

ϵreg = R1 +OPz1
(∥µ1 − µ1

0∥),

ϵpw = Rm +OPzm
(∥π(m−1) − π

(m−1)
0 ∥),

ϵdml =

m∑
i=1

Ri +

m∑
i=2

OPzi
(∥µi − µi

0∥∥πi−1 − πi−1
0 ∥),

where Ri is a variable such that
√
niRi converges in distribution to a zero-mean normal random variable, where ni := |Di|

for i ∈ {1, · · · ,m}.

Proof of Theorem 8. The proof is complete by Lemmas (C.8, C.9, C.11).

Corollary 8 (Multiply robustness of the DML estimators (Corollary of Thm. 8)). Suppose Assumptions (2,10,11) and
AC-gMTI in Def. 10 hold. For i = 2, · · · ,m − 1, suppose either πi−1 = πi−1

0 or µi = µi
0. Then, T dml in Def. 12 is an

unbiased estimator of E [Y |do(x)].

Proof of Corollary 8. Let T dml({πk}m−1
k=1 , {µk}mk=2) be a quantity defined in Eq. (C.18). Let

T dml,i := EDi

[
π(i−1)(V(i−1))1x̃(i−1)(X̃(i−1))

{
µi+1(B(i), x̃i)− µi(V(i))

}]
, i = 2, · · · ,m

and

T dml,1 := ED1

[
µ2(B1, x̃1)

]
.

Under the assumption that samples are i.i.d.,

m∑
i=1

EPzi

[
T dml,i

]
= T dml({πk}m−1

k=1 , {µk}mk=2).

Then,

m∑
i=1

EPzi

[
T dml,i

]
− E [Y |do(x)]

= T dml({πk}m−1
k=1 , {µk}mk=2)− E [Y |do(x)]

=

m∑
i=2

OPzi

(∥∥µi − µi
0

∥∥∥∥πi−1 − πi−1
0

∥∥)
= 0,

where the third equation holds by Lemma C.10, and the last equation holds under the given condition.

D. Project STAR: Estimating Joint Effects of Class Sizes to Academic Outcomes

We applied the proposed estimators to Project STAR dataset (Krueger & Whitmore, 2001; Schanzenbach, 2006). Project
STAR is an experimental study investigating teacher/student ratios’ impact on academic achievement for kindergarten
through third-grade students. In the study, students were randomly assigned to three different class sizes: small-size
classes, regular classes, and large-size classes. The objective was to evaluate how class size affects academic outcomes
(Schanzenbach, 2006). In our analysis, we used the dataset introduced in the online complement of Stock et al. (2003).
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X1

X2

W

Y

C

(a) Project STAR

Figure D.5: Example causal graphs for Section D. Nodes representing the treatment and outcome are marked in blue and
red, respectively.

Project STAR Dataset. We denote Project STAR dataset as D. The dataset D includes the following information: class
size for kindergarten (X1), the academic outcome in kindergarten (W ), class size for third grade (X2), the academic
outcome in third grade (Y ), and pre-treatment variables (C) including genders, age, ethnicity, qualification for free lunch,
school types, and teacher’s education levels. Since Project STAR is a longitudinal experimental study, the samples for
variables {C,X1,W} follow a distribution Prand(X1)(C,X1,W ), and the samples for variables {C,X1,W,X2, Y } follow
a distribution Prand(X1,X2)(C,X1,W,X2, Y ).

Assumption on Dataset. We assume that the structural causal modelM generating the dataset D induces a causal graph
depicted in Figure 4a. Specifically, since Project STAR is a longitudinal experimental study randomizing X1 and X2, the
submodel Mx1,x2

for x1, x2 ∈ DX1,X2
generates the dataset D.

Creation of Datasets from Marginal Experiments. In this empirical study, we create two datasets from this dataset: D1

and D2. The dataset D1 is a random subsample of D only including {C,X1,W}. Then, D1 follows Prand(X1)(C,X1,W ).

We now construct the dataset D2 following the marginal experimental distribution Prand(X2)(C,X1,W,X2, Y ) by intro-
ducing the confounding bias between X1 and W as follows. A specific procedure for introducing confounding bias
from experimental studies follows an approach widely used in practice4, which is described below. Among attributes
in C, we chose specific covariates Cbias := {ethnicity, gender, free-lunch-eligibility}. Next, we assign probabilities for
Psample(x1|cbias) for ∀x1, cbias ∈ DX1,Cbias . Then, we construct the dataset D2 as follows: D2 := {}, and for each samples in
D := {C(i), X1,(i),W(i), X2,(i), Y(i)}

|D|
i=1, we repeat the following steps:

1. Generate the Bernouli random variable B(i) with parameter Psample(X1,(i)|Cbias.(i)).

2. If B(i) = 1, include {C(i), X1,(i),W(i), X2,(i), Y(i)} in D2.

Finally, we exclude the covariate ‘ethnicity’ from C in D1 and D2. By doing so, we introduce unmeasured confounding bias
between X1 and W in D2. As a result, D2 follows a marginal experimental distribution Prand(X2)(C,X1,W,X2, Y ). In this
empirical study, the construction of estimators solely relied on the datasets D1 and D2, while the dataset D was exclusively
leveraged to construct the ground-truth estimate. The following procedure outlines the specific steps for constructing the
ground-truth estimate. Detailed procedures for creating the datasets D1 and D2 from D is provided in Appendix E.1.5.

Goal. In this empirical study, we aim to study the joint effect of the class size for kindergarten (X1) and the
third grade (X2) on the third grade’s academic outcome (Y ); i.e., E [Y |do(x1, x2)]. Since D is a longitudi-

4The following procedure introduces confounding bias in an experimental dataset by resampling the dataset with a probability
depending on the treatment X1 and covariates C. The procedure has been used in prior research, such as (Hill, 2011; Louizos et al., 2017;
Zhang & Bareinboim, 2019; Gentzel et al., 2021) for simulation purposes.
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nal experimental dataset following Prand(X1,X2)(C,X1,W,X2, Y ), the ground-truth E [Y |do(x1, x2)] is estimated as
ED [Y 1x1,x2

(X1, X2)] /ED [1x1,x2
(X1, X2)].

Causal Effect Identification. Identifying and estimating the causal effects E [Y |do(x1, x2)] falls under Task TTI. To
witness, we first recall that the datasets D1 and D2 consist of samples that follow the distributions Prand(X1)(C,X1,W )

and Prand(X2)(C,X1,W,X2, Y ), respectively. Furthermore, within each dataset, the samples Dx1 follow the distribution
Px1(C,W ) and the samples Dx2 follow the distribution Px2(C,X1,W, Y ).

We first observe that {C,W} in the graph G (in Fig. D.5a) satisfies the AC-TTI in Def. 1 w.r.t {(X1, X2), Y }. Specifically,

1. ({C,W} ⊥⊥ X2|X1)GX1,X2
; and

2. (Y ⊥⊥ X2|C,W,X1)GX1X2
.

Also, the positivity assumption in Assumption 1 is satisfied for D1 and D2. Therefore, according to Theorem 1, the joint
treatment effects E [Y |do(x1, x2)] are identifiable and can be expressed as follows:

E [Y |do(x1, x2)] = EPx1

[
EPx2

[Y |C,W, x1]
]
. (D.1)

Causal Effect Estimation. We define the nuisance as follows: For the fixed x1, x2 ∈ DX1,X2 ,

µ0(C,X1,W ) := EPx2
[Y |W,X1, C] , (D.2)

π0(C,X1,W ) :=
Px1

(W |C)

Px2
(W,X1|C)

. (D.3)

Then, besides Eq. (D.1), the causal effect can be expressed as follows:

Eq. (D.1) = EPx2
[Y π0(C,X1,W )1x1

(X1)] , or , (D.4)

= EPx2
[π0(C,X1,W )1x1

(X1){Y − µ0(C,X1,W )}] + EPx1
[µ0(C, x1,W )] . (D.5)

We then construct the regression-based, probability weighting-based, and double/debiased machine learning (DML)
T reg, T pw, T dml using the following procedure.

1. For each fixed xi ∈ DXi and a sample set Dxi for i ∈ {1, 2}, randomly split the sample as Dxi,t and Dxi,e.

2. Use {Dx1,t, Dx2,t} to train the model for learning nuisances in Eq. (D.2) and Eq. (D.3). Let µ(C,X1,W ) and
π(C,X1,W ) denote the learnt models. We use the XGBoost (Chen & Guestrin, 2016) to learn the model.

3. Then, each estimator is defined as follows:

T reg := EDx1,e
[µ(C, x1,W )] (D.6)

T pw := EDx2,e
[π(C,X1,W )1x1

(X1)Y ] (D.7)

T dml := EDx2,e
[π(C,X1,W )1x1

(X1){Y − µ(C,X1,W )}] + EDx1,e
[µ(C, x1,W )] . (D.8)

With the following construction, the Assumption 2 is satisfied.

Experimental Results. As described in the Experimental Setup section (Sec. 5), we evaluated the AAEest of estimators
T est for est ∈ {reg, pw, dml} in Cases {1, 2, 3, 4}. The AAE plots for all cases can be seen in Fig. D.6. In this particular
scenario, the sample size was not varied since the sample itself was externally given.

In Case 2, we introduced variation by adjusting the size of the converging noise ϵ, which follows a normal distribution
Normal(n−α, n−2α) for n ∈ {200, 400, 600, 800, 1000}. It was observed that the DML estimator T dml outperformed the
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Fig. D.4a

(Project STAR)

Case 1 Case 2 Case 3 Case 4

Figure D.6: AAE Plot for Fig. (D.5a) for Cases {1,2,3,4} depicted in the Experimental Setup in Sec. 5.

other two estimators by achieving fast convergence, as demonstrated in Theorem 2. For Cases {3, 4}, the DML estimator
T dml exhibited doubly robust properties, as illustrated in Corollary 2.

E. Details of Experiments

As described in Sec. 5, we used the XGBoost (Chen & Guestrin, 2016) as a model for estimating nuisances
µ, π, {µi}mi=2, {πi}mi=1. We implemented the model using Python. In modeling nuisance using the XGBoost, we used the
command xgboost.XGBClassifier(eval_metric=’logloss’)5 to use the XGBoost with the default parame-
ter settings. In implementing the PW estimators T pw and the DML estimators T dml, we use the clipped weight by trimming
samples yielding weights lower than 10 percentile or greater than 90 percentile (Crump et al., 2009). For Tasks (TTI,MTI),
d is chosen to be 10. For Task gTTI, d is chosen to be 5. For Task gMTI, d is chosen to be 1.

We split the dataset as training and test samples with a 5:5 ratio. The training samples are used only for running parameters
of the XGBoost models, and the test samples are used only for evaluating the trained XGBoost models.

E.1. Designs of Simulations

This section provides the structural causal models used for generating the dataset. Specifically, we provide a part of the code
for generating the dataset.

E.1.1. TASK TTI

```Generate Exogeneous Variables```
# Generate U_C1_W (Latent confounders between C1, W)

U_C1_W = np.random.normal(0, 1, size=(n,))

# Generate U_C1_X1 (Latent confounders between C1, X1)

U_C1_X1 = np.random.normal(0, 1, size=(n,))

# Generate U_X1_W (Latent confounders between X1, W)

U_X1_W = np.random.normal(0, 1, size=(n,))

# Generate U_X1_X2 (Latent confounders between X1, X2)

U_X1_X2 = np.random.normal(0, 1, size=(n,))

# Generate U_X2_Y (Latent confounders between X2, Y)

U_X2_Y = np.random.normal(0, 1, size=(n,))

# Generate U_C2_X2 (Latent confounders between C2, X2)

5Detailed parametrization of parameters including learning rates, maximum depth of the trees, etc. are explained in https:
//xgboost.readthedocs.io/en/stable/python/python_api.html#xgboost.XGBClassifier.
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U_C2_X2 = np.random.normal(0, 1, size=(n,))

# Generate U_C2_Y (Latent confounders between C2, Y)

U_C2_Y = np.random.normal(0, 1, size=(n,))

```Generate Endogenous Variables```
# SCM for Covariates C1

def f_C1(n,d,U_C1_X1, U_C1_W):

C1 = np.zeros((n,d))

for idx in range(0,d):

C1[:,idx] = np.random.normal(0,1,size = (n,)) + U_C1_X1 + U_C1_W

return(C1)

# SCM for Treatment X1

def f_X1(n,d,C1, U_C1_X1, U_X1_W, U_X1_X2):

coeff = np.repeat(1,d)

X1_linfun = np.dot(C1,coeff) + U_C1_X1 + U_X1_W + U_X1_X2

X1_param = 1/(1+np.exp(-X1_linfun))

X1 = np.round(X1_param)

return(X1)

# SCM for Output W

def f_W(n, d, C1, X1, U_C1_W, U_X1_W):

coeff1 = np.repeat(1,d)

coeff2 = np.repeat(-1,d)

W_linfun = np.dot(C1, coeff1) + np.dot(C1, coeff2) * X1 + U_C1_W + U_X1_W

W_param = 1 / (1 + np.exp(-W_linfun))

W = np.round(W_param)

return (W)

# SCM for Covariates C2

def f_C2(n, d, C1,U_C2_X2, U_C2_Y):

C2 = np.zeros((n, d))

for idx in range(0, d):

C2[:, idx] = (2*C1[:,idx]-1) + U_C2_X2 + U_C2_Y

return (C2)

# SCM for Treatment X2

def f_X2(n, d, C2, X1, U_C2_X2, U_X2_Y, U_X1_X2):

coeff1 = np.repeat(1, d)

coeff2 = np.repeat(-1, d)

X2_linfun = np.dot(C2, coeff1) + np.dot(C2, coeff2) *X1 \

+ U_C2_X2 + U_X2_Y + U_X1_X2

X2_param = 1 / (1 + np.exp(-X2_linfun))

X2 = np.round(X2_param)

return (X2)

# SCM for Y

def f_Y(n, d, C2, X2, W, U_C2_Y, U_X2_Y):

coeff1 = np.repeat(1, d)

coeff2 = np.repeat(2, d)

coeff3 = np.repeat(-1, d)

Y_linfun = np.dot(C2, coeff1) + np.dot(C2, coeff2) * X2 \
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+ np.dot(C2, coeff3) * W + U_C2_Y + U_X2_Y

Y_param = 1 / (1 + np.exp(-Y_linfun))

Y = np.round(Y_param)

return (Y)

E.1.2. TASK GTTI

```Generate Exogeneous Variables```
# Generate U_X0_Z1 (Latent confounders between X0, Z1)

U_X0_Z1 = np.random.normal(0, 1, size=(n,))

## Generate U_X0_Z2 (Latent confounders between X0, Z2)

U_X0_Z2 = np.random.normal(0, 1, size=(n,))

## Generate U_Z1_W (Latent confounders between Z1, W)

U_Z1_W = np.random.normal(0, 1, size=(n,))

## Generate U_Z2_Y (Latent confounders between Z2, Y)

U_Z2_Y = np.random.normal(0, 1, size=(n,))

```Generate Endogenous Variables```
# SCM for Treatment C

def f_C(n,d):

C = np.zeros((n, d))

for idx in range(0, d):

C[:, idx] = np.random.normal(0, 1, size=(n,))

return (C)

# SCM for Treatment X0

def f_X0(n,d, U_X0_Z1 , U_X0_Z2):

X0_linfun = U_X0_Z1 - U_X0_Z2 + 0.5 + np.random.normal(0, 1, size=(n,))

X0_param = 1/(1+np.exp(-X0_linfun))

X0 = np.round(X0_param)

return(X0)

# SCM for Treatment Z1

def f_Z1(n, d, C, X0, U_X0_Z1, U_Z1_W):

coeff1 = np.repeat(1, d)

Z1_linfun = np.dot(C, coeff1)*(2*X0-1) + U_X0_Z1 + U_Z1_W + X0 \

+ np.random.normal(0, 1, size=(n,))

Z1_param = 1 / (1 + np.exp(-Z1_linfun))

Z1 = np.round(Z1_param)

return (Z1)

# SCM for W

def f_W(n,d,C,Z1,U_Z1_W):

coeff1 = np.repeat(-0.5, d)

W_linfun = np.dot(C, coeff1)*(2*Z1-1) + U_Z1_W \

+ np.random.normal(0, 1, size=(n,))

W_param = 1 / (1 + np.exp(-W_linfun))

W = np.round(W_param)

return (W)
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# SCM for Treatment Z2

def f_Z2(n, d, C, X0, Z1, U_X0_Z2, U_Z2_Y):

coeff1 = np.repeat(-1, d)

coeff2 = np.repeat(0.5, d)

U = 0.5*(U_X0_Z2 + U_Z2_Y)

Z2_linfun = np.dot(C,coeff1)*(2*X0-1) + np.dot(C,coeff2)*(2*Z1-1) + U \

+ np.random.normal(0, 1, size=(n,))

Z2_param = 1 / (1 + np.exp(-Z2_linfun))

Z2 = np.round(Z2_param)

return (Z2)

# SCM for Y

def f_Y(n, d, C, X0, Z2, W, U_Z2_Y):

coeff1 = np.repeat(-1, d)

coeff3 = np.repeat(-0.5, d)

coeff4 = np.repeat(2, d)

U = 0.5 * U_Z2_Y

Y_linfun = np.dot(C, coeff1) * (2*X0-1) + np.dot(C, coeff3) * (2*Z2-1) \

+ np.dot(C, coeff4) * (2*W-1) + \

U + np.random.normal(0, 1,size=(n,))

Y_param = 1 / (1 + np.exp(-Y_linfun))

Y = np.round(Y_param)

return (Y)

E.1.3. TASK MTI

``` Generate Exogeneous Variables ```
# Generate U_C1_W1 (Latent confounder between C1, W1)

U_C1_W1 = np.random.normal(0, 1, size=(n,))

## Generate U_C1_X1 (Latent confounder between C1, X1)

U_C1_X1 = np.random.normal(0, 1, size=(n,))

## Generate U_X1_W1 (Latent confounder between X1, W1)

U_X1_W1 = np.random.normal(0, 1, size=(n,))

## Generate U_C2_W2 (Latent confounder between C2, W2)

U_C2_W2 = np.random.normal(0, 1, size=(n,))

## Generate U_C2_X2 (Latent confounder between C2, X2)

U_C2_X2 = np.random.normal(0, 1, size=(n,))

## Generate U_X2_W2 (Latent confounder between X2, W2)

U_X2_W2 = np.random.normal(0, 1, size=(n,))

## Generate U_C3_Y (Latent confounder between C3, Y)

U_C3_Y = np.random.normal(0, 1, size=(n,))

## Generate U_C3_X3 (Latent confounder between C3, X3)

U_C3_X3 = np.random.normal(0, 1, size=(n,))
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## Generate U_X3_Y (Latent confounder between X3, Y)

U_X3_Y = np.random.normal(0, 1, size=(n,))

``` Generate Endogenous Variables ```
# SCM for Covariates C1

def f_C1(n,d,U_C1_X1,U_C1_W1):

C1 = np.zeros((n,d))

for idx in range(0,d):

C1[:,idx] = np.random.normal(0,1,size = (n,)) + U_C1_X1 + U_C1_W1

return(C1)

# SCM for Treatment X1

def f_X1(n,d,C1, U_C1_X1, U_X1_W1):

coeff = np.repeat(1,d)

X1_linfun = np.dot(C1,coeff) + U_C1_X1 + U_X1_W1

X1_param = 1/(1+np.exp(-X1_linfun))

X1 = np.round(X1_param)

return(X1)

# SCM for Output W1

def f_W1(n, d, C1, X1, U_C1_W1, U_X1_W1):

coeff1 = np.repeat(1,d)

coeff2 = np.repeat(-1,d)

W1_linfun = np.dot(C1, coeff1) + np.dot(C1, coeff2) * X1 + U_C1_W1 + U_X1_W1

W1_param = 1 / (1 + np.exp(-W1_linfun))

W1 = np.round(W1_param)

return (W1)

# SCM for Covariates C2

def f_C2(n, d, C1,U_C2_X2, U_C2_W2):

C2 = np.zeros((n, d))

for idx in range(0, d):

C2[:, idx] = (2*C1[:,idx]-1) + U_C2_X2 + U_C2_W2

return (C2)

# SCM for Treatment X2

def f_X2(n, d, C2, U_C2_X2, U_X2_W2):

coeff1 = np.repeat(1, d)

X2_linfun = np.dot(C2, coeff1) + U_C2_X2 + U_X2_W2

X2_param = 1 / (1 + np.exp(-X2_linfun))

X2 = np.round(X2_param)

return (X2)

# SCM for Output W2

def f_W2(n, d, C2, X2, W1, U_C2_W2, U_X2_W2):

coeff1 = np.repeat(1, d)

coeff2 = np.repeat(2, d)

coeff3 = np.repeat(-1, d)

W2_linfun = np.dot(C2, coeff1) + np.dot(C2, coeff2) * X2 +\

np.dot(C2, coeff3) * W1 + U_C2_W2 + U_X2_W2

W2_param = 1 / (1 + np.exp(-W2_linfun))

W2 = np.round(W2_param)
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return (W2)

# SCM for Covariates C3

def f_C3(n, d, C2, U_C3_X3, U_C3_Y):

C3 = np.zeros((n, d))

for idx in range(0, d):

C3[:, idx] = (2 * C2[:, idx] - 1) + U_C3_X3 + U_C3_Y

return (C3)

# SCM for Treatment X3

def f_X3(n, d, C3, U_C3_X3, U_X3_Y):

coeff1 = np.repeat(1, d)

X3_linfun = np.dot(C3, coeff1) + U_C3_X3 + U_X3_Y

X3_param = 1 / (1 + np.exp(-X3_linfun))

X3 = np.round(X3_param)

return (X3)

# SCM for Output Y

def f_Y(n, d, C3, X3, W2, U_C3_Y, U_X3_Y):

coeff1 = np.repeat(1, d)

coeff2 = np.repeat(2, d)

coeff3 = np.repeat(-1, d)

Y_linfun = np.dot(C3, coeff1) + np.dot(C3, coeff2) * X3 +\

np.dot(C3, coeff3) * W2 + U_C3_Y + U_X3_Y

Y_param = 1 / (1 + np.exp(-Y_linfun))

Y = np.round(Y_param)

return (Y)

E.1.4. TASK GMTI

```Generate Exogeneous Variables```

# Generate U_X0_Z1 (Latent Confounders between X0, Z1)

U_X0_Z1 = np.random.normal(0, 1, size=(n,))

# Generate U_X0_Z2 (Latent Confounders between X0, Z2)

U_X0_Z2 = np.random.normal(0, 1, size=(n,))

# Generate U_X0_Z3 (Latent Confounders between X0, Z3)

U_X0_Z3 = np.random.normal(0, 1, size=(n,))

# Generate U_Z1_W1 (Latent Confounders between Z1, W)

U_Z1_W1 = np.random.normal(0, 1, size=(n,))

# Generate U_Z2_W2 (Latent Confounders between Z2, W2)

U_Z2_W2 = np.random.normal(0, 1, size=(n,))

# Generate U_Z3_Y (Latent Confounders between Z3, Y)

U_Z3_Y = np.random.normal(0, 1, size=(n,))

```Generate Endogenous Variables```
# SCM for Covariate C1
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def f_C1(n,d):

C1 = np.zeros((n, d))

for idx in range(0, d):

C1[:, idx] = np.random.normal(0, 1, size=(n,))

return (C1)

# SCM for Treatment X0

def f_X0(n,d, U_X0_Z1 , U_X0_Z2):

X0_linfun = U_X0_Z1 - U_X0_Z2 + 0.5 + np.random.normal(0, 1, size=(n,))

X0_param = 1/(1+np.exp(-X0_linfun))

X0 = np.round(X0_param)

return(X0)

# SCM for Treatment Z1

def f_Z1(n, d, C1, X0, U_X0_Z1, U_Z1_W1):

coeff1 = np.repeat(1, d)

Z1_linfun = np.dot(C1, coeff1) * (2 * X0 - 1) + U_X0_Z1 + U_Z1_W1 \

- X0 + np.random.normal(0, 1, size=(n,))

Z1_param = 1 / (1 + np.exp(-Z1_linfun))

Z1 = np.round(Z1_param)

return (Z1)

# SCM for Outcome W1

def f_W1(n,d,C1,Z1,U_Z1_W1):

coeff1 = np.repeat(-0.5, d)

W1_linfun = np.dot(C1, coeff1)*(2*Z1-1) + U_Z1_W1 \

+ np.random.normal(0, 1, size=(n,))

W1_param = 1 / (1 + np.exp(-W1_linfun))

W1 = np.round(W1_param)

return (W1)

# SCM for Covariate C2

def f_C2(n, d):

C2 = np.zeros((n, d))

for idx in range(0, d):

C2[:,idx] = np.random.normal(0, 1, size=(n,))

return (C2)

# SCM for Treatment Z2

def f_Z2(n, d, C1, X0, Z1, C2, U_X0_Z2, U_Z2_W2):

coeff1 = np.repeat(-1, d)

coeff2 = np.repeat(0.5, d)

U = 0.5*(U_X0_Z2 + U_Z2_W2)

Z2_linfun = np.dot(C1,coeff1)*(2*X0-1) + np.dot(C2,coeff2)*(2*Z1-1) \

+ U + np.random.normal(0, 1, size=(n,))

Z2_param = 1 / (1 + np.exp(-Z2_linfun))

Z2 = np.round(Z2_param)

return (Z2)

# SCM for Outcome W2

def f_W2(n, d, C1, C2, Z2, W1, U_Z2_W2):

coeff1 = np.repeat(-1, d)

coeff2 = np.repeat(-0.5, d)

68



Estimating Joint Treatment Effects by Combining Multiple Experiments

coeff3 = np.repeat(2, d)

U = 0.5 * U_Z2_W2

W2_linfun = np.dot(C1, coeff1) * (2*X0-1) + np.dot(C2, coeff2) * (2*Z2-1) \

+ np.dot(C1 + C2, coeff3) * (2*W1-1) + \

U + np.random.normal(0, 1,size=(n,))

W2_param = 1 / (1 + np.exp(-W2_linfun))

W2 = np.round(W2_param)

return (W2)

# SCM for Treatment Z3

def f_Z3(n, d, C2, X0, Z2, U_X0_Z3, U_Z3_Y):

coeff1 = np.repeat(-1, d)

coeff2 = np.repeat(-0.5, d)

coeff3 = np.repeat(2, d)

U = 0.5 * ( U_X0_Z3 + U_Z3_Y )

Z3_linfun = np.dot(C2, coeff1) + np.dot(C2, coeff2) * (2*X0-1) \

+ np.dot(C2, coeff3) * (2*Z2-1) + U*(2*X0-1)*(2*Z2-1) \

+np.random.normal(0, 1,size=(n,))

Z3_param = 1 / (1 + np.exp(-Z3_linfun))

Z3 = np.round(Z3_param)

return (Z3)

# SCM for Outcome Y

def f_Y(n, d, C2, X0, Z3, W2, U_Z3_Y):

coeff1 = np.repeat(-1, d)

coeff2 = np.repeat(-0.5, d)

coeff3 = np.repeat(2, d)

U = 0.5 * U_Z3_Y

Y_linfun = np.dot(C2, coeff1) * (2 * X0 - 1) \

+ np.dot(C2, coeff2) * (2 * Z3 - 1) \

+ np.dot(C2, coeff3) * (2 * W2 - 1) \

+ U + np.random.normal(0, 1, size=(n,))

Y_param = 1 / (1 + np.exp(-Y_linfun))

Y = np.round(Y_param)

return (Y)

E.1.5. DATA GENERATION FOR PROJECT STAR

We obtained the Project STAR dataset from the following R-package, https://rdrr.io/cran/AER/man/STAR.
html. Then, we used the following code for constructing D1 and D2 datasets used in analyzing the Project STAR dataset.

def normalize(vec):

veccopy = copy.copy(vec)

maxval = np.max(vec)

minval = np.min(vec)

return (veccopy - minval) / (maxval - minval)

def preprocess_STAR_D1(STAR_D1):

69

https://rdrr.io/cran/AER/man/STAR.html
https://rdrr.io/cran/AER/man/STAR.html


Estimating Joint Treatment Effects by Combining Multiple Experiments

selected_columns = ['gender', 'birth', 'stark', 'readk', \

'mathk', 'lunchk', 'schoolk', 'degreek', 'experiencek']

STAR_D1 = copy.copy(STAR_D1[selected_columns])

STAR_D1 = STAR_D1.dropna()

# Numericalize all columns

## Binarize the gender

gender = np.array(STAR_D1['gender'])

binarize_gender = [1 if item == 'male' else 0 for item in gender]

STAR_D1.loc[:, 'gender'] = binarize_gender

# ## one hot encoding of ethnicity

# one_hot_encoded = pd.get_dummies(STAR_D1['ethnicity'], prefix='ethnicity')

# STAR_D1 = STAR_D1.drop('ethnicity', axis=1)

# STAR_D1 = pd.concat([STAR_D1, one_hot_encoded], axis=1)

## Numericalize the birth

birth = np.array(STAR_D1['birth'])

age_from_birth = [1988 - (int(year) + (int(quarter[-1]) - 1) / 4) \

for year, quarter in [quarter.split(' ') for quarter in birth]]

STAR_D1.loc[:, 'birth'] = age_from_birth

## Binarize the stark

stark = np.array(STAR_D1['stark'])

binarize_stark = [1 if item == 'small' else 0 for item in stark]

STAR_D1.loc[:, 'stark'] = binarize_stark

## Make the resultk := readk + mathk

STAR_D1.loc[:, 'resultk'] = STAR_D1['readk'] + STAR_D1['mathk']

STAR_D1 = STAR_D1.drop('readk', axis=1)

STAR_D1 = STAR_D1.drop('mathk', axis=1)

STAR_D1.loc[:, 'resultk'] = normalize(STAR_D1['resultk'])

## Binarize the lunchk

lunchk = np.array(STAR_D1['lunchk'])

binarize_lunchk = [1 if item == 'small' else 0 for item in lunchk]

STAR_D1.loc[:, 'lunchk'] = binarize_lunchk

## one hot encoding of schoolk

one_hot_encoded = pd.get_dummies(STAR_D1['schoolk'], prefix='schoolk')

STAR_D1 = STAR_D1.drop('schoolk', axis=1)

STAR_D1 = pd.concat([STAR_D1, one_hot_encoded], axis=1)

## one hot encoding of degreek

one_hot_encoded = pd.get_dummies(STAR_D1['degreek'], prefix='schoolk')

STAR_D1 = STAR_D1.drop('degreek', axis=1)

STAR_D1 = pd.concat([STAR_D1, one_hot_encoded], axis=1)

return STAR_D1

def preprocess_STAR_D2(STAR_D2):

selected_columns_before = ['gender', 'birth', 'stark', 'readk', \

'mathk', 'lunchk', 'schoolk', 'degreek', 'experiencek'] \

+ ['read3', 'math3', 'star3'] + ['ethnicity']
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selected_columns = ['gender', 'birth', 'stark', 'readk', \

'mathk', 'lunchk', 'schoolk', 'degreek', 'experiencek'] \

+ ['read3', 'math3', 'star3']

# Take the pre-k randomization

STAR_D2 = copy.copy(STAR_D2[selected_columns_before])

STAR_D2 = STAR_D2.dropna()

STAR_D2 = introduceConfoundingD2(STAR_D2)

# Numericalize all columns

## Binarize the gender

gender = np.array(STAR_D2['gender'])

binarize_gender = [1 if item == 'male' else 0 for item in gender]

STAR_D2.loc[:, 'gender'] = binarize_gender

## one hot encoding of ethnicity

# one_hot_encoded = pd.get_dummies(STAR_D2['ethnicity'], prefix='ethnicity')

# STAR_D2 = STAR_D2.drop('ethnicity', axis=1)

# STAR_D2 = pd.concat([STAR_D2, one_hot_encoded], axis=1)

## Numericalize the birth

birth = np.array(STAR_D2['birth'])

age_from_birth = [1988 - (int(year) + (int(quarter[-1]) - 1) / 4) \

for year, quarter in [quarter.split(' ') for quarter in birth]]

STAR_D2.loc[:, 'birth'] = age_from_birth

## Binarize the stark

stark = np.array(STAR_D2['stark'])

binarize_stark = [1 if item == 'small' else 0 for item in stark]

STAR_D2.loc[:, 'stark'] = binarize_stark

## Make the resultk := readk + mathk

STAR_D2.loc[:, 'resultk'] = STAR_D2['readk'] + STAR_D2['mathk']

STAR_D2 = STAR_D2.drop('readk', axis=1)

STAR_D2 = STAR_D2.drop('mathk', axis=1)

STAR_D2.loc[:, 'resultk'] = normalize(STAR_D2['resultk'])

## Binarize the lunchk

lunchk = np.array(STAR_D2['lunchk'])

binarize_lunchk = [1 if item == 'small' else 0 for item in lunchk]

STAR_D2.loc[:, 'lunchk'] = binarize_lunchk

## one hot encoding of schoolk

one_hot_encoded = pd.get_dummies(STAR_D2['schoolk'], prefix='schoolk')

STAR_D2 = STAR_D2.drop('schoolk', axis=1)

STAR_D2 = pd.concat([STAR_D2, one_hot_encoded], axis=1)

## one hot encoding of degreek

one_hot_encoded = pd.get_dummies(STAR_D2['degreek'], prefix='schoolk')

STAR_D2 = STAR_D2.drop('degreek', axis=1)

STAR_D2 = pd.concat([STAR_D2, one_hot_encoded], axis=1)

## Binarize the star3

star3 = np.array(STAR_D2['star3'])
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binarize_star3 = [1 if item == 'small' else 0 for item in star3]

STAR_D2.loc[:, 'star3'] = binarize_star3

## Make the result3 := read3 + math3

STAR_D2.loc[:, 'result3'] = STAR_D2['read3'] + STAR_D2['math3']

STAR_D2 = STAR_D2.drop('read3', axis=1)

STAR_D2 = STAR_D2.drop('math3', axis=1)

STAR_D2.loc[:, 'result3'] = normalize(STAR_D2['result3'])

return STAR_D2

def introduceConfoundingD2(STAR_D2):

# ethnicity: cauc, afam, asian, hispanic, others

# gender: female, male

prob_treat_covariate_matrix = {('cauc', 'male', 'free'): 0.8,

('cauc', 'male', 'non-free'): 0.4,

('cauc', 'female', 'free'): 0.4,

('cauc', 'female', 'non-free'): 0.8,

('afam', 'male', 'free'): 0.2,

('afam', 'male', 'non-free'): 0.2,

('afam', 'female', 'free'): 0.9,

('afam', 'female', 'non-free'): 0.9,

('asian', 'male', 'free'): 0.56,

('asian', 'male', 'non-free'): 0.3,

('asian', 'female', 'free'): 0.7,

('asian', 'female', 'non-free'): 0.8,

('hispanic', 'male', 'free'): 0.7,

('hispanic', 'male', 'non-free'): 0.4,

('hispanic', 'female', 'free'): 0.6,

('hispanic', 'female', 'non-free'): 0.45,

('other', 'male', 'free'): 0.75,

('other', 'male', 'non-free'): 0.35,

('other', 'female', 'free'): 0.48,

('other', 'female', 'non-free'): 0.25,

}

def get_weights(row):

if row['stark'] == 'small':

return \

prob_treat_covariate_matrix[row['ethnicity'], row['gender'], row['lunchk']]

else:
return \

1- prob_treat_covariate_matrix[row['ethnicity'], row['gender'], row['lunchk']]

# Apply the function to assign weights

STAR_D2['ethnicity_weight'] = STAR_D2.apply(get_weights,axis=1)

# Resample the DataFrame based on weights

resampled_STAR_D2 = STAR_D2.sample(n=len(STAR_D2), replace=True, \

weights=STAR_D2['ethnicity_weight'], random_state=42)

STAR_D2 = copy.copy(resampled_STAR_D2)

return STAR_D2
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def dataMatrixGen(seednum_train = 123):

'''

Form the dataset D1 (pre-k randomization) from the selected columns

'''

# Read the CSV without any missing data

STAR = pd.read_csv("STAR.csv")

## D1: In STAR, star3 is NaN

## D2: In STAR, star3 is not NaN

STAR_D1 = copy.copy(STAR[STAR['star3'].isna()])

STAR_D1 = preprocess_STAR_D1(STAR_D1)

STAR_D2 = copy.copy(STAR.dropna(subset=['star3']))

STAR_D2 = preprocess_STAR_D2(STAR_D2)

X1_x1 = np.array(STAR_D1['stark'])

W_x1 = np.array(STAR_D1['resultk'])

D1_covariates = copy.copy(STAR_D1)

D1_covariates = D1_covariates.drop('stark', axis=1)

D1_covariates = D1_covariates.drop('resultk', axis=1)

D1_covariates = STAR_D1[D1_covariates.columns]

C_x1 = D1_covariates.values # confounders

D1_mat = np.concatenate((C_x1, W_x1[:, np.newaxis], X1_x1[:, np.newaxis]), axis=1)

dim_C = C_x1.shape[1]

X1_x2 = np.array(STAR_D2['stark'])

X2_x2 = np.array(STAR_D2['star3'])

Y_x2 = np.array(STAR_D2['result3'])

W_x2 = np.array(STAR_D2['resultk'])

D2_covariates = STAR_D2[D1_covariates.columns]

C_x2 = D2_covariates.values

D2_mat = np.concatenate((C_x2, W_x2[:, np.newaxis], X1_x2[:, np.newaxis], \

X2_x2[:, np.newaxis], Y_x2[:, np.newaxis]), axis=1)

return D1_mat, D2_mat, dim_C

def groundTruthGen(seednum=123):

'''

Form the dataset D1 (pre-k randomization) from the selected columns

'''

# Read the CSV without any missing data

STAR = pd.read_csv("STAR.csv").dropna()

STAR = preprocess_STAR(STAR)

'''

Groundtruth data

'''

truth_data_00 = STAR[(STAR['stark'] == 0) & (STAR['star3'] == 0)]['result3'].tolist()
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truth_data_01 = STAR[(STAR['stark'] == 0) & (STAR['star3'] == 1)]['result3'].tolist()

truth_data_10 = STAR[(STAR['stark'] == 1) & (STAR['star3'] == 0)]['result3'].tolist()

truth_data_11 = STAR[(STAR['stark'] == 1) & (STAR['star3'] == 1)]['result3'].tolist()

truth_data_list = [[truth_data_00, truth_data_01], [truth_data_10, truth_data_11]]

truth_00 = np.mean(STAR[(STAR['stark'] == 0) & (STAR['star3'] == 0)]['result3'])

truth_01 = np.mean(STAR[(STAR['stark'] == 0) & (STAR['star3'] == 1)]['result3'])

truth_10 = np.mean(STAR[(STAR['stark'] == 1) & (STAR['star3'] == 0)]['result3'])

truth_11 = np.mean(STAR[(STAR['stark'] == 1) & (STAR['star3'] == 1)]['result3'])

truth_list = [[truth_00, truth_01], [truth_10, truth_11]]

return truth_list

if __name__ == '__main__':

seednum_train = 123

'''

Form the dataset D1 (pre-k randomization) from the selected columns

'''

# Read the CSV without any missing data

STAR = pd.read_csv("STAR.csv")

## D1: In STAR, star3 is NaN

## D2: In STAR, star3 is not NaN

STAR_D1 = copy.copy(STAR[STAR['star3'].isna()])

STAR_D1 = STAR.sample(n=len(STAR_D1), replace=True)
STAR_D1 = preprocess_STAR_D1(STAR_D1)

STAR_D2 = copy.copy(STAR.dropna(subset=['star3']))

STAR_D2 = preprocess_STAR_D2(STAR_D2)

F. Discussion on Relaxation of Shared Covariates Assumptions

In this section, we will explore potential relaxations of the shared covariates assumptions, namely Assumptions (4,9).

F.1. On Assumption 4.

Assumption 4 captures the scenario when C1 is a pre-treatment covariate for X1 and X2. In this case, intervening on either
X1 or X2 does not directly affect the distribution of C1. Consequently, the distribution of C1 under treatment x1 (Px1

(C1))
is the same as the distribution of C1 under treatment x2 (Px2(C1)). Thus, Assumption 4 is satisfied. Under this assumption,
the nuisance π0 was given as

π0 := π0(W,X1|C1) :=
Px1(W |C1)

Px2
(W,X1|C1)

. (F.1)

We note that this quantity can be easily estimated when W and X1 are low dimensional discrete variables.

We note that Assumption 4 may not hold when C1 is a pre-treatment variable for X2 but a post-treatment covariate for
X1. In such cases, the distribution of C1 may differ between the two treatment groups, violating Assumption 4. For
example, consider the causal graph depicted in Fig. F.7a, where the AC-TTI criterion in Def. 1 is satisfied. In this graph,
Assumption 4 is violated since C1 is a post-treatment covariate for X1 but a pre-treatment covariate for X2, and therefore,
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X1

X2

W

Y

C

(a) AC-TTI

Figure F.7: An example causal graph such that the AC-TTI criterion in Def. 1 is violated while Assumption 4 is violated.

Px2(C1) = P (C1) ̸= Px1(C1).

To relax Assumption 4, we re-define the nuisance π0(C1, X1,W ) in Def. 2 as follows:

π0 := π0(C1, X1,W ) :=
Px1

(W,C1)

Px2
(W,X1, C1)

. (F.2)

Let T pw and T dml denote PW and DML estimators for the AC-TTI functional in Def. 3 equipped with the re-defined nuisance
π estimated for π0 in Eq. (F.2). Then, all error analysis results in Thm. 2 is preserved:

Theorem S.1 (Error analysis of the AC-TTI estimators). T pw and T dml denote PW and DML estimators for the AC-TTI
functional in Def. 3 equipped with the re-defined nuisance π estimated for π0 in Eq. (F.2). Under Assumptions (1,2,3) and
AC-TTI in Def. 1, the error of the estimators in Def. 3, denoted ϵest := T est − E [Y |do(x1, x2)] for est ∈ {pw, dml} are:

ϵpw = R2 +OPx2
(∥π − π0∥) ,

ϵdml = R1 +R2 +OPx2
(∥π − π0∥ ∥µ− µ0∥) ,

where Ri is a random variable such that
√
niRi converges in distribution to a zero-mean normal random variable, where

ni := |Dxi
| for i ∈ {1, 2}.

Proof of Theorem S.1. For the error analysis of T pw with the redefined nuisance π0 in Eq. (F.2), it suffices to show that

EPx2
[π0(W,C1, X1)1x1

(X1)Y ] = E [Y |do(x1, x2)] , (F.3)

because the other proofs are the same as the proof for the original T pw.

EPx2
[π0(W,C1, X1)1x1(X1)Y ] = EPx2

[
Px1(W,C1)

Px2(W,X1, C1)
1x1(X1)Y

]
= EPx2

[
Px1(W,C1)

Px2
(W,X1, C1)

1x1
(X1)µ0(W,X1, C1)

]
= EPx2

[
Px1

(W,C1, X1)

Px2(W,X1, C1)
µ0(W,X1, C1)

]
= EPx1

[µ0(W,x1, C1)]

= E [Y |do(x1, x2)] .
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For the error analysis of T dml with the redefined nuisance π0 in Eq. (F.2), it suffices to show the following:

EPx1
[µ(W,C1, x1)− µ0(W,C1, x1)]

= EPx2

[
Px1

(W,C1)1x1
(X1)

Px2
(W,C1, X1)

{µ(W,C1, X1)− µ0(W,C1, X1)}
]

(F.4)

= EPx2
[π0(W,C1, X1)1x1

(X1){µ(W,C1, X1)− µ0(W,C1, X1)}] , (F.5)

because the other proofs are the same as the proof for the original T dml.

In summary, the purpose of Assumption 4 is to simplify the estimation process by avoiding the need for joint density
estimation in Eq. (F.2). Instead, it allows us to use the nuisance in Eq. (F.1), which is amenable to estimate.

F.2. On Assumption 9.

We recall that the nuisance πi
0 was given as

πi
0(W

(i),C(i),X(i)) :=
Pxi

(Wi|W(i−1),C(i),X(i−1))

Pxm
(Wi, Xi|W(i−1),C(i),X(i−1))

. (F.6)

We note that this quantity can be easily estimated when Wi and Xi are low dimensional discrete variables.

To relax Assumption 9, we re-define the nuisance π0(C1, X1,W ) in Def. 8 as follow: For i = 1, 2, · · · ,m− 1,

πi
0 := πi

0(W
(i),C(i),X(i)) :=

Pxi
(Wi, Ci|W(i−1),C(i−1),X(i−1))

Pxm(Wi, Ci, Xi|W(i−1),C(i−1),X(i−1))
. (F.7)

In this subsection, let T pw and T dml denote PW and DML estimators for the AC-MTI functional in Def. 9 equipped with the
re-defined nuisance πi estimated for πi

0 in Eq. (F.7). Then, all error analysis results in Thm. 6 is preserved:

Theorem S.2 (Error analysis of AC-MTI estimators). Let T pw and T dml denote PW and DML estimators for the AC-MTI
functional in Def. 9 equipped with the re-defined nuisance πi estimated for πi

0 in Eq. (F.7). Under Assumptions (2,7,8) and
AC-MTI in Def. 7, the errors of the estimators in Def. 9, denoted ϵest := T est − E [Y |do(x)] for est ∈ {pw, dml}, are:

ϵpw = Rm +OPxm
(∥π(m−1) − π

(m−1)
0 ∥),

ϵdml =

m∑
i=1

Ri +

m∑
i=2

OPxi

(
∥µi − µi

0∥∥πi−1 − πi−1
0 ∥

)
,

where Ri is a random variable such that
√
niRi converges in distribution to a zero-mean normal random variable, where

ni := |Dxi | for i ∈ {1, · · · ,m}.

Proof of Theorem S.2. For the error analysis of T pw with the redefined nuisance πj
0 in Eq. (F.7), it suffices to show that

EPxi

[
π
(m−1)
0 1x(m−1)(X(m−1))Y

]
= E [Y |do(x)] , (F.8)

because the other remaining parts of the proof are the same as the one for the original T pw. It can be witnessed as follows:
By Eq. (C.4),

E [Y |do(x)] = EPxi

m−1∏
j=1

Pxj (C
(j),W(j),X(j−1))

Pxj+1
(C(j),W(j),X(j))

1x(m−1)(X(m−1))Y

 . (F.9)
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Also,

m−1∏
j=1

Pxj
(C(j),W(j),X(j−1))

Pxj+1
(C(j),W(j),X(j))

=
1

Pxm
(C(m−1),W(m−1),X(m−1))

m−1∏
j=1

Pxj (Wj , Cj |W(j−1),C(j−1),X(j−1)) (F.10)

=

m−1∏
j=1

Pxj
(Wj , Cj |W(j−1),C(j−1),X(j−1))

Pxm
(Wj , Cj , Xj |W(j−1),C(j−1),X(j−1))

(F.11)

=

m−1∏
j=1

πj
0(Wj , Cj , Xj). (F.12)

Therefore, Eq. (F.8) is witnessed.

For the error analysis of T dml with the redefined nuisance π0 in Eq. (F.7), it suffices to show that Eq. (C.9) holds with the
redefined nuisance; i.e.,

ωi
0(C

(i),W(i),X(i−1)) :=
Pxi

(C(i),W(i),X(i−1))

Pxm
(C(i),W(i),X(i−1))

= πi
0(C

(i),W(i),X(i))Pxm
(Xi|C(i),W(i),X(i−1)), (F.13)

because the other remaining parts of the proof are the same as the one for the original T dml. It can be witnessed as follows:

ωi
0(C

(i),W(i),X(i−1)) =
Pxi

(Ci,Wi|C(i−1),W(i−1),X(i−1))

Pxm(Ci,Wi|C(i−1),W(i−1),X(i−1))

Pxi
(C(i−1),W(i−1),X(i−1))

Pxm(C(i−1),W(i−1),X(i−1))

=
Pxi

(Ci,Wi|C(i−1),W(i−1),X(i−1))

Pxm
(Ci,Wi|C(i−1),W(i−1),X(i−1))

=
Pxi

(Wi, Ci|W(i−1),C(i−1),X(i−1))

Pxm
(Wi, Ci, Xi|W(i−1),C(i−1),X(i−1))

Pxm(Xi|W(i),C(i),X(i−1))

= πi
0(C

(i),W(i),X(i))Pxm
(Xi|C(i),W(i),X(i−1)).

In summary, the purpose of Assumption 9 is to simplify the estimation process by avoiding the need for joint density
estimation of Ci,Wi, Xi in Eq. (F.7). Instead, it allows us to use the nuisance in Eq. (F.6), which is more amenable to
estimate.
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