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Abstract001

As interest grows in generating long, detailed002
image captions, existing automatic evaluation003
metrics are increasingly strained. N-gram-004
based metrics though efficient, fail to capture005
semantic correctness, especially for longer out-006
puts. Representational Similarity (RS) metrics,007
designed to address this, initially saw limited008
use due to high computational costs, while to-009
day, despite advances in hardware, they remain010
unpopular as they fall short even of weak base-011
lines such as BLEU. Meanwhile, metrics based012
on large language models (LLMs) show strong013
correlation with human judgments, but remain014
too expensive for use in model development.015
We introduce SPECS (Specificity-Enhanced016
CLIP-Score), a reference-free RS metric tai-017
lored for long image captioning. SPECS modi-018
fies CLIP with a new objective that emphasizes019
specificity: rewarding correct details and penal-020
izing errors. We show that SPECS matches the021
performance of leading LLM-based metrics in022
correlating with human judgments, while being023
far more efficient. This makes it a practical024
alternative for iterative checkpoint evaluation025
during image captioning model development.026

1 Introduction027

As the task of short image captioning approaches028

saturation, interest is growing toward the more chal-029

lenging task of long, detailed image captioning030

(Johnson et al., 2016; Cho et al., 2022; Doveh et al.,031

2023; Li et al., 2023). This task requires strong vi-032

sual grounding of the generated text and improved033

cross-modal alignment (Liu et al., 2024; Li et al.,034

2021). While this shift opens new frontiers for035

research in generative vision-language understand-036

ing, it also exacerbates the long-standing issue of037

reliable automatic evaluation.038

Image captioning, like any natural language gen-039

eration task, has long been a challenge when it040

comes to evaluation (Otani et al., 2023; Wang et al.,041

2023). Early metrics based on the n-gram overlap042
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A British Shorthair cat with plush, bluish-gray fur 
is lounging on a deep green velvet sofa. The cat is
partially tucked under a multi-colored woven
jumper  |  blanket  |  blanket with fringed edges
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Figure 1: A model which exhibits good specificity, i.e.
it ranks image-caption pairs in the correct way depicted
above, makes for a good evaluation metric. SPECS
succeeds in ranking minimal pairs correctly at a near-
ceiling rate. The blue vector is the image representation.

of generated captions and references are fast but 043

void of semantics and as such, highly inaccurate 044

even as applied to short captions (Papineni et al., 045

2002; Banerjee and Lavie, 2005; Vedantam et al., 046

2015; Lin, 2004). Representational Similarity (RS) 047

metrics were thus introduced to alleviate this issue 048

through modeling the semantics of images and text, 049

often operating in a reference-free fashion (Hessel 050

et al., 2021; Sarto et al., 2023). Most recently, a 051

proliferation has been seen of metrics that leverage 052

the capabilities of large language models (LLMs) 053

and prove superior to earlier ones, especially as the 054

length of generated image captions increases (Chan 055

et al., 2023; Yu et al., 2024; Ye et al., 2025). 056

Every new generation of evaluation metrics 057

comes with magnitudes higher computational re- 058

quirements, largely explained by the ever-growing 059

capacity of modern hardware. Yet, there is typ- 060

ically a mismatch between what is possible at a 061

given point in time, and what is practical. CLIP- 062

Score (Hessel et al., 2021), for example, was not 063

as widely adopted as its apparent superiority over 064

CIDEr (Vedantam et al., 2015) would call for, be- 065
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cause for its time, it was a prohibitively expensive066

metric. Similarly now, the state-of-the-art LLM-067

based metrics are often used for final model evalu-068

ation, but remain prohibitively costly and imprac-069

tical during iterative model development. In the070

context of long caption generation, however, there071

is hardly any viable alternative.072

In a first effort towards benchmarking automatic073

evaluation metrics against human judgements on074

the task of long image captioning, Ye et al. (2025)075

report that the Sample-wise Kendall’s Tau for076

CIDEr is a mere 0.06, and that the correlation caps077

at 0.29 for BLEU-4 (Papineni et al., 2002). RS078

metrics, which stand to be more practical today079

than they were in earlier, more computationally080

constrained times, all prove less effective than the081

simple, almost zero-cost BLEU-4 metric. CLIP-082

Score, for example, scores at only 0.15. This calls083

for a new and effective RS metric.084

In this work, we introduce SPECS (Specificity-085

Enhanced CLIP-Score), a reference-free, RS eval-086

uation metric which uses a CLIP model adapted to087

longer context (Zhang et al., 2024), and augmented088

with a novel objective that emphasizes specificity:089

the ability to reward correct details and penalize090

incorrect ones. In terms of human judgment cor-091

relation, SPECS matches the performance of the092

best open-source LLM metric (Lee et al., 2024),093

at a fraction of the computational cost. As such,094

SPECS stands to become the norm for fast-iteration095

evaluation in long image caption generation.096

2 Related work097

CLIP (Radford et al., 2021) is a 150-million pa-098

rameters dual-encoder model trained on 400 mil-099

lion image-text pairs using a contrastive objec-100

tive. It learns to predict which caption matches101

a given image, enabling the model to acquire broad102

visual-language representations that transfer well to103

downstream tasks without task-specific fine-tuning.104

CLIPScore (Hessel et al., 2021) was proposed as105

a reference-free image caption evaluation metric.106

It uses CLIP embeddings to compute cosine simi-107

larity between images and captions, yielding better108

correlation with human judgments than traditional109

n-gram-based metrics on short image captions.110

To improve CLIP’s capacity for fine-grained un-111

derstanding and compositionality, several exten-112

sions have been introduced. NegCLIP improves113

compositional reasoning by fine-tuning CLIP with114

hard negative samples, as evaluated on the ARO115

benchmark (Yuksekgonul et al., 2022). LaCLIP en- 116

hances language diversity by rewriting image cap- 117

tions with large language models and training CLIP 118

on both original and rewritten captions (Fan et al., 119

2023). TriletpCLIP introduces synthetic triplets 120

with hard negatives for both modalities and opti- 121

mizes a triplet loss to improve compositional gener- 122

alization (Patel et al., 2024). Other methods such as 123

DCI (Urbanek et al., 2024) and DAC (Doveh et al., 124

2023) improve compositionality through training 125

on dense, region-aligned captions. 126

LongCLIP addresses the issue of CLIP’s small 127

input length window, extending it from 77 to 128

248 tokens by interpolating positional embed- 129

dings (Zhang et al., 2024), thus enabling the model 130

to handle long captions. The model is trained on 131

a large syntehtic dataset of long, detailed captions, 132

ShareGPT-4V (Chen et al., 2024), with gradients 133

blocked in the first 20 tokens, to preserve CLIP’s 134

strong zero-shot capabilities in this window. 135

Building on prior work, we introduce the no- 136

tion of specificity—the ability of a vision-language 137

model to consistently prefer more informative, visu- 138

ally grounded captions at varying caption lengths, 139

and train a LongCLIP model with it to build an 140

effective long image captioning evaluation metirc. 141

3 Specificity: A Fine-Grained VLM 142

Metric 143

Let us consider the three caption variants depicted 144

in Figure 1: saying that the cat is tucked under a 145

blanket is correct and there is a lot of additional 146

relevant detail mentioned before that, so a good 147

evaluation metric should give this variant a high 148

score. And if the caption was to mention that the 149

blanked has fringed edges, the evaluation metric 150

should reflect this detail too, in a slightly higher 151

score. On the other hand, if instead of a blanket 152

the caption said that the cat was laying under a 153

jumper, that should result in a slightly lower score– 154

all the other relevant detail is still present, but this 155

particular object mention is incorrect. This simple 156

example illustrates the notion of specificity which 157

we adapt from Xu et al. (2024) to mean: the abil- 158

ity of a representation to encode every detail in 159

a caption in a way that correctly reflects the rele- 160

vance of this detail to a reference image. A metric 161

based on a specificity-enhanced model, would thus 162

favor captions that include more relevant details, 163

and penalize those that omit important informa- 164

tion or introduce hallucinated content. This aligns 165
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closely with the notions of precision and recall,166

implemented implicitly in such a metric.167

3.1 Detail Units168

To concretely evaluate specificity, we begin by in-169

troducing the key concept of a detail unit. The170

abstract notion behind a detail unit refers to any171

minimal bit of information in a caption, such as172

the presence of a blanket, the fringed edges of the173

blanket, etc. For operational purposes, however,174

we define a detail unit to mean a phrase which con-175

tributes at least one new visual detail (and possibly176

more), and fits syntactically and semantically with177

preceding context. Under this definition, a blanket178

with fringed edges is a detail unit, but a blanket179

with is not, and neither is The cat mentioned in the180

middle of the caption in Figure 1, since it does not181

contribute new information.182

Formally, we denote an image-caption pair183

as {i, c}, and decompose a caption as c =184

{d1, d2, . . . , dm} where each di is a detail unit.185

Every subsequence of detail units, built cumula-186

tively from left to right, constitutes a valid caption:187

c1 = {d1}, c2 = {d1+d2}, ..., {c = d1+· · ·+dm},188

each containing progressively more information.189

Given a perfect caption, this ordered sequence190

should exhibit monotonically increasing represen-191

tational similarity to its reference image, under a192

specificity-enhanced model. Conversely, if an in-193

correct detail unit is added at any point, this should194

be reflected in a decreased similarity. This decom-195

position provides a structured way to test and en-196

hance model specificity to visual detail across any197

caption length.198

Detail units that contain relevant information199

are referred to as positive (d+), while detail units200

that introduce content not grounded in the image201

as referred to as negative (d−). The expected be-202

havior of a model with good specificity is then to203

assign higher similarity to the pair {i, cj + d̂+}204

than to the pair {i, cj}, and a lower similarity to205

the pair {i, cj + d̂−} than to the pair {i, cj}, where206

j ∈ [1, ...,m] and the hat symbol denotes a new207

candidate detail. Each triplet, {i, cj , cj + d+} and208

{i, cj , cj + d−} constitutes a minimal pair of cap-209

tions grounded in an image, the former being posi-210

tive and the latter negative.211

3.2 Specificity Rate212

To aggregate specificity across a set of minimal213

pairs, we introduce the Specificity Rate (SR). We214

define two variants: SRpos measures the proportion215

of cases in which adding an additional relevant 216

detail (positive detail unit) increases the similarity 217

score with the image, while SRneg measures the 218

proportion of cases in which adding an irrelevant 219

detail (negative detail unit) decreases the similarity. 220

Given a set of N positive or negative triplets, we 221

compute the SR as follows: 222

SRpos =
1

N

N∑
j

I[θ(i, cj + d̂+) > θ(i, cj)] (1) 223

224

SRneg =
1

N

N∑
j

I[θ(i, cj) < θ(i, cj + d̂−)] (2) 225

where I[·] is the indicator function that outputs 1 if 226

the condition inside is true and 0 otherwise, and θ is 227

the cosine similarity between the representations of 228

image and text. This formulation captures the rate 229

at which representational similarity increases with 230

added positive details, or decreases with added neg- 231

ative ones, providing a robust method of measuring 232

model specificity. 233

3.3 Specificity-Aware Leaning 234

Although specificity can be used purely for evalua- 235

tion, we can also enforce it during training. To en- 236

courage the model to prefer captions that describe 237

images with greater relevant detail, we introduce 238

a training objective that rewards higher similarity 239

scores for incrementally more informative captions, 240

and lower similarity scores for less accurate ones. 241

Given a dataset of size N of positive and negative 242

triplets, we define the following hinge loss with a 243

dynamic margin: 244

Lpos =
1

N

N∑
i

max
(
0, θ(i, cj + d̂+)− θ(i, cj) + ϵ

)
,

(3) 245

where ϵ is a batch-wise average similarity differ- 246

ence between detailed and base captions, which is 247

detached from gradient computation and clamped 248

for numerical stability: 249

ϵ = detach

(
1

N

N∑
i

(
θ(i, cj + d̂+)− θ(i, cj)

))
, 250

The negative loss, Lpos is computed by analogy, 251

from the negative triplets in the dataset. 252
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Figure 2: Training framework of model. Given an image and its caption, we generate a base caption, a more detailed
caption, and a negative caption containing an incorrect detail. The model computes CLIP-style embeddings and
is trained with three losses: contrastive loss on the full caption, a detail-aware loss to prefer more informative
descriptions, and a negative detail loss to penalize misleading ones. This setup encourages sensitivity to fine-grained
textual differences.

Our final training objective combines the con-253

trastive loss, the detail-aware loss, and the negative254

detail loss:255

L = αLcontrastive + βLdetail + γLneg, (4)256

where α, β, and γ are weighting hyperparameters257

tuned on a validation set. Figure 2 illustrates the258

overall training framework.259

4 Experiment and Evaluation260

4.1 Training and Validation Datasets261

We train our model on the ShareGPT-4V262

dataset (Chen et al., 2024), which contains 1.2 mil-263

lion high-quality image-caption pairs synthetically264

generated by a strong captioning model, instructed265

to mention object attributes, spatial layouts, and266

aesthetic properties. The images in the dataset are267

sourced from COCO (Lin et al., 2014), SAM (Kir-268

illov et al., 2023), and LAION (Schuhmann et al.,269

2022), and captions are 143 tokens long on average.270

For intrinsic specificity evaluation, we use the271

sDCI dataset (Urbanek et al., 2024), consisting of272

7805 images, each paired with 10 captions, which273

are synthetically desgined to fit in CLIP’s context274

window of 77 tokens. This underuntilizes the full275

context window of our model, but enables con-276

trolled comparisons to other models, constrained277

by the 77-token context window, specifically the278

models introduced in Section 2.279

4.2 Caption Segmentation 280

To prepare data for measuring specificity, we build 281

a pipeline that segments captions into detail units. 282

Main Logic We considered various methods of 283

implementing the logic described above, based on 284

part-of-speech tagging, dependency parsing and 285

coreference resolution: the results were either un- 286

satisfactory, slow to obtain or even impossible to 287

obtain due to technical challenges with the deploy- 288

ment of outdated libraries for coreference resolu- 289

tion, for example. The solution which proved best 290

in terms of speed, implementational ease, and satis- 291

factory results was obtained with the help of GPT-4 292

(Achiam et al., 2023). We presented the model 293

with an example of a manually annotated caption 294

and had it generate Python code that would follow 295

the pattern of pipe symbol insertions. The result- 296

ing code is based on part-of-speech tagging and a 297

rule-based grammar (see Appendix A). 298

This solution produced surprisingly good results 299

as determined by the manual inspection of captions 300

annotated with it. However, it somewhat overseg- 301

ments the captions. 302

False Negatives vs. False Positives Considering 303

the specific use of segmented data, we determined 304

that introducing false negatives (i.e., missing splits) 305

is less harmful than introducing false positives (i.e., 306

incorrect extra splits). In other words, we prefer 307

case (a), where a necessary split is missing, over 308

case (b), where an incorrect split is inserted: 309
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(a) A front view of a statue on cement | in a park.310

(b) A front | view of a statue | on cement | in a311

park.312

This preference is grounded in our design of both313

the metric and the training objective. We aim to314

ensure that every introduced segment corresponds315

to meaningful and novel information. Allowing316

fewer false negatives yields a finer segmentation,317

which aligns with our objective of evaluating incre-318

mental detail. On the other hand, false positives319

introduce noise that may corrupt the metric signal320

and compromise training, especially when such321

errors accumulate.322

Given the above reasoning, we modify the seg-323

mentation code with several rules to avoid split-324

ting off (1) sentence-initial noun phrases that begin325

with The as they are likely to introduce a previously326

mentioned entity, (2) prepositional phrases from327

the noun phrase preceding them as they are likely328

a modifier to the noun phrase, often referring back329

to previously mentioned objects (e.g. The cat † is330

partially ... in Figure 1),1 (3) segments which start331

with a prepositional phrase from the context that332

follows, unless the segment contains a verb, as they333

are likely a location modifier to the following noun334

phrase (e.g. To the left of the car † there is a box).2335

4.3 Experimental Setup336

We train a base LongCLIP-B/32 model with a con-337

text window of 248, on the ShareGPT-4V dataset,338

for six epochs. The best checkpoint is then fur-339

ther finetuned for three epochs with our enhanced340

specificity objective, using ShareGPT-4V captions,341

segmented as described above. For every triplet342

{i, cj , cj + d+}, we create a negative counterpart,343

{i, cj , cj + d−}, by randomly sampling a detail344

unit from another image-caption pair in the batch.345

We use the Adam optimizer with a learning rate346

of 1× 10−5, weight decay of 1× 10−2, batch size347

of 100 per GPU, and gradient accumulation over 4348

steps (yielding an effective batch size of 400). We349

set the loss weights to α = 1, β = 8, and γ = 0.8350

based on extensive hyperparameter tuning.351

All experiments are conducted on four NVIDIA352

A40 GPUs. Training the model requires approxi-353

mately one hour per epoch (4 GPU hours).354

1† denotes a pipe symbol that the rule blocks.
2Sometimes, this rule would result in a false negative.

Model Positive Negative Average

CLIP 62.61 68.28 65.44
LongCLIP 60.12 69.93 65.02
SigLIP 58.56 76.28 67.42
NegCLIP 54.96 78.84 66.90
DCI 55.68 63.63 59.66
DAC 46.84 66.88 56.86
La-CLIP 60.98 68.82 64.90
TripletCLIP 53.34 70.20 61.77

LongCLIP* 58.64 77.03 67.83
SPEC 95.37 90.37 92.87

Table 1: Specificity performance of various vision-
language models on the sDCI dataset (Specificity-
Aware Learning). Positive and Negative correspond to
SRpos and SRneg as defined in Section 3.2. LongCLIP
refers to the ViT-B/16 model as reported in the original
LongCLIP paper, while LongCLIP* is our own imple-
mentation using ViT-B/32.

4.4 Results 355

Intrinsic Evaluation To evaluate whether our 356

training objective effectively enhances specificity, 357

we specificity rate of various vision-language mod- 358

els (see Section 3.2.) Table 1 reports results on the 359

sDCI benchmark. Our specificity-enhanced model, 360

SPEC (Specificity-Enhanced CLIP), achieves the 361

best performance across all VLM models, with 362

SRpos = 95.37 and SRneg = 90.37, resulting in an 363

average specificity score of 92.87. Compared to 364

the LongCLIP* baseline of 67.83, our model yields 365

a substantial improvement of +25.04 points. The 366

largest gain appears in SRpos, where SPEC out- 367

performs LongCLIP* by +36.73, highlighting its 368

superior ability to recognize and prefer more de- 369

tailed captions, and the effectiveness of the custom 370

training objective. 371

Interestingly, we observe that models with strong 372

general-purpose performance do not necessarily 373

achieve high specificity scores. For example, 374

SigLIP, which has demonstrated strong results in 375

standard vision-language benchmarks, underper- 376

forms in both SRpos and average specificity com- 377

pared to CLIP-based variants. This suggests that 378

architectural strength alone is insufficient for cap- 379

turing fine-grained alignment between image and 380

caption. Models with enhanced compositionality, 381

a property we expect should be highly relevant to 382

specificity, show mixed performance: NegCLIP is 383

a bit better than CLIP on average, but DCI, DAC 384

show reduced specificity and La-CLIP shows no 385
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Metric PCC ρ ↑ 1 - R2 ↓ Kd τ ↑ Sp τ ↑ Base Model Reference Free TFLOPs

Rule-Based Evaluation

BLEU-4 0.3439 62.78 0.2693 0.2931 - ✗ -
ROUGE 0.2509 156.05 0.1886 0.1893 - ✗ -
METEOR 0.3593 111.95 0.2417 0.2536 - ✗ -
CIDEr 0.0522 3.30E+07 0.0635 0.0601 - ✗ -

Representational Similarity Evaluation

SPICE 0.2218 156.11 0.1731 0.1907 - ✓ -
CLIP-Score 0.2183 26.04 0.1724 0.1480 CLIP ✓ 1.48× 10−2

PAC-Score 0.1525 20.93 0.1117 0.1260 CLIP ✓ 1.48× 10−2

La-CLIP 0.1177 71.94 0.0911 0.1192 CLIP ✓ 1.48× 10−2

TripletCLIP 0.1697 34.70 0.0852 0.1038 CLIP ✓ 1.48× 10−2

NegCLIP 0.0872 131.57 0.0623 0.0256 CLIP ✓ 1.48× 10−2

LongCLIP 0.2320 18.58 0.1769 0.2603 LongCLIP ✓ 2.81× 10−2

LongCLIP* 0.1723 33.67 0.1484 0.1662 LongCLIP ✓ 2.81× 10−2

SPECS (Ours) 0.5228 3.65 0.4078 0.5400 LongCLIP ✓ 2.81× 10−2

LLM-Based Evaluation

FaithScore 0.1937 3.22 0.1626 0.1115 LLaMA ✓ 3.97
CLAIR 0.3815 1.98 0.3847 0.4552 LLaMA ✓ 3.97
GPT4-Eval 0.3976 2.95 0.3447 0.3866 GPT-4 ✓ -
RLAIF-V 0.3547 5.32 0.2774 0.2544 LLaVA ✓ 3.97
CAPTURE 0.3521 7.62 0.2801 0.3449 LLaMA2 ✗ 7.74
FLEUR 0.4230 3.01 0.4246 0.5325 LLaVA ✓ 7.74
DCSCORE 0.6605 1.54 0.5328 0.6166 GPT-4o ✗ -

Table 2: Correlation of image captioning evaluation metrics and human judgements: Pearson’s ρ, 1 − R2,
Kendall’s τ (Kd τ ), and Spearman’s τ (Sp τ ). Metrics are grouped into Rule-Based, Model-Based, and LLM-Based
categories. For a fair comparison of computational cost, LLM-Based evaluations were computed using an input
sequence length of 300 tokens, matching the setting used for Model-Based metrics. All p-values are less than 0.001.

change from the baseline model.386

Extrinsic Evaluation To evaluate how well au-387

tomatic caption metrics align with human prefer-388

ences, we adopt the evaluation protocol from DE-389

CAPBENCH (Ye et al., 2025). Their human cor-390

relation benchmarks consists of 500 image cap-391

tion pairs, with images sample from the ImageIn-392

Words (IIW) dataset (Garg et al., 2024). Human-393

annotated ratings are available for five captions per394

image, generated by different vision-language mod-395

els. This setup enables a standardized comparison396

between automatic metrics and human judgments.397

Here we see how SPECS, a version of CLIP-398

Score which builds on our specificity-enhanced399

LongCLIP model, performs compared to a range of400

other metrics from different categories: rule-based,401

representational similarity-based and LLM-based.402

To quantify alignment with human ratings, we re-403

port four standard correlation metrics: Pearson cor-404

relation coefficient (PCC), coefficient of determina-405

tion (R2), Kendall’s τ (Kd τ ), and Sample-wise τ406

(Sp τ ). Table 2 summarizes results across all eval- 407

uation methods previously considered in Ye et al. 408

(2025), the CLIP variants most related to our work, 409

and lastly, our proposed SPECS. 410

Among model-based metrics, SPECS achieves 411

the highest correlation with human judgments. 412

Compared to the standard CLIPScore baseline, it 413

improves PCC from 0.2183 to 0.5228 and Kendall’s 414

τ from 0.1724 to 0.4078. It also outperforms most 415

LLM-based alternatives. For instance, although 416

FLEUR achieves strong performance among LLM 417

methods, SPECS still surpasses it in both PCC and 418

ranking consistency. 419

In terms of efficiency, SPECS requires only 420

2.81 × 10−2 TFLOPs per forward pass, making 421

it significantly more efficient than LLM-based eval- 422

uators such as FLEUR (7.74 TFLOPs) or CLAIR 423

(3.97 TFLOPs). Both CLIP and our SPECS model 424

have approximately 0.15 billion parameters, fur- 425

ther contributing to their lightweight and scalable 426

design. This highlights SPECS as a scalable and 427
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Model Rel. Attr. C/O F/O SCPP

CLIP 59.84 63.96 47.28 58.54 53.33
LongCLIP 59.70 63.42 56.91 69.03 54.45
SigLip 46.52 56.24 32.95 40.86 20.88
NegCLIP 70.52 81.08 87.04 90.38 63.79
DCI 81.31 73.85 94.53 95.68 51.29
DAC 76.18 67.63 88.58 91.25 43.54
La-CLIP 45.48 58.72 34.97 40.54 54.99
TripletCLIP 54.94 63.07 23.53 27.58 55.71

LongCLIP* 52.96 65.81 63.97 70.20 56.74
SPEC 73.38 69.31 75.23 84.96 35.61

Table 3: Performance of various models on the ARO
and SCPP benchmarks. C/O and F/O correspond
to compositionality evaluation on COCO-Order and
Flickr30k-Order, respectively.

human-aligned alternative for evaluating dense and428

detail-rich image captions.429

5 Further Analysis430

5.1 Compositionality Analysis431

Although our primary focus is on improving speci-432

ficity, we also examine whether this ability cor-433

relates with compositional reasoning skills. Intu-434

itively, one might expect that models capable of435

handling compositional variations–such as changes436

in attribute order or relational details–would also be437

better at processing incrementally detailed descrip-438

tions. To explore this connection, we evaluate our439

models on two established compositionality bench-440

marks: the ARO benchmark (Yuksekgonul et al.,441

2022), which measures understanding of attribute-442

relation-object combinations and word order sen-443

sitivity, and the SugarCREPE++ (SCPP) bench-444

mark (Dumpala et al., 2024), which tests sensitiv-445

ity to semantic equivalence under lexical variation.446

Table 3 summarizes the results. Full SCPP results447

are provided in Appendix B.448

On ARO, SPEC exhibits considerably higher per-449

formance than LongCLIP*, which suggests a direct450

relationship between specificity and compositional-451

ity. This finding does not hold on the SCPP bench-452

mark, however. In fact among all compositionality-453

enhanced models, only NegCLIP shows a marked454

improvement on SCPP over the base CLIP model,455

all others either matching the base performance or456

showing a considerable degradation (for example,457

DAC.) . Our specificity objective includes hard neg-458

atives that do not explicitly encourage the model459

to handle semantic equivalence. This may partly460

explain the reduced performance on SCPP.461

5.2 Hubness in Embedding Space 462

Although our specificity-enhanced model excels in 463

fine-grained alignment, we observe a decline in per- 464

formance on standard vision-language tasks such 465

as retrieval and classification. We evaluate general- 466

ization on a diverse set of benchmarks, including 467

Urban-1k (Zhang et al., 2024) and COCO (Lin 468

et al., 2014) for text-image retrieval, and Ima- 469

geNet (Russakovsky et al., 2015), CIFAR-10, and 470

CIFAR-100 (Krizhevsky et al., 2009) for image 471

classification. These datasets cover both multi- 472

modal and unimodal settings, providing a compre- 473

hensive view of how specificity-oriented training 474

affects general-purpose representations. 475

Specifically, our training objective modifies the 476

geometry of the embedding space by introducing 477

additional constraints beyond contrastive similarity, 478

in particular encouraging alignment with incremen- 479

tally detailed captions. While this enhances speci- 480

ficity, it disrupts the isotropy of the space and leads 481

to the emergence of hubness caption embeddings 482

that are overly similar to many images ultimately 483

degrading retrieval performance. 484

Overall, while our training strategy enhances 485

specificity evaluation, it can distort the geometry 486

of the embedding space, negatively affecting per- 487

formance on related tasks. This does not devalue 488

the SPECS metric, but sheds some light into the 489

mechanism it adopts to provide reliable evaluation 490

scores for long image captions. 491

5.3 Ablation Studies 492

We perform ablation studies to investigate the im- 493

pact of four key factors: loss weight configuration 494

(α, β, γ), learning rate, loss type, and dataset shuf- 495

fle ratio. Table 5 summarizes our results. 496

The optimal setting (α = 1, β = 8, γ = 0.8) 497

achieves the highest specificity score of 92.87. Al- 498

ternative configurations such as (1 : 9 : 0.8) and 499

(1 : 8 : 0.6) result in noticeably lower performance, 500

underscoring the model’s sensitivity to the precise 501

relative weighting of different training objectives. 502

Interestingly, the optimal setting is highly imbal- 503

anced, placing much greater emphasis on the detail 504

loss compared to the contrastive and negative loss 505

components. We hypothesize that this imbalance 506

arises from the nature of our specificity-focused 507

training setup: since the contrastive loss is already 508

well optimized from the pretrained CLIP check- 509

point, and the negative detail examples are rela- 510

tively noisy, the model benefits more from strong 511
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Model Urban-1k COCO Classification
Text-Image Image-Text Text-Image Image-Text ImageNet CIFAR-10 CIFAR-100

CLIP 47.10 61.10 30.45 50.40 68.40 89.75 64.20
LongCLIP 79.30 79.20 40.40 57.63 66.80 90.69 69.30
SigLip 62.40 63.10 47.18 65.34 76.08 92.44 72.59
NegCLIP 52.80 55.60 41.56 56.86 55.84 85.90 60.90
DCI 43.00 29.70 21.44 20.55 53.34 87.38 57.96
DAC 23.60 11.40 37.53 33.49 52.36 89.86 64.04

LongCLIP* 77.00 75.80 35.50 52.44 59.91 90.38 66.36
SPEC 69.80 0.30 22.72 4.48 11.01 71.26 33.1

Table 4: Evaluation across multiple benchmarks.

Ablation Config Pos. Neg. Avg.

Loss Weight
1:8:0.8

1:8:0.6 85.85 82.33 84.09
1:9:0.8 87.39 86.59 86.99
1:8:0.8 95.37 90.37 92.87

Learning Rate
1e-5

1e-6 77.22 68.64 72.93
5e-6 83.57 76.54 80.55
1e-5 95.37 90.37 92.87

Loss Type
hinge

esp1e-3 80.18 65.80 72.99
hinge 95.37 90.37 92.87

Dataset Shuffle
90%

50% 83.12 87.33 85.22
100% 87.27 83.11 85.19
90% 95.37 90.37 92.87

Table 5: Ablation study over four factors.

and consistent supervision on the positive detail512

signal. The detail loss directly encourages the513

model to increase similarity for incremental, vi-514

sually grounded additions—precisely the type of515

fine-grained distinction we aim to capture. Thus,516

assigning a large weight to this component rein-517

forces the core objective of our method.518

We also investigate the role of shuffle ra-519

tios when constructing negative captions. Our520

motivation for introducing shuffling is to avoid521

overly simplistic negative examples. Since each522

negative caption is created by appending a de-523

tail chunk—sourced from other images in the524

batch—to the current base caption, using unshuf-525

fled chunks may result in semantically coherent and526

fluent text that unintentionally resembles a valid527

caption. This risks introducing false negatives that528

confuse the model during training.529

To address this, we introduce a shuffle ratio hy-530

perparameter that controls the proportion of detail531

chunks that are randomly shuffled at the token level532

before being appended. A ratio of 90% means most533

negative chunks are shuffled to break semantic co- 534

herence, while a small portion (10%) remain in 535

their original order to preserve some challenging 536

cases. We find that shuffle(90%) yields the best per- 537

formance. We interpret this as a balance between 538

two extremes: fully shuffled chunks may become 539

too disfluent and easy to reject, offering little learn- 540

ing signal, while mostly unshuffled chunks increase 541

the chance of false negatives due to plausible but 542

incorrect details. The optimal performance at shuf- 543

fle(90%) suggests that introducing controlled noise 544

into the negatives improves the model’s ability to 545

focus on genuine detail alignment without being 546

misled by surface-level fluency. 547

6 Conclusion 548

We introduce specificity as a critical dimension 549

for evaluating vision-language models, emphasiz- 550

ing their capability to distinguish and reward fine- 551

grained visual details. By fine-tuning a CLIP model 552

with a specificity-aware learning objective, we de- 553

velop SPECS (SPecificity-Enhanced CLIP Score), 554

an evaluation metric designed to better align with 555

human sensitivity to visual details. Extensive exper- 556

iments demonstrate that SpeCS significantly out- 557

performs existing methods in specificity evaluation 558

and human correlation, while remaining compu- 559

tationally efficient and scalable. We believe this 560

work provides a foundational step toward more 561

detailed and precise evaluation methodologies, fa- 562

cilitating future improvements in vision-language 563

understanding. 564
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Limitations565

While SPECS offers strong alignment with human566

judgments and excels at evaluating fine-grained vi-567

sual grounding, its performance on standard vision-568

language tasks is comparatively limited. As shown569

in compositionality benchmarks such as ARO and570

SCPP++, improvements in specificity do not di-571

rectly translate into better reasoning over attribute572

structures or lexical variations. This indicates that573

the specificity-focused objective does not general-574

ize well to tasks requiring structural or semantic575

invariance.576

In addition, our hubness analysis reveals distor-577

tions in the embedding space caused by specificity-578

aware training. By encouraging sensitivity to incre-579

mental visual details, the model tends to over-align580

with frequent or stylistically similar captions, lead-581

ing to degraded performance in retrieval and classi-582

fication tasks. These findings highlight a trade-off583

between detail sensitivity and general-purpose util-584

ity.585

Addressing this trade-off remains an open chal-586

lenge. Future work may consider architectural587

modifications or auxiliary learning objectives that588

preserve fine-grained grounding while improving589

transferability to downstream tasks.590
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A Segmentation Grammar777

The following context-free grammar was used to778

define syntactic structures relevant to caption seg-779

mentation:780
781

grammar = r"""782
NP: {<DT>?<JJ.*>*<NN.*>+} # Noun phrase with783

optional determiners and adjectives784
VP: {<VB.*><NP|PP|CLAUSE>+$} # Verb phrase785

with verb followed by noun phrases,786
prepositional phrases, or clauses787

PP: {<IN><NP>} # Prepositional phrase with788
preposition followed by noun phrase789

CLAUSE: {<NP><VP>} # Clause containing noun790
phrase followed by verb phrase791

CONJ: {<CC><NP|VP|PP|CLAUSE>} # Conjunction792
with conjoined structures793

"""794795

B SCPP++ Result796

Table 6 presents the full results on the SCPP++797

benchmark, broken down across five compositional798

variation types: Swap Object, Swap Attribute, Re-799

place Relation, Replace Object, and Replace At-800

tribute. Each variation is evaluated under two set-801

tings: ITT (Image-to-Text retrieval) and TOT (Text-802

Only Transfer), reflecting different forms of gener-803

alization stress.804

Overall, we observe that models like NegCLIP805

and TripletCLIP maintain relatively strong perfor-806

mance across both ITT and TOT settings, while807

our SPEC model, although competitive in overall808

specificity evaluation, exhibits lower compositional809

generalization performance. This is consistent with810

earlier analysis in Section 5, and supports the claim811

that specificity-oriented fine-tuning does not neces-812

sarily improve compositional reasoning.813
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Model Swap Object Swap Attribute Replace Relation Replace Object Replace Attribute Avg.
ITT TOT ITT TOT ITT TOT ITT TOT ITT TOT

CLIP 45.18 19.74 45.21 33.03 56.26 38.62 86.80 83.72 65.61 59.14 53.31
Long-CLIP 42.85 15.10 49.39 31.98 55.68 40.54 90.19 87.71 71.31 59.77 54.45
Long-CLIP* 46.53 28.97 46.99 42.64 52.20 39.68 88.31 91.82 66.37 63.95 56.74
SigLIP 36.32 5.71 30.63 9.00 27.24 12.66 35.16 12.71 30.71 8.62 20.88
NegCLIP 55.25 34.65 57.99 56.47 52.27 51.57 89.53 94.55 69.41 76.27 63.79
DCI 44.10 31.80 45.60 38.00 43.20 35.70 80.20 81.20 60.90 52.20 51.29
DAC 27.80 11.40 33.50 25.40 48.60 48.60 64.30 75.80 44.00 56.00 43.54
La-CLIP 41.22 21.22 48.95 36.04 51.07 42.03 86.44 88.50 68.78 65.61 54.99
TripletCLIP 38.37 18.78 44.44 38.14 58.68 48.08 85.05 89.04 65.61 70.94 55.71

SPECS 30.61 16.73 28.37 24.02 25.96 24.25 48.36 73.91 38.57 45.30 35.61

Table 6: Compositional Generalization Evaluation. ITT and TOT denote image-to-text task and text-only task
accuracy, respectively.
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