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Abstract

As interest grows in generating long, detailed
image captions, existing automatic evaluation
metrics are increasingly strained. N-gram-
based metrics though efficient, fail to capture
semantic correctness, especially for longer out-
puts. Representational Similarity (RS) metrics,
designed to address this, initially saw limited
use due to high computational costs, while to-
day, despite advances in hardware, they remain
unpopular as they fall short even of weak base-
lines such as BLEU. Meanwhile, metrics based
on large language models (LLMs) show strong
correlation with human judgments, but remain
too expensive for use in model development.
We introduce SPECS (Specificity-Enhanced
CLIP-Score), a reference-free RS metric tai-
lored for long image captioning. SPECS modi-
fies CLIP with a new objective that emphasizes
specificity: rewarding correct details and penal-
izing errors. We show that SPECS matches the
performance of leading LLM-based metrics in
correlating with human judgments, while being
far more efficient. This makes it a practical
alternative for iterative checkpoint evaluation
during image captioning model development.

1 Introduction

As the task of short image captioning approaches
saturation, interest is growing toward the more chal-
lenging task of long, detailed image captioning
(Johnson et al., 2016; Cho et al., 2022; Doveh et al.,
2023; Li et al., 2023). This task requires strong vi-
sual grounding of the generated text and improved
cross-modal alignment (Liu et al., 2024; Li et al.,
2021). While this shift opens new frontiers for
research in generative vision-language understand-
ing, it also exacerbates the long-standing issue of
reliable automatic evaluation.

Image captioning, like any natural language gen-
eration task, has long been a challenge when it
comes to evaluation (Otani et al., 2023; Wang et al.,
2023). Early metrics based on the n-gram overlap
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Figure 1: A model which exhibits good specificity, i.e.
it ranks image-caption pairs in the correct way depicted
above, makes for a good evaluation metric. SPECS
succeeds in ranking minimal pairs correctly at a near-
ceiling rate. The blue vector is the image representation.

of generated captions and references are fast but
void of semantics and as such, highly inaccurate
even as applied to short captions (Papineni et al.,
2002; Banerjee and Lavie, 2005; Vedantam et al.,
2015; Lin, 2004). Representational Similarity (RS)
metrics were thus introduced to alleviate this issue
through modeling the semantics of images and text,
often operating in a reference-free fashion (Hessel
et al., 2021; Sarto et al., 2023). Most recently, a
proliferation has been seen of metrics that leverage
the capabilities of large language models (LLMs)
and prove superior to earlier ones, especially as the
length of generated image captions increases (Chan
et al., 2023; Yu et al., 2024; Ye et al., 2025).

Every new generation of evaluation metrics
comes with magnitudes higher computational re-
quirements, largely explained by the ever-growing
capacity of modern hardware. Yet, there is typ-
ically a mismatch between what is possible at a
given point in time, and what is practical. CLIP-
Score (Hessel et al., 2021), for example, was not
as widely adopted as its apparent superiority over
CIDEr (Vedantam et al., 2015) would call for, be-



cause for its time, it was a prohibitively expensive
metric. Similarly now, the state-of-the-art LLM-
based metrics are often used for final model evalu-
ation, but remain prohibitively costly and imprac-
tical during iterative model development. In the
context of long caption generation, however, there
is hardly any viable alternative.

In a first effort towards benchmarking automatic
evaluation metrics against human judgements on
the task of long image captioning, Ye et al. (2025)
report that the Sample-wise Kendall’s Tau for
CIDEr is a mere 0.06, and that the correlation caps
at 0.29 for BLEU-4 (Papineni et al., 2002). RS
metrics, which stand to be more practical today
than they were in earlier, more computationally
constrained times, all prove less effective than the
simple, almost zero-cost BLEU-4 metric. CLIP-
Score, for example, scores at only 0.15. This calls
for a new and effective RS metric.

In this work, we introduce SPECS (Specificity-
Enhanced CLIP-Score), a reference-free, RS eval-
uation metric which uses a CLIP model adapted to
longer context (Zhang et al., 2024), and augmented
with a novel objective that emphasizes specificity:
the ability to reward correct details and penalize
incorrect ones. In terms of human judgment cor-
relation, SPECS matches the performance of the
best open-source LLM metric (Lee et al., 2024),
at a fraction of the computational cost. As such,
SPECS stands to become the norm for fast-iteration
evaluation in long image caption generation.

2 Related work

CLIP (Radford et al., 2021) is a 150-million pa-
rameters dual-encoder model trained on 400 mil-
lion image-text pairs using a contrastive objec-
tive. It learns to predict which caption matches
a given image, enabling the model to acquire broad
visual-language representations that transfer well to
downstream tasks without task-specific fine-tuning.
CLIPScore (Hessel et al., 2021) was proposed as
a reference-free image caption evaluation metric.
It uses CLIP embeddings to compute cosine simi-
larity between images and captions, yielding better
correlation with human judgments than traditional
n-gram-based metrics on short image captions.

To improve CLIP’s capacity for fine-grained un-
derstanding and compositionality, several exten-
sions have been introduced. NegCLIP improves
compositional reasoning by fine-tuning CLIP with
hard negative samples, as evaluated on the ARO

benchmark (Yuksekgonul et al., 2022). LaCLIP en-
hances language diversity by rewriting image cap-
tions with large language models and training CLIP
on both original and rewritten captions (Fan et al.,
2023). TriletpCLIP introduces synthetic triplets
with hard negatives for both modalities and opti-
mizes a triplet loss to improve compositional gener-
alization (Patel et al., 2024). Other methods such as
DCI (Urbanek et al., 2024) and DAC (Doveh et al.,
2023) improve compositionality through training
on dense, region-aligned captions.

LongCLIP addresses the issue of CLIP’s small
input length window, extending it from 77 to
248 tokens by interpolating positional embed-
dings (Zhang et al., 2024), thus enabling the model
to handle long captions. The model is trained on
a large syntehtic dataset of long, detailed captions,
ShareGPT-4V (Chen et al., 2024), with gradients
blocked in the first 20 tokens, to preserve CLIP’s
strong zero-shot capabilities in this window.

Building on prior work, we introduce the no-
tion of specificity—the ability of a vision-language
model to consistently prefer more informative, visu-
ally grounded captions at varying caption lengths,
and train a LongCLIP model with it to build an
effective long image captioning evaluation metirc.

3 Specificity: A Fine-Grained VLM
Metric

Let us consider the three caption variants depicted
in Figure 1: saying that the cat is tucked under a
blanket is correct and there is a lot of additional
relevant detail mentioned before that, so a good
evaluation metric should give this variant a high
score. And if the caption was to mention that the
blanked has fringed edges, the evaluation metric
should reflect this detail too, in a slightly higher
score. On the other hand, if instead of a blanket
the caption said that the cat was laying under a
Jjumper, that should result in a slightly lower score—
all the other relevant detail is still present, but this
particular object mention is incorrect. This simple
example illustrates the notion of specificity which
we adapt from Xu et al. (2024) to mean: the abil-
ity of a representation to encode every detail in
a caption in a way that correctly reflects the rele-
vance of this detail to a reference image. A metric
based on a specificity-enhanced model, would thus
favor captions that include more relevant details,
and penalize those that omit important informa-
tion or introduce hallucinated content. This aligns



closely with the notions of precision and recall,
implemented implicitly in such a metric.

3.1 Detail Units

To concretely evaluate specificity, we begin by in-
troducing the key concept of a detail unit. The
abstract notion behind a detail unit refers to any
minimal bit of information in a caption, such as
the presence of a blanket, the fringed edges of the
blanket, etc. For operational purposes, however,
we define a detail unit to mean a phrase which con-
tributes at least one new visual detail (and possibly
more), and fits syntactically and semantically with
preceding context. Under this definition, a blanket
with fringed edges is a detail unit, but a blanket
with is not, and neither is The cat mentioned in the
middle of the caption in Figure 1, since it does not
contribute new information.

Formally, we denote an image-caption pair
as {i,c}, and decompose a caption as ¢ =
{d1,da,...,dy} where each d; is a detail unit.
Every subsequence of detail units, built cumula-
tively from left to right, constitutes a valid caption:
Ccl1 = {dl}, Cy = {d1+d2}, ooy {C = d1+' : ‘+dm},
each containing progressively more information.

Given a perfect caption, this ordered sequence
should exhibit monotonically increasing represen-
tational similarity to its reference image, under a
specificity-enhanced model. Conversely, if an in-
correct detail unit is added at any point, this should
be reflected in a decreased similarity. This decom-
position provides a structured way to test and en-
hance model specificity to visual detail across any
caption length.

Detail units that contain relevant information
are referred to as positive (d ), while detail units
that introduce content not grounded in the image
as referred to as negative (d_). The expected be-
havior of a model with good specificity is then to
assign higher similarity to the pair {,c; + cf+}
than to the pair {7, ¢;}, and a lower similarity to
the pair {i, ¢; + d_} than to the pair {4, cj}, where
j € [1,...,m] and the hat symbol denotes a new
candidate detail. Each triplet, {i, ¢;, c; + d4 } and
{i,¢;,cj + d_} constitutes a minimal pair of cap-
tions grounded in an image, the former being posi-
tive and the latter negative.

3.2 Specificity Rate

To aggregate specificity across a set of minimal
pairs, we introduce the Specificity Rate (SR). We
define two variants: SR;,s measures the proportion

of cases in which adding an additional relevant
detail (positive detail unit) increases the similarity
score with the image, while SR;,c; measures the
proportion of cases in which adding an irrelevant
detail (negative detail unit) decreases the similarity.
Given a set of N positive or negative triplets, we
compute the SR as follows:

N
1 A
SRPOS = N E H[Q(’L,CJ + d—i—) > 9(’chj)] (1)
J

N
SRpeg = %ZH[G(Z’,CJ-) <B(i,cj+d-)] (2
J

where I[-] is the indicator function that outputs 1 if
the condition inside is true and O otherwise, and 6 is
the cosine similarity between the representations of
image and text. This formulation captures the rate
at which representational similarity increases with
added positive details, or decreases with added neg-
ative ones, providing a robust method of measuring
model specificity.

3.3 Specificity-Aware Leaning

Although specificity can be used purely for evalua-
tion, we can also enforce it during training. To en-
courage the model to prefer captions that describe
images with greater relevant detail, we introduce
a training objective that rewards higher similarity
scores for incrementally more informative captions,
and lower similarity scores for less accurate ones.
Given a dataset of size N of positive and negative
triplets, we define the following hinge loss with a
dynamic margin:

N
1 ~
Lpos = 3 > max (o, 0(i,c; +ds) — 0i,c;) + e) ,
3)

where € is a batch-wise average similarity differ-
ence between detailed and base captions, which is
detached from gradient computation and clamped
for numerical stability:

N
€ = detach (Zif Z (9(i, cj + d+) — (1, Cj))) )

The negative loss, L5 is computed by analogy,
from the negative triplets in the dataset.
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Figure 2: Training framework of model. Given an image and its caption, we generate a base caption, a more detailed
caption, and a negative caption containing an incorrect detail. The model computes CLIP-style embeddings and
is trained with three losses: contrastive loss on the full caption, a detail-aware loss to prefer more informative
descriptions, and a negative detail loss to penalize misleading ones. This setup encourages sensitivity to fine-grained

textual differences.

Our final training objective combines the con-
trastive loss, the detail-aware loss, and the negative
detail loss:

L = aLcontrastive + BLdetail + 'VEnega “4)

where «, 3, and -y are weighting hyperparameters
tuned on a validation set. Figure 2 illustrates the
overall training framework.

4 Experiment and Evaluation

4.1 Training and Validation Datasets

We train our model on the ShareGPT-4V
dataset (Chen et al., 2024), which contains 1.2 mil-
lion high-quality image-caption pairs synthetically
generated by a strong captioning model, instructed
to mention object attributes, spatial layouts, and
aesthetic properties. The images in the dataset are
sourced from COCO (Lin et al., 2014), SAM (Kir-
illov et al., 2023), and LAION (Schuhmann et al.,
2022), and captions are 143 tokens long on average.

For intrinsic specificity evaluation, we use the
sDCI dataset (Urbanek et al., 2024), consisting of
7805 images, each paired with 10 captions, which
are synthetically desgined to fit in CLIP’s context
window of 77 tokens. This underuntilizes the full
context window of our model, but enables con-
trolled comparisons to other models, constrained
by the 77-token context window, specifically the
models introduced in Section 2.

4.2 Caption Segmentation

To prepare data for measuring specificity, we build
a pipeline that segments captions into detail units.

Main Logic We considered various methods of
implementing the logic described above, based on
part-of-speech tagging, dependency parsing and
coreference resolution: the results were either un-
satisfactory, slow to obtain or even impossible to
obtain due to technical challenges with the deploy-
ment of outdated libraries for coreference resolu-
tion, for example. The solution which proved best
in terms of speed, implementational ease, and satis-
factory results was obtained with the help of GPT-4
(Achiam et al., 2023). We presented the model
with an example of a manually annotated caption
and had it generate Python code that would follow
the pattern of pipe symbol insertions. The result-
ing code is based on part-of-speech tagging and a
rule-based grammar (see Appendix A).

This solution produced surprisingly good results
as determined by the manual inspection of captions
annotated with it. However, it somewhat overseg-
ments the captions.

False Negatives vs. False Positives Considering
the specific use of segmented data, we determined
that introducing false negatives (i.e., missing splits)
is less harmful than introducing false positives (i.e.,
incorrect extra splits). In other words, we prefer
case (a), where a necessary split is missing, over
case (b), where an incorrect split is inserted:



(a) A front view of a statue on cement | in a park.

(b) A front | view of a statue | on cement | in a
park.

This preference is grounded in our design of both
the metric and the training objective. We aim to
ensure that every introduced segment corresponds
to meaningful and novel information. Allowing
fewer false negatives yields a finer segmentation,
which aligns with our objective of evaluating incre-
mental detail. On the other hand, false positives
introduce noise that may corrupt the metric signal
and compromise training, especially when such
errors accumulate.

Given the above reasoning, we modify the seg-
mentation code with several rules to avoid split-
ting off (1) sentence-initial noun phrases that begin
with The as they are likely to introduce a previously
mentioned entity, (2) prepositional phrases from
the noun phrase preceding them as they are likely
a modifier to the noun phrase, often referring back
to previously mentioned objects (e.g. The cat T is
partially ... in Figure D! 3) segments which start
with a prepositional phrase from the context that
follows, unless the segment contains a verb, as they
are likely a location modifier to the following noun
phrase (e.g. To the left of the car T there is a box).”

4.3 Experimental Setup

We train a base LongCLIP-B/32 model with a con-
text window of 248, on the ShareGPT-4V dataset,
for six epochs. The best checkpoint is then fur-
ther finetuned for three epochs with our enhanced
specificity objective, using ShareGPT-4V captions,
segmented as described above. For every triplet
{i,¢j,¢j + dy}, we create a negative counterpart,
{i,¢j,¢; + d_}, by randomly sampling a detail
unit from another image-caption pair in the batch.
We use the Adam optimizer with a learning rate
of 1 x 107°, weight decay of 1 x 102, batch size
of 100 per GPU, and gradient accumulation over 4
steps (yielding an effective batch size of 400). We
set the loss weightstoa =1, 8 = 8,and v = 0.8
based on extensive hyperparameter tuning.

All experiments are conducted on four NVIDIA
A40 GPUs. Training the model requires approxi-
mately one hour per epoch (4 GPU hours).

"4 denotes a pipe symbol that the rule blocks.
2Sometimes, this rule would result in a false negative.

Model Positive Negative Average
CLIP 62.61 68.28 65.44
LongCLIP 60.12 69.93 65.02
SigLIP 58.56 76.28 67.42
NegCLIP 54.96 78.84 66.90
DCI 55.68 63.63 59.66
DAC 46.84 66.88 56.86
La-CLIP 60.98 68.82 64.90
TripletCLIP | 53.34 70.20 61.77
LongCLIP* | 58.64 77.03 67.83
SPEC 95.37 90.37 92.87

Table 1: Specificity performance of various vision-
language models on the sDCI dataset (Specificity-
Aware Learning). Positive and Negative correspond to
SRy0s and SRy, as defined in Section 3.2. LongCLIP
refers to the ViT-B/16 model as reported in the original
LongCLIP paper, while Long CLIP* is our own imple-
mentation using ViT-B/32.

4.4 Results

Intrinsic Evaluation To evaluate whether our
training objective effectively enhances specificity,
we specificity rate of various vision-language mod-
els (see Section 3.2.) Table 1 reports results on the
sDCI benchmark. Our specificity-enhanced model,
SPEC (Specificity-Enhanced CLIP), achieves the
best performance across all VLM models, with
SRpos = 95.37 and SRy = 90.37, resulting in an
average specificity score of 92.87. Compared to
the LongCLIP* baseline of 67.83, our model yields
a substantial improvement of +25.04 points. The
largest gain appears in SR, where SPEC out-
performs LongCLIP* by +36.73, highlighting its
superior ability to recognize and prefer more de-
tailed captions, and the effectiveness of the custom
training objective.

Interestingly, we observe that models with strong
general-purpose performance do not necessarily
achieve high specificity scores. For example,
SigLIP, which has demonstrated strong results in
standard vision-language benchmarks, underper-
forms in both SR;,s and average specificity com-
pared to CLIP-based variants. This suggests that
architectural strength alone is insufficient for cap-
turing fine-grained alignment between image and
caption. Models with enhanced compositionality,
a property we expect should be highly relevant to
specificity, show mixed performance: NegCLIP is
a bit better than CLIP on average, but DCI, DAC
show reduced specificity and La-CLIP shows no



Metric | PCCpt| 1-R?| | Kd71 | Spr? | Base Model | Reference Free | TFLOPs
Rule-Based Evaluation
BLEU-4 0.3439 62.78 0.2693 | 0.2931 - X -
ROUGE 0.2509 156.05 0.1886 | 0.1893 - X -
METEOR 0.3593 111.95 0.2417 | 0.2536 - X -
CIDEr 0.0522 | 3.30E+07 | 0.0635 | 0.0601 - X -
Representational Similarity Evaluation
SPICE 0.2218 156.11 0.1731 | 0.1907 - v -
CLIP-Score 0.2183 26.04 0.1724 | 0.1480 CLIP v 1.48 x 1072
PAC-Score 0.1525 20.93 0.1117 | 0.1260 CLIP v 1.48 x 1072
La-CLIP 0.1177 71.94 0.0911 | 0.1192 CLIP v 1.48 x 1072
TripletCLIP 0.1697 34.70 0.0852 | 0.1038 CLIP v 1.48 x 1072
NegCLIP 0.0872 131.57 0.0623 | 0.0256 CLIP v 1.48 x 1072
LongCLIP 0.2320 18.58 0.1769 | 0.2603 | LongCLIP v 2.81 x 1072
LongCLIP* 0.1723 33.67 0.1484 | 0.1662 | LongCLIP v 2.81 x 1072
SPECS (Ours) | 0.5228 3.65 0.4078 | 0.5400 | LongCLIP v 2.81 x 1072
LLM-Based Evaluation
FaithScore 0.1937 3.22 0.1626 | 0.1115 LLaMA v 3.97
CLAIR 0.3815 1.98 0.3847 | 0.4552 LLaMA v 3.97
GPT4-Eval 0.3976 2.95 0.3447 | 0.3866 GPT4 v -
RLAIF-V 0.3547 5.32 0.2774 | 0.2544 LLaVA v 3.97
CAPTURE 0.3521 7.62 0.2801 | 0.3449 LLaMA2 X 7.74
FLEUR 0.4230 3.01 0.4246 | 0.5325 LLaVA v 7.74
DCSCORE 0.6605 1.54 0.5328 | 0.6166 GPT-40 X -

Table 2: Correlation of image captioning evaluation metrics and human judgements: Pearson’s p, 1 — R?,
Kendall’s 7 (Kd 7), and Spearman’s 7 (Sp 7). Metrics are grouped into Rule-Based, Model-Based, and LLM-Based
categories. For a fair comparison of computational cost, LLM-Based evaluations were computed using an input
sequence length of 300 tokens, matching the setting used for Model-Based metrics. All p-values are less than 0.001.

change from the baseline model.

Extrinsic Evaluation To evaluate how well au-
tomatic caption metrics align with human prefer-
ences, we adopt the evaluation protocol from DE-
CAPBENCH (Ye et al., 2025). Their human cor-
relation benchmarks consists of 500 image cap-
tion pairs, with images sample from the Imageln-
Words (ITW) dataset (Garg et al., 2024). Human-
annotated ratings are available for five captions per
image, generated by different vision-language mod-
els. This setup enables a standardized comparison
between automatic metrics and human judgments.

Here we see how SPECS, a version of CLIP-
Score which builds on our specificity-enhanced
LongCLIP model, performs compared to a range of
other metrics from different categories: rule-based,
representational similarity-based and LLM-based.
To quantify alignment with human ratings, we re-
port four standard correlation metrics: Pearson cor-
relation coefficient (PCC), coefficient of determina-
tion (R?), Kendall’s 7 (Kd 7), and Sample-wise 7

(Sp 7). Table 2 summarizes results across all eval-
uation methods previously considered in Ye et al.
(2025), the CLIP variants most related to our work,
and lastly, our proposed SPECS.

Among model-based metrics, SPECS achieves
the highest correlation with human judgments.
Compared to the standard CLIPScore baseline, it
improves PCC from 0.2183 to 0.5228 and Kendall’s
7 from 0.1724 to 0.4078. It also outperforms most
LLM-based alternatives. For instance, although
FLEUR achieves strong performance among LLM
methods, SPECS still surpasses it in both PCC and
ranking consistency.

In terms of efficiency, SPECS requires only
2.81 x 10~2 TFLOPs per forward pass, making
it significantly more efficient than LLM-based eval-
uators such as FLEUR (7.74 TFLOPs) or CLAIR
(3.97 TFLOPs). Both CLIP and our SPECS model
have approximately 0.15 billion parameters, fur-
ther contributing to their lightweight and scalable
design. This highlights SPECS as a scalable and



Model Rel. Attr. C/O  F/O | SCPP
CLIP 59.84 63.96 47.28 5854 | 53.33
LongCLIP | 59.70 6342 5691 69.03 | 5445
SigLip 46.52 56.24 3295 40.86 | 20.88
NegCLIP | 70.52 81.08 87.04 90.38 | 63.79
DCI 8131 73.85 94.53 95.68 | 51.29
DAC 76.18 67.63 88.58 9125 | 43.54
La-CLIP | 4548 5872 3497 40.54 | 54.99
TripletCLIP | 54.94 63.07 23.53 27.58 | 55.71
LongCLIP* | 5296 6581 63.97 70.20 | 56.74
SPEC 7338 69.31 7523 84.96 | 35.61

Table 3: Performance of various models on the ARO
and SCPP benchmarks. C/O and F/O correspond
to compositionality evaluation on COCO-Order and
Flickr30k-Order, respectively.

human-aligned alternative for evaluating dense and
detail-rich image captions.

5 Further Analysis

5.1 Compositionality Analysis

Although our primary focus is on improving speci-
ficity, we also examine whether this ability cor-
relates with compositional reasoning skills. Intu-
itively, one might expect that models capable of
handling compositional variations—such as changes
in attribute order or relational details—would also be
better at processing incrementally detailed descrip-
tions. To explore this connection, we evaluate our
models on two established compositionality bench-
marks: the ARO benchmark (Yuksekgonul et al.,
2022), which measures understanding of attribute-
relation-object combinations and word order sen-
sitivity, and the SugarCREPE++ (SCPP) bench-
mark (Dumpala et al., 2024), which tests sensitiv-
ity to semantic equivalence under lexical variation.
Table 3 summarizes the results. Full SCPP results
are provided in Appendix B.

On ARO, SPEC exhibits considerably higher per-
formance than LongCLIP*, which suggests a direct
relationship between specificity and compositional-
ity. This finding does not hold on the SCPP bench-
mark, however. In fact among all compositionality-
enhanced models, only NegCLIP shows a marked
improvement on SCPP over the base CLIP model,
all others either matching the base performance or
showing a considerable degradation (for example,
DAC.) . Our specificity objective includes hard neg-
atives that do not explicitly encourage the model
to handle semantic equivalence. This may partly
explain the reduced performance on SCPP.

5.2 Hubness in Embedding Space

Although our specificity-enhanced model excels in
fine-grained alignment, we observe a decline in per-
formance on standard vision-language tasks such
as retrieval and classification. We evaluate general-
ization on a diverse set of benchmarks, including
Urban-1k (Zhang et al., 2024) and COCO (Lin
et al., 2014) for text-image retrieval, and Ima-
geNet (Russakovsky et al., 2015), CIFAR-10, and
CIFAR-100 (Krizhevsky et al., 2009) for image
classification. These datasets cover both multi-
modal and unimodal settings, providing a compre-
hensive view of how specificity-oriented training
affects general-purpose representations.

Specifically, our training objective modifies the
geometry of the embedding space by introducing
additional constraints beyond contrastive similarity,
in particular encouraging alignment with incremen-
tally detailed captions. While this enhances speci-
ficity, it disrupts the isotropy of the space and leads
to the emergence of hubness caption embeddings
that are overly similar to many images ultimately
degrading retrieval performance.

Overall, while our training strategy enhances
specificity evaluation, it can distort the geometry
of the embedding space, negatively affecting per-
formance on related tasks. This does not devalue
the SPECS metric, but sheds some light into the
mechanism it adopts to provide reliable evaluation
scores for long image captions.

5.3 Ablation Studies

We perform ablation studies to investigate the im-
pact of four key factors: loss weight configuration
(a, B,7), learning rate, loss type, and dataset shuf-
fle ratio. Table 5 summarizes our results.

The optimal setting (« = 1,8 = 8,7 = 0.8)
achieves the highest specificity score of 92.87. Al-
ternative configurations such as (1 : 9 : 0.8) and
(1:8:0.6) result in noticeably lower performance,
underscoring the model’s sensitivity to the precise
relative weighting of different training objectives.

Interestingly, the optimal setting is highly imbal-
anced, placing much greater emphasis on the detail
loss compared to the contrastive and negative loss
components. We hypothesize that this imbalance
arises from the nature of our specificity-focused
training setup: since the contrastive loss is already
well optimized from the pretrained CLIP check-
point, and the negative detail examples are rela-
tively noisy, the model benefits more from strong



Model Urban-1k CoCo Classification
Text-Image Image-Text | Text-Image Image-Text | ImageNet CIFAR-10 CIFAR-100
CLIP 47.10 61.10 30.45 50.40 68.40 89.75 64.20
LongCLIP 79.30 79.20 40.40 57.63 66.80 90.69 69.30
SigLip 62.40 63.10 47.18 65.34 76.08 92.44 72.59
NegCLIP 52.80 55.60 41.56 56.86 55.84 85.90 60.90
DCI 43.00 29.70 21.44 20.55 53.34 87.38 57.96
DAC 23.60 11.40 37.53 33.49 52.36 89.86 64.04
LongCLIP* 77.00 75.80 35.50 52.44 59.91 90.38 66.36
SPEC 69.80 0.30 22.72 4.48 11.01 71.26 33.1
Table 4: Evaluation across multiple benchmarks.
Ablation Config | Pos. Neg. Avg. negative chunks are shuffled to break semantic co-
o Weieht 1:8:06 | 85.85 8233 84.09 her?ncg, yvhﬂe a small portion (10%) remam. in
i g 1:9:08 | 8739 8659 86.99 their original order to preserve some challenging
1:8:0.8 1:8:08 | 9537 9037 92.87 cases. We find that shuffle(90%) yields the best per-
. o6 772 6864 72.93 formance. We interpret this as a balance between
Learning Rate 566 8357 7654 8055 two extremes: fully shuffled chunks may become
le-5 le25 9537 9037 9287 too Qisﬂuent apd easy to reject, offering litt.le learn-
ing signal, while mostly unshuffied chunks increase
LO;_S Type lefple'?’ 223 gg 22 ;ggg the chance of false negatives due to plausible but
1nee 1nee : i i incorrect details. The optimal performance at shuf-
Dataset Shuffle | 207 83.12 87.33 85.22 ﬂe(90%) suggests t'hat introducing controlled poise
100% 87.27 83.11 85.19 into the negatives improves the model’s ability to
0% 90% 95.37 90.37 92.87
° : : . focus on genuine detail alignment without being

Table 5: Ablation study over four factors.

and consistent supervision on the positive detail
signal. The detail loss directly encourages the
model to increase similarity for incremental, vi-
sually grounded additions—precisely the type of
fine-grained distinction we aim to capture. Thus,
assigning a large weight to this component rein-
forces the core objective of our method.

We also investigate the role of shuffle ra-
tios when constructing negative captions. Our
motivation for introducing shuffling is to avoid
overly simplistic negative examples. Since each
negative caption is created by appending a de-
tail chunk—sourced from other images in the
batch—to the current base caption, using unshuf-
fled chunks may result in semantically coherent and
fluent text that unintentionally resembles a valid
caption. This risks introducing false negatives that
confuse the model during training.

To address this, we introduce a shuffle ratio hy-
perparameter that controls the proportion of detail
chunks that are randomly shuffled at the token level
before being appended. A ratio of 90% means most

misled by surface-level fluency.

6 Conclusion

We introduce specificity as a critical dimension
for evaluating vision-language models, emphasiz-
ing their capability to distinguish and reward fine-
grained visual details. By fine-tuning a CLIP model
with a specificity-aware learning objective, we de-
velop SPECS (SPecificity-Enhanced CLIP Score),
an evaluation metric designed to better align with
human sensitivity to visual details. Extensive exper-
iments demonstrate that SpeCS significantly out-
performs existing methods in specificity evaluation
and human correlation, while remaining compu-
tationally efficient and scalable. We believe this
work provides a foundational step toward more
detailed and precise evaluation methodologies, fa-
cilitating future improvements in vision-language
understanding.



Limitations

While SPECS offers strong alignment with human
judgments and excels at evaluating fine-grained vi-
sual grounding, its performance on standard vision-
language tasks is comparatively limited. As shown
in compositionality benchmarks such as ARO and
SCPP++, improvements in specificity do not di-
rectly translate into better reasoning over attribute
structures or lexical variations. This indicates that
the specificity-focused objective does not general-
ize well to tasks requiring structural or semantic
invariance.

In addition, our hubness analysis reveals distor-
tions in the embedding space caused by specificity-
aware training. By encouraging sensitivity to incre-
mental visual details, the model tends to over-align
with frequent or stylistically similar captions, lead-
ing to degraded performance in retrieval and classi-
fication tasks. These findings highlight a trade-off
between detail sensitivity and general-purpose util-
ity.

Addressing this trade-off remains an open chal-
lenge. Future work may consider architectural
modifications or auxiliary learning objectives that
preserve fine-grained grounding while improving
transferability to downstream tasks.
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A Segmentation Grammar

The following context-free grammar was used to
define syntactic structures relevant to caption seg-
mentation:

nnn

grammar = r
NP: {<DT>?<JJ.*>*<NN.*>+} # Noun phrase with
optional determiners and adjectives
VP: {<VB.*><NP|PP|CLAUSE>+$} # Verb phrase
with verb followed by noun phrases,
prepositional phrases, or clauses
PP: {<IN><NP>} # Prepositional phrase with
preposition followed by noun phrase
CLAUSE: {<NP><VP>} # Clause containing noun

phrase followed by verb phrase

CONJ: {<CC><NP|VP|PP|CLAUSE>} # Conjunction
with conjoined structures

nnn

B SCPP++ Result

Table 6 presents the full results on the SCPP++
benchmark, broken down across five compositional
variation types: Swap Object, Swap Attribute, Re-
place Relation, Replace Object, and Replace At-
tribute. Each variation is evaluated under two set-
tings: ITT (Image-to-Text retrieval) and TOT (Text-
Only Transfer), reflecting different forms of gener-
alization stress.

Overall, we observe that models like NegCLIP
and TripletCLIP maintain relatively strong perfor-
mance across both ITT and TOT settings, while
our SPEC model, although competitive in overall
specificity evaluation, exhibits lower compositional
generalization performance. This is consistent with
earlier analysis in Section 5, and supports the claim
that specificity-oriented fine-tuning does not neces-
sarily improve compositional reasoning.
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Model Swap Object | Swap Attribute | Replace Relation | Replace Object | Replace Attribute | Avg.
ITT TOT | ITT TOT ITT TOT ITT TOT ITT TOT

CLIP 45.18 19.74 | 4521 33.03 | 56.26  38.62 | 86.80 83.72 | 65.61 59.14 53.31
Long-CLIP | 42.85 15.10 | 4939 3198 | 55.68 40.54 |90.19 87.71 | 71.31 59.77 54.45
Long-CLIP* | 46.53 28.97 | 46.99 42.64 | 5220 39.68 | 88.31 91.82 | 66.37 63.95 56.74

SigLIP 36.32  5.71 | 3063 9.00 | 27.24 1266 | 35.16 12.71 | 30.71 8.62 20.88
NegCLIP 55.25 34.65 | 57.99 56.47 | 5227  51.57 | 89.53 94.55 | 69.41 76.27 63.79
DCI 44.10 31.80 | 45.60 38.00 | 43.20 35.70 | 80.20 81.20 | 60.90 52.20 51.29
DAC 27.80 11.40 | 33.50 2540 | 48.60 48.60 | 6430 75.80 | 44.00 56.00 43.54

La-CLIP 4122 21.22 | 4895 36.04 | 51.07  42.03 86.44 88.50 | 68.78 65.61 54.99
TripletCLIP | 38.37 18.78 | 44.44 38.14 | 58.68  48.08 85.05 89.04 | 65.61 70.94 55.71

SPECS 30.61 16.73 | 28.37 24.02 | 2596 2425 | 4836 7391 | 3857 4530 35.61

Table 6: Compositional Generalization Evaluation. ITT and TOT denote image-to-text task and text-only task
accuracy, respectively.
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