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Abstract

Despite recent progress, continual lifelong learning cannot yet match the performance
of batch learning. This is partly because the regularization methods used for continual
learning are not as effective as the stochastic gradients sampled from the whole data.
Replay methods reconstruct past gradients and can work better but the memory-buffer
size can grow quite large with the number of tasks and make the method slow. Here,
we propose a new method to build a compact memory to accurately reconstruct the past
gradients. We use the framework by Khan and Swaroop (2021) who prove the existence of
optimal memory to perfectly reconstruct the gradients. We show that, for linear regression,
the optimal memory is obtained by Hessian matching and use this to propose an extension
to logistic regression by using the probabilistic PCA method. We confirm our findings
on small-scale classification problems. Overall, we hope to encourage future research on
compact memory for continual learning.

1. Introduction

Continual lifelong learning aims to enable continual acquisition of new skills while retaining
and reusing past knowledge, but this requires a delicate balance of the past and future (Mer-
millod et al., 2013) in order to avoid harmful interference (Sutton, 1986). In other words,
future learning must be regularized by the past knowledge otherwise the past can be forgot-
ten (Kirkpatrick et al., 2017). Designing a regularization method is crucial but, despite a lot
of recent progress, there is no satisfactory solution yet. Regularization towards the past is a
fundamental principle, appearing in optimization (Bertsekas, 2011), online learning (Cesa-
Bianchi and Lugosi, 2006; Shalev-Shwartz et al., 2012) and Bayesian-like updating (Hoeven
et al., 2018). Many such regularization-based methods have been adapted to continual
learning for neural networks (Kirkpatrick et al., 2017; Li and Hoiem, 2017; Lee et al., 2017;
Zenke et al., 2017; Ebrahimi et al., 2018; Ritter et al., 2018). However, these approaches
appear to perform much worse when compared to memory or output-based rehearsal strate-
gies (Rebuffi et al., 2001; Nguyen et al., 2017; Titsias et al., 2019; Pan et al., 2020; Buzzega
et al., 2020). While sophisticated regularization-based strategies can mitigate forgetting to
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some extent (Daxberger et al., 2023), their performance still lags far behind simple stochas-
tic gradient batch learning which has access to all the data at once. Addressing this gap is
an important problem to not only make progress in continual lifelong learning, but also to
reduce the costs and environmental impacts of AI (Paleyes et al., 2022).

One way to obtain performance similar to batch learning is to design regularizers to
accurately reconstruct past gradients. This principle is proposed by Khan and Swaroop
(2021) where they design a regularizer, referred to as K-prior Ktpθq, by using the parameter
θt after task t and a subset Mt (or memory) of all past data D1:t. The form of the prior and
memory Mt is chosen such that the Ktpθq reconstructs the gradient of the batch learning,

∇Ktpθq «

t
ÿ

j“0

∇ℓ̄tpθq, (1)

where ℓ̄t is the loss function over the dataset Dt of task t, and ℓ̄0 is the regularizer. Within K-
prior, we can combine weight-regularization, function-regularization, and experience replay
to ensure a good reconstruction of the gradient (Daxberger et al., 2023).

A major issue with K-prior is that the memory size can be large because Mt in practice is
chosen to be a subset of the data. Moreover, if we define the memory as a subset, it remains
unclear which specific subsets should be chosen to minimize the gradient reconstruction error
while preserving compactness. This is not an issue of the framework that allows arbitrary
inputs to be employed as memory (even those without labels), but this property has not
been exploited yet to build a more compact memory. In fact, Khan and Swaroop (2021,
App. 1) theoretically proves the existence of such a compact memory for logistic regression,
but achieving such memory is difficult in practice.

Here, we propose to build a compact representation in the feature space (instead of the
input space). The key idea is to start with linear regression and show that the problem
can be solved by Hessian Matching. In such a case, perfect reconstruction of the gradient
is possible by simply looking at the non-zero singular values of the feature matrix. We
generalize the method to logistic regression by posing it as a maximum likelihood estimation
of Probabilistic Principal Component Analysis (PPCA; Tipping and Bishop, 1999). In our
formulation the reconstruction is not perfect, but a near-optimal solution can still be found
by increasing the memory size a bit further. We present some preliminary results on small-
scale classification problems in support of our results. The hope of this work is to promote
future work on compact memory for continual lifelong learning.

2. Continual learning with gradient reconstruction

Continual lifelong learning requires a delicate balance of past and future knowledge to enable
continual acquisition of new knowledge without interfering with old knowledge. One of the
simplest settings to study this problem is the supervised learning case where each task data
Dt consists of Nt input-output pairs pxi,yiq. The goal can be to learn a parametric model
fθi with parameters θ P RD to predict the i’th output yi from input xi.

In this setup, we start with a parameter θ0 and, after seeing D1, update to get θ1, and
continue to do so to get a sequence of θt. In this online setting, we assume that, when
updating θt`1, we have access to all dataset Dt`1 of current task and the old parameters
θt. The old parameter can be used in a weight-regularizer but we could also simply use a
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Figure 1: Left figure illustrates the results of two-moon classification with 3 tasks (shown
with red, blue, and black) where the classifier gets close results to the truth (the gray line)
when we use a memory of just 7 points/tasks. Right figure visualizes the memories for
Split-MNIST as more tasks are added. Each row shows the eigen-images sorted in decreasing
eigenvalues from left to right. We see that the first 2-3 images are learned quickly and we
only observe variational in images with smaller eigenvalues (4th image onward).

memory buffer Mt of old data D1:t to perform experience replay. These two options are
shown below in the left and right respectively,

θt`1 “ arg min
θ

ℓ̄t`1pθq ` 1
2δ}θ ´ θt}

2, θt`1 “ arg min
θ

ℓ̄t`1pθq `
ÿ

jPMt

ℓ̄jpθq, (2)

where δ ą 0 is a coefficient controlling the strength of the weight regularizer. An inter-
mediate option is to use function regularization where we match the output of the current
output fθj to the old output fθt

j . These are complementary methods that can be combined,
but have yet to match the performance of batch learning.

One way to obtain performance similar to batch learning is to design regularizers to
accurately reconstruct the gradient over the past data, as shown in Eq.(6). This princi-
ple is proposed by Khan and Swaroop (2021) who design a regularizer called Knowledge-
Adaptation prior (K-prior) which aims to reconstruct the past gradients. For instance,
consider a linear-regression problem with predictors fθ

i “ ϕJ
i θ for a feature map ϕi P RP

of the input xi. Then, we can show that the following K-prior recovers the past gradients

Ktpθq “ 1
2δ}θ ´ θt}

2 `
ÿ

jPMt

1
2

´

fθ
j ´ fθt

j

¯2
, (3)

arbitrarily accurately as Mt Ñ D1:t (the regularizer is assumed to be δ
2}θ}2). Essentially,

K-priors suggest regularizing both the parameters and function outputs. Khan and Swaroop
(2021) generalize this to a generic loss function (for example, logistic regression), and present
extensions covering many existing adaptation strategies as special cases of this strategy,
including Elastic Weight-Consolidation (EWC), Knowledge Distillation, Support Vector
Machines, Sparse Gaussian Process, etc. Daxberger et al. (2023) further extend to include
Experience Replay and obtain good results on ImageNet dataset.

One major issue with K-prior is that the memory Mt in practice is chosen as a sub-
set of data, selected in a heuristic fashion. The memory size can be larger than desired,
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for instance, Daxberger et al. (2023) require to store 7% of the ImageNet dataset, which
increases the overhead significantly when compared to the weight-regularization method.
The K-prior framework itself does not require the memory inputs to be restricted to the
data because it can regularize the outputs using arbitrary inputs without relying on their
labels. Khan and Swaroop (2021) argue that this is an advantage of the method which can
be exploited to reduce the memory size, however, there is no existing work on this so far.

Most importantly, Khan and Swaroop (2021, App. A) shows the existence of an optimal
memory size for logistic regression case. Here, the memory consists of Kt vectors ui where
Kt is the rank of the input matrix X1:t (the matrix formed by all the inputs in D1:t). They
prove that a perfect gradient reconstruction is possible by simply matching Kt predictors
fθ
k “ uJ

k θ. Specifically, there exist scalars w˚
k|t such that the following K-prior perfectly

recovers the gradients for the cross-entropy loss ℓpyi, σpfθ
i qq,

Ktpθq “ 1
2δ}θ ´ θt}

2 `

Kt
ÿ

k“1

w˚
k|t ℓ

´

σpfθ
k q, σpfθt

k q

¯

. (4)

In practice, it is difficult to find w˚
k|t exactly, but we aim to learn the vectors uk to get a

good reconstruction while keeping the memory size Kt small. The goal of this work is to
propose a method to achieve this.

3. Compact memory for K-prior

We propose to build a compact memory in the space of features ϕi P RP , which is in
contrast to the methods that use a subset of data examples. Our goal is to maintain a
matrix Ut P RPˆKt with Kt columns, each denoted by uk|t P RP :

Memory Set: Ut “
“

u1|t u2|t . . . . . . uKt|t

‰

At each step, we update it to find a new Ut`1 with Kt`1 columns denoted by uk|t`1. We will
slowly grow Kt, although this is not necessary. Assuming that Ut can accurately reconstruct
the gradient at task t, we will estimate Ut`1 such that it maintains this property at task
t ` 1. We will now demonstrate for linear regression that this task can be accomplished by
a simple Hessian matching, and then we will extend this idea to logistic regression.

3.1. Compact memory for linear regression via Hessian matching

For simplicity, we assume the regularizer ℓ0pθq “ 1
2}θ}2, but other convex regularizers can

also be used. Now, suppose that we have a set Ut which can perfectly reconstruct the
gradients over past data as shown in Eq.(6). If this is true, then we can safely recover the
solution that considers the data up to t ` 1 at once, i.e. batch solution, by solving

θt`1 “ arg min
θ

Nt`1
ÿ

j“1

1
2

´

fθ
j ´ yj

¯2

loooooooooomoooooooooon

“ℓ̄t`1pθq

` 1
2}θ ´ θt}

2 `

Kt
ÿ

k“1

1
2

´

fθ
k ´ fθt

k

¯2

loooooooooooooooooooomoooooooooooooooooooon

“Ktpθ;Utq

. (5)

The first term here is the loss over the task t ` 1 and the rest of the terms belong to the
K-prior, which is similar to Eq.(4), but now customized for the squared loss instead of
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cross-entropy loss. For regression, w˚
k|t “ 1 in Eq.(4) naturally arises by changing the form

of the log of Gaussian likelihood.
Given such Ut, our goal is to find Ut`1, which also satisfies the perfect gradient recon-

struction property, as shown in Eq.(6). However, because the old K-prior Ktpθ;Utq also
recovers the gradients perfectly, we can use the recursion to write the following

∇Kt`1pθ;Ut`1q “ ∇ℓ̄t`1pθq ` ∇Ktpθ;Utq. (6)

The size of the gradients is P ˆ 1, so it is not possible to infer Ut`1 from here whose size is
P ˆ Kt`1. However, if we differentiate both sides again, then we get an equation that has
enough degrees of freedom to determine Ut`1,

Ut`1U
J
t`1 “ Φt`1Φ

J
t`1 ` UtU

J
t (7)

where Φt`1 P RPˆNt`1 is the feature matrix containing columns ϕj corresponding to all
inputs j in Dt`1. Essentially, for linear regression, gradient matching implies Hessian match-
ing as well and this equation is independent of θ. We propose to use this to estimate Ut`1.

Eq.(7) implies that Ut`1 should be a low-rank reconstruction of a dataset formed by
concatenating Ut and ϕt`1, and thus can be computed by performing SVD on the con-
catenated dataset and taking the first Kt`1 columns (only those with non-zero singular
values). A numerically easier alternative is the Expectation Maximization (EM) procedure
for Probabilistic PCA by Tipping and Bishop (1999). In this procedure, we try to estimate
the latent Zt`1 P RKt`1ˆpNt`Ktq to be able to predict Ut and Φt`1 from the future Ut`1,

rUt, Φt`1s « Ut`1Zt`1

where each column of Zt`1 is drawn from a standard normal. This has a simple interpreta-
tion that Hessian matching suggests using the memory set that can predict both past and
future features well. The EM procedure is also easy and cheap to implement.

3.2. Extension to generalized linear model

The procedure above can be extended to any generalized linear model. We will only discuss
logistic regression and leave the general case aside due to space limitation. We will use the
K-prior shown in Eq.(4) but with unknown coefficients wk|t. Our goal is to estimate both
coefficients wk|t`1 and Ut`1, assuming that good estimates of wk|t and Ut, are given.

Even for generalized linear models, the principle of Hessian matching remains un-
changed, resulting in an equation structurally similar to that of the linear regression case,
except for additional diagonal terms as below:

Ut`1Wt`1U
J
t`1 “ Φt`1Bt`1Φ

J
t`1 ` UtWtU

J
t (8)

where Wt`1,Wt, and Bt`1 are the diagonal matrices whose respective diagonal entries are

Wkk
t`1 “ wk|t`1 ¨ σ1pfθ

k|t`1q, Wkk
t “ wk|t ¨ σ1pfθ

k|tq, Bjj
t “ σ1pfθ

j q, (9)

where σ1pfq is the derivative of the sigmoid at f . The only difficulty now is that the
diagonal matrices depend on θ. A reasonable choice to do Hessian matching at θt`1. The
EM algorithm, used for regression, can be also easily generalized to solve for both uk|t`1

and wk|t`1. Essentially, instead of estimating uk|t`1 done in regression, we can estimate

ũk|t`1 “ w
1{2
k|t`1Ut`1 directly. Then, we set wk|t`1 to be the norm of ruk|t`1 and set uk|t`1

to be with norm 1. The final algorithm is summarized in Algorithm 1.
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Jung˚ Lee˚: Chen˚: Möllenhoff Li Lee Khan

4. Experimental results

4.1. Multi output linear regression

We demonstrate whether our EM algorithm for hessian matching achieves compact memory.
To this end, we conduct a continual multi-label regression task on Split-MNIST (Zenke
et al., 2017), where the MNIST dataset is divided into five subsets, each corresponding to a
binary classification task with label pairs (0,1), (2,3), (4,5), (6,7), and (8,9). To formulate
the binary classification task as a regression problem, we map each label k P t0, . . . , 9u into
a vector 1k ´ 1

101 where 1k P R10 is a one-hot vector with only the kth component set to one
and all others set to zero, and 1 P R10 is a vector of ones. For the feature map, we use ϕpxq “

x P R784, i.e., the vectorized pixel intensities of an image. For the memory, we use constant
memory size per task and accumulate its size as the model trains on new tasks. After
training, we measure the classification accuracy using the entire test dataset for evaluation.

10 20 40 160 320
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0.75
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cu
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em
svd

Figure 2: EM vs SVD

Results. The figure on the right in Figure 1 illustrates how the
top-10 eigenvectors of Hessian Ut`1U

J
t`1 in Eq.(7), obtained by

our EM algorithm, change as our memory is updated after training
each task. In each row, the eigenvectors are placed based on their
eigenvalues (left: high eigenvalue). This result implies that new
features, looking as mixture of (2,3), (4,5), and (6,7), appear in
each row whenever the memories are updated. Figure 2 compares
our EM method with the SVD approach over three seeds across
varying memory sizes; the SVD approach obtains Ut`1 by applying
SVD to the right side of Eq.(7), and the joint training denotes that
all tasks are trained without sequentially updating the memory. This shows that our EM
method is more effective than the SVD approach when using a smaller number of memory.

4.2. Logistic regression

We aim to demonstrate that our method can find a compact memory for logistic regres-
sion. To this end, we conduct a continual binary task on the two-moon dataset, where
the dataset is split into three binary tasks according to the inputs, and the model is se-
quentially trained for a given task with BCE loss. For a feature map, We use ϕpxq “

r1, x1, x2, x
2
1, x

2
2, x

3
1, x

3
2s P R7. We set 7 memories per task and accumulate the size of mem-

ories (7Ñ 14 Ñ 21) as the task proceeds.

Results. The left figure in Figure 1 shows how the classifier’s decision boundary changes
as it trains on each task sequentially (red Ñ blue Ñ black). We confirm that the decision
boundary gets close to its oracle (the gray line), obtained by joint training, in the end.

5. Conclusion

In this work, we note that hessian matching builds a compact memory to accurately re-
construct the past gradients in linear regression and generalize this approach to logistic
regression by using the EM algorithm of the probabilistic PCA method. Empirically, we
demonstrate that our approach works on small-scale classification tasks. In future work,
we will extend our method for multi-label classification and make it feasible for neural
networks.
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Appendix A. Appendix

A.1. Hessian matching for logistic regression via EM algorithm

Algorithm 1 Learning a memory in logistic regression through PPCA-EM algorithm.

Require: Task t` 1 dataset Dt`1, model parameter θt, regularizer parameter of K-prior δ
memory Ut, and weight Wt trained

// K-prior: Train θt`1 for task Dt`1 with memory Ut and weight Wt

1: θt`1 Ð argminθ ℓ̄t`1pθq ` Ktpθq in eq. (4)

// EM: Train memory tuk|t`1u, and weight twk|t`1u trained at task t ` 1
2: Define Ut`1 “ ru1|t`1, . . . ,uKt`1|t`1s with ut|k`1 initialized from Dt`1

3: Define Wt`1 “ diagptwk|t`1 ¨ σ1pfθ
k|t`1quq with wk|t`1 “ 1

4: Define Bt`1 “ diagptσ1pfθ
j quq

5: Define pUt “ rΦt`1B
1{2
t`1 ; UtW

1{2
t s // column concatenation

6: while not converged do

7: rUt`1 Ð Ut`1W
1{2
t`1

8: Dt`1 Ð diagtσ1pfθ
k|t`1u // set non-linear term of σ1pfθ

k|t`1q using updated Ut`1.
9: while not converged do

10: S Ð 1
σ2

rU
J

t`1
rUt`1 ` I

11: M Ð 1
σ2S

´1
rU

J

t`1
pUt

12: A Ð pUtM
J

13: B Ð pS´1 ` MMJq´1

14: rUt`1 Ð AB
15: end while
16: Zt`1 Ð rUt`1D

´1{2
t`1

17: Ut`1 Ð Zt`1diagprZt`1scolsq
´1, // column norm rZt`1scols :“ t}rZt`1s:,k}u

18: Wt`1 Ð diagptwk|t`1 ¨ σ1pfθ
k|t`1quq with wk|t`1 “ rZt`1s2:,k

19: end while
20: Set ru1|t`1; ..;uKt`1|t`1s “ Ut`1 and rw

1{2
1|t`1, .., w

1{2
Kt`1|t`1s “ rZt`1scols

Algorithm 1 describes how to learn the model parameter θt`1 by K-prior and learn the
memory Ut`1 using the PPCA-EM algorithm. Once Ut`1 and Wt`1 satisfying

Ut`1Wt`1U
J
t`1 « Φt`1Bt`1Φ

J
t`1 ` UtWtU

J
t (10)

is obtained where Wt`1,Wt, and Bt`1 are the diagonal matrices whose respective diagonal
entries are

Wkk
t`1 “ wk|t`1 ¨ σ1pfθ

k|t`1q, Wkk
t “ wk|t ¨ σ1pfθ

k|tq, Bjj
t “ σ1pfθ

j q, (11)

with σ1pfθ
k|t`1q “ σpuJ

k|t`1θt`1qp1´σpuJ
k|t`1θt`1qq, and σ1pfθ

j q “ σpϕJ
j θt`1qp1´σpϕJ

j θt`1qq,
we can employ them for K-prior regularizer to be used for learning new task.
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