

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 METACOGNITIVE SELF-CORRECTION FOR MULTI- AGENT SYSTEM VIA PROTOTYPE-GUIDED NEXT- EXECUTION RECONSTRUCTION

006 **Anonymous authors**

007 Paper under double-blind review

011 ABSTRACT

013 Large Language Model based multi-agent systems (MAS) excel at collaborative
014 problem solving but remain brittle to cascading errors: a single faulty step can
015 propagate across agents and disrupt the trajectory. In this paper, we present MASC,
016 a metacognitive framework that endows MAS with *real-time, unsupervised, step-*
017 *level error detection and self-correction*. MASC rethinks detection as history-
018 conditioned anomaly scoring via two complementary designs: (1) Next-Execution
019 Reconstruction, which predicts the embedding of the next step from the query
020 and interaction history to capture causal consistency, and (2) Prototype-Guided
021 Enhancement, which learns a prototype prior over *normal-step embeddings* and
022 uses it to stabilize reconstruction and anomaly scoring under sparse context (e.g.,
023 early steps). When an anomaly step is flagged, MASC triggers a correction agent
024 to revise the acting agent’s output before information flows downstream. On the
025 Who&When benchmark, MASC consistently outperforms all baselines, improving
026 step-level error detection by up to 8.47% AUC-ROC ; When plugged into diverse
027 MAS frameworks, it delivers consistent end-to-end gains across architectures,
028 confirming that our metacognitive monitoring and targeted correction can mitigate
029 error propagation with minimal overhead.

030 1 INTRODUCTION

031 Large Language Models (LLMs) have established new frontiers in artificial intelligence, demon-
032 strating remarkable capabilities in few-shot learning, planning, and complex reasoning across a
033 wide range of tasks (Brown et al., 2020; Wei et al., 2022a; Yao et al., 2023b). Building upon these
034 advances, the paradigm has shifted beyond single-agent settings towards LLM-based multi-agent
035 systems (MAS), where teams of intelligent agents collaborate to solve problems. This collaborative
036 approach has proven to be a powerful method for tackling tasks of greater complexity than any
037 single agent could manage alone, achieving impressive results in domains such as scientific discovery
038 (Ghafarollahi & Buehler, 2024; Schmidgall et al., 2025), software engineering (Chan et al.), and
039 strategic decision-making (Huang et al., 2025).

040 To support and optimize such collaboration, researchers have investigated a wide range of multi-agent
041 communication structures. These include foundational topologies like chains (Wei et al., 2022a;
042 Zhang et al., 2022), trees (Yao et al., 2023a), and stars (Wu et al., 2023a), as well as more complex fully
043 connected or random graphs (Qian et al., 2024). These designs are often tailored to task complexity
044 and communication constraints, aiming to balance performance and efficiency. Notably, recent
045 advances propose learning frameworks that dynamically choose query-conditioned communication
046 topologies (Hao et al., 2023; Liu et al., 2023; Zhang et al., 2024a). Such adaptive systems mark
047 a significant shift from fixed interaction pipelines to more flexible, input-aware collectives, better
048 equipped to exploit the full potential of collaborative agents.

049 Despite these advancements, the increasing complexity and interconnectivity of MAS introduce a
050 critical vulnerability: their fragility to cascading errors. This is because collaborative structures,
051 while enhancing problem-solving, also act as conduits for error propagation, where the system’s
052 success is dictated by its weakest link. Our preliminary study (Section 2.2) reveals that a single
053 agent’s error can cause system performance to plummet by over 50%. This finding underscores

054 the urgent need for mechanisms that perform *real-time detection and correction* to maintain the
 055 system’s operational integrity. However, building such a mechanism faces fundamental challenges.
 056 First, obtaining fine-grained, step-level error labels in complex multi-agent interactions is notoriously
 057 difficult and costly (Zhang et al., 2025c), rendering standard supervised training impractical. This
 058 motivates detectors that learn from abundant normal traces and flag errors as anomalies. Second,
 059 error detection is intrinsically context-dependent. Our empirical analysis (Section 2.2) finds that
 060 when a step is viewed in isolation, normal and abnormal steps often look alike, so detectors must
 061 condition on interaction history. The same analysis also shows that a substantial fraction of errors
 062 occur early in the trajectory, when context is scarce, making reliable detection even more difficult.

063 To address these challenges, we introduce **MASC**, Metacognitive Self-Correction for LLM Multi-
 064 Agent Systems that enables online, unsupervised, step-level error detection and self-correction. Our
 065 framework contains two novel and critical designs: (1) **Next-Execution Reconstruction**, where the
 066 system models the causal dynamics of normal agent interactions by predicting the subsequent step’s
 067 representation from the historical context. This allows for identifying outputs that violate the learned
 068 agent interaction flow. (2) **Prototype-Guided Enhancement**, which learns a stable distributional
 069 prior of normal agent behavior to act as a robust reference point. This ensures reliable detection
 070 performance even when errors occur early in an execution sequence where historical context is
 071 limited. Furthermore, when an anomaly is detected, MASC triggers a correction agent that revises
 072 the flagged step before erroneous information propagates downstream, thereby preventing cascading
 073 failures. Across the Who&When benchmark (Zhang et al., 2025c) and diverse MAS frameworks,
 074 MASC improves both detection quality and end-to-end task performance.

- **Formulation.** We formalize step-level error detection for LLM-based MAS as history-conditioned, *unsupervised* anomaly agent detection. This formulation avoiding the need for costly, fine-grained step-level error labels.
- **Framework.** We propose MASC, which combines Next-Execution Reconstruction, a Prototype-Guided prior for stability under sparse context, and an anomaly-triggered self-correction loop for real-time robustness.
- **Experiments.** Our detector achieves up to 8.47% AUC-ROC gains on step-level error detection; as a plug-in to multiple MAS frameworks, MASC delivers consistent accuracy improvements across six benchmarks.

084 2 PRELIMINARIES

086 In this section, we formalize the structure of LLM-based multi-agent systems and define step-level
 087 error detection (Section 2.1); we then analyze the core challenges and the necessity of self-correction
 088 (Section 2.2), which motivate our method.

090 2.1 PROBLEM FORMULATION

092 **Multi-Agent System.** We consider a LLMs-powered multi-agent system \mathcal{M} with a group of N
 093 agents, denoted as $\mathcal{N} = \{1, 2, \dots, N\}$, that operate at discrete time steps. These agents are taking
 094 actions in a turn-based protocol, meaning that exactly one agent performs an action at each time step.
 095 Formally, the system is described as:

$$096 \mathcal{M} = \langle \mathcal{N}, S, A, P, \phi \rangle. \quad (1)$$

098 Here, S is the set of possible states. A is the global action set; each agent $i \in \mathcal{N}$ can typically perform
 099 actions from some subset $A_i \subseteq A$. $\phi(t)$ is a function that indicates which agent is active at time t ,
 100 thus specifying the turn-based rule. $P(s_{t+1} | s_t, a_t, \phi(t))$ is the state-transition probability, given
 101 that *only one* agent $\phi(t)$ acts at time t . $\phi(t)$ is employed to denote the agent that takes an action a_t
 102 at time step t . A full trajectory τ can be written as: $\tau = (s_0, a_0, s_1, a_1, \dots, s_T)$, where T is a
 103 terminal time step or when the system enters a terminating state. Based on this formal system, we
 104 now specify the problem of error step detection. In this context, we are interested in evaluating each
 105 action a_t taken by the corresponding agent $i = \phi(t)$ within the trajectory τ .

106 **Definition 1 (Error Step Detection in Multi-Agent Systems)** *Given a multi-agent execution tra-
 107 jectory τ , we define an error step as a specific agent-time pair (i, t) indicating that agent i at time*

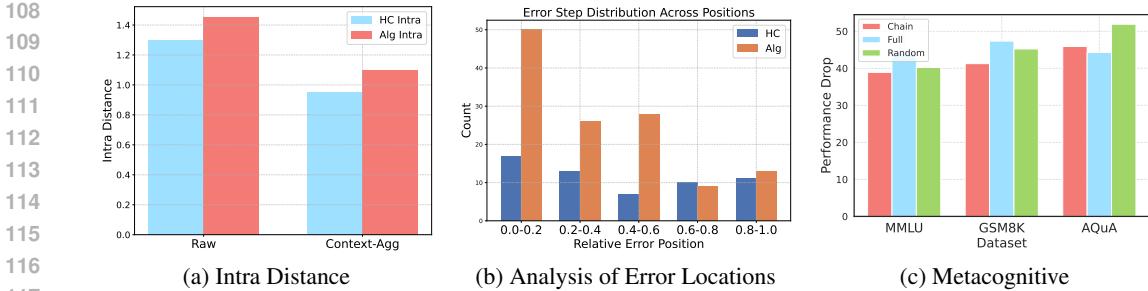


Figure 1: Comparative analysis of intra-distance, error locations, and metacognitive behavior.

step t performs an incorrect action (e.g., wrong reasoning or decision). The objective of error step detection is, for a given current step t and optionally a set of historical steps $\mathcal{H} = \{(i', t') \mid t' < t\}$, to determine whether the action at step t constitutes an error. Formally, the detection function $\mathcal{D}(i, t, \mathcal{H})$ takes as input the agent i , the current time step t , and the historical context \mathcal{H} , and outputs a binary label:

$$\mathcal{D}(i, t, \mathcal{H}) = \begin{cases} 1, & \text{if the action by agent } i \text{ at time } t \text{ is erroneous,} \\ 0, & \text{otherwise.} \end{cases}$$

The primary challenge, which our work addresses, is to construct this detection function \mathcal{D} in a *unsupervised manner*, without access to any labeled error steps during training. This enables the system to monitor itself in real-time and identify deviations from normal, correct execution flows.

2.2 PROBLEM ANALYSIS

In this section, we analyze three key challenges that motivate our work: (1) the context-dependent nature of step-level errors; (2) the difficulty of detecting errors early in execution; and (3) the vulnerability of MAS to cascading failures.

Context-Dependence of Step-Level Errors. A single step in a multi-agent trajectory is rarely separable from errors without *history*. Using a pretrained BERT encoder, we compare (i) the inter-cluster distance between normal vs. abnormal mean embeddings and (ii) the intra-cluster distance within normal steps. If context were unnecessary, the inter distance would match or exceed the intra distance. Instead, Fig. 1a shows the inter distance is much smaller (e.g., Algorithm-Generated: 0.25 vs. 1.45 in raw embeddings), indicating isolation is insufficient. A simple historical augmentation (nearest neighbor) slightly tightens normal dispersion (e.g., 1.45 → 1.10) but only modestly enlarges the inter gap, underscoring that *choosing the right context is nontrivial*. These findings confirm that step-level anomaly detection in MAS cannot rely on isolated embeddings and must instead exploit contextual and causal dependencies across steps.

Difficulties of Early-Step Errors. Beyond the inherent challenge that abnormal steps cannot be directly judged without context, a further difficulty arises when errors occur at early stages of execution, where only limited historical information is available. To quantify this issue, we conduct a statistical analysis on the Who&When benchmark, which contains two subsets of multi-agent trajectories: a hand-crafted version (HC) and an algorithm-generated version (Alg). Fig. 1b shows the distribution of error positions relative to trajectory length. We observe that a considerable portion of errors in the Alg subset appear within the first 20% of steps, while errors in the HC subset are more evenly distributed across positions. This evidence highlights that early-step errors are common and can leave detectors with insufficient context, thereby motivating the introduction of a prototype-guided mechanism to provide a stable reference representation when history alone is inadequate.

Lack of Metacognitive Error Awareness in MAS. While collaboration aims to improve robustness, current MAS lack metacognitive capabilities to recognize and mitigate their own reasoning failures. We test this via controlled fault injection across three canonical topologies: *chain*, *fully-connected*, and *random*. In each setting, we randomly select one agent and launch a prompt-based attack that forces a misleading output, simulating realistic erroneous agents. Fig. 1c shows the resulting degradation on MMLU, GSM8K, and AQuA: performance drops markedly across all datasets and topologies (e.g., up to 51.9 points on AQuA under the random topology). Thus, collaborative structures, even with designated critic roles, cannot prevent error propagation once an agent fails, highlighting the need for explicit *error detection* and *correction* to guard against cascading failures.

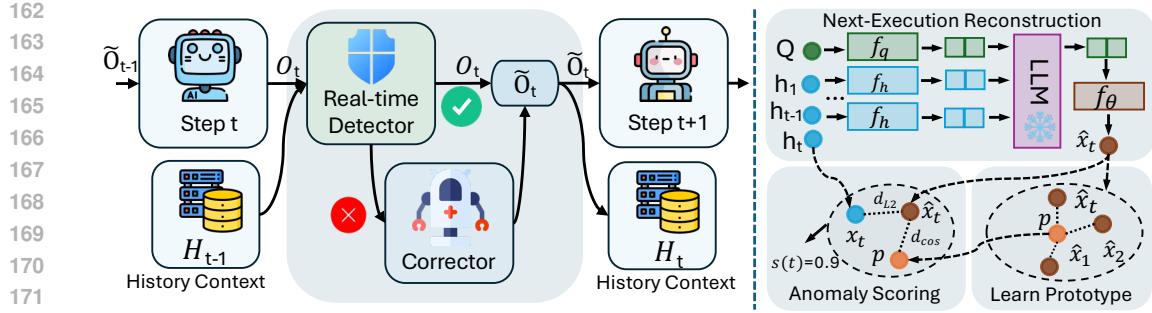


Figure 2: Overview of MASC. Left: At step t , the agent’s output \mathcal{O}_t and history context \mathcal{H}_{t-1} are sent to a real-time detector; if normal, it passes through, otherwise a correction produces $\tilde{\mathcal{O}}_t$, updates \mathcal{H}_t , and is used at $t+1$. Right: Next-Execution Reconstruction takes projected query Q and history embeddings, uses a frozen LLM with a learnable head f_θ to predict \hat{x}_t ; a prototype p supplies a stability prior, and the anomaly score combines reconstruction error (d_{L2}) and prototype misalignment (d_{cos}) to trigger self-correction.

3 METHODOLOGY

As introduced in Section 2, we cast step-level error detection in LLM-based MAS as history-conditioned, *unsupervised* anomaly detection. Fig. 2 overviews MASC, which performs *real-time, unsupervised error detection and correction*. The central idea is to learn a compact model of *normal* multi-agent behavior and flag steps that deviate from this learned pattern.

For each step t , MASC executes three stages: (1) **Contextual Encoding**, which converts raw inputs (task query, agent roles, and interaction history) into task-aware vector embeddings; (2) **Prototype-Guided Reconstruction**, our detection module, which predicts the current step’s embedding from historical context and identifies anomalies via reconstruction residuals and deviation from a learned prototype of normality; and (3) **Anomaly-Triggered Self-Correction**, wherein a high anomaly score triggers a dedicated *Correction Agent* to revise the flagged output and write back the corrected result to the shared history.

3.1 CONTEXTUAL ENCODING

Assume we have a set of agent roles $\{\mathcal{R}_i\}_{i=1}^N$ for N agents. At each time step t , the input to our detector consists of the task query Q and the Agent role–output history \mathcal{H}_{t-1} from previous steps. Here, \mathcal{H}_{t-1} records, for each prior agent/tool call j , the pair comprising the acting agent’s role and its emitted output: $\mathcal{H}_{t-1} = \{(\mathcal{R}_j, \mathcal{O}_j)\}_{j=1}^{t-1}$. We begin by encoding these symbolic components into dense vector representations using a pre-trained encoder, denoted as $\text{Embed}(\cdot)$. Formally, this tokenization process is defined as:

$$\mathbf{q} = \text{Embed}(Q), \quad (2)$$

$$\mathbf{r}_i = \text{Embed}(\mathcal{R}_i), \quad i = 1, \dots, N, \quad (3)$$

$$\mathbf{h}_j = \mathbf{r}_j \parallel \text{Embed}(\mathcal{O}_j), \quad j = 1, 2, \dots, t-1 \quad (4)$$

Here, \mathbf{q} is the embedding of the task query, \mathbf{r}_i is the embedding of the i -th agent role description, and \mathbf{h}_j is the embedding of the i -th historical conversation, obtained by concatenating the role and response embeddings of agent at step j . Subsequently, \mathbf{q} and \mathbf{h}_j are passed through separate, learnable linear projection layers to map them into a unified hidden dimension:

$$\tilde{\mathbf{q}} = f_q(\mathbf{q}), \quad \tilde{\mathbf{h}}_j = f_h(\mathbf{h}_j), \quad (5)$$

where f_q, f_h are learnable linear projections. This contextual encoding step produces task-adapted representations $\tilde{\mathbf{q}}$ and $\tilde{\mathbf{h}}$ that fuse the necessary information for the downstream task.

3.2 PROTOTYPE-GUIDED RECONSTRUCTION

The core of our detection mechanism is the principle of reconstruction-based anomaly detection. The underlying intuition is that a model trained exclusively on normal data can reconstruct valid

samples with high fidelity, whereas its ability to reconstruct anomalous samples is inherently weaker. This discrepancy can be exploited to identify errors. However, directly transplanting such methods to step-level anomaly detection in MAS is non-trivial. Unlike image or time series domains where anomalies often exhibit strong signal deviation, abnormal steps in MAS are often semantically close to normal steps and only become erroneous under specific execution contexts. This weak semantic separability makes context-aware modeling crucial.

Next-Execution Reconstruction. To address this, we propose a **Next-Execution Reconstruction** module. Instead of reconstructing the input, we leverage the causal structure of agent interactions. Given the history up to step $t - 1$, the module predicts the representation of the *next execution step*, t . This forces the model to learn the causal dependencies that govern normal interaction flow. We employ a pre-trained, frozen Large Language Model (LLM) to encode the context sequence. Its output is then passed through a learnable linear projection layer, denoted f_θ , to generate the final prediction. Formally, the prediction, $\hat{\mathbf{x}}_t$, is generated by feeding the projected query and history embeddings into our model:

$$\hat{\mathbf{x}}_t = f_\theta \left(\text{LLM} \left(\tilde{\mathbf{q}}, \tilde{\mathbf{h}}_1, \dots, \tilde{\mathbf{h}}_{t-1} \right) \right). \quad (6)$$

The projection layer f_θ maps the LLM’s hidden representation back to the dimension of the raw history embedding \mathbf{h}_j . Anomalous steps, by violating causal consistency, will naturally exhibit a higher deviation between the prediction $\hat{\mathbf{x}}_t$ and the realized embedding, which we define as the ground truth $\mathbf{x}_t := \mathbf{h}_t$. For the first step ($t = 0$), the input sequence to the LLM consists solely of the projected query, $\tilde{\mathbf{q}}$.

Prototype-Guided Enhancement. While next-execution reconstruction is effective, it can be less reliable in early steps where the historical context is sparse. To mitigate this, we introduce a *prototype-guided enhancement* mechanism. We maintain a learnable prototype vector $\mathbf{p} \in \mathbb{R}^d$ that represents the centroid of normal step embeddings and acts as a stable anchor of normality. d is the shared dimension of x_t , \hat{x}_t , and h_j . Given a normal trajectory, we collect the reconstructed embeddings $\hat{\mathbf{X}} = [\hat{\mathbf{x}}_1, \dots, \hat{\mathbf{x}}_T]^\top \in \mathbb{R}^{T \times d}$ from our predictor and refine \mathbf{p} via a single-head attention update that uses \mathbf{p} as the query and $\hat{\mathbf{X}}$ as keys/values:

$$\mathbf{p} \leftarrow \text{Attn}(\mathbf{p}W_q, \hat{\mathbf{X}}W_k, \hat{\mathbf{X}}W_v) = \text{Softmax} \left(\frac{(\mathbf{p}W_q)(\hat{\mathbf{X}}W_k)^\top}{\sqrt{d}} \right) (\hat{\mathbf{X}}W_v), \quad (7)$$

where $W_q, W_k, W_v \in \mathbb{R}^{d \times d}$ are learnable projections. The prototype \mathbf{p} is learnable and can be initialized from a Gaussian distribution or from the mean of pseudo-normal embeddings obtained by prompting the LLM. This design encourages each reconstructed step to align with the prototype center, providing robustness when contextual history is scarce or noisy.

3.3 TRAINING OBJECTIVE

Our framework is trained in a *fully unsupervised manner* using only normal trajectories, avoiding costly step-level error annotations. The objective combines a reconstruction loss that enforces causal consistency with a prototype loss that regularizes reconstructed steps toward the center of the normal distribution.

Reconstruction Loss. For a trajectory of length T , our predictor produces the *current-step* representation $\hat{\mathbf{x}}_t$ conditioned on the context up to step $t-1$. We minimize the mean squared error between the predicted and realized embeddings on normal data:

$$\mathcal{L}_{\text{recon}} = \frac{1}{T} \sum_{t=1}^T \|\hat{\mathbf{x}}_t - \mathbf{x}_t\|_2^2. \quad (8)$$

Prototype Loss. To enhance robustness when history is short or noisy, we introduce a learnable prototype vector \mathbf{p} that encodes the central tendency of normal steps. We regularize each reconstructed embedding toward \mathbf{p} via cosine similarity:

$$\mathcal{L}_{\text{proto}} = \frac{1}{T} \sum_{t=1}^T \left(1 - \cos(\hat{\mathbf{x}}_t, \mathbf{p}) \right). \quad (9)$$

270 **Total Loss.** The final training objective is a weighted combination of the two terms:
 271

$$272 \quad \mathcal{L} = \mathcal{L}_{\text{recon}} + \lambda \mathcal{L}_{\text{proto}}, \quad (10)$$

273 where λ balances the reconstruction fidelity and prototype alignment. Since both terms are defined
 274 solely on normal trajectories, the framework naturally learns to distinguish abnormal steps at inference
 275 time as those that yield larger residuals or weaker alignment with the prototype.
 276

277 3.4 INFERENCE AND ANOMALY SCORING

279 At test time, we assign a score to the *current* step t immediately after its output is produced. Given
 280 the context up to step $t-1$, our predictor generates the current-step reconstruction $\hat{\mathbf{x}}_t$. We then
 281 combine an L2 reconstruction error with a cosine-based prototype misalignment:

$$282 \quad s(t) = \alpha \|\hat{\mathbf{x}}_t - \mathbf{x}_t\|_2^2 + \beta (1 - \cos(\hat{\mathbf{x}}_t, \mathbf{p})) \quad (11)$$

284 where α and β are weighting hyperparameters. A higher score indicates a greater likelihood of
 285 anomaly. This design preserves the strength of LLM-based reconstruction in capturing causal
 286 consistency across steps, while leveraging the prototype as a stable reference, which is especially
 287 helpful when contextual history is scarce.
 288

289 3.5 SELF-CORRECTION VIA ANOMALY-TRIGGERED INTERVENTION

291 The final stage of our framework is a self-correction mechanism initiated by our anomaly detector. At
 292 each step t , if the output \mathcal{O}_t from agent $i = \phi(t)$ yields an anomaly score $s(t)$ exceeding a threshold
 293 δ , an intervention is triggered. This gating mechanism ensures corrections are targeted and efficient,
 294 preventing error propagation. In contrast to re-invoking the original agent, we employ a *dedicated*
 295 *correction agent* with policy π_{corr} . When triggered, correction agent is prompted with the current
 296 context and a correction instruction to revise the flagged output. The final, potentially corrected,
 297 output $\tilde{\mathcal{O}}_t$ is determined by:
 298

$$299 \quad \tilde{\mathcal{O}}_t = \begin{cases} \tilde{\mathcal{O}}_t, & \text{if } s(t) \leq \delta, \\ \pi_{\text{corr}}(\mathcal{H}_{t-1}, \mathcal{O}_t, \mathcal{P}_{\text{corr}}), & \text{if } s(t) > \delta, \end{cases} \quad (12)$$

300 where \mathcal{H}_{t-1} is the textual conversation history up to step $t-1$ and $\mathcal{P}_{\text{corr}}$ is a correction instruction
 301 that requests reconsideration. The corrected output $\tilde{\mathcal{O}}_t$ replaces the original, thereby updating the
 302 history that subsequent agents receive (i.e., \mathcal{H}_t will contain $\tilde{\mathcal{O}}_t$). This self-healing loop mitigates
 303 errors at their source and prevents cascading errors.
 304

305 4 EXPERIMENTS

308 We evaluate our proposed framework from two perspectives: (1) the effectiveness of our unsupervised
 309 anomaly detector for step-level error detection, and (2) the end-to-end performance improvement
 310 when integrating our MASC framework into existing multi-agent systems. This section is organized
 311 as follows: We first detail the experimental setup for both tasks. Next, we present the main results
 312 for step error detection and framework integration. Finally, we provide in-depth ablation studies to
 313 analyze the contribution and effectiveness of our framework. Experiments on hyperparameters and
 314 prototype updates are provided in the Appendix C
 315

316 4.1 EXPERIMENTAL SETUP

317 **Datasets and Tasks.** For the error detection task, we use the Who&When benchmark (Zhang et al.,
 318 2025c), which includes a *handcrafted* and an *automated* subset. We evaluate under two conditions:
 319 **w/ GT** (with access to the ground-truth answer of the query) and **w/o GT** (relying only on agent logs).
 320 To assess the end-to-end performance of our integrated framework, we evaluate it on six standard
 321 benchmarks spanning three domains: general reasoning (MMLU (Hendrycks et al., 2021)), mathematical
 322 problem solving (GSM8K (Cobbe et al., 2021), AQuA (Ling et al., 2017), MultiArith (Roy &
 323 Roth, 2016), and SVAMP (Patel et al., 2021)), and code generation (HumanEval (Chen et al., 2021)).
 For all evaluations, we use the official data splits. Detailed statistics provided in the Appendix A.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Table 1: Performance (%) comparison on Who&When benchmark.

Model	Who&When (handcraft)		Who&When (automated)	
	w/ GT	w/o GT	w/ GT	w/o GT
All-at-Once	44.98/6.90	47.15/10.34	30.26/14.29	32.16/9.52
Step-by-Step	58.25/15.87	50.74/14.29	39.66/13.79	30.42/8.62
Binary-Search	54.81/13.49	51.93/15.52	24.39/5.17	21.97/6.90
Bert Classifier	60.58/10.37	72.86/13.79	62.91/15.21	67.15/13.68
LLM Classifier	63.12/17.93	65.79/18.96	65.50/17.34	65.39/16.95
MASC	69.10/18.25	77.84/20.79	69.62/18.79	75.62/21.72

Baselines. For step-level error detection, we consider two representative categories of baselines: (1) *LLM-as-detector*, directly prompts large language models to judge whether a step is erroneous, following the strategies provided in the Who&When benchmark (Zhang et al., 2025c), including All-at-Once, Step-by-Step, and Binary Search. (2) *strong supervised models*, including a sentence classification model based on BERT (Koroteev, 2021) and another classifier that uses a large language model encoder. For the latter, we represent each sentence by taking the hidden state of its final token and pass it to a trainable MLP classifier head (BehnamGhader et al., 2024).

Beyond detection, we also evaluate the effect of integrating our MASC into MAS frameworks. We consider a broad range of baselines covering both single-agent prompting strategies and multi-agent communication: 1) *single-agent methods* namely Chain-of-Thought (CoT) (Wei et al., 2022b) and Self-Consistency (SC) (Wang et al., 2022); 2) *multi-agent systems with fixed topologies* including Chain, Complete Graph, Random Graph (Qian et al., 2024), and LLM-Debate (Du et al., 2023).

Implementation. All methods are evaluated on the same data split: 20% of the trajectories are used for training (when applicable) and the remaining 80% are reserved for testing. For step error detection, we compare three categories of baselines: (1) *LLM-as-detector* methods using GPT-4o-mini, following the official Who&When benchmark (Zhang et al., 2025c) for prompts and evaluation protocols; (2) *supervised models*, where a sentence bert (all-MiniLM-L6-v2) and open-source LLM (LLaMA-3.1-8B-Instruct) are used as frozen encoders with a trainable MLP classifier head; and (3) our method, in which queries, role descriptions, and historical responses are encoded using all-MiniLM-L6-v2, and LLaMA-3.1-8B-Instruct serves as the frozen backbone LLM for next-execution reconstruction, with only the projection layers and prototype module being trainable. For framework integration, all agents are instantiated with GPT-4o-mini, and the overall implementation strictly follows the settings of G-Designer (Zhang et al., 2024a). Additional hyperparameters and training details are provided in the Appendix B.

Metrics. For error detection, we report AUC-ROC and step-level accuracy for localization precision. For framework integration, we report the final task accuracy (%) on each benchmark.

4.2 MAIN RESULTS

Step-Level Error Detection. Table 1 shows that our unsupervised detector significantly outperforms all baselines, including supervised ones. In the challenging ‘w/o GT’ setting, our method achieves an AUC-ROC of **77.84%** on the handcrafted data and **75.62%** on the automated data. These results demonstrate the superiority of our reconstruction-based approach in modeling the dynamics of agent interactions without needing any error labels.

MASC Integration with Existing Frameworks. We further evaluate the practical impact of our full framework by integrating it into existing MAS. As shown in Table 2, MASC consistently enhances performance across all tested frameworks. On average, it yields a **1.29%** performance gain. For instance, when applied to the powerful LLM-Debate framework, it improves the average accuracy from 87.53% to 88.89%. This confirms that our real-time detection and correction mechanism is effective at mitigating cascading errors and improving overall system robustness.

4.3 ABLATION STUDIES

Table 2: Performance comparison (%) on six benchmarks. Our framework, MASC, consistently improves performance when integrated with various MAS architectures. ‘M.Arith’ and ‘H.Eval’ are abbreviations for MultiArith and HumanEval, respectively.

Method	MMLU	GSM8K	AQuA	M.Arith	SVAMP	H.Eval	Avg.
Vanilla	80.39	82.30	71.06	93.09	86.55	71.39	80.80
CoT	81.69	86.50	73.58	93.25	87.36	74.67	82.84
SC (CoT)	83.66	81.60	75.63	94.12	88.59	79.83	83.91
Chain	83.01	88.30	74.05	93.27	87.17	81.37	84.53
Complete	82.35	86.10	72.95	94.53	84.01	79.03	82.16
Random	84.31	86.90	76.48	94.08	87.54	82.66	85.33
Debate	84.96	91.40	77.65	96.36	90.11	84.70	87.53
MASC (Chain)	83.57 \uparrow 0.56	90.51 \uparrow 2.21	76.23 \uparrow 2.18	93.96 \uparrow 0.69	88.54 \uparrow 1.37	82.91 \uparrow 1.54	85.95
MASC (Complete)	84.07 \uparrow 1.72	89.25 \uparrow 3.15	74.11 \uparrow 1.16	95.04 \uparrow 0.51	85.26 \uparrow 1.25	81.37 \uparrow 2.34	84.85
MASC (Random)	85.29 \uparrow 0.98	88.91 \uparrow 2.01	77.12 \uparrow 0.64	94.82 \uparrow 0.74	88.29 \uparrow 0.75	84.01 \uparrow 1.35	86.41
MASC (Debate)	86.11 \uparrow 1.15	93.39 \uparrow 1.99	79.21 \uparrow 1.56	97.15 \uparrow 0.79	91.26 \uparrow 1.15	86.23 \uparrow 1.53	88.89

Analysis of the Detection Module. We analyze the contribution of the two core components of our detector: next-execution reconstruction and prototype guidance. Fig. 3 shows the results. Removing the reconstruction objective causes a substantial drop in accuracy, as the model loses the ability to capture causal dependencies between steps. Similarly, removing the prototype mechanism harms performance, especially in early steps where historical context is limited, confirming its role in providing a stable reference for normality. Both components are thus essential for reliable detection.

Impact of Detection on Downstream Correction. Building on Table 1, where detector quality ranks *Step-by-Step* \prec *BERT classifier* \prec *LLM classifier* \prec *MASC*, we evaluate how this ordering translates to correction gains on GSM8K under three MAS topologies (Chain, Complete, Random). Table 3 shows that the ranking largely carries over to end-to-end correction. *Step-by-step classifier* fails to transfer its advantage, *LLM classifier* yields small but unstable gains (+0.15 to +0.35) across all topologies, with up to +3.15 and an *MASC* underscoring the importance of robust detection.

4.4 SCORE DISTRIBUTION ANALYSIS

An effective anomaly detector should assign clearly distinguishable scores to normal and erroneous steps, such that a simple threshold can separate the two distributions. To examine whether our method achieves this property, we visualize the score distributions of normal versus error steps on the *Who&When* (*automated*, *w/o GT*) setting. As shown in Fig. 4, the baseline method that directly applies BERT embeddings produces highly overlapping distributions, making it difficult to discriminate between correct and yields a much larger separation: normal steps c

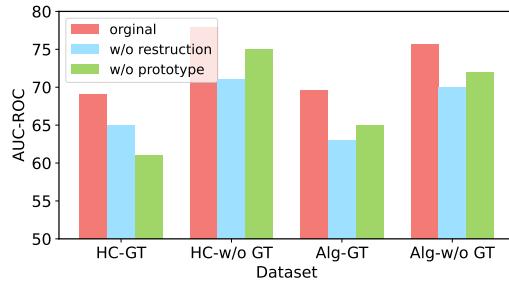


Figure 3: Ablation of reconstruction and prototype modules on Who&When.

Table 3: Performance of MASC and other error detection methods on downstream correction (GSM8K).

Method	Chain	Complete	Random	Average
Vanilla	88.30	86.10	86.90	87.10
MASC	90.51 \pm 2.21	89.25 \pm 3.15	88.91 \pm 2.01	89.56 \pm 2.46
Step-by-Step	87.23 \pm 1.07	84.29 \pm 1.81	87.21 \pm 0.31	86.24 \pm 0.86
BERT Classifier	89.12 \pm 0.82	85.12 \pm 0.98	88.53 \pm 1.63	87.59 \pm 0.49
LLM Classifier	87.65 \pm 0.65	83.27 \pm 1.83	87.82 \pm 0.92	86.25 \pm 0.85

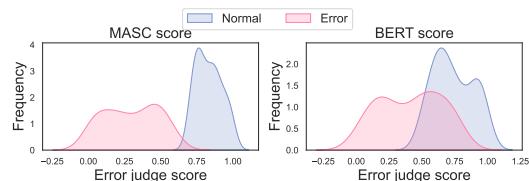


Figure 4: Normal vs. error score distributions on Who&When: MASC (left) vs. BERT (right); MASC shows a cleaner separation.

432 steps shift toward lower values. This clear gap confirms that our reconstruction–prototype framework
 433 captures the causal structure of multi-agent reasoning, enabling robust error detection with a simple
 434 thresholding mechanism. The complete results and additional dataset visualizations are provided in
 435 the appendix.

437 5 RELATED WORK

440 5.1 LLM-BASED MULTI-AGENT SYSTEMS

442 Recent advances in large language model (LLM)-based multi-agent systems (MAS) have demon-
 443 strated strong capabilities across diverse reasoning and decision-making tasks (He et al., 2025a;
 444 Zhang et al., 2024b; Yi et al., 2024; Ishibashi & Nishimura, 2024). The effectiveness of these systems
 445 stems from collaboration among heterogeneous agents, where role specialization and structured
 446 communication strategies can significantly enhance overall performance (Li et al., 2023; Xie et al.,
 447 2024; Shen et al., 2025; Li et al., 2025). Early implementations of LLM-based MAS were largely
 448 *handcrafted*, where system designers manually specified agent roles, prompts, and communication
 449 topologies (Wu et al., 2023b; Li et al., 2023; Qian et al., 2023). Such systems demonstrated the
 450 potential of LLM-based collaboration but required extensive manual design effort, limiting scalability
 451 and adaptability (Zhang et al., 2025b). To overcome these limitations, more recent research has
 452 explored *automated* approaches. Examples include frameworks that automate agent role assign-
 453 ment (Dang et al., 2025; Chen et al., 2025) or adaptively construct inter-agent topologies (Zhang
 454 et al., 2024a), thereby reducing reliance on fixed human-designed rules. The most recent line of
 455 work moves toward *fully automated* MAS, in which both role specialization and communication
 456 structures evolve dynamically during execution (Nie et al., 2025; Zhang et al., 2025a;d). However,
 457 as automation increases, so too does the risk of uncontrolled error propagation and vulnerability to
 458 adversarial perturbations, highlighting the need for robustness-oriented research.

459 5.2 ROBUST MULTI-AGENT SYSTEMS

461 Despite their promise, LLM-based MAS face significant robustness challenges. Recent studies
 462 have highlighted that failures in MAS often stem from error propagation across agents, adversarial
 463 prompt injections, and compromised communication protocols (Zhan et al., 2024; Chen et al.,
 464 2024; Andriushchenko et al., 2025). These vulnerabilities can amplify individual agent errors into
 465 systemic failures, threatening the reliability of downstream decision-making (Gan et al., 2024;
 466 Yuan et al., 2024). Research on security has identified message-passing mechanisms as a critical
 467 attack surface (Yu et al., 2024), while trust frameworks such as A-Trust (He et al., 2025b) and
 468 G-Safeguard (Wang et al., 2025) focus on detecting compromised agents through network analysis
 469 or trust dimension modeling. Parallel to this, the failure attribution literature seeks to explain why
 470 and where MAS fail. For instance, MAST (Cemri et al., 2025) provided a taxonomy of fourteen error
 471 patterns, and the Who&When benchmark (Zhang et al., 2025c) systematically annotated erroneous
 472 steps within multi-agent trajectories to enable step-level failure analysis. These efforts underscore
 473 that achieving robustness in MAS requires not only stronger anomaly detection but also mechanisms
 474 for self-correction and resilience against cascading errors.

475 6 CONCLUSION

477 In this work, we introduce MASC, a metacognitive layer for LLM-based multi-agent systems
 478 that performs *real-time, unsupervised, step-level error detection and targeted self-correction*. By
 479 reframing detection as history-conditioned anomaly scoring with Next-Execution Reconstruction and
 480 a Prototype-Guided stability prior, MASC reliably identifies deviations even in context-scarce early
 481 steps and intervenes before errors cascade. Empirically, MASC attains substantial AUC-ROC gains
 482 on the step-level error detection of MAS and delivers consistent end-to-end improvements when
 483 plugged into diverse MAS architectures across six standard benchmarks, demonstrating robustness
 484 with minimal overhead and broad plug-and-play utility. Notably, MASC is label-free and architecture-
 485 agnostic, enabling drop-in integration without retraining task policies. We hope this metacognitive
 486 layer serves as a reliability primitive for scalable, trustworthy multi-agent LLM systems.

486
487
ETHICS STATEMENT488
489
490
491
492
493
494
495
This work is strictly limited to scientific investigation and does not involve human subjects, animals,
496 or environmentally sensitive materials. Consequently, it raises no ethical concerns or conflicts of
497 interest. Throughout the study, we adhere to established principles of scientific integrity and ethical
498 research practices to ensure the rigor, reliability, and validity of our findings.
499
500501
502
REPRODUCIBILITY STATEMENT
503
504
505
506
507508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
All components of MASC are designed to ensure reproducibility. The overall task and evaluation setup
500 are formally defined in the main text. Dataset statistics and annotation protocols are reported in Ap-
501 pendix A, implementation details are provided in Appendix B, hyperparameter analyses are included
502 in Appendix C, and full pseudocode is presented in Appendix D. All experiments are conducted
503 under standardized evaluation criteria, and baseline results have been carefully verified to guarantee
504 fairness and consistency. The code are provide in <https://anonymous.4open.science/r/MASC-6A03>.
505
506507
REFERENCES508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Maksym Andriushchenko, Alexandra Souly, Mateusz Dziemian, Derek Duenas, Maxwell Lin, Justin
Wang, Dan Hendrycks, Andy Zou, J Zico Kolter, Matt Fredrikson, et al. Agentharm: A benchmark
for measuring harmfulness of llm agents. In *The Thirteenth International Conference on Learning
Representations*, 2025.508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados,
and Siva Reddy. Llm2vec: Large language models are secretly powerful text encoders. *arXiv
preprint arXiv:2404.05961*, 2024.508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. *Advances in neural information processing systems*, 33:1877–1901, 2020.508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-agent llm
systems fail? *arXiv preprint arXiv:2503.13657*, 2025.508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learning
agents on machine learning engineering. In *The Thirteenth International Conference on Learning
Representations*.508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Matei Zaharia, James Zou, and Ion
Stoica. Optimizing model selection for compound ai systems. *arXiv preprint arXiv:2502.14815*,
2025.508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, July 01, 2021 2021.508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
Zhaorun Chen, Zhen Xiang, Chaowei Xiao, Dawn Song, and Bo Li. Agentpoison: Red-teaming llm
agents via poisoning memory or knowledge bases. *Advances in Neural Information Processing
Systems*, 37:130185–130213, 2024.

540 Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
 541 Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
 542 Schulman. Training verifiers to solve math word problems. *arXiv preprint*, abs/2110.14168, 2021.
 543

544 Yufan Dang, Chen Qian, Xueheng Luo, Jingru Fan, Zihao Xie, Ruijie Shi, Weize Chen, Cheng Yang,
 545 Xiaoyin Che, Ye Tian, et al. Multi-agent collaboration via evolving orchestration. *arXiv preprint*
 546 *arXiv:2505.19591*, 2025.

547 Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
 548 factuality and reasoning in language models through multiagent debate. *CoRR*, abs/2305.14325,
 549 2023.

550 Yuyou Gan, Yong Yang, Zhe Ma, Ping He, Rui Zeng, Yiming Wang, Qingming Li, Chunyi Zhou,
 551 Songze Li, Ting Wang, et al. Navigating the risks: A survey of security, privacy, and ethics threats
 552 in llm-based agents. *arXiv preprint arXiv:2411.09523*, 2024.

553 Alireza Ghafarollahi and Markus J Buehler. Sciagents: Automating scientific discovery through
 554 multi-agent intelligent graph reasoning. *arXiv preprint arXiv:2409.05556*, 2024.

555 Rui Hao, Linmei Hu, Weijian Qi, Qingliu Wu, Yirui Zhang, and Liqiang Nie. Chatllm network: More
 556 brains, more intelligence, April 01, 2023 2023.

557 Junda He, Christoph Treude, and David Lo. Llm-based multi-agent systems for software engineering:
 558 Literature review, vision, and the road ahead. *ACM Transactions on Software Engineering and
 559 Methodology*, 34(5):1–30, 2025a.

560 Pengfei He, Zhenwei Dai, Xianfeng Tang, Yue Xing, Hui Liu, Jingying Zeng, Qiankun Peng, Shrivats
 561 Agrawal, Samarth Varshney, Suhang Wang, et al. Attention knows whom to trust: Attention-based
 562 trust management for llm multi-agent systems. *arXiv preprint arXiv:2506.02546*, 2025b.

563 Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
 564 Steinhardt. Measuring massive multitask language understanding. *Proceedings of the International
 565 Conference on Learning Representations (ICLR)*, 2021.

566 Jen-tse Huang, Eric John Li, Man Ho Lam, Tian Liang, Wenxuan Wang, Youliang Yuan, Wenxiang
 567 Jiao, Xing Wang, Zhaopeng Tu, and Michael R. Lyu. Competing large language models in
 568 multi-agent gaming environments. In *Proceedings of the Thirteenth International Conference on
 569 Learning Representations (ICLR)*, 2025.

570 Yoichi Ishibashi and Yoshimasa Nishimura. Self-organized agents: A llm multi-agent framework
 571 toward ultra large-scale code generation and optimization. *arXiv preprint arXiv:2404.02183*, 2024.

572 Mikhail V Koroteev. Bert: a review of applications in natural language processing and understanding.
 573 *arXiv preprint arXiv:2103.11943*, 2021.

574 Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbulin, and Bernard Ghanem. Camel: Com-
 575 munication agents for “mind” exploration of large language model society. *Advances in Neural
 576 Information Processing Systems*, 36:51991–52008, 2023.

577 Shiyuan Li, Yixin Liu, Qingsong Wen, Chengqi Zhang, and Shirui Pan. Assemble your crew:
 578 Automatic multi-agent communication topology design via autoregressive graph generation. *arXiv
 579 preprint arXiv:2507.18224*, 2025.

580 Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale genera-
 581 tion: Learning to solve and explain algebraic word problems. *arXiv preprint arXiv:1705.04146*,
 582 2017.

583 Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent network: An
 584 llm-agent collaboration framework with agent team optimization. *CoRR*, abs/2310.02170, 2023.
 585

586 Fan Nie, Lan Feng, Haotian Ye, Weixin Liang, Pan Lu, Huaxiu Yao, Alexandre Alahi, and James
 587 Zou. Weak-for-strong: Training weak meta-agent to harness strong executors. *arXiv preprint
 588 arXiv:2504.04785*, 2025.

594 Arkil Patel, Satwik Bhattacharya, and Navin Goyal. Are nlp models really able to solve simple math
 595 word problems? *arXiv preprint arXiv:2103.07191*, 2021.
 596

597 Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
 598 Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. *arXiv*
 599 *preprint arXiv:2307.07924*, 2023.

600 Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
 601 Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collaboration.
 602 *arXiv preprint arXiv:2406.07155*, 2024.

603 Subhro Roy and Dan Roth. Solving general arithmetic word problems. *arXiv preprint*
 604 *arXiv:1608.01413*, 2016.
 605

606 Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
 607 Michael Moor, Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research
 608 assistants. *arXiv preprint arXiv:2501.04227*, 2025.

609 Xu Shen, Yixin Liu, Yiwei Dai, Yili Wang, Rui Miao, Yue Tan, Shirui Pan, and Xin Wang. Under-
 610 standing the information propagation effects of communication topologies in llm-based multi-agent
 611 systems. *arXiv preprint arXiv:2505.23352*, 2025.

612 Shilong Wang, Guibin Zhang, Miao Yu, Guancheng Wan, Fanci Meng, Chongye Guo, Kun Wang, and
 613 Yang Wang. G-safeguard: A topology-guided security lens and treatment on llm-based multi-agent
 614 systems. *arXiv preprint arXiv:2502.11127*, 2025.

615 Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
 616 ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
 617 *arXiv preprint arXiv:2203.11171*, 2022.

618 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
 619 and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, January
 620 01, 2022 2022a.

621 Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
 622 Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. *Advances in*
 623 *Neural Information Processing Systems*, pp. 24824–24837, 2022b.

624 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
 625 Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
 626 multi-agent conversation framework, August 01, 2023 2023a.

627 Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
 628 Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
 629 multi-agent conversation framework. *Conference on Language Modeling*, 2023b.

630 Chengxing Xie, Canyu Chen, Feiran Jia, Ziyu Ye, Shiyang Lai, Kai Shu, Jindong Gu, Adel Bibi,
 631 Ziniu Hu, David Jurgens, et al. Can large language model agents simulate human trust behavior?
 632 *Advances in neural information processing systems*, 37:15674–15729, 2024.

633 Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
 634 Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, May 01,
 635 2023 2023a.

636 Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
 637 Cao. React: Synergizing reasoning and acting in language models. In *The Eleventh International*
 638 *Conference on Learning Representations*, 2023b.

639 Zihao Yi, Jiarui Ouyang, Yuwen Liu, Tianhao Liao, Zhe Xu, and Ying Shen. A survey on recent
 640 advances in llm-based multi-turn dialogue systems. *arXiv preprint arXiv:2402.18013*, 2024.

641 Miao Yu, Shilong Wang, Guibin Zhang, Junyuan Mao, Chenlong Yin, Qijiong Liu, Qingsong Wen,
 642 Kun Wang, and Yang Wang. Netsafe: Exploring the topological safety of multi-agent networks.
 643 *arXiv preprint arXiv:2410.15686*, 2024.

648 Tongxin Yuan, Zhiwei He, Lingzhong Dong, Yiming Wang, Ruijie Zhao, Tian Xia, Lizhen Xu,
 649 Binglin Zhou, Fangqi Li, Zhuosheng Zhang, et al. R-judge: Benchmarking safety risk awareness
 650 for llm agents. *arXiv preprint arXiv:2401.10019*, 2024.

651

652 Qiusi Zhan, Zhixiang Liang, Zifan Ying, and Daniel Kang. Injecagent: Benchmarking indirect
 653 prompt injections in tool-integrated large language model agents. In *Findings of the Association
 654 for Computational Linguistics ACL 2024*, pp. 10471–10506, 2024.

655

656 Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
 657 Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topologies
 658 via graph neural networks. *arXiv preprint arXiv:2410.11782*, 2024a.

659

660 Guibin Zhang, Kaijie Chen, Guancheng Wan, Heng Chang, Hong Cheng, Kun Wang, Shuyue Hu, and
 661 Lei Bai. Evoflow: Evolving diverse agentic workflows on the fly. *arXiv preprint arXiv:2502.07373*,
 662 2025a.

663

664 Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, Lei Bai, and Xiang Wang. Multi-agent
 665 architecture search via agentic supernet. *arXiv preprint arXiv:2502.04180*, 2025b.

666

667 Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. CodeAgent: Enhancing code generation with
 668 tool-integrated agent systems for real-world repo-level coding challenges. In *Proceedings of the
 669 62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers)*,
 670 pp. 13643–13658, 2024b.

671

672 Shaokun Zhang, Ming Yin, Jieyu Zhang, Jiale Liu, Zhiguang Han, Jingyang Zhang, Beibin Li,
 673 Chi Wang, Huazheng Wang, Yiran Chen, et al. Which agent causes task failures and when? on
 674 automated failure attribution of llm multi-agent systems. In *Forty-second International Conference
 675 on Machine Learning*, 2025c.

676

677 Wentao Zhang, Liang Zeng, Yuzhen Xiao, Yongcong Li, Ce Cui, Yilei Zhao, Rui Hu, Yang Liu, Yahui
 678 Zhou, and Bo An. Agentorchestra: A hierarchical multi-agent framework for general-purpose task
 679 solving. *arXiv preprint arXiv:2506.12508*, 2025d.

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702
703
A DATASET STATISTIC704
705
706
We present the dataset statistics in Table 4, which is as same experimental setup as G-Designer Zhang
et al. (2024a).707
708
Table 4: Dataset descriptions and statistics.709
710
711
712
713
714
715
716

Category	Dataset	Answer Type	Metric	#Test	License
General reasoning	MMLU	Multi-choice	Acc.	153	MIT License
	GSM8K	Number	Acc.	1,319	MIT License
	MultiArith	Number	Acc.	600	Unspecified
	SVAMP	Number	Acc.	1,000	MIT License
Math reasoning	AQuA	Multi-choice	Acc.	254	Apache-2.0
	HumanEval	Code	Pass@1	164	MIT License

717
718
719
720
B IMPLEMENTATION DETAILS721
722
723
724
725
726
727
728
729
Training Details. For the *LLM-as-detector* baselines, we directly adopt the official implementation
from the Who&When benchmark (Zhang et al., 2025c), including both code and prompts, and
evaluate the All-at-Once, Step-by-Step, and Binary Search variants without modification. For *strong*
supervised models and our proposed MASC, which require training, we use Adam as the optimizer
and perform random search over training-related hyperparameters to ensure fair comparison; the
final values are reported in Table 5. Both supervised baselines are trained on individual steps, by
mixing all steps from the traces provided in Who&When and shuffling them into mini-batches. In
contrast, MASC operates over full trajectories, leveraging historical context to perform autoregressive
reconstruction. All experiments are run under a consistent setup to ensure reproducibility.731
732
Table 5: Hyperparameter settings for different methods across Who&When datasets.733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Method	Hyperparameter	HC w/ GT	HC w/o GT	Auto w/ GT	Auto w/o GT
BERT Classifier	epochs	50	50	50	50
	lr	1e-5	1e-5	2e-5	2e-5
	weight decay	0.01	0.01	0.01	0.01
	batch Size	32	32	64	64
	hidden Size	384	384	384	384
LLaMA Classifier	epochs	8	10	6	8
	lr	5e-5	5e-5	1e-4	1e-4
	weight decay	0.05	0.05	0.05	0.05
	batch Size	50	50	50	50
	hidden Size	4096	4096	4096	4096
MASC	epochs	10	10	5	5
	lr	1e-4	1e-4	5e-5	5e-5
	weight decay	0	0	0	0
	batch Size	-	-	-	-
	hidden Size	384	384	384	384

756 **Recovery Prompt for Error Correction** This prompt is designed to support error recovery in our
 757 multi-agent reasoning framework. When a step is flagged by the anomaly detector as potentially
 758 incorrect, the responsible agent is asked to re-examine its previous response in light of the original
 759 query and the available context. The prompt enforces strict reflection rules, requiring the agent either
 760 to confirm the correctness of its earlier output or to provide a corrected version, and mandates a fixed
 761 JSON format for consistency. This ensures that correction is explicit, structured, and directly usable
 762 for downstream evaluation and analysis.

763 **PROMPT FOR RESPONSE RECOVERY**

764 You are an AI agent playing the role of "`{agent.role}`". You previously generated a
 765 response during a multi-agent reasoning process, but an anomaly detector flagged your output
 766 as potentially incorrect. Your task is to carefully reflect on whether your earlier response was
 767 indeed wrong given the original query and the current context.

768 Please follow these rules strictly:

769 1. Re-examine the original query and your earlier response in the context of your role.
 770 2. If after reflection you believe your previous response is correct and does not require
 771 modification, explicitly state that no correction is needed.
 772 3. If you identify errors or find a better answer, provide a corrected response.
 773 4. Always output in the fixed JSON format below. Do not add extra explanations outside the
 774 JSON.
 775

776 **Output format:**

777

```
{  

  778   "correction_needed": "Yes" or "No",  

  779   "final_response": "If correction_needed=No,  

  780     repeat your original response here.  

  781     If Yes, provide the corrected response."  

  782 }
```

783 **Input Information:**

784 • Query: `{question}`
 785 • Your Previous Response: `{mas.history}`
 786 • Context (previous steps if available): `{agent.spatialinfo()}`

793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809

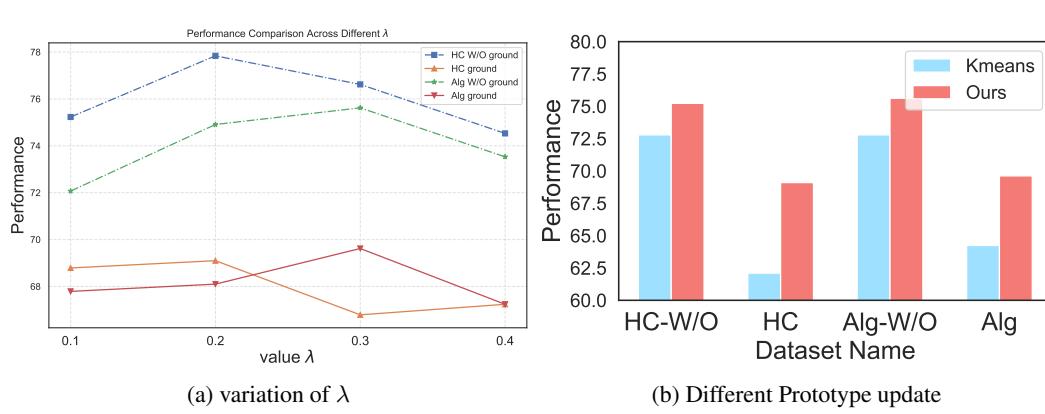


Figure 5: Hyperparameter and prototype updating analysis.

C ANALYSIS OF HYPER-PARAMETERS

Hyperparameter Sensitivity of λ As shown in Fig. 5a, our method is generally insensitive to the choice of λ , achieving stable performance across a wide range of values. Notably, the optimal λ differs between datasets: Hand-Crafted trajectories perform best near $\lambda = 0.2$, while Algorithm-Generated data favors larger values (e.g., $\lambda = 0.3$), likely because errors in the latter tend to occur earlier, making the prototype component more critical when historical context is limited. Overall, these results indicate that while tuning λ can yield slight gains, our framework remains robust without heavy dependence on this hyperparameter.

Prototype Updating. As shown in Fig. 5b, our attention-based prototype updating mechanism consistently surpasses the KMeans clustering baseline across all settings. The limitation of KMeans lies in its reliance on static, distance-based centroids, which cannot adequately capture contextual dependencies or the dynamic nature of multi-agent interactions. In contrast, our method leverages an attention mechanism to adaptively refine the prototype vector at each step, ensuring that it remains aligned with the evolving distribution of normal trajectories. This adaptive updating leads to more reliable discrimination, yielding superior performance both with and without ground-truth supervision.

D PSEUDOCODE

The training algorithm of MASCis shown in Algorithm 1. After training, the resulting detector is integrated into the MAS execution process, where it continuously monitors agent outputs and triggers the correction agent when anomalies are detected, thus enabling real-time self-correction during collaboration. The pseudo-code for this process is shown in Algorithm 2.

E THE USE OF LARGE LANGUAGE MODELS

To enhance readability, we employed OpenAI GPT-5 strictly as a language editing tool for grammar correction and stylistic refinement. Its use was limited to functions analogous to conventional proofreading and did not contribute to the conception, methodology, analysis, or scientific content of this work.

864
865
866
867
868
869
870

Algorithm 1: Unsupervised Training of MASC

Input: Normal trajectories $\{\mathcal{H}_i\}_{i=1}^M$, hyper-parameter λ , A LLM with frozen parameters
Output: Trained parameters of f_q, f_h, f_θ , Attn and prototype \mathbf{p}
for trajectory $\mathcal{H}_i \in \{\mathcal{H}_i\}_{i=1}^M$ **do**
 Initialize $\mathcal{L}_{\text{recon}} = 0, \mathcal{L}_{\text{proto}} = 0, T = \text{length}(\mathcal{H}_i)$;
for $t = 1$ to T **do**
 | Encode query \mathcal{Q} , the role of current agent \mathcal{R} and history \mathcal{H}_{t-1} into $\tilde{\mathbf{q}}, \tilde{\mathbf{h}}$ via Eq. 2 and 5;
 | Predict $\hat{\mathbf{x}}_t$ via Eq. 6;
 | Get ground truth $\mathbf{x}_t = \mathbf{h}^{(t)}$;
 | // Update losses
 | $\mathcal{L}_{\text{recon}} \leftarrow \mathcal{L}_{\text{recon}} + \|\hat{\mathbf{x}}_t - \mathbf{x}_t\|_2^2$;
 | Calculate prototype \mathbf{p} via Eq 7
 | $\mathcal{L}_{\text{proto}} \leftarrow \mathcal{L}_{\text{proto}} + (1 - \cos(\hat{\mathbf{x}}_t, \mathbf{p}))$;
 | // Final loss
 | $\mathcal{L} = \frac{1}{T} \mathcal{L}_{\text{recon}} + \lambda \cdot \frac{1}{T} \mathcal{L}_{\text{proto}}$;
 | Update all learnable parameters and prototype \mathbf{p} by $\nabla_\theta \mathcal{L}$;

887
888
889
890
891
892
893
894
895
896
897
898
899
900
901

Algorithm 2: Real-Time Self-Correction via Anomaly-Triggered Intervention

Input: A LLM-based Multi-agent System \mathcal{M} with N nodes, hyper-parameter λ , A LLM with frozen parameters, Query \mathcal{Q}
Output: Normal trajectory $\mathcal{H} = \{h_0 \dots h_t\}$ after self correction (if necessary)
for node $t \in \{1, 2, \dots, N\}$ **do**
 | Encode query \mathcal{Q} , the role of current agent \mathcal{R} and history \mathcal{H}_{t-1} into $\tilde{\mathbf{q}}, \tilde{\mathbf{h}}$ via Eq. 2 and 5;
 | Predict $\hat{\mathbf{x}}_t$ via Eq. 6;
 | Get ground truth $\mathbf{x}_t = \mathbf{h}_t$;
 | Calculate Anomaly Score $s(t)$ with $\hat{\mathbf{x}}_t, \mathbf{x}_t, \mathbf{p}$ via Eq. 11
 | Update the current output \mathcal{O}_t via Eq. 12 to $\tilde{\mathcal{O}}_t$ and add into the Normal trajectory \mathcal{H}

912
913
914
915
916
917