
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

METACOGNITIVE SELF-CORRECTION FOR MULTI-
AGENT SYSTEM VIA PROTOTYPE-GUIDED NEXT-
EXECUTION RECONSTRUCTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Model based multi-agent systems (MAS) excel at collaborative
problem solving but remain brittle to cascading errors: a single faulty step can
propagate across agents and disrupt the trajectory. In this paper, we present MASC,
a metacognitive framework that endows MAS with real-time, unsupervised, step-
level error detection and self-correction. MASC rethinks detection as history-
conditioned anomaly scoring via two complementary designs: (1) Next-Execution
Reconstruction, which predicts the embedding of the next step from the query
and interaction history to capture causal consistency, and (2) Prototype-Guided
Enhancement, which learns a prototype prior over normal-step embeddings and
uses it to stabilize reconstruction and anomaly scoring under sparse context (e.g.,
early steps). When an anomaly step is flagged, MASC triggers a correction agent
to revise the acting agent’s output before information flows downstream. On the
Who&When benchmark, MASC consistently outperforms all baselines, improving
step-level error detection by up to 8.47% AUC-ROC ; When plugged into diverse
MAS frameworks, it delivers consistent end-to-end gains across architectures,
confirming that our metacognitive monitoring and targeted correction can mitigate
error propagation with minimal overhead.

1 INTRODUCTION

Large Language Models (LLMs) have established new frontiers in artificial intelligence, demon-
strating remarkable capabilities in few-shot learning, planning, and complex reasoning across a
wide range of tasks (Brown et al., 2020; Wei et al., 2022a; Yao et al., 2023b). Building upon these
advances, the paradigm has shifted beyond single-agent settings towards LLM-based multi-agent
systems (MAS), where teams of intelligent agents collaborate to solve problems. This collaborative
approach has proven to be a powerful method for tackling tasks of greater complexity than any
single agent could manage alone, achieving impressive results in domains such as scientific discovery
(Ghafarollahi & Buehler, 2024; Schmidgall et al., 2025), software engineering (Chan et al.), and
strategic decision-making (Huang et al., 2025).

To support and optimize such collaboration, researchers have investigated a wide range of multi-agent
communication structures. These include foundational topologies like chains (Wei et al., 2022a;
Zhang et al., 2022), trees (Yao et al., 2023a), and stars (Wu et al., 2023a), as well as more complex fully
connected or random graphs (Qian et al., 2024). These designs are often tailored to task complexity
and communication constraints, aiming to balance performance and efficiency. Notably, recent
advances propose learning frameworks that dynamically choose query-conditioned communication
topologies (Hao et al., 2023; Liu et al., 2023; Zhang et al., 2024a). Such adaptive systems mark
a significant shift from fixed interaction pipelines to more flexible, input-aware collectives, better
equipped to exploit the full potential of collaborative agents.

Despite these advancements, the increasing complexity and interconnectivity of MAS introduce a
critical vulnerability: their fragility to cascading errors. This is because collaborative structures,
while enhancing problem-solving, also act as conduits for error propagation, where the system’s
success is dictated by its weakest link. Our preliminary study (Section 2.2) reveals that a single
agent’s error can cause system performance to plummet by over 50%. This finding underscores

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

the urgent need for mechanisms that perform real-time detection and correction to maintain the
system’s operational integrity. However, building such a mechanism faces fundamental challenges.
First, obtaining fine-grained, step-level error labels in complex multi-agent interactions is notoriously
difficult and costly (Zhang et al., 2025c), rendering standard supervised training impractical. This
motivates detectors that learn from abundant normal traces and flag errors as anomalies. Second,
error detection is intrinsically context-dependent. Our empirical analysis (Section 2.2) finds that
when a step is viewed in isolation, normal and abnormal steps often look alike, so detectors must
condition on interaction history. The same analysis also shows that a substantial fraction of errors
occur early in the trajectory, when context is scarce, making reliable detection even more difficult.

To address these challenges, we introduce MASC, Metacognitive Self-Correction for LLM Multi-
Agent Systems that enables online, unsupervised, step-level error detection and self-correction. Our
framework contains two novel and critical designs: (1) Next-Execution Reconstruction, where the
system models the causal dynamics of normal agent interactions by predicting the subsequent step’s
representation from the historical context. This allows for identifying outputs that violate the learned
agent interaction flow. (2) Prototype-Guided Enhancement, which learns a stable distributional
prior of normal agent behavior to act as a robust reference point. This ensures reliable detection
performance even when errors occur early in an execution sequence where historical context is
limited. Furthermore, when an anomaly is detected, MASC triggers a correction agent that revises
the flagged step before erroneous information propagates downstream, thereby preventing cascading
failures. Across the Who&When benchmark (Zhang et al., 2025c) and diverse MAS frameworks,
MASC improves both detection quality and end-to-end task performance.

• Formulation. We formalize step-level error detection for LLM-based MAS as history-
conditioned, unsupervised anomaly agent detection. This formulation avoiding the need for
costly, fine-grained step-level error labels.

• Framework. We propose MASC, which combines Next-Execution Reconstruction, a Prototype-
Guided prior for stability under sparse context, and an anomaly-triggered self-correction loop for
real-time robustness.

• Experiments. Our detector achieves up to 8.47% AUC-ROC gains on step-level error detection;
as a plug-in to multiple MAS frameworks, MASC delivers consistent accuracy improvements
across six benchmarks.

2 PRELIMINARIES

In this section, we formalize the structure of LLM-based multi-agent systems and define step-level
error detection (Section 2.1); we then analyze the core challenges and the necessity of self-correction
(Section 2.2), which motivate our method.

2.1 PROBLEM FORMULATION

Multi-Agent System. We consider a LLMs-powered multi-agent systemM with a group of N
agents, denoted as N = {1, 2, ..N}, that operate at discrete time steps. These agents are taking
actions in a turn-based protocol, meaning that exactly one agent performs an action at each time step.
Formally, the system is described as:

M =
〈
N , S, A, P, ϕ

〉
. (1)

Here, S is the set of possible states. A is the global action set; each agent i ∈ N can typically perform
actions from some subset Ai ⊆ A. ϕ(t) is a function that indicates which agent is active at time t,
thus specifying the turn-based rule. P

(
st+1 | st, at, ϕ(t)

)
is the state-transition probability, given

that only one agent ϕ(t) acts at time t. ϕ(t) is employed to denote the agent that takes an action at
at time step t. A full trajectory τ can be written as: τ =

(
s0, a0, s1, a1, . . . , sT

)
, where T is a

terminal time step or when the system enters a terminating state. Based on this formal system, we
now specify the problem of error step detection. In this context, we are interested in evaluating each
action at taken by the corresponding agent i = ϕ(t) within the trajectory τ .

Definition 1 (Error Step Detection in Multi-Agent Systems) Given a multi-agent execution tra-
jectory τ , we define an error step as a specific agent-time pair (i, t) indicating that agent i at time

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Raw Context-Agg0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

In
tra

 D
ist

an
ce

HC Intra
Alg Intra

(a) Intra Distance

0.0-0.2 0.2-0.4 0.4-0.6 0.6-0.8 0.8-1.0
Relative Error Position

0

10

20

30

40

50

Co
un

t

Error Step Distribution Across Positions
HC
Alg

(b) Analysis of Error Locations

MMLU GSM8K AQuA
Dataset

0

10

20

30

40

50

Pe
rfo

rm
an

ce
 D

ro
p

Chain
Full
Random

(c) Metacognitive
Figure 1: Comparative analysis of intra-distance, error locations, and metacognitive behavior.

step t performs an incorrect action (e.g., wrong reasoning or decision). The objective of error step
detection is, for a given current step t and optionally a set of historical stepsH = {(i′, t′) | t′ < t},
to determine whether the action at step t constitutes an error. Formally, the detection function
D(i, t,H) takes as input the agent i, the current time step t, and the historical contextH, and outputs
a binary label:

D(i, t,H) =
{
1, if the action by agent i at time t is erroneous,
0, otherwise.

The primary challenge, which our work addresses, is to construct this detection function D in a
unsupervised manner, without access to any labeled error steps during training. This enables the
system to monitor itself in real-time and identify deviations from normal, correct execution flows.

2.2 PROBLEM ANALYSIS

In this section, we analyze three key challenges that motivate our work: (1) the context-dependent
nature of step-level errors; (2) the difficulty of detecting errors early in execution; and (3) the
vulnerability of MAS to cascading failures.

Context-Dependence of Step-Level Errors. A single step in a multi-agent trajectory is rarely
separable from errors without history. Using a pretrained BERT encoder, we compare (i) the inter-
cluster distance between normal vs. abnormal mean embeddings and (ii) the intra-cluster distance
within normal steps. If context were unnecessary, the inter distance would match or exceed the intra
distance. Instead, Fig. 1a shows the inter distance is much smaller (e.g., Algorithm-Generated: 0.25
vs. 1.45 in raw embeddings), indicating isolation is insufficient. A simple historical augmentation
(nearest neighbor) slightly tightens normal dispersion (e.g., 1.45→1.10) but only modestly enlarges
the inter gap, underscoring that choosing the right context is nontrivial. These findings confirm that
step-level anomaly detection in MAS cannot rely on isolated embeddings and must instead exploit
contextual and causal dependencies across steps.

Difficulties of Early-Step Errors. Beyond the inherent challenge that abnormal steps cannot be
directly judged without context, a further difficulty arises when errors occur at early stages of
execution, where only limited historical information is available. To quantify this issue, we conduct
a statistical analysis on the Who&When benchmark, which contains two subsets of multi-agent
trajectories: a hand-crafted version (HC) and an algorithm-generated version (Alg). Fig. 1b shows the
distribution of error positions relative to trajectory length. We observe that a considerable portion of
errors in the Alg subset appear within the first 20% of steps, while errors in the HC subset are more
evenly distributed across positions. This evidence highlights that early-step errors are common and
can leave detectors with insufficient context, thereby motivating the introduction of a prototype-guided
mechanism to provide a stable reference representation when history alone is inadequate.

Lack of Metacognitive Error Awareness in MAS. While collaboration aims to improve robustness,
current MAS lack metacognitive capabilities to recognize and mitigate their own reasoning failures.
We test this via controlled fault injection across three canonical topologies: chain, fully-connected, and
random. In each setting, we randomly select one agent and launch a prompt-based attack that forces
a misleading output, simulating realistic erroneous agents. Fig. 1c shows the resulting degradation on
MMLU, GSM8K, and AQuA: performance drops markedly across all datasets and topologies (e.g.,
up to 51.9 points on AQuA under the random topology). Thus, collaborative structures, even with
designated critic roles, cannot prevent error propagation once an agent fails, highlighting the need for
explicit error detection and correction to guard against cascading failures.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Step t

Q
h1
ht-1

𝑓!
𝑓!
𝑓"

…

𝑥#

𝑓"

𝑝
"𝑥#

LLM

𝐻t-1

𝑂t %Ot
𝑂t

Real-time 
Detector

Corrector

Step t+1

Next-Execution Reconstruction

Learn PrototypeHistory Context
𝐻t

History Context

$𝑥#

$𝑥$$𝑥%

ht

$𝑥#
𝑝

Anomaly Scoring
𝑠(𝑡)=0.9

𝑑!"#

𝑑$%

%Ot
%Ot-1

Figure 2: Overview of MASC. Left: At step t, the agent’s output Ot and history context Ht−1

are sent to a real-time detector; if normal, it passes through, otherwise a correction produces Õt,
updates Ht, and is used at t+1. Right: Next-Execution Reconstruction takes projected query Q
and history embeddings, uses a frozen LLM with a learnable head fθ to predict x̂t; a prototype p
supplies a stability prior, and the anomaly score combines reconstruction error (dL2) and prototype
misalignment (dcos) to trigger self-correction.

3 METHODOLOGY

As introduced in Section 2, we cast step-level error detection in LLM-based MAS as history-
conditioned, unsupervised anomaly detection. Fig. 2 overviews MASC, which performs real-time,
unsupervised error detection and correction. The central idea is to learn a compact model of normal
multi-agent behavior and flag steps that deviate from this learned pattern.

For each step t, MASC executes three stages: (1) Contextual Encoding, which converts raw inputs
(task query, agent roles, and interaction history) into task-aware vector embeddings; (2) Prototype-
Guided Reconstruction, our detection module, which predicts the current step’s embedding from
historical context and identifies anomalies via reconstruction residuals and deviation from a learned
prototype of normality; and (3) Anomaly-Triggered Self-Correction, wherein a high anomaly score
triggers a dedicated Correction Agent to revise the flagged output and write back the corrected result
to the shared history.

3.1 CONTEXTUAL ENCODING

Assume we have a set of agent roles {Ri}Ni=1 for N agents. At each time step t, the input to our
detector consists of the task query Q and the Agent role–output historyHt−1 from previous steps.
Here,Ht−1 records, for each prior agent/tool call j, the pair comprising the acting agent’s role and
its emitted output: Ht−1 = {(Rj , Oj)}t−1

j=1. We begin by encoding these symbolic components
into dense vector representations using a pre-trained encoder, denoted as Embed(·). Formally, this
tokenization process is defined as:

q = Embed(Q), (2)
ri = Embed(Ri), i = 1, . . . , N, (3)
hj = rj∥Embed(Oj), j = 1, 2, . . . , t− 1 (4)

Here, q is the embedding of the task query, ri is the embedding of the i-th agent role description,
and hj is the embedding of the i-th historical conversation, obtained by concatenating the role
and response embeddings of agent at step j. Subsequently, q and hj are passed through separate,
learnable linear projection layers to map them into a unified hidden dimension:

q̃ = fq(q), h̃j = fh(hj), (5)

where fq, fh are learnable linear projections. This contextual encoding step produces task-adapted
representations q̃ and h̃ that fuse the necessary information for the downstream task.

3.2 PROTOTYPE-GUIDED RECONSTRUCTION

The core of our detection mechanism is the principle of reconstruction-based anomaly detection.
The underlying intuition is that a model trained exclusively on normal data can reconstruct valid

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

samples with high fidelity, whereas its ability to reconstruct anomalous samples is inherently weaker.
This discrepancy can be exploited to identify errors. However, directly transplanting such methods
to step-level anomaly detection in MAS is non-trivial. Unlike image or time series domains where
anomalies often exhibit strong signal deviation, abnormal steps in MAS are often semantically close
to normal steps and only become erroneous under specific execution contexts. This weak semantic
separability makes context-aware modeling crucial.

Next-Execution Reconstruction. To address this, we propose a Next-Execution Reconstruction
module. Instead of reconstructing the input, we leverage the causal structure of agent interactions.
Given the history up to step t− 1, the module predicts the representation of the next execution step,
t. This forces the model to learn the causal dependencies that govern normal interaction flow. We
employ a pre-trained, frozen Large Language Model (LLM) to encode the context sequence. Its
output is then passed through a learnable linear projection layer, denoted fθ, to generate the final
prediction. Formally, the prediction, x̂t, is generated by feeding the projected query and history
embeddings into our model:

x̂t = fθ

(
LLM

(
q̃, h̃1, . . . , h̃t−1

))
. (6)

The projection layer fθ maps the LLM’s hidden representation back to the dimension of the raw
history embedding hj . Anomalous steps, by violating causal consistency, will naturally exhibit a
higher deviation between the prediction x̂t and the realized embedding, which we define as the
ground truth xt := ht. For the first step (t = 0), the input sequence to the LLM consists solely of the
projected query, q̃.

Prototype-Guided Enhancement. While next-execution reconstruction is effective, it can be less
reliable in early steps where the historical context is sparse. To mitigate this, we introduce a prototype-
guided enhancement mechanism. We maintain a learnable prototype vector p ∈ Rd that represents
the centroid of normal step embeddings and acts as a stable anchor of normality. d is the shared
dimension of xt, x̂t, and hj . Given a normal trajectory, we collect the reconstructed embeddings
X̂ = [x̂1, . . . , x̂T ]

⊤ ∈ RT×d from our predictor and refine p via a single-head attention update that
uses p as the query and X̂ as keys/values:

p ← Attn
(
pWq, X̂Wk, X̂Wv

)
= Softmax

(
(pWq)(X̂Wk)

⊤
√
d

)
(X̂Wv), (7)

where Wq,Wk,Wv ∈ Rd×d are learnable projections. The prototype p is learnable and can be
initialized from a Gaussian distribution or from the mean of pseudo-normal embeddings obtained
by prompting the LLM. This design encourages each reconstructed step to align with the prototype
center, providing robustness when contextual history is scarce or noisy.

3.3 TRAINING OBJECTIVE

Our framework is trained in a fully unsupervised manner using only normal trajectories, avoiding
costly step-level error annotations. The objective combines a reconstruction loss that enforces causal
consistency with a prototype loss that regularizes reconstructed steps toward the center of the normal
distribution.

Reconstruction Loss. For a trajectory of length T , our predictor produces the current-step represen-
tation x̂t conditioned on the context up to step t−1. We minimize the mean squared error between
the predicted and realized embeddings on normal data:

Lrecon =
1

T

T∑
t=1

∥∥x̂t − xt

∥∥2
2
. (8)

Prototype Loss. To enhance robustness when history is short or noisy, we introduce a learnable
prototype vector p that encodes the central tendency of normal steps. We regularize each reconstructed
embedding toward p via cosine similarity:

Lproto =
1

T

T∑
t=1

(
1− cos

(
x̂t, p

))
. (9)

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Total Loss. The final training objective is a weighted combination of the two terms:

L = Lrecon + λLproto, (10)

where λ balances the reconstruction fidelity and prototype alignment. Since both terms are defined
solely on normal trajectories, the framework naturally learns to distinguish abnormal steps at inference
time as those that yield larger residuals or weaker alignment with the prototype.

3.4 INFERENCE AND ANOMALY SCORING

At test time, we assign an score to the current step t immediately after its output is produced. Given
the context up to step t−1, our predictor generates the current-step reconstruction x̂t. We then
combine an L2 reconstruction error with a cosine-based prototype misalignment:

s(t) = α
∥∥x̂t − xt

∥∥2
2
+ β

(
1− cos

(
x̂t, p

))
(11)

where α and β are weighting hyperparameters. A higher score indicates a greater likelihood of
anomaly. This design preserves the strength of LLM-based reconstruction in capturing causal
consistency across steps, while leveraging the prototype as a stable reference, which is especially
helpful when contextual history is scarce.

3.5 SELF-CORRECTION VIA ANOMALY-TRIGGERED INTERVENTION

The final stage of our framework is a self-correction mechanism initiated by our anomaly detector. At
each step t, if the output Ot from agent i = ϕ(t) yields an anomaly score s(t) exceeding a threshold
δ, an intervention is triggered. This gating mechanism ensures corrections are targeted and efficient,
preventing error propagation. In contrast to re-invoking the original agent, we employ a dedicated
correction agent with policy πcorr. When triggered, correction agent is prompted with the current
context and a correction instruction to revise the flagged output. The final, potentially corrected,
output Õt is determined by:

Õt =

{
Õt, if s(t) ≤ δ,

πcorr(Ht−1, Ot, Pcorr) , if s(t) > δ,
(12)

whereHt−1 is the textual conversation history up to step t− 1 and Pcorr is a correction instruction
that requests reconsideration. The corrected output Õt replaces the original, thereby updating the
history that subsequent agents receive (i.e., Ht will contain Õt). This self-healing loop mitigates
errors at their source and prevents cascading errors.

4 EXPERIMENTS

We evaluate our proposed framework from two perspectives: (1) the effectiveness of our unsupervised
anomaly detector for step-level error detection, and (2) the end-to-end performance improvement
when integrating our MASC framework into existing multi-agent systems. This section is organized
as follows: We first detail the experimental setup for both tasks. Next, we present the main results
for step error detection and framework integration. Finally, we provide in-depth ablation studies to
analyze the contribution and effectiveness of our framework. Experiments on hyperparameters and
prototype updates are provided in the Appendix C

4.1 EXPERIMENTAL SETUP

Datasets and Tasks. For the error detection task, we use the Who&When benchmark (Zhang et al.,
2025c), which includes a handcrafted and an automated subset. We evaluate under two conditions:
w/ GT (with access to the ground-truth answer of the query) and w/o GT (relying only on agent logs).
To assess the end-to-end performance of our integrated framework, we evaluate it on six standard
benchmarks spanning three domains: general reasoning (MMLU (Hendrycks et al., 2021)), mathemati-
cal problem solving (GSM8K (Cobbe et al., 2021), AQuA (Ling et al., 2017), MultiArith (Roy &
Roth, 2016), and SVAMP (Patel et al., 2021)), and code generation(HumanEval (Chen et al., 2021)).
For all evaluations, we use the official data splits. Detailed statistics provided in the Appendix A.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: Performance (%) comparison on Who&When benchmark.

Model Who&When (handcraft) Who&When (automated)

w/ GT w/o GT w/ GT w/o GT

All-at-Once 44.98/6.90 47.15/10.34 30.26/14.29 32.16/9.52
Step-by-Step 58.25/15.87 50.74/14.29 39.66/13.79 30.42/8.62
Binary-Search 54.81/13.49 51.93/15.52 24.39/5.17 21.97/6.90
Bert Classifier 60.58/10.37 72.86/13.79 62.91/15.21 67.15/13.68
LLM Classifier 63.12/17.93 65.79/18.96 65.50/17.34 65.39/16.95
MASC 69.10/18.25 77.84/20.79 69.62/18.79 75.62/21.72

Baselines. For step-level error detection, we consider two representative categories of baselines:
(1) LLM-as-detector, directly prompts large language models to judge whether a step is erroneous,
following the strategies provided in the Who&When benchmark (Zhang et al., 2025c), including
All-at-Once, Step-by-Step, and Binary Search. (2) strong supervised models, including a sentence
classification model based on BERT (Koroteev, 2021) and another classifier that uses a large language
model encoder. For the latter, we represent each sentence by taking the hidden state of its final token
and pass it to a trainable MLP classifier head (BehnamGhader et al., 2024).

Beyond detection, we also evaluate the effect of integrating our MASC into MAS frameworks. We
consider a broad range of baselines covering both single-agent prompting strategies and multi-agent
communication: 1) single-agent methods namely Chain-of-Thought (CoT) (Wei et al., 2022b) and
Self-Consistency (SC) (Wang et al., 2022); 2) multi-agent systems with fixed topologies including
Chain, Complete Graph, Random Graph (Qian et al., 2024), and LLM-Debate (Du et al., 2023).

Implementation. All methods are evaluated on the same data split: 20% of the trajectories are
used for training (when applicable) and the remaining 80% are reserved for testing. For step
error detection, we compare three categories of baselines: (1) LLM-as-detector methods using
GPT-4o-mini, following the official Who&When benchmark (Zhang et al., 2025c) for prompts
and evaluation protocols; (2) supervised models, where a sentence bert (all-MiniLM-L6-v2)and
open-source LLM (LLaMA-3.1-8B-Instruct) are used as frozen encoders with a trainable
MLP classifier head; and (3) our method, in which queries, role descriptions, and historical responses
are encoded using all-MiniLM-L6-v2, and LLaMA-3.1-8B-Instruct serves as the frozen
backbone LLM for next-execution reconstruction, with only the projection layers and prototype
module being trainable. For framework integration, all agents are instantiated with GPT-4o-mini,
and the overall implementation strictly follows the settings of G-Designer (Zhang et al., 2024a).
Additional hyperparameters and training details are provided in the Appendix B.

Metrics. For error detection, we report AUC-ROC and step-level accuracy for localization precision.
For framework integration, we report the final task accuracy (%) on each benchmark.

4.2 MAIN RESULTS

Step-Level Error Detection. Table 1 shows that our unsupervised detector significantly outper-
forms all baselines, including supervised ones. In the challenging ‘w/o GT’ setting, our method
achieves an AUC-ROC of 77.84% on the handcrafted data and 75.62% on the automated data. These
results demonstrate the superiority of our reconstruction-based approach in modeling the dynamics
of agent interactions without needing any error labels.

MASC Integration with Existing Frameworks. We further evaluate the practical impact of our
full framework by integrating it into existing MAS. As shown in Table 2, MASC consistently enhances
performance across all tested frameworks. On average, it yields a 1.29% performance gain. For
instance, when applied to the powerful LLM-Debate framework, it improves the average accuracy
from 87.53% to 88.89%. This confirms that our real-time detection and correction mechanism is
effective at mitigating cascading errors and improving overall system robustness.

4.3 ABLATION STUDIES

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Performance comparison (%) on six benchmarks. Our framework, MASC, consistently
improves performance when integrated with various MAS architectures. ‘M.Arith’ and ‘H.Eval’
are abbreviations for MultiArith and HumanEval, respectively.

Method MMLU GSM8K AQuA M.Arith SVAMP H.Eval Avg.
Vanilla 80.39 82.30 71.06 93.09 86.55 71.39 80.80

CoT 81.69 86.50 73.58 93.25 87.36 74.67 82.84
SC (CoT) 83.66 81.60 75.63 94.12 88.59 79.83 83.91

Chain 83.01 88.30 74.05 93.27 87.17 81.37 84.53
Complete 82.35 86.10 72.95 94.53 84.01 79.03 82.16
Random 84.31 86.90 76.48 94.08 87.54 82.66 85.33
Debate 84.96 91.40 77.65 96.36 90.11 84.70 87.53

MASC (Chain) 83.57 ↑0.56 90.51 ↑2.21 76.23 ↑2.18 93.96 ↑0.69 88.54 ↑1.37 82.91 ↑1.54 85.95
MASC (Complete) 84.07 ↑1.72 89.25 ↑3.15 74.11 ↑1.16 95.04 ↑0.51 85.26 ↑1.25 81.37 ↑2.34 84.85
MASC (Random) 85.29 ↑0.98 88.91 ↑2.01 77.12 ↑0.64 94.82 ↑0.74 88.29 ↑0.75 84.01 ↑1.35 86.41
MASC (Debate) 86.11 ↑1.15 93.39 ↑1.99 79.21 ↑1.56 97.15 ↑0.79 91.26 ↑1.15 86.23 ↑1.53 88.89

HC-GT HC-w/o GT Alg-GT Alg-w/o GT
Dataset

50

55

60

65

70

75

80

AU
C-

RO
C

orginal
w/o restruction
w/o prototype

Figure 3: Ablation of reconstruction and proto-
type modules on Who&When.

Analysis of the Detection Module. We ana-
lyze the contribution of the two core components
of our detector: next-execution reconstruction
and prototype guidance. Fig. 3 shows the results.
Removing the reconstruction objective causes a
substantial drop in accuracy, as the model loses
the ability to capture causal dependencies be-
tween steps. Similarly, removing the prototype
mechanism harms performance, especially in
early steps where historical context is limited,
confirming its role in providing a stable reference
for normality. Both components are thus essential
for reliable detection.

Table 3: Performance of MASC and other error detec-
tion methods on downstream correction (GSM8K).

Method Chain Complete Random Average
Vanilla 88.30 86.10 86.90 87.10
MASC 90.51 ↑2.21 89.25 ↑3.15 88.91 ↑2.01 89.56 ↑2.46

Step-by-Step 87.23 ↓1.07 84.29 ↓1.81 87.21 ↑0.31 86.24 ↓0.86

BERT Classifier 89.12 ↑0.82 85.12 ↓0.98 88.53 ↑1.63 87.59 ↑0.49

LLM Classifier 87.65 ↓0.65 83.27 ↓2.83 87.82 ↑0.92 86.25 ↓0.85

Impact of Detection on Downstream Cor-
rection. Building on Table 1, where de-
tector quality ranks Step-by-Step ≺ BERT
classifier ≺ LLM classifier ≺MASC, we
evaluate how this ordering translates to cor-
rection gains on GSM8K under three MAS
topologies (Chain, Complete, Random).
Table 3 shows that the ranking largely car-
ries over to end-to-end correction. Step-by-Step hurts average performance (−0.86), and the LLM
classifier fails to transfer its advantage, even degrading in denser settings (−0.85). The BERT
classifier yields small but unstable gains (+0.49). In contrast, MASC consistently improves across
all topologies, with up to +3.15 and an average of +2.46 over vanilla (no detection/correction),
underscoring the importance of robust detection for effective downstream correction.

4.4 SCORE DISTRIBUTION ANALYSIS

0.25 0.00 0.25 0.50 0.75 1.00

Error judge score

0

1

2

3

4

Fr
eq

ue
nc

y

MASC score

0.25 0.00 0.25 0.50 0.75 1.00 1.25

Error judge score

0.0

0.5

1.0

1.5

2.0

Fr
eq

ue
nc

y

BERT score
Normal Error

Figure 4: Normal vs. error score distributions
on Who&When: MASC (left) vs. BERT (right);
MASC shows a cleaner separation.

An effective anomaly detector should assign
clearly distinguishable scores to normal and
erroneous steps, such that a simple threshold
can separate the two distributions. To examine
whether our method achieves this property, we
visualize the score distributions of normal ver-
sus error steps on the Who&When (automated,
w/o GT) setting. As shown in Fig. 4, the baseline
method that directly applies BERT embeddings
produces highly overlapping distributions, mak-
ing it difficult to discriminate between correct and erroneous steps. In contrast, our proposed approach
yields a much larger separation: normal steps concentrate on higher confidence scores, while error

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

steps shift toward lower values. This clear gap confirms that our reconstruction–prototype framework
captures the causal structure of multi-agent reasoning, enabling robust error detection with a simple
thresholding mechanism. The complete results and additional dataset visualizations are provided in
the appendix.

5 RELATED WORK

5.1 LLM-BASED MULTI-AGENT SYSTEMS

Recent advances in large language model (LLM)-based multi-agent systems (MAS) have demon-
strated strong capabilities across diverse reasoning and decision-making tasks (He et al., 2025a;
Zhang et al., 2024b; Yi et al., 2024; Ishibashi & Nishimura, 2024). The effectiveness of these systems
stems from collaboration among heterogeneous agents, where role specialization and structured
communication strategies can significantly enhance overall performance (Li et al., 2023; Xie et al.,
2024; Shen et al., 2025; Li et al., 2025). Early implementations of LLM-based MAS were largely
handcrafted, where system designers manually specified agent roles, prompts, and communication
topologies (Wu et al., 2023b; Li et al., 2023; Qian et al., 2023). Such systems demonstrated the
potential of LLM-based collaboration but required extensive manual design effort, limiting scalability
and adaptability (Zhang et al., 2025b). To overcome these limitations, more recent research has
explored automated approaches. Examples include frameworks that automate agent role assign-
ment (Dang et al., 2025; Chen et al., 2025) or adaptively construct inter-agent topologies (Zhang
et al., 2024a), thereby reducing reliance on fixed human-designed rules. The most recent line of
work moves toward fully automated MAS, in which both role specialization and communication
structures evolve dynamically during execution (Nie et al., 2025; Zhang et al., 2025a;d). However,
as automation increases, so too does the risk of uncontrolled error propagation and vulnerability to
adversarial perturbations, highlighting the need for robustness-oriented research.

5.2 ROBUST MULTI-AGENT SYSTEMS

Despite their promise, LLM-based MAS face significant robustness challenges. Recent studies
have highlighted that failures in MAS often stem from error propagation across agents, adversarial
prompt injections, and compromised communication protocols (Zhan et al., 2024; Chen et al.,
2024; Andriushchenko et al., 2025). These vulnerabilities can amplify individual agent errors into
systemic failures, threatening the reliability of downstream decision-making (Gan et al., 2024;
Yuan et al., 2024). Research on security has identified message-passing mechanisms as a critical
attack surface (Yu et al., 2024), while trust frameworks such as A-Trust (He et al., 2025b) and
G-Safeguard (Wang et al., 2025) focus on detecting compromised agents through network analysis
or trust dimension modeling. Parallel to this, the failure attribution literature seeks to explain why
and where MAS fail. For instance, MAST (Cemri et al., 2025) provided a taxonomy of fourteen error
patterns, and the Who&When benchmark (Zhang et al., 2025c) systematically annotated erroneous
steps within multi-agent trajectories to enable step-level failure analysis. These efforts underscore
that achieving robustness in MAS requires not only stronger anomaly detection but also mechanisms
for self-correction and resilience against cascading errors.

6 CONCLUSION

In this work, we introduce MASC, a metacognitive layer for LLM-based multi-agent systems
that performs real-time, unsupervised, step-level error detection and targeted self-correction. By
reframing detection as history-conditioned anomaly scoring with Next-Execution Reconstruction and
a Prototype-Guided stability prior, MASC reliably identifies deviations even in context-scarce early
steps and intervenes before errors cascade. Empirically, MASC attains substantial AUC-ROC gains
on the step-level error detection of MAS and delivers consistent end-to-end improvements when
plugged into diverse MAS architectures across six standard benchmarks, demonstrating robustness
with minimal overhead and broad plug-and-play utility. Notably, MASC is label-free and architecture-
agnostic, enabling drop-in integration without retraining task policies. We hope this metacognitive
layer serves as a reliability primitive for scalable, trustworthy multi-agent LLM systems.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work is strictly limited to scientific investigation and does not involve human subjects, animals,
or environmentally sensitive materials. Consequently, it raises no ethical concerns or conflicts of
interest. Throughout the study, we adhere to established principles of scientific integrity and ethical
research practices to ensure the rigor, reliability, and validity of our findings.

REPRODUCIBILITY STATEMENT

All components of MASC are designed to ensure reproducibility. The overall task and evaluation setup
are formally defined in the main text. Dataset statistics and annotation protocols are reported in Ap-
pendix A, implementation details are provided in Appendix B, hyperparameter analyses are included
in Appendix C, and full pseudocode is presented in Appendix D. All experiments are conducted
under standardized evaluation criteria, and baseline results have been carefully verified to guarantee
fairness and consistency. The code are provide in https://anonymous.4open.science/r/MASC-6A03/.

REFERENCES

Maksym Andriushchenko, Alexandra Souly, Mateusz Dziemian, Derek Duenas, Maxwell Lin, Justin
Wang, Dan Hendrycks, Andy Zou, J Zico Kolter, Matt Fredrikson, et al. Agentharm: A benchmark
for measuring harmfulness of llm agents. In The Thirteenth International Conference on Learning
Representations, 2025.

Parishad BehnamGhader, Vaibhav Adlakha, Marius Mosbach, Dzmitry Bahdanau, Nicolas Chapados,
and Siva Reddy. Llm2vec: Large language models are secretly powerful text encoders. arXiv
preprint arXiv:2404.05961, 2024.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Mert Cemri, Melissa Z Pan, Shuyi Yang, Lakshya A Agrawal, Bhavya Chopra, Rishabh Tiwari, Kurt
Keutzer, Aditya Parameswaran, Dan Klein, Kannan Ramchandran, et al. Why do multi-agent llm
systems fail? arXiv preprint arXiv:2503.13657, 2025.

Jun Shern Chan, Neil Chowdhury, Oliver Jaffe, James Aung, Dane Sherburn, Evan Mays, Giulio
Starace, Kevin Liu, Leon Maksin, Tejal Patwardhan, et al. Mle-bench: Evaluating machine learning
agents on machine learning engineering. In The Thirteenth International Conference on Learning
Representations.

Lingjiao Chen, Jared Quincy Davis, Boris Hanin, Peter Bailis, Matei Zaharia, James Zou, and Ion
Stoica. Optimizing model selection for compound ai systems. arXiv preprint arXiv:2502.14815,
2025.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri,
Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan,
Scott Gray, Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian,
Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Guss, Alex Nichol, Alex Paino,
Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, William Saunders,
Christopher Hesse, Andrew N. Carr, Jan Leike, Josh Achiam, Vedant Misra, Evan Morikawa,
Alec Radford, Matthew Knight, Miles Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob
McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. Evaluating
large language models trained on code, July 01, 2021 2021.

Zhaorun Chen, Zhen Xiang, Chaowei Xiao, Dawn Song, and Bo Li. Agentpoison: Red-teaming llm
agents via poisoning memory or knowledge bases. Advances in Neural Information Processing
Systems, 37:130185–130213, 2024.

10

https://anonymous.4open.science/r/MASC-6A03/


540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv prepring, abs/2110.14168, 2021.

Yufan Dang, Chen Qian, Xueheng Luo, Jingru Fan, Zihao Xie, Ruijie Shi, Weize Chen, Cheng Yang,
Xiaoyin Che, Ye Tian, et al. Multi-agent collaboration via evolving orchestration. arXiv preprint
arXiv:2505.19591, 2025.

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. Tenenbaum, and Igor Mordatch. Improving
factuality and reasoning in language models through multiagent debate. CoRR, abs/2305.14325,
2023.

Yuyou Gan, Yong Yang, Zhe Ma, Ping He, Rui Zeng, Yiming Wang, Qingming Li, Chunyi Zhou,
Songze Li, Ting Wang, et al. Navigating the risks: A survey of security, privacy, and ethics threats
in llm-based agents. arXiv preprint arXiv:2411.09523, 2024.

Alireza Ghafarollahi and Markus J Buehler. Sciagents: Automating scientific discovery through
multi-agent intelligent graph reasoning. arXiv preprint arXiv:2409.05556, 2024.

Rui Hao, Linmei Hu, Weijian Qi, Qingliu Wu, Yirui Zhang, and Liqiang Nie. Chatllm network: More
brains, more intelligence, April 01, 2023 2023.

Junda He, Christoph Treude, and David Lo. Llm-based multi-agent systems for software engineering:
Literature review, vision, and the road ahead. ACM Transactions on Software Engineering and
Methodology, 34(5):1–30, 2025a.

Pengfei He, Zhenwei Dai, Xianfeng Tang, Yue Xing, Hui Liu, Jingying Zeng, Qiankun Peng, Shrivats
Agrawal, Samarth Varshney, Suhang Wang, et al. Attention knows whom to trust: Attention-based
trust management for llm multi-agent systems. arXiv preprint arXiv:2506.02546, 2025b.

Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and Jacob
Steinhardt. Measuring massive multitask language understanding. Proceedings of the International
Conference on Learning Representations (ICLR), 2021.

Jen-tse Huang, Eric John Li, Man Ho Lam, Tian Liang, Wenxuan Wang, Youliang Yuan, Wenxiang
Jiao, Xing Wang, Zhaopeng Tu, and Michael R. Lyu. Competing large language models in
multi-agent gaming environments. In Proceedings of the Thirteenth International Conference on
Learning Representations (ICLR), 2025.

Yoichi Ishibashi and Yoshimasa Nishimura. Self-organized agents: A llm multi-agent framework
toward ultra large-scale code generation and optimization. arXiv preprint arXiv:2404.02183, 2024.

Mikhail V Koroteev. Bert: a review of applications in natural language processing and understanding.
arXiv preprint arXiv:2103.11943, 2021.

Guohao Li, Hasan Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem. Camel: Com-
municative agents for” mind” exploration of large language model society. Advances in Neural
Information Processing Systems, 36:51991–52008, 2023.

Shiyuan Li, Yixin Liu, Qingsong Wen, Chengqi Zhang, and Shirui Pan. Assemble your crew:
Automatic multi-agent communication topology design via autoregressive graph generation. arXiv
preprint arXiv:2507.18224, 2025.

Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by rationale genera-
tion: Learning to solve and explain algebraic word problems. arXiv preprint arXiv:1705.04146,
2017.

Zijun Liu, Yanzhe Zhang, Peng Li, Yang Liu, and Diyi Yang. Dynamic llm-agent network: An
llm-agent collaboration framework with agent team optimization. CoRR, abs/2310.02170, 2023.

Fan Nie, Lan Feng, Haotian Ye, Weixin Liang, Pan Lu, Huaxiu Yao, Alexandre Alahi, and James
Zou. Weak-for-strong: Training weak meta-agent to harness strong executors. arXiv preprint
arXiv:2504.04785, 2025.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple math
word problems? arXiv preprint arXiv:2103.07191, 2021.

Chen Qian, Wei Liu, Hongzhang Liu, Nuo Chen, Yufan Dang, Jiahao Li, Cheng Yang, Weize Chen,
Yusheng Su, Xin Cong, et al. Chatdev: Communicative agents for software development. arXiv
preprint arXiv:2307.07924, 2023.

Chen Qian, Zihao Xie, Yifei Wang, Wei Liu, Yufan Dang, Zhuoyun Du, Weize Chen, Cheng Yang,
Zhiyuan Liu, and Maosong Sun. Scaling large-language-model-based multi-agent collaboration.
arXiv preprint arXiv:2406.07155, 2024.

Subhro Roy and Dan Roth. Solving general arithmetic word problems. arXiv preprint
arXiv:1608.01413, 2016.

Samuel Schmidgall, Yusheng Su, Ze Wang, Ximeng Sun, Jialian Wu, Xiaodong Yu, Jiang Liu,
Michael Moor, Zicheng Liu, and Emad Barsoum. Agent laboratory: Using llm agents as research
assistants. arXiv preprint arXiv:2501.04227, 2025.

Xu Shen, Yixin Liu, Yiwei Dai, Yili Wang, Rui Miao, Yue Tan, Shirui Pan, and Xin Wang. Under-
standing the information propagation effects of communication topologies in llm-based multi-agent
systems. arXiv preprint arXiv:2505.23352, 2025.

Shilong Wang, Guibin Zhang, Miao Yu, Guancheng Wan, Fanci Meng, Chongye Guo, Kun Wang, and
Yang Wang. G-safeguard: A topology-guided security lens and treatment on llm-based multi-agent
systems. arXiv preprint arXiv:2502.11127, 2025.

Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdh-
ery, and Denny Zhou. Self-consistency improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171, 2022.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Brian Ichter, Fei Xia, Ed Chi, Quoc Le,
and Denny Zhou. Chain-of-thought prompting elicits reasoning in large language models, January
01, 2022 2022a.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
Neural Information Processing Systems, pp. 24824–24837, 2022b.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework, August 01, 2023 2023a.

Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li,
Li Jiang, Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via
multi-agent conversation framework. Conference on Language Modeling, 2023b.

Chengxing Xie, Canyu Chen, Feiran Jia, Ziyu Ye, Shiyang Lai, Kai Shu, Jindong Gu, Adel Bibi,
Ziniu Hu, David Jurgens, et al. Can large language model agents simulate human trust behavior?
Advances in neural information processing systems, 37:15674–15729, 2024.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Thomas L. Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models, May 01,
2023 2023a.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik R Narasimhan, and Yuan
Cao. React: Synergizing reasoning and acting in language models. In The Eleventh International
Conference on Learning Representations, 2023b.

Zihao Yi, Jiarui Ouyang, Yuwen Liu, Tianhao Liao, Zhe Xu, and Ying Shen. A survey on recent
advances in llm-based multi-turn dialogue systems. arXiv preprint arXiv:2402.18013, 2024.

Miao Yu, Shilong Wang, Guibin Zhang, Junyuan Mao, Chenlong Yin, Qijiong Liu, Qingsong Wen,
Kun Wang, and Yang Wang. Netsafe: Exploring the topological safety of multi-agent networks.
arXiv preprint arXiv:2410.15686, 2024.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Tongxin Yuan, Zhiwei He, Lingzhong Dong, Yiming Wang, Ruijie Zhao, Tian Xia, Lizhen Xu,
Binglin Zhou, Fangqi Li, Zhuosheng Zhang, et al. R-judge: Benchmarking safety risk awareness
for llm agents. arXiv preprint arXiv:2401.10019, 2024.

Qiusi Zhan, Zhixiang Liang, Zifan Ying, and Daniel Kang. Injecagent: Benchmarking indirect
prompt injections in tool-integrated large language model agents. In Findings of the Association
for Computational Linguistics ACL 2024, pp. 10471–10506, 2024.

Guibin Zhang, Yanwei Yue, Xiangguo Sun, Guancheng Wan, Miao Yu, Junfeng Fang, Kun Wang,
Tianlong Chen, and Dawei Cheng. G-designer: Architecting multi-agent communication topologies
via graph neural networks. arXiv preprint arXiv:2410.11782, 2024a.

Guibin Zhang, Kaijie Chen, Guancheng Wan, Heng Chang, Hong Cheng, Kun Wang, Shuyue Hu, and
Lei Bai. Evoflow: Evolving diverse agentic workflows on the fly. arXiv preprint arXiv:2502.07373,
2025a.

Guibin Zhang, Luyang Niu, Junfeng Fang, Kun Wang, Lei Bai, and Xiang Wang. Multi-agent
architecture search via agentic supernet. arXiv preprint arXiv:2502.04180, 2025b.

Kechi Zhang, Jia Li, Ge Li, Xianjie Shi, and Zhi Jin. CodeAgent: Enhancing code generation with
tool-integrated agent systems for real-world repo-level coding challenges. In Proceedings of the
62nd Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
pp. 13643–13658, 2024b.

Shaokun Zhang, Ming Yin, Jieyu Zhang, Jiale Liu, Zhiguang Han, Jingyang Zhang, Beibin Li,
Chi Wang, Huazheng Wang, Yiran Chen, et al. Which agent causes task failures and when? on
automated failure attribution of llm multi-agent systems. In Forty-second International Conference
on Machine Learning, 2025c.

Wentao Zhang, Liang Zeng, Yuzhen Xiao, Yongcong Li, Ce Cui, Yilei Zhao, Rui Hu, Yang Liu, Yahui
Zhou, and Bo An. Agentorchestra: A hierarchical multi-agent framework for general-purpose task
solving. arXiv preprint arXiv:2506.12508, 2025d.

Zhuosheng Zhang, Aston Zhang, Mu Li, and Alex Smola. Automatic chain of thought prompting in
large language models. arXiv preprint arXiv:2210.03493, 2022.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DATASET STATISTIC

We present the dataset statistics in Table 4, which is as same experimental setup as G-Designer Zhang
et al. (2024a).

Table 4: Dataset descriptions and statistics.

Category Dataset Answer Type Metric #Test License
General reasoning MMLU Multi-choice Acc. 153 MIT License

Math reasoning

GSM8K Number Acc. 1,319 MIT License
MultiArith Number Acc. 600 Unspecified
SVAMP Number Acc. 1,000 MIT License
AQuA Multi-choice Acc. 254 Apache-2.0

Code generation HumanEval Code Pass@1 164 MIT License

B IMPLEMENTATION DETAILS

Training Details. For the LLM-as-detector baselines, we directly adopt the official implementation
from the Who&When benchmark (Zhang et al., 2025c), including both code and prompts, and
evaluate the All-at-Once, Step-by-Step, and Binary Search variants without modification. For strong
supervised models and our proposed MASC, which require training, we use Adam as the optimizer
and perform random search over training-related hyperparameters to ensure fair comparison; the
final values are reported in Table 5. Both supervised baselines are trained on individual steps, by
mixing all steps from the traces provided in Who&When and shuffling them into mini-batches. In
contrast, MASCoperates over full trajectories, leveraging historical context to perform autoregressive
reconstruction. All experiments are run under a consistent setup to ensure reproducibility.

Table 5: Hyperparameter settings for different methods across Who&When datasets.

Method Hyperparameter HC w/ GT HC w/o GT Auto w/ GT Auto w/o GT

BERT Classifier

epochs 50 50 50 50
lr 1e-5 1e-5 2e-5 2e-5
weight decay 0.01 0.01 0.01 0.01
batch Size 32 32 64 64
hidden Size 384 384 384 384

LLaMA Classifier

epochs 8 10 6 8
lr 5e-5 5e-5 1e-4 1e-4
weight decay 0.05 0.05 0.05 0.05
batch Size 50 50 50 50
hidden Size 4096 4096 4096 4096

MASC

epochs 10 10 5 5
lr 1e-4 1e-4 5e-5 5e-5
weight decay 0 0 0 0
batch Size - - - -
hidden Size 384 384 384 384

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Recovery Prompt for Error Correction This prompt is designed to support error recovery in our
multi-agent reasoning framework. When a step is flagged by the anomaly detector as potentially
incorrect, the responsible agent is asked to re-examine its previous response in light of the original
query and the available context. The prompt enforces strict reflection rules, requiring the agent either
to confirm the correctness of its earlier output or to provide a corrected version, and mandates a fixed
JSON format for consistency. This ensures that correction is explicit, structured, and directly usable
for downstream evaluation and analysis.

PROMPT FOR RESPONSE RECOVERY

You are an AI agent playing the role of "{agent.role}". You previously generated a
response during a multi-agent reasoning process, but an anomaly detector flagged your output
as potentially incorrect. Your task is to carefully reflect on whether your earlier response was
indeed wrong given the original query and the current context.

Please follow these rules strictly:
1. Re-examine the original query and your earlier response in the context of your role.
2. If after reflection you believe your previous response is correct and does not require

modification, explicitly state that no correction is needed.
3. If you identify errors or find a better answer, provide a corrected response.
4. Always output in the fixed JSON format below. Do not add extra explanations outside the

JSON.

Output format:
{

"correction_needed": "Yes" or "No",
"final_response": "If correction_needed=No,

repeat your original response here.

If Yes, provide the corrected response."
}

Input Information:
• Query: {question}
• Your Previous Response: {mas.history}
• Context (previous steps if available): {agent.spatialinfo()}

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

0.1 0.2 0.3 0.4
value 

68

70

72

74

76

78

Pe
rfo

rm
an

ce

Performance Comparison Across Different 

HC W/O ground
HC ground
Alg W/O ground
Alg ground

(a) variation of λ

HC-W/O HC Alg-W/O Alg
Dataset Name

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

Pe
rfo

rm
an

ce

Kmeans
Ours

(b) Different Prototype update

Figure 5: Hyperparameter and prototype updating analysis.

C ANALYSIS OF HYPER-PARAMETERS

Hyperparameter Sensitivity of λ As shown in Fig. 5a, our method is generally insensitive to the
choice of λ, achieving stable performance across a wide range of values. Notably, the optimal λ
differs between datasets: Hand-Crafted trajectories perform best near λ = 0.2, while Algorithm-
Generated data favors larger values (e.g., λ = 0.3), likely because errors in the latter tend to occur
earlier, making the prototype component more critical when historical context is limited. Overall,
these results indicate that while tuning λ can yield slight gains, our framework remains robust without
heavy dependence on this hyperparameter.

Prototype Updating. As shown in Fig. 5b, our attention-based prototype updating mechanism
consistently surpasses the KMeans clustering baseline across all settings. The limitation of KMeans
lies in its reliance on static, distance-based centroids, which cannot adequately capture contextual
dependencies or the dynamic nature of multi-agent interactions. In contrast, our method leverages
an attention mechanism to adaptively refine the prototype vector at each step, ensuring that it
remains aligned with the evolving distribution of normal trajectories. This adaptive updating leads
to more reliable discrimination, yielding superior performance both with and without ground-truth
supervision.

D PSEUDOCODE

The training algorithm of MASCis shown in Algorithm 1. After training, the resulting detector is
integrated into the MAS execution process, where it continuously monitors agent outputs and triggers
the correction agent when anomalies are detected, thus enabling real-time self-correction during
collaboration. The pseudo-code for this process is shown in Algorithm. 2.

E THE USE OF LARGE LANGUAGE MODELS

To enhance readability, we employed OpenAI GPT-5 strictly as a language editing tool for grammar
correction and stylistic refinement. Its use was limited to functions analogous to conventional
proofreading and did not contribute to the conception, methodology, analysis, or scientific content of
this work.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Algorithm 1: Unsupervised Training of MASC

Input: Normal trajectories {Hi}Mi=1, hyper-parameter λ, A LLM with frozen parameters
Output: Trained parameters of fq, fh, fθ,Attn and prototype p
for trajectoryHi ∈ {Hi}Mi=1 do

Initialize Lrecon = 0, Lproto = 0, T = length(Hi) ;
for t = 1 to T do

Encode query Q, the role of current agentR and historyHt−1 into q̃, h̃ via Eq. 2 and 5;
Predict x̂t via Eq. 6;
Get ground truth xt = h(t);
// Update losses
Lrecon ← Lrecon + ∥x̂t − xt∥22;
Calculate prototype p via Eq 7
Lproto ← Lproto + (1− cos(x̂t,p));

// Final loss
L = 1

T Lrecon + λ · 1
T Lproto;

Update all learnable parameters and prototype p by ∇θL;

Algorithm 2: Real-Time Self-Correction via Anomaly-Triggered Intervention
Input: A LLM-based Multi-agent SystemM with N nodes, hyper-parameter λ, A LLM with

frozen parameters, Query Q
Output: Normal trajectoryH = {h0 . . . ht} after self correction (if necessary)
for node t ∈ {1, 2, . . . , N} do

Encode query Q, the role of current agentR and historyHt−1 into q̃, h̃ via Eq. 2 and 5;
Predict x̂t via Eq. 6;
Get ground truth xt = ht;
Calculate Anomaly Score s(t) with x̂t,xt,p via Eq. 11
Update the current output Ot via Eq. 12 to Õt and add into the Normal trajectoryH

17


	Introduction
	PRELIMINARIES
	Problem Formulation
	Problem Analysis

	Methodology
	Contextual Encoding
	Prototype-Guided Reconstruction
	Training Objective
	Inference and Anomaly Scoring
	Self-Correction via Anomaly-Triggered Intervention

	Experiments
	Experimental Setup
	Main Results
	Ablation Studies
	Score Distribution Analysis

	Related Work
	LLM-based Multi-Agent Systems
	Robust Multi-Agent Systems

	Conclusion
	Dataset Statistic
	Implementation Details
	Analysis of Hyper-Parameters
	pseudocode
	The Use of Large Language Models 

