
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

O-EDIT: ORTHOGONAL SUBSPACE EDITING FOR LAN-
GUAGE MODEL SEQUENTIAL EDITING

Anonymous authors
Paper under double-blind review

ABSTRACT

Large language models (LLMs) acquire knowledge during pre-training, but over
time, this knowledge may become incorrect or outdated, necessitating updates af-
ter training. Knowledge editing techniques address this issue without the need
for costly re-training. However, most existing methods are designed for single
edits, and as the number of edits increases, they often cause a decline in the
model’s overall performance, posing significant challenges for sequential edit-
ing. To overcome this, we propose Orthogonal Subspace Editing, O-Edit. This
algorithm orthogonalizes the direction of each knowledge update, minimizing in-
terference between successive updates and reducing the impact of new updates on
unrelated knowledge. Our approach does not require replaying previously edited
data and processes each edit knowledge on time. It can perform thousands of edits
on mainstream LLMs, achieving an average performance improvement that is 4.2
times better than existing methods while effectively preserving the model’s per-
formance on downstream tasks, all with minimal additional parameter overhead.

1 INTRODUCTION

Large language models (LLMs) are trained on vast amounts of textual data, enabling them to store
extensive knowledge about various aspects of the human world, sparking the potential for general
artificial intelligence. However, LLMs face significant challenges, including the propagation of
inaccurate or outdated knowledge, as well as the generation of bias or harmful content (Cai et al.,
2024b; Chen et al., 2024; Zhong et al., 2024). Given the substantial computational costs of re-
training LLMs to address these issues, there has been growing interest in model editing techniques
(Yao et al., 2023; Wang et al., 2023a), which aim to update specific content within the model while
minimizing computational costs. Existing model editing methods can be categorized into two main
types: parameter-modifying methods that directly alter a small subset of model parameters (Dai
et al., 2022; Meng et al., 2023a;b; Hu et al., 2024a;b; Gupta et al., 2024a), and parameter-preserving
methods that without changing the model parameters (Wang et al., 2024b; Cai et al., 2024a; Zheng
et al., 2023). In this paper, we focus on parameter-modifying editing methods.

Most existing research focuses on editing models a single time (Han et al., 2023; Zhang et al.,
2024b;a; Mazzia et al., 2024). However, as real-world knowledge continuously evolves, models will
need to be updated repeatedly to remain accurate. This shift has led to the concept of sequential
model editing (Ma et al., 2024; Hu et al., 2024b; Huang et al., 2023), which involves performing
multiple knowledge edits to progressively update the model as new knowledge needs to be incor-
porated. Currently, sequential editing is often achieved through multiple iterations of single edits.
Recent studies have shown that as the number of edits increases, the success rate of edits significantly
declines and impairs the model’s general capabilities, such as reasoning and contextual understand-
ing, thereby limiting the scalability of model editing (Gu et al., 2024; Gupta et al., 2024a;b). This
challenge is akin to adding new floors to an existing building—each addition risks compromising
the overall stability. While some research has analyzed the bottlenecks of sequential editing from a
theoretical perspective (Ma et al., 2024; Hu et al., 2024a), there is still no effective solution has yet
been developed to address this issue through direct modifications of the model weights.1.

1For more details on related work, please refer to Appendix A.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

To address the scalability issue of sequential editing, this paper introduces Orthogonal Subspace
Editing (O-Edit), a simple yet effective method for sequentially editing language models. Our key
insight is based on the observation that existing editing methods primarily perform updates within
specific low-rank subspaces. Based on this premise, we assume that both the update directions from
previous editing tasks and the directions of updates to the model’s implicit knowledge can be cap-
tured. Therefore, for the current editing knowledge, the direction of parameter updates should be
chosen to minimize the impact on these prior update directions. O-Edit accomplishes this by pro-
jecting the update direction of the current knowledge into an orthogonal subspace, ensuring that the
neural network’s output for previous knowledge remains unchanged while the projected direction
remains effective for the current edit. To enhance O-Edit, we introduce O-Edit+, a post-processing
method designed to ensure complete orthogonality between subspaces. We validate the effective-
ness of our methods by utilizing two knowledge editing datasets and four downstream task datasets.
Furthermore, our analysis, conducted from both experimental and theoretical perspectives, clearly
demonstrates that strong orthogonality between each update matrix is crucial for enabling sequential
editing. Figure 1 illustrates how our methods adjust the update direction for each piece of knowl-
edge.

Gradient subspace of
edited knowledge

Gradient subspace of
previous model

knowledge

Current editing direction
Orthogonal editing

direction

Figure 1: O-Edit constrains
the direction of each update to
lie within an orthogonal sub-
space.

Our method offers four key advantages: (1) Efficiency: It requires
minimal additional parameters while enabling hundreds or even
thousands of sequential edits. (2) Privacy: There is no require-
ment to store the edited data itself, ensuring privacy during updates.
(3) Timeliness: Our method allows for the immediate application
of each edit, making it more practical. (4) Flexibility: Our method
is compatible with existing sequential editing techniques, allowing
for easy integration and adaptability to various scenarios.

Our main contributions are as follows: ① We introduce O-Edit and
O-Edit+, two simple and efficient methods for sequential editing
in large language models (LLMs) that can handle thousands of ed-
its in orthogonal subspaces, effectively addressing the performance
degradation issue encountered by existing approaches during multi-
ple edits. ② Our methods significantly preserve model performance
on downstream tasks, demonstrating their scalability and practical-
ity even after numerous sequential edits in real-world continuous
model update scenarios. ③ We show that the orthogonality between knowledge is essential for
supporting sequential editing, providing a viable research direction for this task.

2 PRELIMINARIES

In this section, we introduce sequential model editing. Subsequently, in Section 3, we discuss two
prominent knowledge editing techniques, ROME (Meng et al., 2023a) and MEMIT (Meng et al.,
2023b), and extend them into the sequential editing method O-Edit. Finally, in Section 4, we further
refine O-Edit by presenting O-Edit+, a more straightforward and effective approach for orthogonal
sequential model editing.

We focus on the challenge of sequential model editing (SME) (Wang et al., 2024b; Ma et al., 2024),
which aims to enable large language models (LLMs) to undergo extensive sequential modifica-
tions, potentially involving hundreds or thousands of edits. The primary objective is to ensure
that the model’s outputs align with human expectations across target queries, while simultane-
ously preserving the LLM’s pre-existing knowledge and capabilities. Let fΘ : X → Y, parame-
terized by Θ, denote a model function that maps an input x to its corresponding prediction fΘ(x).
The initial model, fΘ0

, is pre-trained on a large dataset Dtrain. When the LLM exhibits inaccura-
cies or requires updates, model editing becomes necessary, using a dynamic, time-evolving dataset
Dedit = {(Xe,Ye) | (x1, y1), . . . , (xT , yT)}. At each time step T , a model editor (ME) applies the
T -th edit, updating the previous model fΘT−1

to produce a new model fΘT
, following the equation:

fΘT
= ME(fΘT−1

,xT , yT), s.t. fΘT
(x) =

{
yT if x ∈ Xe,

fΘ0(x) if x /∈ Xe.
(1)

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

(a)

Argentine Football Association belongs to the organization of

Input Layers

Input Layers

⋮

Attention FFN

Frozen Editable

Target New：NATO

Weights of
the

pretrained
model

O-Edit

Grad1 Grad2 ...Grad3 Gradt-1 Gradt

Orthogonal to each other

Knowledge
Update Gradient

Direction

Knowledge corpus

FFN

Cross-Entropy Loss Each orthogonal to
previous knowledge

Input Layers

⋮

Attn

Input Layers

Input Layers
⋮

FFN Grad

Update grad of edited
knowledge

Update grad of current
editing knowledge

Transformer-Based layers

⋮
⋮

(a)

(b)

Figure 2: The framework of O-Edit for sequential language model editing. (a) First, we compute
gradients on a large amount of textual data without updating the model parameters. This step pro-
vides the gradient information necessary for updating model’s implicit knowledge. (b) Next, we
impose constraints on the update directions for each piece of edited knowledge, ensuring these di-
rections are orthogonal to each other as well as to the directions of the model’s implicit knowledge.

Eqn. 1 indicates that after model editing, the LLM should correctly predict the current edit with
fΘT

(xT) = yT , while preserving previous edits (x<T , y<T) ∈ Dedit are inaccessible to the editor,
the model is still able to retain this edit. Additionally, the model should maintain the performance
of the original model fΘ0 on data outside the editing scope, x /∈ Xe, particularly with respect to the
general training corpus Dtrain.

3 O-EDIT: SEQUENTIAL EDITING WITH GRADIENT PROJECTION
MEMORY

In this section, we will introduce O-Edit, as illustrated in Figure 2. We discuss two key-value
memory-based knowledge editing methods, ROME and MEMIT in Appendix B.3 and B.4, followed
by our optimization method in section 3.1, which incrementally edits new knowledge in orthogonal
subspaces, while preserving previously edited knowledge.

3.1 TOWARDS AN ORTHOGONAL EDITING METHOD

Previous methods share a common feature: all new knowledge is updated within a shared space,
which directly affects the weights of the model. If an update for new knowledge is applied with-
out considering prior knowledge, the direction of this update can affect both the previously edited
knowledge and the implicit knowledge within the model, potentially leading to catastrophic forget-
ting (Luo et al., 2024; Wang et al., 2023c). Therefore, to effectively support sequential editing, the
process of updating new knowledge should adhere to the following criteria:

Criterion 3.1: The update direction for each piece of knowledge should be orthogonal to the direc-
tions of previously edited knowledge, ensuring minimal interference with previously edited knowl-
edge.

Criterion 3.2: The update direction for each piece of knowledge should be orthogonal to the implicit
knowledge directions within the original model, ensuring minimal interference with the model’s
existing implicit knowledge.

In the following sections 3.1.1 and 3.1.2, we will detail how we optimized ROME and MEMIT to
fulfill the two criteria mentioned above within the context of sequential editing.

3.1.1 THE KNOWLEDGE TO BE EDITED SHOULD BE MUTUALLY ORTHOGONAL

Editing the First Piece of Knowledge: To comply with criterion 3.1, we implement the follow-
ing steps in a sequential editing process. We commence by editing the first piece of knowledge

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

using the pair (x1, y1). Upon completion of this initial edit, we obtain an updated set of parameters
∆W[total] = ∆W[1]. To preserve this edited knowledge, we constrain the gradient update direc-
tions for subsequent edits. It is important to note that during the editing process with methods such
as ROME and MEMIT, parameter adjustments are made without gradient computation, as the cal-
culation of v∗ necessitates training, while the adjustment of Wproj occurs in a single step. Since
ROME and MEMIT do not involve computing the gradient direction of the required update matrix,
we draw on the insights from (Wang et al., 2023b) and utilize ∆W[total] to approximate the direction
of model parameter updates. They argue that the gradient space from prior training tasks can be
effectively captured by the update matrix. Next, we perform Singular Value Decomposition (SVD)
on ∆W[total] = UΣV T and extract the sub-matrix ∆Wr corresponding to the top r singular values,
defined as the Core Gradient Space (CGS) by (Saha et al., 2021). Updates along the CGS direc-
tion induce maximum changes in knowledge (Farajtabar et al., 2019), whereas updates in directions
orthogonal to the CGS minimize interference with previously edited knowledge2.

Editing the Subsequent Knowledge: To edit the second piece of knowledge using examples from
Dedit, we first retrieve the bases of the Core Gradient Space (CGS). The new update direction must
lie in the space orthogonal to the CGS:

∆WT
r ·∆W[2] = 0. (2)

This ensures that the column vector subspace of W2 is orthogonal to the column vector subspace of
Wr. Taking MEMIT as an example, the update in Eq.18 can be optimized as3:

W̃ = W + (v∗ −Wk∗)k
T
∗ (C + k∗k

T
∗)

−1,

where ∆WT
r · (v∗ −Wk∗)k

T
∗ (C + k∗k

T
∗)

−1 = 0.
(3)

Non-trivial solutions that approximately satisfy Eqn.3 can be obtained by training v∗, where Eqn.17
can be rewritten as:

L(v) + λ1f1(∆Wr; v). (4)

Here:
f1 = sim

(
∆Wr, (v∗ −Wk∗)k

T
∗ (C + k∗k

T
∗)

−1
)
, (5)

sim represents the cosine similarity function in column vector space, where each column vector
lies in Rd, and λ1 serves as a hyperparameter that regulates the degree of orthogonality. Upon
completion of the training of v∗, Eqn. 18 is employed to determine the update parameter ∆W[2].
Following the update of the second piece of knowledge, the edited parameters are revised as follows:

∆W[total]+ = ∆W[2]. (6)

We then proceed to the next piece of new knowledge, repeating the same procedure as for the
second piece. The value of r increases linearly with each iteration of knowledge editing, defined
as r = min(1 × Iteration, rank(∆W[total])). We provide an efficient solution for Eqn. 5 and an
explanation for r in Appendix B.5.

3.1.2 THE EDITED KNOWLEDGE SHOULD BE ORTHOGONAL TO THE IMPLICIT KNOWLEDGE

To adhere to criterion 3.2, we implement the following steps in the sequential editing process. We
perform backpropagation on a large corpus of text to capture the model’s gradient information for
the update direction of its internal implicit knowledge while freezing the original model’s (unedited)
parameters, simulating the pre-training process without updating the model, as illustrated in the bot-
tom right of Figure 2. This computation is conducted on Wikipedia text, accumulating the gradient
information by summing it. Appendix B.6 provides a comparison for selecting the appropriate text.
Notably, this involves actual gradient information rather than the approximate update direction used
in Section 3.1.1.

2For additional details on updating within orthogonal subspaces, please refer to Appendix A.3 and B.1.
3Since Eqn.15 involves matrix right multiplication, d denotes the column dimension and dm denotes the

row dimension.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Once the gradient information ∇G ∈ Rd×dm of the implicit knowledge is obtained, the update
direction for knowledge editing should be orthogonal to ∇G. Similar to Section 3.1.1, we obtain
the rank q approximation of∇G, denoted as∇Gq , through SVD. We then subtract the projection of
∇Gq onto Wr from ∇Gq:

∇Gq = ∇Gq −∆Wr(∆WT
r ∆Wr)

−1∆WT
r ∇Gq, (7)

to prevent knowledge conflicts (Xu et al., 2024; Jin et al., 2024) between the two. For instance,
if ∆Wr contains the edited knowledge ”The President of the US is Harris/Trump”, while ∇Gq

contains ”The President of the US is Biden”, the update directions for these two pieces of knowledge
may conflict or even be completely opposite. In such cases, we prioritize preserving the knowledge
in ∆Wr over ∇Gq . The ultimate training objective is:

loss = L(z) + λ1f1(∆Wr; v) + λ2f2(∇Gq; v), (8)

where:

f2 = sim
(
∇Gq, (v∗ −Wk∗)k

T
∗ (C + k∗k

T
∗)

−1
)
. (9)

The rank q increases linearly with the number of iterations of knowledge editing, described by
q = λ3 × iteration, where λ3 is a hyperparameter controlling the degree of constraints.

Eqn. 8 represents the final optimization target. After obtaining v∗, we use Eqn. 18 to solve for the
update parameter. We then update the hyperparameters r, q, and ∆W[total] for the next knowledge
update.

4 O-EDIT+: TOWARDS MORE EFFICIENT SEQUENTIAL MODEL EDITING

In Section 3, we introduced O-Edit, an algorithm for approximate orthogonal sequential knowledge
editing. To further enhance the orthogonality between different pieces of knowledge, we propose O-
Edit+, a post-processing method that eliminates the need for cosine similarity calculations. Specif-
ically, for the second piece of knowledge, we compute v∗ using Eqn.17 and apply Eqn.18 to obtain
the update parameter ∆W[2]. Subsequently, ∆W[2] undergoes post-orthogonal processing, achieved
as follows:

∆W[2] = ∆W[2] −∆Wr(∆WT
r ∆Wr)

−1∆WT
r ∆W[2],

∇Gq = ∇Gq −∆Wr(∆WT
r ∆Wr)

−1∆WT
r ∇Gq,

∆W[2] = ∆W[2] −∇Gq(∇GT
q ∇Gq)

−1∇GT
q ∆W[2].

(10)

The processed ∆W[2] from Eqn.10 is then used as the update direction for the second piece of
knowledge. Similar to O-Edit, we subsequently update the hyperparameters r, q, and ∆W[total] for
the next knowledge edit. We detail the computation process of Eqn.10 and the pseudo-code for
O-Edit and O-Edit+ in Appendix B.5. Readers can refer to Appendices B.8 and B.9 for details on
hyperparameter selection.

5 EXPERIMENTS

5.1 EDITING EXPERIMENTAL SETTINGS AND EVALUATION METRICS

Datasets and Models. We utilize autoregressive LLMs, specifically Mistral-7B (Jiang et al., 2023)
and Llama3-8B4, for evaluation, along with the datasets ZsRE (Cao et al., 2021), COUNTER-
FACT (Meng et al., 2023a), RECENT and WIKICF (Zhang et al., 2024a).

Baseline. We selected Fine-Tuning (FT) (Yao et al., 2023), FT-EWC (Wang et al., 2024b), MEND
(Mitchell et al., 2022a), ROME (Meng et al., 2023a) and MEMIT (Meng et al., 2023b) as baseline
editors and compared them with our proposed methods, O-Edit, O-Edit+ and ♠ O-Edit+ which

4https://llama.meta.com/llama3

5

https://llama.meta.com/llama3

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Main editing results for COUNTERFACT. T : Num Edits.

Method
COUNTERFACT

T = 200 T = 500 T = 1000 T = 1500

Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

Mistral-7B

FT 0.31 0.12 0.19 0.21 0.09 0.03 0.02 0.04 0.05 0.01 0.01 0.03 0.03 0.01 0.00 0.01
FT-EWC 0.68 0.34 0.22 0.41 0.26 0.17 0.10 0.17 0.12 0.05 0.09 0.09 0.09 0.04 0.07 0.07
MEND 0.51 0.22 0.21 0.31 0.19 0.09 0.07 0.12 0.12 0.03 0.02 0.05 0.07 0.02 0.01 0.03

ROME 0.72 0.53 0.31 0.52 0.30 0.18 0.14 0.21 0.28 0.10 0.06 0.15 0.27 0.07 0.05 0.13
+R-Edit 0.85 0.60 0.48 0.64 0.27 0.12 0.04 0.14 0.30 0.09 0.05 0.15 0.26 0.06 0.04 0.12
+WilKE 0.81 0.59 0.44 0.61 0.45 0.27 0.19 0.30 0.28 0.10 0.10 0.16 0.18 0.02 0.07 0.09
+PRUNE 0.76 0.51 0.28 0.52 0.35 0.21 0.21 0.26 0.42 0.12 0.05 0.20 0.33 0.15 0.22 0.23
+O-Edit 0.99 0.51 0.73 0.74 0.68 0.41 0.37 0.49 0.45 0.18 0.26 0.30 0.37 0.20 0.19 0.25
+O-Edit+ 0.94 0.47 0.76 0.72 0.65 0.38 0.41 0.48 0.49 0.21 0.29 0.33 0.41 0.21 0.24 0.29

MEMIT 0.93 0.67 0.41 0.67 0.50 0.35 0.10 0.32 0.28 0.10 0.06 0.15 0.19 0.06 0.05 0.10
+R-Edit 0.93 0.64 0.48 0.68 0.76 0.39 0.16 0.44 0.32 0.17 0.06 0.18 0.28 0.13 0.06 0.16
+WilKE 0.95 0.70 0.50 0.72 0.73 0.51 0.26 0.50 0.26 0.16 0.06 0.16 0.30 0.14 0.04 0.16
+PRUNE 0.83 0.53 0.47 0.61 0.76 0.52 0.29 0.52 0.65 0.45 0.22 0.44 0.43 0.27 0.12 0.27
+O-Edit 0.93 0.55 0.65 0.71 0.86 0.53 0.45 0.61 0.72 0.47 0.34 0.51 0.51 0.33 0.18 0.34
+O-Edit+ 0.89 0.61 0.78 0.76 0.81 0.55 0.60 0.65 0.68 0.39 0.55 0.54 0.61 0.42 0.53 0.52
+♠ O-Edit+ 0.98 0.76 0.91 0.88 0.89 0.67 0.82 0.80 0.81 0.60 0.73 0.71 0.79 0.55 0.68 0.67

Llama3-8B

FT 0.24 0.09 0.11 0.14 0.07 0.02 0.01 0.03 0.04 0.01 0.01 0.02 0.02 0.01 0.00 0.01
FT-EWC 0.61 0.30 0.20 0.36 0.44 0.21 0.15 0.27 0.29 0.11 0.09 0.16 0.18 0.10 0.02 0.10
MEND 0.44 0.24 0.18 0.28 0.25 0.10 0.10 0.15 0.15 0.07 0.06 0.10 0.09 0.03 0.01 0.04

ROME 0.75 0.48 0.14 0.46 0.69 0.45 0.05 0.40 0.75 0.46 0.02 0.41 0.47 0.28 0.02 0.31
+R-Edit 0.70 0.38 0.27 0.45 0.65 0.41 0.06 0.37 0.54 0.34 0.03 0.30 0.50 0.31 0.02 0.28
+WilKE 0.77 0.44 0.33 0.51 0.55 0.42 0.03 0.33 0.66 0.45 0.02 0.38 0.71 0.49 0.02 0.41
+PRUNE 0.90 0.57 0.33 0.60 0.77 0.50 0.24 0.50 0.83 0.41 0.21 0.48 0.81 0.35 0.19 0.45
+O-Edit 0.88 0.63 0.35 0.62 0.77 0.47 0.22 0.49 0.84 0.47 0.13 0.48 0.83 0.31 0.09 0.41
+O-Edit+ 0.86 0.61 0.37 0.61 0.81 0.52 0.24 0.52 0.86 0.49 0.19 0.51 0.87 0.50 0.13 0.50

MEMIT 0.85 0.51 0.22 0.52 0.50 0.35 0.10 0.32 0.28 0.10 0.05 0.14 0.18 0.06 0.05 0.10
+R-Edit 0.92 0.63 0.48 0.68 0.57 0.39 0.15 0.37 0.34 0.17 0.06 0.19 0.27 0.13 0.05 0.15
+ WilKE 0.95 0.68 0.50 0.71 0.71 0.56 0.25 0.51 0.30 0.16 0.08 0.18 0.30 0.14 0.05 0.16
+PRUNE 0.82 0.52 0.47 0.60 0.76 0.52 0.38 0.55 0.64 0.44 0.32 0.47 0.42 0.27 0.22 0.30
+O-Edit 0.93 0.55 0.64 0.71 0.86 0.53 0.44 0.61 0.72 0.47 0.33 0.51 0.55 0.40 0.27 0.41
+O-Edit+ 0.88 0.53 0.76 0.72 0.84 0.51 0.45 0.60 0.81 0.50 0.31 0.54 0.79 0.44 0.28 0.50
+♠ O-Edit+ 0.98 0.62 0.91 0.84 0.95 0.57 0.78 0.79 0.91 0.51 0.63 0.68 0.91 0.45 0.56 0.64

represents editing 100 pieces of knowledge at a time. Additionally, we considered the following
methods: R-Edit (Gupta et al., 2024a), WilKE (Hu et al., 2024b), and PRUNE (Ma et al., 2024).
See Appendix B.7 for methods details.

Metrics. Each edit example comprises an edit knowledge statement, consisting of an edit statement
xe and an edit target ye, its paraphrase sentences xe′ for testing generalization, and an unrelated
knowledge statement xloc for testing locality. For the editing dataset Dedit = {(xe,ye)} with T
edits, we evaluate the final post-edit model fΘT

after the T -th edit example (xT,yT). We assess the
reliability and generalization of the model editor using the metrics Rel. (Edit Success Rate (Zhang
et al., 2024a)) and Gen. (Generalization Success Rate), while Loc. (Localization Success Rate)
evaluates specificity, defined as the post-edit model’s ability to maintain the output of the unrelated
knowledge xloc. We report these metrics and their mean scores, which are formally defined as:

Rel. =
1

T

T∑
t=1

1(fΘT
(x

t
e) = y

t
e), Gen. =

1

T

T∑
t=1

1(fΘT
(x

t
e′) = y

t
e), Loc. =

1

T

T∑
t=1

1(fΘT
(x

t
loc) = fΘ0 (x

t
loc)), (11)

Here, 1(·) denotes the indicator function, which indicates that we only consider the top-1 token
during inference. For RECENT and WIKICF, we have established additional evaluation metrics to
assess the reasoning ability, subject alignment capability of editing methods, and more. For further
details, please refer to Appendix B.10.

Main Results. The competitive performance of our methods is demonstrated in Tables 1. In the
COUNTERFACT setting, with T = 200, models edited with MEMIT and ROME still perform ef-
fective edits. However, as the number of edits exceeds 500, their performance declines rapidly. After
1,500 edits on Mistral-7B, MEMIT’s scores dropped to approximately 0.20 for Rel. and 0.05 for
Loc., indicating substantial forgetting of both edited and unrelated knowledge. Although improved
methods like PRUNE and WilKE showed competitive performance at T = 200, they similarly failed
to maintain a good balance across Rel., Gen., and Loc. at T = 1500. At T = {500, 1000, 1500},
O-Edit and O-Edit+ achieved the best results on both Mistral-7B and Llama3-8B. At T = 1500 with
Mistral-7B, O-Edit+ improved by 0.16 and 0.42 in Avg. over ROME and MEMIT, respectively, and
by 0.06 and 0.25 over PRUNE, our closest competitor. Overall, while performance across methods
is similar for smaller numbers of edits, O-Edit+ significantly reduces forgetting as the number of
edits increases, effectively preserving both edited and unrelated knowledge.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Llama3-8B on MEMIT Llama3-8B on O-Edit Llama3-8B on O-Edit+

Mistral-7B on MEMIT Mistral-7B on O-Edit Mistral-7B on O-Edit+

(a)

(b)

(c)

(d)

Figure 3: The further performance and impact of different editing methods include (a) editing suc-
cess rates at different stages, (b) effects on update direction, (c) impact on matrix L2 norm, and (d)
performance across different semantic relations.

(a) (b) (c) (d)

Figure 4: More performance metrics on the editing datasets: (a) Portability on the COUNTERFACT
dataset, (b) performance on the RECENT dataset (Rel., Alg., Fog.), T=1200; (c) performance on
the WIKICF dataset (Rel., Res., Lgn.), T=400. (d) Compared with the method of adding additional
parameters, WISE, T=1500.

The orthogonal editing method improves the success rate of edited knowledge across all stages.
We divided the editing process into 15 stages according to the sequence of edits, and evaluated the
model after 1500 edits at each stage. As shown in Figure 3(a), the original method MEMIT exhibits
a complete forgetting effect on the initial edits. In contrast, O-Edit shows significant improvements
compared to MEMIT. Moreover, O-Edit performs best for edits between 1000 and 1500, demon-
strating its ability to effectively retain recently edited knowledge. As for O-Edit+, it presents a
balanced editing performance, excelling at updating both the initially edited knowledge and the
recently edited knowledge.

The orthogonal editing method altered the model’s update direction. We evaluated the orthogo-
nality among each update matrix, ∆Wi, by examining the cosine similarity between the correspond-
ing update matrices after applying MEMIT, O-Edit, and O-Edit+. As illustrated in Figure 3(b),
without any constraints, there is a significant overlap in the update directions, which may cause
subsequent edits to influence the directions of prior edits. O-Edit mitigates this overlap by training
an appropriate v∗, while O-Edit+ achieves complete orthogonality between each update direction
through post-processing.

The orthogonal editing method reduced the L2 norm of the matrix. The L2 norm is considered
by (Hu et al., 2024b) to be a key factor in limiting the effects of continuous editing. A larger L2
norm can lead to catastrophic forgetting. We visualized the change in the L2 norm of the matrices
after multiple edits in Figure 3(c). For the unconstrained method, MEMIT exhibits a high growth
trend in the L2 norm. In contrast, the orthogonal method reduces the growth trend of the matrix
by constraining the model’s update direction. We further discuss the impact of L2 norm on editing
performance in Appendix B.12, revealing that not all methods of reducing the L2 norm improve the
effectiveness of sequential editing.

The orthogonal method performs better for editing any relation. We selected seven representa-
tive semantic relations from COUNTERFACT for a cross-sectional comparison, as shown in Figure

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Figure 6: The downstream task performance (%) of models edited by four editing methods with
Mistral-7B and Llama3-8B on the COUNTERFACT dataset.

3(d). The results indicate that both O-Edit and O-Edit+ exhibit higher editing accuracy for all rela-
tions, which aligns with the findings in Figure 3(a).

Figure 5: Comparsion under
GPT2 Series, T=3000. Or-
thogonal editing is applicable
to all model sizes.

The orthogonal editing method is applicable to the scaling laws
of models. To investigate this problem, we conducted tests on the
GPT-2 series of models (Radford et al., 2019). To avoid inconsis-
tencies in the semantic information extracted from the same layer
across different models, we selected the middle layer of the model,
⌊ layers

2 ⌋, as the editing layer, which is referred to by (Meng et al.,
2023a) as the place of knowledge storage. The experimental results
are shown in Figure 5. As the size of the GPT models increases, the
dimensions of each editing matrix also rise, leading to improved
editing effects. The orthogonal editing method demonstrates vary-
ing degrees of enhancement across different models, with O-Edit+
achieving approximately double the performance across all models,
indicating that the orthogonal editing methods are model-agnostic.

Further Results. ➊ We followed the methodology in (Zhang et al., 2024a) to evaluate different
editing methods across five additional metrics: Portability (Port.), Subject Aliasing (Alg.), Compo-
sitionality, Reasoning (Res.), Forgetfulness (Fog.), and Logical Generalization (Lgn.), as shown in
Figure 4. For portability, O-Edit and O-Edit+ significantly outperform other methods, with O-Edit+
maintaining about 50% portability even after 1500 edits. Considering the dataset limitations and
the complexity of the evaluation metrics, we chose to perform 1200 and 400 edits on the RECENT
and WIKICF datasets, respectively. In both datasets, O-Edit and O-Edit+ consistently deliver the
best editing performance, demonstrating their suitability for a wide range of editing scenarios. ➋ In
addition, We further explored applying O-Edit and O-Edit+ for 3000 edits, with the results shown in
Table 13. The original method completely forgets the previously edited and irrelevant knowledge,
while O-Edit and O-Edit+ still maintain very good editing success rates. However, more edits lead
to greater disruption of the original knowledge in the model, and the localization (Loc.) slightly
decreases as the number of edits increases. For all extra experimental results, please refer to the
Appendix B.13. ➌ We further compared the localized O-Edit+ method with the SOTA method,
WISE (Wang et al., 2024b) that adds additional parameters when performing 1,500 edits. Following
(Wang et al., 2024b), we conducted experiments using the ZsRE dataset and standardized the num-
ber of added or modified layers to 8, with results shown in Figure 4(d). When editing 1,500 times,
O-Edit+ achieved significantly higher editing accuracy than WISE, while maintaining comparable
generalization performance. Due to WISE’s expanded parameter search space, it demonstrated bet-
ter retention of unrelated knowledge, this comes at the cost of additional storage space and inference
time. ➍ We have also discussed how to select the appropriate orthogonal space and the impact of
orthogonality on editing performance in the Appendix B.9.

5.2 DOWNSTREAM TASKS EVALUATION

Datasets. To investigate the side effects of sequential model editing on the downstream task abilities
of LLMs, we adopted four representative tasks with corresponding datasets for assessment: Com-
monsense Reasoning using the SIQA (Sap et al., 2019), Content Analysis on the LAMBADA
(Paperno et al., 2016), Question Answering with the CommonsenseQA (Talmor et al., 2019), and
MATH on the GSM8K (Cobbe et al., 2021).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Main Results. Figure 6 illustrates the downstream task performance of Mistral-7B and Llama3-8B
after applying MEMIT and O-Edit+ in the COUNTERFACT setting. As shown by the gray line
in Figure 6, MEMIT maintains performance at a certain level when the number of edits is small
(T ≤ 200). However, as the number of edits exceeds 1000, MEMIT’s performance drastically
declines, approaching zero (with results on CommonsenseQA resembling random guessing, both
around 20%). In contrast, O-Edit and O-Edit+ effectively tackle this issue by implementing con-
straints that ensure orthogonality between the editing knowledge and the original model’s implicit
knowledge, significantly reducing interference. With O-Edit+ applied for 200 edits, downstream
task performance remains close to that of the unedited model, effectively preserving accuracy across
various tasks. Even after 1,500 edits, O-Edit+ remains to outperform both MEMIT and PRUNE,
demonstrating its robustness in maintaining downstream task performance over extended sequences
of edits. This highlights the effectiveness of O-Edit+ in minimizing interference between edits,
allowing models to retain high performance even in heavily edited environments.

Nevertheless, as the number of edits increases, extensive knowledge editing inevitably leads to di-
minished model performance, a phenomenon described by (Wang et al., 2024b) as the “unbreakable
triangle,” which asserts that no method can achieve perfect editing without compromising other as-
pects of the model’s performance. Despite this, O-Edit+ significantly mitigates this effect, offering
superior performance retention compared to other editing methods such as MEMIT.

5.3 FURTHER ANALYSIS

How do edits disturb model outputs? We aim to study how each added piece of editing information
affects the subsequent outputs of the model. Theoretically, if an editing method is effective, the
output distribution of unrelated knowledge in the model should remain as consistent as possible with
the pre-edit state when using this method. If the editing information is integrated into the subject’s
editing layer through newly created (k∗, v∗) pairs, the information from v∗ will influence the hidden
states of subsequent Relation Tokens (“The SpaceX is located in”) via the attention module and
gradually propagate through decoding to impact the final model output. To investigate how this
newly added information affects the hidden states of relation tokens, we conducted the following
two sets of experiments:

We preserved the update matrix ∆Wi for each i-th edit from 1500 edits. Subsequently, we first
measured the impact of adding a single ∆Wi on the final-layer hidden states of relation tokens for
each edited piece of knowledge i. Then, we measured the impact of adding ∆W[total] =

∑n
i=1 ∆Wi

on the final-layer hidden states of relation tokens. The results were dimensionally reduced using
t-SNE, as shown in Figure 7 (a). It can be observed that the distribution difference between single
and multiple edits in MEMIT is significant, indicating that multiple edits affect the model’s final
outputs. In contrast, the distributions for O-Edit+ show almost no difference, suggesting that the
results of multiple edits do not affect the model’s output distribution for each edited knowledge.

We also examined the distribution of relation tokens in the original model compared to the dis-
tribution after adding ∆Wunrelated = ∆W[total] − ∆Wj . Theoretically, ∆Wunrelated should carry no
meaningful information for the edited knowledge j, and we expect the distribution after adding
∆Wunrelated to remain consistent with Woriginal. The experimental results are shown in Figure 7 (b).
It can be seen that using O-Edit+ with ∆Wunrelated has almost no effect on the edited knowledge j,
while MEMIT causes a shift in the distribution.

How do edits disturb each other? To investigate the extent of interdependencies among knowl-
edge updates during the sequential editing process, we preserved the update matrix ∆Wi for each
i-th edit. Upon completion of the sequential editing, the model’s cumulative update matrix is com-
puted as ∆W[total] =

∑n
i=1 ∆Wi. For the j-th edit, we compute ∆Wunrelated = ∆W[total] − ∆Wj ,

which excludes the update matrix ∆Wj corresponding to kj . According to Hu et al. (2024a), under
ideal sequential editing, the knowledge vector kj used during the j-th edit should not activate any
unrelated ∆W ̸=j (i.e., any update matrix other than ∆Wj), meaning ∥∆Wunrelated · kj∥2 = 0. We
calculate the activation score (AS) for each edit as ∥∆Wunrelated · kj∥2. As illustrated in Figure 7
(c), after 1,500 edits, the original method exhibited high activation scores (AS), with some values
reaching approximately 2.5 and others exceeding 10. This indicates that in the original method, any
unrelated ∆W ̸=j (i.e., any update matrix other than ∆Wj) could significantly activate kj , leading
to a substantial deviation from the ideal state v∗ and resulting in the failure of MEMIT in sequential

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

MEMIT vs Initinal O-Edit vs Initinal O-Edit+ vs Initinal

MEMIT on Llama3-8B O-Edit on Llama3-8B O-Edit+ on Llama3-8B(a) (c)

(d)(b)

Figure 7: The impact of different editing methods on the model’s operation mechanism. (a) The
distribution of hidden representations of different editing methods in post-edited LLMs after dimen-
sionality reduction. (b) The distribution of hidden representations with or without editing methods.
(c) The activation score caused by unrelated parameters. (d) The activation score caused by a single
update parameter.

editing. In contrast, both O-Edit and O-Edit+ consistently achieved activation values below 2.5 for
nearly all edits, with some values approaching zero. In Appendix B.12, we analyze the reasons for
this phenomenon from a mathematical derivation perspective, highlighting that the key lies in the
orthogonality of the column subspaces of each update matrix.

We aim to further understand the interaction between the j-th kj and ∆Wj . We calculate the activa-
tion score (AS) for each edit as ∥∆Wj · kj∥2 (∥∆Wown · kj∥2), as illustrated in Figure 7 (d). After
1500 edits, the activation values in MEMIT gradually increase with the number of edits due to the
significant activation value ∥∆W<j · kj∥2 (∥∆Wunrelated · kj∥2). This phenomenon occurs because
completing an edit requires a larger activation value to counteract the influence of previous edits,
resulting in a vicious cycle and ultimately poor sequential editing performance. In contrast, the ac-
tivation values for ∥∆W<j · kj∥2 (∥∆Wunrelated · kj∥2) in O-Edit and O-Edit+ remain consistently
low, indicating that a large activation value for ∥∆Wown · kj∥2 is not necessary to complete a new
edit. Consequently, although the activation values are small, O-Edit and O-Edit+ allow for a greater
number of effective edits.

6 LIMITATIONS

While O-Edit and O-Edit+ demonstrate robust sequential editing performance, several limitations
persist. Due to computational constraints, we restricted our experiments to Mistral-7B and Llama3-
8B, leaving the scalability of our methods on larger models untested. Additionally, constructing or-
thogonality between edits adds computational overhead, which may prolong editing times. However,
O-Edit and O-Edit+ require maintaining only two additional matrices, making them both model-
agnostic and compatible with other sequential editing techniques. Furthermore, we did not evaluate
O-Edit and O-Edit+ against other editing methods, such as fine-tuning (FT), as these approaches
tend to falter after only a few sequential edits, whereas ROME and MEMIT can support more exten-
sive editing sequences. Despite these challenges, we believe our methods hold promising potential,
particularly in the early stages of research on sequential model editing.

7 CONCLUSION

In this paper, we present two innovative methods—O-Edit and O-Edit+ that leverage orthogonal sub-
space editing for sequential knowledge editing in language models. These methods effectively mit-
igate catastrophic forgetting of both edited and existing knowledge by incrementally applying edits
in orthogonal subspaces. Our methods distinguish themselves through their attention to data privacy,
efficient parameter utilization, and strong generalization capabilities for downstream tasks. Com-
prehensive empirical evaluations indicate that O-Edit and O-Edit+ significantly outperform existing
methods, establishing them as promising avenues for future advancements in sequential knowledge
editing.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Yuchen Cai, Ding Cao, Rongxi Guo, Yaqin Wen, Guiquan Liu, and Enhong Chen. Editing knowl-
edge representation of language model via rephrased prefix prompts, 2024a. URL https:
//arxiv.org/abs/2403.14381.

Yuchen Cai, Ding Cao, Rongxi Guo, Yaqin Wen, Guiquan Liu, and Enhong Chen. Locating and
mitigating gender bias in large language models, 2024b. URL https://arxiv.org/abs/
2403.14409.

Nicola De Cao, Wilker Aziz, and Ivan Titov. Editing factual knowledge in language models, 2021.
URL https://arxiv.org/abs/2104.08164.

Ruizhe Chen, Yichen Li, Zikai Xiao, and Zuozhu Liu. Large language model bias mitigation
from the perspective of knowledge editing, 2024. URL https://arxiv.org/abs/2405.
09341.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems, 2021. URL https://arxiv.
org/abs/2110.14168.

Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple effects
of knowledge editing in language models, 2023. URL https://arxiv.org/abs/2307.
12976.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers, 2022. URL https://arxiv.org/abs/2104.08696.

Carl Eckart and G. Marion Young. The approximation of one matrix by another of lower
rank. Psychometrika, 1:211–218, 1936. URL https://api.semanticscholar.org/
CorpusID:10163399.

Mehrdad Farajtabar, Navid Azizan, Alex Mott, and Ang Li. Orthogonal gradient descent for contin-
ual learning, 2019. URL https://arxiv.org/abs/1910.07104.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories, 2021. URL https://arxiv.org/abs/2012.14913.

Mor Geva, Avi Caciularu, Kevin Ro Wang, and Yoav Goldberg. Transformer feed-forward lay-
ers build predictions by promoting concepts in the vocabulary space, 2022. URL https:
//arxiv.org/abs/2203.14680.

Jia-Chen Gu, Hao-Xiang Xu, Jun-Yu Ma, Pan Lu, Zhen-Hua Ling, Kai-Wei Chang, and Nanyun
Peng. Model editing harms general abilities of large language models: Regularization to the
rescue, 2024. URL https://arxiv.org/abs/2401.04700.

Akshat Gupta, Sidharth Baskaran, and Gopala Anumanchipalli. Rebuilding rome : Resolving model
collapse during sequential model editing, 2024a. URL https://arxiv.org/abs/2403.
07175.

Akshat Gupta, Anurag Rao, and Gopala Anumanchipalli. Model editing at scale leads to gradual
and catastrophic forgetting, 2024b. URL https://arxiv.org/abs/2401.07453.

Xiaoqi Han, Ru Li, Hongye Tan, Wang Yuanlong, Qinghua Chai, and Jeff Pan. Improving sequential
model editing with fact retrieval, December 2023. URL https://aclanthology.org/
2023.findings-emnlp.749.

Thomas Hartvigsen, Swami Sankaranarayanan, Hamid Palangi, Yoon Kim, and Marzyeh Ghassemi.
Aging with grace: Lifelong model editing with discrete key-value adaptors, 2023. URL https:
//arxiv.org/abs/2211.11031.

Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu, and Jun Zhao. Knowledge in superposition:
Unveiling the failures of lifelong knowledge editing for large language models, 2024a. URL
https://arxiv.org/abs/2408.07413.

11

https://arxiv.org/abs/2403.14381
https://arxiv.org/abs/2403.14381
https://arxiv.org/abs/2403.14409
https://arxiv.org/abs/2403.14409
https://arxiv.org/abs/2104.08164
https://arxiv.org/abs/2405.09341
https://arxiv.org/abs/2405.09341
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2110.14168
https://arxiv.org/abs/2307.12976
https://arxiv.org/abs/2307.12976
https://arxiv.org/abs/2104.08696
https://api.semanticscholar.org/CorpusID:10163399
https://api.semanticscholar.org/CorpusID:10163399
https://arxiv.org/abs/1910.07104
https://arxiv.org/abs/2012.14913
https://arxiv.org/abs/2203.14680
https://arxiv.org/abs/2203.14680
https://arxiv.org/abs/2401.04700
https://arxiv.org/abs/2403.07175
https://arxiv.org/abs/2403.07175
https://arxiv.org/abs/2401.07453
https://aclanthology.org/2023.findings-emnlp.749
https://aclanthology.org/2023.findings-emnlp.749
https://arxiv.org/abs/2211.11031
https://arxiv.org/abs/2211.11031
https://arxiv.org/abs/2408.07413

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chenhui Hu, Pengfei Cao, Yubo Chen, Kang Liu, and Jun Zhao. Wilke: Wise-layer knowledge editor
for lifelong knowledge editing, 2024b. URL https://arxiv.org/abs/2402.10987.

Zeyu Huang, Yikang Shen, Xiaofeng Zhang, Jie Zhou, Wenge Rong, and Zhang Xiong.
Transformer-patcher: One mistake worth one neuron, 2023. URL https://arxiv.org/
abs/2301.09785.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chap-
lot, Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mistral 7b, 2023. URL https:
//arxiv.org/abs/2310.06825.

Zhuoran Jin, Pengfei Cao, Hongbang Yuan, Yubo Chen, Jiexin Xu, Huaijun Li, Xiaojian Jiang,
Kang Liu, and Jun Zhao. Cutting off the head ends the conflict: A mechanism for interpreting
and mitigating knowledge conflicts in language models, 2024. URL https://arxiv.org/
abs/2402.18154.

Zixuan Ke and Bing Liu. Continual learning of natural language processing tasks: A survey, 2023.
URL https://arxiv.org/abs/2211.12701.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
reading comprehension, August 2017. URL https://aclanthology.org/K17-1034.

Xiaopeng Li, Shasha Li, Shezheng Song, Jing Yang, Jun Ma, and Jie Yu. Pmet: Precise model
editing in a transformer, 2024. URL https://arxiv.org/abs/2308.08742.

Sen Lin, Li Yang, Deliang Fan, and Junshan Zhang. Trgp: Trust region gradient projection for
continual learning, 2022. URL https://arxiv.org/abs/2202.02931.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study
of catastrophic forgetting in large language models during continual fine-tuning, 2024. URL
https://arxiv.org/abs/2308.08747.

Jun-Yu Ma, Hong Wang, Hao-Xiang Xu, Zhen-Hua Ling, and Jia-Chen Gu. Perturbation-restrained
sequential model editing, 2024. URL https://arxiv.org/abs/2405.16821.

Vittorio Mazzia, Alessandro Pedrani, Andrea Caciolai, Kay Rottmann, and Davide Bernardi. A
survey on knowledge editing of neural networks, 2024. URL https://arxiv.org/abs/
2310.19704.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt, 2023a. URL https://arxiv.org/abs/2202.05262.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer, 2023b. URL https://arxiv.org/abs/2210.07229.

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea Finn, and Christopher D. Manning. Fast
model editing at scale, 2022a. URL https://arxiv.org/abs/2110.11309.

Eric Mitchell, Charles Lin, Antoine Bosselut, Christopher D. Manning, and Chelsea Finn. Memory-
based model editing at scale, 2022b. URL https://arxiv.org/abs/2206.06520.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Quan Ngoc Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernández. The lambada dataset:
Word prediction requiring a broad discourse context, 2016. URL https://arxiv.org/
abs/1606.06031.

Fabio Petroni, Tim Rocktäschel, Patrick Lewis, Anton Bakhtin, Yuxiang Wu, Alexander H. Miller,
and Sebastian Riedel. Language models as knowledge bases?, 2019. URL https://arxiv.
org/abs/1909.01066.

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever.
Language models are unsupervised multitask learners. 2019. URL https://api.
semanticscholar.org/CorpusID:160025533.

12

https://arxiv.org/abs/2402.10987
https://arxiv.org/abs/2301.09785
https://arxiv.org/abs/2301.09785
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2310.06825
https://arxiv.org/abs/2402.18154
https://arxiv.org/abs/2402.18154
https://arxiv.org/abs/2211.12701
https://aclanthology.org/K17-1034
https://arxiv.org/abs/2308.08742
https://arxiv.org/abs/2202.02931
https://arxiv.org/abs/2308.08747
https://arxiv.org/abs/2405.16821
https://arxiv.org/abs/2310.19704
https://arxiv.org/abs/2310.19704
https://arxiv.org/abs/2202.05262
https://arxiv.org/abs/2210.07229
https://arxiv.org/abs/2110.11309
https://arxiv.org/abs/2206.06520
https://arxiv.org/abs/1606.06031
https://arxiv.org/abs/1606.06031
https://arxiv.org/abs/1909.01066
https://arxiv.org/abs/1909.01066
https://api.semanticscholar.org/CorpusID:160025533
https://api.semanticscholar.org/CorpusID:160025533

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Gobinda Saha, Isha Garg, and Kaushik Roy. Gradient projection memory for continual learning,
2021. URL https://arxiv.org/abs/2103.09762.

Maarten Sap, Hannah Rashkin, Derek Chen, Ronan LeBras, and Yejin Choi. Socialiqa: Common-
sense reasoning about social interactions, 2019. URL https://arxiv.org/abs/1904.
09728.

Alon Talmor, Jonathan Herzig, Nicholas Lourie, and Jonathan Berant. Commonsenseqa: A question
answering challenge targeting commonsense knowledge, 2019. URL https://arxiv.org/
abs/1811.00937.

Chenmien Tan, Ge Zhang, and Jie Fu. Massive editing for large language models via meta learning,
2024. URL https://arxiv.org/abs/2311.04661.

Liyuan Wang, Xingxing Zhang, Hang Su, and Jun Zhu. A comprehensive survey of continual
learning: Theory, method and application, 2024a. URL https://arxiv.org/abs/2302.
00487.

Peng Wang, Zexi Li, Ningyu Zhang, Ziwen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang,
and Huajun Chen. Wise: Rethinking the knowledge memory for lifelong model editing of large
language models, 2024b. URL https://arxiv.org/abs/2405.14768.

Song Wang, Yaochen Zhu, Haochen Liu, Zaiyi Zheng, Chen Chen, and Jundong Li. Knowledge edit-
ing for large language models: A survey, 2023a. URL https://arxiv.org/abs/2310.
16218.

Xiao Wang, Tianze Chen, Qiming Ge, Han Xia, Rong Bao, Rui Zheng, Qi Zhang, Tao Gui, and
Xuanjing Huang. Orthogonal subspace learning for language model continual learning, 2023b.
URL https://arxiv.org/abs/2310.14152.

Zhenyi Wang, Enneng Yang, Li Shen, and Heng Huang. A comprehensive survey of forgetting in
deep learning beyond continual learning, 2023c. URL https://arxiv.org/abs/2307.
09218.

Rongwu Xu, Zehan Qi, Zhijiang Guo, Cunxiang Wang, Hongru Wang, Yue Zhang, and Wei Xu.
Knowledge conflicts for llms: A survey, 2024. URL https://arxiv.org/abs/2403.
08319.

Yunzhi Yao, Peng Wang, Bozhong Tian, Siyuan Cheng, Zhoubo Li, Shumin Deng, Huajun Chen,
and Ningyu Zhang. Editing large language models: Problems, methods, and opportunities, 2023.
URL https://arxiv.org/abs/2305.13172.

Ningyu Zhang, Yunzhi Yao, Bozhong Tian, Peng Wang, Shumin Deng, Mengru Wang, Zekun Xi,
Shengyu Mao, Jintian Zhang, Yuansheng Ni, Siyuan Cheng, Ziwen Xu, Xin Xu, Jia-Chen Gu,
Yong Jiang, Pengjun Xie, Fei Huang, Lei Liang, Zhiqiang Zhang, Xiaowei Zhu, Jun Zhou, and
Huajun Chen. A comprehensive study of knowledge editing for large language models, 2024a.
URL https://arxiv.org/abs/2401.01286.

Taolin Zhang, Qizhou Chen, Dongyang Li, Chengyu Wang, Xiaofeng He, Longtao Huang, Hui Xue,
and Jun Huang. Dafnet: Dynamic auxiliary fusion for sequential model editing in large language
models, 2024b. URL https://arxiv.org/abs/2405.20588.

Ce Zheng, Lei Li, Qingxiu Dong, Yuxuan Fan, Zhiyong Wu, Jingjing Xu, and Baobao Chang. Can
we edit factual knowledge by in-context learning?, 2023. URL https://arxiv.org/abs/
2305.12740.

Zexuan Zhong, Zhengxuan Wu, Christopher D. Manning, Christopher Potts, and Danqi Chen.
Mquake: Assessing knowledge editing in language models via multi-hop questions, 2024. URL
https://arxiv.org/abs/2305.14795.

13

https://arxiv.org/abs/2103.09762
https://arxiv.org/abs/1904.09728
https://arxiv.org/abs/1904.09728
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/1811.00937
https://arxiv.org/abs/2311.04661
https://arxiv.org/abs/2302.00487
https://arxiv.org/abs/2302.00487
https://arxiv.org/abs/2405.14768
https://arxiv.org/abs/2310.16218
https://arxiv.org/abs/2310.16218
https://arxiv.org/abs/2310.14152
https://arxiv.org/abs/2307.09218
https://arxiv.org/abs/2307.09218
https://arxiv.org/abs/2403.08319
https://arxiv.org/abs/2403.08319
https://arxiv.org/abs/2305.13172
https://arxiv.org/abs/2401.01286
https://arxiv.org/abs/2405.20588
https://arxiv.org/abs/2305.12740
https://arxiv.org/abs/2305.12740
https://arxiv.org/abs/2305.14795

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A RELATED WORK

A.1 KNOWLEDGE EDITING

From the perspective of whether model parameters are modified, (Yao et al., 2023) categorized
knowledge editing methods into two major classes: preserving the model’s parameters and modify-
ing the model’s parameters. This paper primarily focuses on the latter. On one hand, meta-learning
has been used to predict parameter updates for networks, typically employing a hypernetwork to
edit language models. (Cao et al., 2021) used a bidirectional LSTM to predict weight updates for
editing, while (Mitchell et al., 2022a) utilized low-rank decomposition of gradients to fine-tune lan-
guage models, known as MEND, and (Tan et al., 2024) extended single-step edits to batch edits
using a least squares method based on MEND. On the other hand, (Meng et al., 2023a; Dai et al.,
2022) employed a causal probe to localize knowledge within the intermediate layers of the model,
demonstrating that editing in the MLP of the middle layers yields the best results. (Dai et al., 2022)
performed knowledge editing by modifying the activation values of specific neurons. (Meng et al.,
2023a) used a constrained least squares method to precisely solve for the parameter updates required
for editing and extended this approach to batch editing (Meng et al., 2023b).

A.2 SEQUENTIAL EDITING

Some studies have extended knowledge editing methods to sequential editing. From the perspective
of modifying model parameters, (Ma et al., 2024) theoretically analyzed that the bottleneck limiting
sequential editing in models lies in the condition number of matrices, and they attempted to support
sequential editing by controlling the growth of the matrix condition number. (Hu et al., 2024b) at-
tributed the decline in performance during sequential editing to pattern mismatch, where different
layers detect different patterns, making a single layer incapable of accommodating all the edited
knowledge. Thus, they selected the optimal layer from multiple layers for editing. Additionally,
(Hu et al., 2024a) explored the root causes of failures in sequential editing, deriving a closed-form
solution from linear associative memory. They posited that lossless sequential editing can only be
achieved when the edited knowledge is completely orthogonal. From the perspective of adding ad-
ditional parameters while freezing model parameters, SERAC (Mitchell et al., 2022b) stores edits
in memory. When an input is received, a classifier checks whether it corresponds to any cached
edits. If a match is found, a counterfactual model uses the input and relevant edits to predict outputs.
GRACE (Hartvigsen et al., 2023) uses semantic similarity in the model’s latent space by adding an
offline key-value adapter at the selected layers, applying edits only to inputs that are similar to the
keys cached in the encoding. WISE (Wang et al., 2024b) uses a dual-parameter storage scheme,
where the main memory is used for pre-trained knowledge and the side memory is designated for
edited knowledge. By incorporating a knowledge sharding mechanism, it allows for editing knowl-
edge in different parameter subspaces and merges them into the shared side memory without causing
conflicts. In this paper, we consider the scenario of directly updating model parameters.

A.3 CONTINUAL LEARNING

The orthogonal concept presented in this paper is inspired by continual learning. Existing continual
learning methods typically update all tasks within a shared vector space (Ke & Liu, 2023), which
directly affects the model’s hidden layer outputs (Wang et al., 2024a). Some studies (Farajtabar
et al., 2019; Saha et al., 2021) have proposed a promising approach to address this issue by perform-
ing gradient descent optimization in directions orthogonal to the gradient subspaces of past tasks,
effectively mitigating catastrophic forgetting. GPM (Saha et al., 2021) divides the gradient space
into two key areas: the “Core Gradient Space” (CGS) and the “Residual Gradient Space” (RGS). By
learning in the orthogonal directions of the CGS related to previous task inputs, it ensures minimal
interference with past tasks. Based on GPM, TRGP (Lin et al., 2022) introduces a “trust region”
concept to select old tasks relevant to new ones, reusing their frozen weights through scaled weight
projections. By optimizing the scaling matrix and updating the model along orthogonal directions
to the old tasks’ subspace, TRGP effectively facilitates knowledge transfer without forgetting. O-
LoRA (Wang et al., 2023b) suggests that parameter information updated through low rank can be
approximately equivalent to gradient information, which expands the application scenarios of con-
tinual learning and enables effective learning even in scenarios where gradient information cannot
be obtained.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

B ALGORITHM

B.1 ORTHOGONAL GRADIENT DESCENT FOR CONTINUAL LEARNING

Consider a continual learning setting where tasks {T1, T2, T3, . . .} are learned sequentially without
access to previous task data. Suppose that the model has been trained on TA in the usual way until
convergence to a update parameter w∗

A. To mitigate the impact on TA while training on the next task
TB , Farajtabar et al. (2019) propose to “orthogonalize” it in a way that the new update direction g̃
on TB satisfies:

g̃ ⊥ ∇f(x;w∗
A), ∀x ∈ TA. (12)

One can compute and store ∇f(x;w) for all x ∈ TA when training on TA is done. In a continual
learning scenario involving multiple tasks, the direction of gradient updates is determined by:

g̃ = g −
nA∑
i=1

projgi
(g) = g −

nA∑
i=1

⟨g,gi⟩gi (13)

The new direction -g̃ is still a descent direction for TB , meaning that there exists ϵ > 0 such that for
any learning rate 0 < η < ϵ, taking the step -ηg̃ reduces the loss.

B.2 SINGULAR VALUE DECOMPOSITION AND RANK-r APPROXIMATION

Singular Value Decomposition (SVD) decomposes any matrix W ∈ Rm×n into three matrices:
W = UΣV T , where U ∈ Rm×m and V ∈ Rn×n are orthogonal matrices, and Σ is a diagonal ma-
trix containing the singular values σi of W , ordered in descending magnitude. SVD is instrumental
in solving the rank-r approximation problem, where the goal is to find a matrix W̃ that minimizes
∥W̃ −W∥2 subject to rank(W̃) ≤ r. According to the Eckart–Young–Mirsky theorem (Eckart &
Young, 1936), the optimal rank-r approximation W̃ is given by W̃ =

∑r
i=1 σiuiv

T
i , obtained by

truncating the SVD of W to retain the top r singular values and their corresponding singular vectors,
where r ≤ min{m,n}.

B.3 ROME

In their study, (Meng et al., 2023a) employed causal mediation analysis to identify that feed-forward
neural networks (FFNs) play a crucial role in retaining factual knowledge. The FFN is decomposed
into two matrices, represented as follows:

FFN l(x) = W l
proj · σ(W l

fc · γ(al + hl−1)) (14)

Here, al ∈ Rd represents the output of the attention module at the l-th layer, and hl−1 ∈ Rd denotes
the output of the previous layer. The matrices W l

fc ∈ Rdm×d and W l
proj ∈ Rd×dm serve as the

parameter matrices for the FFN at the l-th layer. Here, dm is the dimension of the intermediate
hidden state, σ denotes the activation function, and normalizing nonlinearity γ.

Building on the key-value memory theory introduced in (Geva et al., 2021; 2022), the matrix W l
fc is

responsible for identifying input patterns, which leads to the generation of the key vector k ∈ Rd
m.

In contrast, W l
proj retrieves the corresponding value vector v ∈ Rd. This establishes W l

proj as a
linear key-value memory system, where the set of key vectors K = {k1, k2, . . .} is associated with
the corresponding set of value vectors V = {v1, v2, . . .}. The relationship between the keys and
values can be succinctly expressed as WK = V , thereby completing the transformation process.

Meng et al. (2023a) propose ROME, in which new knowledge is represented as a key-value pair
(k∗, v∗) and is integrated into the model by addressing the following constrained least squares prob-
lem:

min ∥W̃K − V ∥2 subject to W̃k∗ = v∗, with W̃ = W + Λ(C−1k∗)
T . (15)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Here, ∆W = Λ(C−1k∗)
T , k∗ represents the query associated with the knowledge to be edited,

such as x = “The president of the US is”, where k∗ corresponds to the hidden state of the last token
(index i) of the subject (e.g., “US”). The key vector k∗ is defined as:

k∗ =
1

N

N∑
j=1

k(sj + x), where k(x) = σ
(
W l

fcγ
(
al[x],i + hl−1

[x],i

))
, (16)

with sj representing prefix texts for robustness. The value vector v∗ denotes the edited knowledge
result, for instance, “Harris” or “Trump”, computed as v∗ = argminv L(v), where L(v) is given
by:

L(v) = 1

N

N∑
j=1

− logP(v=v∗)[o
∗|pj + x] +DKL

(
PG(v=v∗)[x|p

′] ∥ PG[x|p′]
)
. (17)

The first term serves to update the knowledge, while the second term preserves the essence of the
subject. The objective is to modify the model’s response to the knowledge query, yielding an output
o∗ (e.g., “Harris” or “Trump”). Additionally, C = KKT is a pre-computed constant that estimates
the uncentered covariance of k, and Λ = (v∗ −Wk∗)/(C

−1k∗)
T k∗ represents the residual error of

the new key-value pair. Further details can be found in (Meng et al., 2023a).

To manage editing intensity, (Meng et al., 2023b) introduced MEMIT, which computes matrix
updates by solving:

W̃ = W +RkT∗ (C + k∗k
T
∗)

−1, (18)

where ∆W = RkT∗ (C + k∗k
T
∗)

−1, C = λ ·KKT , and R = v∗ −Wk∗ ∈ Rd is a column vector.
The parameter λ allows for adjusting the balance between new edits and the original knowledge. It
is noteworthy that in both ROME and MEMIT, only v∗ is derived through the training process,
and this operation will be optimized in subsequent steps. For additional implementation details
regarding MEMIT, please refer to Appendix B.4.

B.4 MEMIT

In this paper, we consider the scenario of editing one piece of knowledge at a time. Similar to ROME,
MEMIT views W l

proj as a linear key-value memory for a set of vector keys K = {k1, k2, . . .} and
corresponding vector values V = {v1, v2, . . .} by solving WK = V . It attempts to insert a new
key-value pair (k∗, v∗) into the model by solving the following constrained least squares problem:

W̃ = argmin
Ŵ

(∥∥∥ŴK − V
∥∥∥
2
+

∥∥∥Ŵk∗ − v∗

∥∥∥
2

)
. (19)

MEMIT solves Eqn. 19 by applying the normal equation, which is expressed in block form:

W̃ [K k∗]

[
KT

kT∗

]
= [V v∗]

[
KT

kT∗

]
, (10)

which expands to:
(W +∆)

(
KKT + k∗k

T
∗
)
= V KT + v∗k

T
∗ , (11)

WKKT +Wk∗k
T
∗ +∆KTK +∆kT∗ k∗ = V KT + v∗k

T
∗ . (12)

Under the condition WK = V , we can simplify to:

∆(KKT + k∗k
T
∗) = v∗k

T
∗ −Wk∗k

T
∗ , (20)

yielding:
∆ = (v∗ −Wk∗)k

T
∗ (KKT + k∗k

T
∗)

−1. (21)

Thus, the final update rule is:

W̃ = W + (v∗ −Wk∗)k
T
∗ (KKT + k∗k

T
∗)

−1. (22)

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Here, (v∗ −Wk∗) ∈ Rd is a column vector, and kT∗ (KKT + k∗k
T
∗)

−1 ∈ Rdm is a row vector. By
adjusting the hyperparameter λ, MEMIT balances the preservation of existing knowledge and the
incorporation of new edits. Consequently, the updated equation is expressed as follows:

W̃ = W + (v∗ −Wk∗)k
T
∗ (λKKT + k∗k

T
∗)

−1. (23)

Like ROME, KKT is pre-cached by estimating the uncentered covariance of k from a sample of
Wikipedia text. The rank of the update matrix ∆W = (v∗−Wk∗)k

T
∗ (λKKT + k∗k

T
∗)

−1 obtained
through ROME and MEMIT is 1.

In fact, MEMIT is a scalable extension of ROME. By increasing λ, MEMIT effectively enhances
the retention of existing knowledge while also allowing for new updates. However, the restrictive
conditions imposed by ROME, which require k∗W̃ ≡ v∗ as seen in Eqn. 15, can be overly stringent
and may lead to greater disruption of existing knowledge within the model.

B.5 O-EDIT AND O -EDIT+

We will provide a detailed explanation of the calculation formula for O-Edit. To explain how to
compute Eqn. 5, we first analyze the properties of the update matrices for each piece of knowledge.
Based on the matrix property rank(AB) ≤ min(rank(A), rank(B)), the ranks of Λ(C−1k∗)

T in
Eqn. 15 and RkT∗ (C + k∗k

T
∗)

−1 in Eqn. 18 are both 1. In the i-th edit, the rank of the cached
∆W[total] ∈ Rd×dm is at most i, with equality when each k∗ is linearly independent. After several
edits, rank(∆W[total]) = 1 × iteration, but as updates increase, rank(∆W[total]) may fall below the
iteration count. Therefore, r is always equal to rank(∆W[total]), and ∆Wr is ∆W[total] itself.

During the computation process, we observe that ∆WT
r = U∆Wr

Σ∆Wr
V T
∆Wr

, where U∆Wr
∈

Rdm×r, V∆Wr
∈ Rd×r, and Σ∆Wr

is a diagonal matrix. Eqn. 2 can be rewritten as:

U∆Wr
Σ∆Wr

V T
∆Wr

·∆W[2] = 0. (24)

We only need to ensure that v∗ −Wk∗ is orthogonal to Vr. Therefore, Eqn. 5 can be rewritten as:

f1 =
1

r

r∑
i=0

sim(V∆Wr
[i], (v∗ −Wk∗)). (25)

The key reason for using cosine similarity instead of V T
∆Wr
·(v∗−Wk∗) is that the latter may lead to

trivial solutions, i.e., v∗ −Wk∗ = 0, while cosine similarity considers angular information. In fact,
merely reducing the norm of v∗ −Wk∗ does not effectively enhance the effectiveness of sequential
editing. The success of O-Edit and O-Edit+ lies in identifying the correct update direction during
the sequential editing process. For further details, see Further Analysis 5.3.

Furthermore, when calculating ∇G, we utilized a large amount of natural text, resulting in ∇G
being a high-rank matrix, which is distinct from ∆W[total]. We dynamically adjust q to select the
core gradient subspace (CGS) of ∇G, defined as ∇GT

q = U∇Gq
Σ∇Gq

V T
∇Gq

. The purpose of this
adjustment is to counteract the cumulative impact of edited knowledge on the implicit knowledge
within the model as the number of edits increases. We adjust q to increase linearly with the number
of edits. In practice, we compute Eqn. 7 by removing the projection of V∇Gq onto V∆Wr :

V∇Gq = V∇Gq − V∆WrV
T
∆Wr

V∇Gq . (26)

Finally, we compute Eqn. 9 as follows:

f2 =
1

q

q∑
i=0

sim(V∇Gq [i], (v∗ −Wk∗)). (27)

Next, we will provide a detailed explanation of the calculation formula for O-Edit+. To ensure
that the column subspaces of ∆Wr and ∆W[2] are orthogonal, it is sufficient to ensure that the
projection of ∆W[2] onto the standard orthogonal basis of the column space of ∆Wr is zero. Similar

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

to O-Edit, ∆Wr is ∆W[total], and ∇Gq is a high-rank matrix. Eqn. 10 can be rewritten as:

∆W[2] = ∆W[2] − V∆WrV
T
∆Wr

∆W[2],

V∇Gq
= V∇Gq

− V∆Wr
V T
∆Wr

V∇Gq
,

∆W[2] = ∆W[2] − V∇Gq
V T
∇Gq

∆W[2].

(28)

O-Edit and O-Edit+ are adaptations of ROME and MEMIT for sequential editing, and all experi-
mental settings are consistent with those of ROME and MEMIT. Readers can refer to Algorithm 1
and Algorithm 2 for their pseudo-code.

Algorithm 1 Algorithm for Sequential Editing with O-Edit

Require: Dedit = {(Xe,Ye) | (x1, y1), . . . , (xT , yT)}, original weight W , hyperparamter r, q, λ1,
λ2, λ3, gradient information∇G.

Ensure: The optimal parameter W̃
1: for Iteration ∈ T do
2: if Iteration = 1 then
3: q ← λ3 × 1, r ← 0
4: ∇GT

q = U∇GqΣ∇GqV
T
∇Gq

← ∥∇Gq − ∇G∥2, subject to rank(∇Gq) = q // Obtain by
calculating the SVD decomposition of∇G

5: Compute k∗ = 1
N

∑N
j=1 k(sj + x) (Eqn. 16)

6: Compute v∗ by optimizing L(v) + 0 · f1(∆Wr; v) + λ2f2(∇Gq; v) (Eqn.8) // Eqn. 25, 27
for compute f1 andf2.

7: ∆W[1] ← Λ(C−1k∗)
T for ROME (Eqn.15) // ∆W1 ← RkT∗ (C + k∗k

T
∗)

−1 for MEMIT
(Eqn. 18)

8: W̃ ←W +∆W[1] // Update original weight W to W̃
9: Initialize ∆W[total] ← ∆W[1]

10: else
11: q ← λ3 × Iteration, r ← min(1 × Iteration - 1, rank(∆W[total]))
12: ∇GT

q = U∇Gq
Σ∇Gq

V T
∇Gq

← ∥∇Gq −∇G∥2, subject to rank(∇Gq) = q

13: ∆WT
r = U∆Wr

Σ∆Wr
V T
∆Wr

← ∥∆Wr − ∆W[total]∥2, subject to rank(∆Wr) = r //
Actually, ∆Wr = ∆W[total]

14: ∇Gq = ∇Gq −∆Wr(∆WT
r ∆Wr)

−1∆WT
r ∇Gq, // Avoid knowledge conflicts, compute

by Eqn.26
15: Compute k∗ = 1

N

∑N
j=1 k(sj + x) (Eqn. 16)

16: Compute v∗ by optimizing L(v) + λ1f1(∆Wr; v) + λ2f2(∇Gq; v) (Eqn.8) // Eqn. 25, 27
for compute f1 andf2.

17: ∆W[Iteration] ← Λ(C−1k∗)
T for ROME (Eqn.15) // ∆W[Iteration] ← RkT∗ (C + k∗k

T
∗)

−1 for
MEMIT (Eqn. 18)

18: W̃ ← W̃ +∆W[Iteration] // Iterative update of the model weights
19: ∆W[total]+ = ∆W[Iteration] // Update the cache of ∆W[total]
20: end if
21: end for
22: return update weight W̃

B.6 HOW TO CHOOSE AN APPROPRIATE ∇Gq

The core of our method lies in capturing the update direction of implicit knowledge within the
model. Theoretically, if we view the model as a knowledge base (Petroni et al., 2019), the update
direction should align with the gradient direction in which the model continues to learn from this
knowledge. Thus, selecting the appropriate knowledge base is crucial for determining the model’s
update gradient. We explored the following methods:

• We selected 100,000 pieces of unrelated knowledge from COUNTERFACT, which are
outside the experimental test samples. This set, referred to as “locality prompt” in Figure
9, serves as the expected gradient direction.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 2 Algorithm for Sequential Editing with O-Edit+

Require: Dedit = {(Xe,Ye) | (x1, y1), . . . , (xT , yT)}, original weight W , hyperparamter r, q, λ3,
gradient information∇G.

Ensure: The optimal parameter W̃
1: for Iteration ∈ T do
2: if Iteration = 1 then
3: q ← λ3 × 1, r ← 0
4: ∇GT

q = U∇Gq
Σ∇Gq

V T
∇Gq

← ∥∇Gq − ∇G∥2, subject to rank(∇Gq) = q // Obtain by
calculating the SVD decomposition of∇G

5: Compute k∗ = 1
N

∑N
j=1 k(sj + x) (Eqn. 16)

6: Compute v∗ by optimizing L(v) (Eqn.17)
7: ∆W1 ← Λ(C−1k∗)

T for ROME (Eqn.15) // ∆W[1] ← RkT∗ (C + k∗k
T
∗)

−1 for MEMIT
(Eqn. 18)

8: ∆W[1] = ∆W[1] − V∇GqV
T
∇Gq

∆W[1]. (Eqn. 28)// Orthogonal post-processing

9: W̃ ←W +∆W[1] // Update original weight W to W̃
10: Initialize ∆W[total] ← ∆W[1]
11: else
12: q ← λ3 × Iteration, r ← Iteration− 1
13: ∇GT

q = U∇Gq
Σ∇Gq

V T
∇Gq

← ∥∇Gq −∇G∥2, subject to rank(∇Gq) = q

14: ∆WT
r = U∆Wr

Σ∆Wr
V T
∆Wr

← ∥∆Wr − ∆W[total]∥2, subject to rank(∆Wr) = r //
Actually, ∆Wr = ∆W[total]

15: Compute k∗ = 1
N

∑N
j=1 k(sj + x) (Eqn. 16)

16: Compute v∗ by optimizing L(v) (Eqn.17)
17: ∆W[Iteration] ← Λ(C−1k∗)

T for ROME (Eqn.15) // ∆WIteration ← RkT∗ (C + k∗k
T
∗)

−1 for
MEMIT (Eqn. 18)

18: ∆W[Iteration] = ∆W[Iteration] − V∆WrV
T
∆Wr

∆W[Iteration]

V∇Gq
= V∇Gq

− V∆Wr
V T
∆Wr

V∇Gq
, (Eqn. 28) // Orthogonal post-processing

∆W[Iteration] = ∆W[Iteration] − V∇Gq
V T
∇Gq

∆W[Iteration]

19: W̃ ← W̃ +∆W[Iteration] // Iterative update of the model weights
20: ∆W[total]+ = ∆W[Iteration] // Update the cache of ∆W[total]
21: end if
22: end for
23: return update weight W̃

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

• We utilized the knowledge employed by (Meng et al., 2023a), which successfully identified
how knowledge is stored within the model.

• For comparison, we randomly generated 100,000 text samples using ASCII codes.
• We also used Wikipedia as a knowledge source, as it is commonly chosen for pre-training

in large language models (LLMs).

The experimental results are presented in Appendix Table 2. We maintained consistency in the
parameters related to ∆W[total] across experiments, with the only variable being the source of the∇G
corpus. Randomly generated text yielded the poorest performance, while the “locality prompt” from
COUNTERFACT achieved the second-best results, only surpassed by Wikipedia, which produced
the best outcomes. These results also serve as reverse validation that the implicit knowledge within
the model is embedded in its pre-training data.

Table 2: Different corpus results for COUNTERFACT. T : Num Edits.

MEMIT
COUNTERFACT

T = 200 T = 500 T = 1000 T = 1500

Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

Mistral-7B

Corpus➊ 0.89 0.62 0.74 0.75 0.79 0.55 0.61 0.65 0.64 0.37 0.52 0.54 0.57 0.39 0.51 0.49
Corpus➋ 0.90 0.62 0.73 0.75 0.76 0.53 0.60 0.63 0.62 0.33 0.50 0.48 0.54 0.36 0.49 0.46
Corpus➌ 0.86 0.60 0.73 0.73 0.74 0.51 0.56 0.60 0.59 0.32 0.44 0.45 0.57 0.33 0.46 0.45
Corpus➍ 0.89 0.61 0.78 0.76 0.81 0.55 0.60 0.65 0.68 0.39 0.55 0.54 0.61 0.42 0.53 0.52

Llama3-8B

Corpus➊ 0.88 0.47 0.65 0.67 0.85 0.48 0.36 0.56 0.79 0.47 0.29 0.52 0.77 0.46 0.26 0.49
Corpus➋ 0.91 0.48 0.66 0.68 0.85 0.50 0.40 0.58 0.79 0.47 0.30 0.52 0.74 0.44 0.27 0.48
Corpus➌ 0.85 0.41 0.63 0.63 0.83 0.45 0.31 0.53 0.74 0.41 0.24 0.46 0.70 0.35 0.19 0.41
Corpus➍ 0.88 0.53 0.76 0.72 0.84 0.51 0.45 0.60 0.81 0.50 0.31 0.54 0.79 0.44 0.28 0.50

B.7 BASELINE EDITING METHODS

We selected five popular model editing methods as baselines:

• Fine-Tuning (FT), we employ the reimplementation guidelines from Yao et al. (2023).
This involves utilizing the Adam optimizer and implementing early stopping to minimize
− logPLM [∗|p], while only adjusting Wproj.
• Elastic Weight Consolidation (FT-EWC) has been shown to effectively mitigate catas-

trophic forgetting by updating weights based on a Fisher information matrix, which is de-
rived from past edits and scaled by a factor λ. In line with Wang et al. (2024b), we have
chosen to omit the constraints of the L∞ norm in this implementation.

• MEND (Mitchell et al., 2022a) adeptly manipulates the gradient of fine-tuned language
models by capitalizing on a low-rank decomposition of the gradients, thereby enhancing
the accuracy of the editing process. We use the default settings from Yao et al. (2023).

• ROME (Meng et al., 2023a) has been previously discussed. In this experiment, we edit the
8th layer, which is regarded as a crucial location for knowledge storage. We utilize second
moment statistics C ∝ E[kkT] computed from more than 100,000 samples of hidden states
k derived from tokens sampled across all Wikipedia text in context.

• MEMIT (Meng et al., 2023b)—the detailed computation process can be found in Appendix
B.4. We set λ = 15, 000 to balance the knowledge in the model with the knowledge
required for editing. Other settings are consistent with those in ROME.

• R-Edit (Gupta et al., 2024a) attributes the suboptimal performance of ROME and MEMIT
to the inadequacy of the calculated k∗ in representing the subject of the queried knowledge.
R-Edit enhances the calculation of k∗ in Eqs. 15 and 18 to address this issue.

• WilKE (Hu et al., 2024b) argues that different types of knowledge should be distributed
across various layers. For each piece of knowledge edited, WilKE first determines the
optimal layer for editing and then applies either ROME or MEMIT to perform the edit.
Due to the time and computational cost of finding the optimal layer, we restrict the editable
layers in this paper to l = {5, 6, 7, 8, 9, 10}.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

• PRUNE (Ma et al., 2024) suggests that the key factor influencing sequential editing perfor-
mance is the condition number of the matrix. PRUNE scales the singular values in ∆Wtotal
that exceed the maximum singular value of the original model, ensuring that no singular
value surpasses a specified threshold. We adhere to the experimental setup outlined in Ma
et al. (2024) and scale the larger singular values using the following method:

F (σ̂i) = log1.2(σ̂i)− log1.2(max {σi}) + max {σi}.

Table 3: Different orthogonal method results for COUNTERFACT. T : Num Edits.

Method
COUNTERFACT

T = 200 T = 500 T = 1000 T = 1500

Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

Mistral-7B

MEMIT 0.93 0.67 0.41 0.67 0.50 0.35 0.10 0.32 0.28 0.10 0.06 0.15 0.19 0.06 0.05 0.10

➊Only∆W[total] 0.91 0.54 0.77 0.74 0.79 0.53 0.55 0.62 0.61 0.37 0.51 0.50 0.55 0.37 0.46 0.46
➋Only∇G 0.89 0.55 0.74 0.72 0.76 0.50 0.51 0.59 0.57 0.34 0.49 0.47 0.44 0.27 0.24 0.32
➌Without Eqn.7(26) 0.89 0.59 0.77 0.75 0.78 0.56 0.56 0.63 0.58 0.37 0.52 0.49 0.49 0.36 0.49 0.44
O-Edit+ 0.89 0.61 0.78 0.76 0.81 0.55 0.60 0.65 0.68 0.39 0.55 0.54 0.61 0.42 0.53 0.52

Llama3-8B

MEMIT 0.85 0.51 0.22 0.52 0.50 0.35 0.10 0.32 0.28 0.10 0.05 0.14 0.18 0.06 0.05 0.10

➊Only∆W[total] 0.91 0.49 0.65 0.68 0.87 0.54 0.36 0.59 0.78 0.45 0.28 0.50 0.74 0.41 0.25 0.47
➋Only∇G 0.87 0.49 0.62 0.66 0.77 0.41 0.32 0.50 0.64 0.32 0.28 0.41 0.55 0.28 0.22 0.35
➌Without Eqn.7(26) 0.88 0.48 0.65 0.67 0.87 0.50 0.41 0.60 0.78 0.46 0.32 0.52 0.67 0.39 0.28 0.43
O-Edit+ 0.88 0.53 0.76 0.72 0.84 0.51 0.45 0.60 0.81 0.50 0.31 0.54 0.79 0.44 0.28 0.50

B.8 EXPERIMENTS COMPUTE RESOURCES TIME AND HYPERPARAMETERS

We conducted our experiments using NVIDIA A100 40GB GPUs. For Mistral-7B and LLaMA3-8B,
ROME and MEMIT require approximately 35GB of memory and take about 2.5 hours to process
1500 edits. In comparison, O-Edit and O-Edit+ take about 4.5 hours for the same number of ed-
its. The additional computation time is primarily due to the singular value decomposition (SVD)
of matrices. For ∇G, its SVD is computed once prior to the first edit, with the V matrix saved for
reuse. However, for ∆W[total], which is dynamically updated, the SVD must be recomputed after
each knowledge edit. On average, computing the SVD for a matrix W ∈ R4096×14336 takes ap-
proximately 4 seconds, while a single edit using ROME or MEMIT takes around 6 seconds. For
sequential editing, O-Edit and O-Edit+ require only one SVD computation on average per edit, with
results significantly surpassing those of traditional methods by several times. See Table 4 for the
specific computation times.

Table 4: Computation Time (seconds).

Method Datasets

COUNTERFACT-1500 ZsRE-1500 RECENT-1200 WIKICF-400

ROME 8716 8694 6917 2251
+O-Edit 13289 13961 10663 4591
+O-Edit+ 12286 12664 9451 4256

MEMIT 9122 9345 7533 2614
+O-Edit 15438 15957 12640 4997
+O-Edit+ 14766 14664 10854 4651

For all experimental settings of O-Edit, we set λ1 and λ2 = 50. For O-Edit+, we set λ3 = 2 for
Mistral-7B and λ3 = 1 for LLaMA-8B in MEMIT; λ3 = 2.5 for both Mistral-7B and LLaMA3-
8B in ROME. In the next Section B.9, we conducted detailed ablation experiments and parameter
selection experiments to further analyze the impact of hyperparameters on editing performance.

Another potential issue arises when q exceeds the dimensions of the model (min(d, dm))5. In this
paper, we have considered 1500 edits. When the number of required edits exceeds this amount,
q can be constrained by setting it below a certain threshold to ensure the feasibility of performing
additional edits. A smaller threshold for q typically results in more effective edits, while a larger
threshold tends to preserve the model’s ability to retain unrelated knowledge. However, in general,
increasing the number of edits tends to cause greater degradation in the model’s performance.

5The dimension of Wproj in both Mistral-7B and LLaMA3-8B is R4096×14336.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 5: Hpyerparameter selection results for O-Edit+. T : Num Edits.

Method
COUNTERFACT

T = 200 T = 500 T = 1000 T = 1500

Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

Mistral-7B

ROME 0.72 0.53 0.31 0.52 0.30 0.18 0.14 0.21 0.28 0.10 0.06 0.15 0.27 0.13 0.05 0.13

λ3 = 1 0.92 0.50 0.73 0.71 0.60 0.34 0.34 0.42 0.38 0.13 0.17 0.22 0.35 0.17 0.10 0.20
λ3 = 2 0.95 0.47 0.73 0.71 0.64 0.34 0.40 0.46 0.43 0.16 0.21 0.26 0.37 0.19 0.17 0.24
λ3 = 2.5 0.94 0.47 0.76 0.72 0.65 0.38 0.41 0.48 0.49 0.21 0.29 0.33 0.41 0.21 0.24 0.29

MEMIT 0.93 0.67 0.41 0.67 0.50 0.35 0.10 0.32 0.28 0.10 0.06 0.15 0.19 0.06 0.05 0.10

λ3 = 1 0.88 0.53 0.76 0.72 0.81 0.47 0.56 0.61 0.70 0.38 0.48 0.52 0.60 0.30 0.44 0.44
λ3 = 2.5 0.84 0.50 0.84 0.73 0.77 0.40 0.62 0.59 0.62 0.31 0.61 0.51 0.55 0.23 0.56 0.44
λ3 = 2 0.89 0.61 0.78 0.76 0.81 0.55 0.60 0.65 0.68 0.39 0.55 0.54 0.61 0.42 0.53 0.52

Llama3-8B

ROME 0.75 0.48 0.14 0.46 0.69 0.45 0.05 0.40 0.75 0.46 0.02 0.41 0.47 0.28 0.02 0.31

λ3 = 1 0.88 0.47 0.30 0.55 0.84 0.47 0.10 0.47 0.78 0.48 0.07 0.44 0.76 0.34 0.07 0.39
λ3 = 2 0.85 0.50 0.38 0.58 0.80 0.51 0.13 0.48 0.87 0.46 0.09 0.47 0.84 0.39 0.09 0.44
λ3 = 2.5 0.86 0.61 0.37 0.61 0.81 0.52 0.24 0.52 0.86 0.49 0.19 0.51 0.87 0.50 0.13 0.50

MEMIT 0.85 0.51 0.22 0.52 0.50 0.35 0.10 0.32 0.28 0.10 0.05 0.14 0.18 0.06 0.05 0.10

λ3 = 0.5 0.88 0.47 0.61 0.65 0.84 0.47 0.38 0.56 0.78 0.48 0.30 0.52 0.76 0.46 0.25 0.49
λ3 = 2 0.86 0.49 0.66 0.67 0.84 0.52 0.42 0.59 0.78 0.46 0.33 0.52 0.73 0.43 0.30 0.49
λ3 = 1 0.88 0.53 0.76 0.72 0.84 0.51 0.45 0.60 0.81 0.50 0.31 0.54 0.79 0.44 0.28 0.50

B.9 ABLATION EXPERIMENTS

First, we wanted to see if both ∆W[total] and ∇G contributed effectively. We set up three baselines:
➊ using only ∆W[total]; ➋ using only ∇G; and ➌ using both ∆W[total] and ∇G without orthogonal
processing for∇G according to Eq.7(26). The results are shown in Table 3. We observed that while
using either ∆W[total] or∇G alone yielded better results than the original method, their performance
was still inferior to using both together. The lack of orthogonalization for ∇G led to knowledge
conflicts within the model, resulting in inferior performance compared to O-Edit+.

How does the degree of orthogonality between knowledge affect the effectiveness of sequential
editing?

We compared the effects of different hyperparameter selections on editing performance between
O-Edit and O-Edit+, as shown in Tables 5 and 6. In O-Edit+, two noteworthy phenomena were
observed. First, MEMIT’s λ3 is smaller than that of ROME due to ROME’s stronger constraints,
which can degrade the performance of unrelated knowledge (Loc.) during sequential editing. Con-
sequently, we opted for a larger λ3 = 2.5 to mitigate ROME’s influence. Second, while a smaller
λ3 improves performance with MEMIT, it still negatively impacts unrelated knowledge, and a larger
λ3 affects the editing effect (Rel., Gen.). Therefore, selecting an appropriately sized λ3 is crucial
for optimal overall editing performance.

In the O-Edit setting, we compared the editing performance under four different settings. The results
showed that stronger constraints led to better outcomes, as λ1 and λ2 effectively controlled the
correlation between different edits. Larger λ1 values resulted in smaller correlations between edits,
while larger λ2 values reduced the correlation between edited and implicit knowledge within the
model.

B.10 EDITING DATASETS AND EXTRA METRICS

• ZsRE question answering task (Levy et al., 2017) was first used for factual knowledge eval-
uation by (Cao et al., 2021), later being extended and adopted by (Mitchell et al., 2022a).
We conduct the experiment using the version provided by (Yao et al., 2023) in EasyEdit6.
Figure 8 shows examples from ZsRE.

• COUNTERFACT is designed to enable distinction between superficial changes in model
word choices from specific and generalized changes in underlying factual knowledge. Fig-
ure 9 shows examples from COUNTERFACT.

6https://github.com/zjunlp/EasyEdit

22

https://github.com/zjunlp/EasyEdit

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

• RECENT Zhang et al. (2024a) is a dataset that specifically focuses on triplets that have
been recently inserted into WIKIDATA after July 2022. Consequently, this dataset enables
us to create insertion edit requests for models that were trained prior to the introduction
of these facts, thereby simulating scenarios where an outdated model meets the new world
knowledge. We utilize the original datasets provided by the authors and split them into
training and testing sets.

• WIKICF: Since tail entities are often not captured by models, and therefore are not suitable
for testing modification edits, the authors (Zhang et al., 2024a) collect triplets about popular
entities, where the subject corresponds to one of the top-viewed pages in Wikipedia. They
also collect a dataset by randomly sampling entities from Wikidata, which we use as the
training set, and the WikiDataCounterFact as the test set.

• Portability (Port.): Knowledge is not isolated, and solely changing the given knowledge is
not enough for downstream use. When the knowledge is corrected, the model is supposed
to reason about the downstream effects of the correction. Here, we follow previous work
(Cohen et al., 2023; Zhang et al., 2024a) to evaluate whether the edited model can address
the implications of an edit for real-world applications.

• Subject Aliasing (Alg.): The editing of one subject should not vary from its expression.
Wikidata maintains a set of aliases for every entity. Hence, here, we follow Cohen et al.
(2023); Yao et al. (2023) to replace the question’s subject with an alias or synonym to
evaluate the post-edited model’s performance on other descriptions of the subject.

• Compositionality and Reasoning (Res.): This requires the post-edit model to conduct
reasoning with the changed facts. For example, when we change the current president of
the U.S. from Donald Trump to Joe Biden, the answer to the question “Who is the First
Lady of the United States?” should also be changed.

• Forgetfulness (Fog.): This evaluates whether the post-edit model retains the original ob-
jects in one-to-many relationships. we follow Zhang et al. (2024a) to evaluate this metric.

• Logical Generalization(Lgn.): These are the changes that are semantically related to the
modified fact and expected to change by the edit; they were indeed modified. For exam-
ple, as mentioned by (Yao et al., 2023), when the fact of (s, r, o) is changed, the reversed
relation of the knowledge (o, r̂, s) should also be changed.

Table 6: Hpyerparameter selection results for O-Edit. T : Num Edits.

Method
COUNTERFACT

T = 200 T = 500 T = 1000 T = 1500

Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

Mistral-7B

MEMIT 0.93 0.67 0.41 0.67 0.50 0.35 0.10 0.32 0.28 0.10 0.06 0.15 0.19 0.06 0.05 0.10

λ1, λ2 = 1 0.95 0.66 0.52 0.68 0.74 0.36 0.29 0.46 0.40 0.24 0.11 0.25 0.39 0.19 0.08 0.22
λ1, λ2 = 10 0.93 0.62 0.54 0.70 0.89 0.50 0.35 0.58 0.54 0.26 0.18 0.31 0.45 0.22 0.10 0.26
λ1, λ2 = 20 0.93 0.53 0.62 0.69 0.87 0.52 0.36 0.58 0.64 0.39 0.24 0.42 0.47 0.26 0.13 0.29
λ1, λ2 = 50 0.93 0.55 0.65 0.71 0.86 0.53 0.45 0.61 0.72 0.47 0.34 0.51 0.51 0.33 0.18 0.34

Llama3-8B

MEMIT 0.85 0.51 0.22 0.52 0.50 0.35 0.10 0.32 0.28 0.10 0.05 0.14 0.18 0.06 0.05 0.10

λ1, λ2 = 1 0.96 0.52 0.43 0.63 0.83 0.59 0.16 0.52 0.62 0.49 0.08 0.40 0.35 0.27 0.08 0.23
λ1, λ2 = 10 0.97 0.47 0.53 0.65 0.90 0.55 0.35 0.60 0.72 0.51 0.18 0.47 0.45 0.33 0.10 0.29
λ1, λ2 = 20 0.96 0.42 0.57 0.65 0.90 0.54 0.41 0.61 0.75 0.52 0.22 0.49 0.45 0.35 0.15 0.31
λ1, λ2 = 50 0.93 0.55 0.64 0.71 0.86 0.53 0.44 0.61 0.72 0.47 0.33 0.51 0.55 0.40 0.27 0.41

B.11 DOWNSTREAM TASKS SETTINGS

To explore the side effects of sequential model editing on the general abilities of LLMs, four repre-
sentative tasks with corresponding datasets were adopted for assessment, including: Commonsense
Reasoning on the SIQA (Sap et al., 2019), which is a benchmark for testing social commonsense
intelligence. Content Analysis on the LAMBADA (Paperno et al., 2016), which is a collection
of narrative paragraphs that requires computational models to track information across a broader
discourse. Question Answering on the CommonsenseQA (Talmor et al., 2019), it requires the
model be capable of making reasonable inferences under given common sense conditions. MATH
on the GSM8K (Cobbe et al., 2021), a dataset of 8.5K high-quality linguistically diverse grade

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

{
 "subject": "Watts Humphrey",
 "src": "What university did Watts Humphrey attend?",
 "pred": "Trinity College",
 "rephrase": "What university did Watts Humphrey take part in?",
 "alt": "University of Michigan",
 "answers": [
 "Illinois Institute of Technology"
],
 "loc": "nq question: who played desmond doss father in hacksaw ridge",
 "loc_ans": "Hugo Weaving",
 "cond": "Trinity College >> University of Michigan || What university did Watts
Humphrey attend?"
}

Figure 8: Sample of ZsRE Dataset

 {
 "case_id": 1,
 "prompt": "The official religion of Edwin of Northumbria is",
 "target_new": "Islam",
 "subject": "Edwin of Northumbria",
 "ground_truth": "Christianity",
 "rephrase_prompt": "The school chiefly served tribal girls of Dang.

 Edwin of Northumbria follows the religion
 of",

 "locality_prompt": "Fine Young Cannibals was founded in",
 "locality_ground_truth": "Birmingham"
 }

Figure 9: Sample of COUNTERFACT Dataset

school math word problems. The prompts for each downstream task were illustrated in Table 7. We
utilized OpenCompass7 to conduct our evaluations.

7https://github.com/open-compass/opencompass

24

https://github.com/open-compass/opencompass

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 7: The prompts to LLMs for evaluating their zero-shot performance on these general tasks.

Task Prompt
SIQA prompt= “{question} A. {A} B. {B} C. {C} Answer:”

LAMBADA prompt= “Please complete the following sentence: {sentence}”

CommonsenseQA prompt= “{question} A. {A} B. {B} C. {C} D. {D} E. {E}
Answer:”

GSM8K prompt = “ Question: {question} Let’s think step by step. An-
swer:”

Table 8: The results of different method with similar ∥∆W[total]∥2. T : Num Edits.

Method
COUNTERFACT

T = 200 T = 500 T = 1000 T = 1500

Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

Mistral-7B

MEMIT 0.93 0.67 0.41 0.67 0.50 0.35 0.10 0.32 0.28 0.10 0.06 0.15 0.19 0.06 0.05 0.10

Method ➊ 0.88 0.50 0.70 0.69 0.41 0.22 0.44 0.36 0.27 0.14 0.11 0.17 0.20 0.08 0.09 0.12
Method ➋ 0.83 0.44 0.67 0.64 0.57 0.34 0.31 0.40 0.35 0.21 0.08 0.21 0.22 0.13 0.04 0.13
Method ➌ 0.86 0.47 0.61 0.64 0.60 0.37 0.30 0.42 0.31 0.17 0.11 0.20 0.18 0.10 0.06 0.11
Method ➍ 0.84 0.55 0.61 0.67 0.57 0.33 0.31 0.40 0.29 0.19 0.11 0.20 0.21 0.11 0.05 0.12
+O-Edit+ 0.89 0.61 0.78 0.76 0.81 0.55 0.60 0.65 0.68 0.39 0.55 0.54 0.61 0.42 0.53 0.52

Llama3-8B

MEMIT 0.85 0.51 0.22 0.52 0.50 0.35 0.10 0.32 0.28 0.10 0.05 0.14 0.18 0.06 0.05 0.10

Method ➊ 0.74 0.33 0.58 0.32 0.32 0.11 0.51 0.31 0.24 0.08 0.34 0.22 0.13 0.07 0.18 0.12
Method ➋ 0.83 0.50 0.24 0.52 0.72 0.37 0.08 0.39 0.44 0.19 0.08 0.23 0.40 0.13 0.08 0.20
Method ➌ 0.82 0.49 0.28 0.53 0.72 0.35 0.08 0.38 0.46 0.21 0.03 0.23 0.32 0.17 0.02 0.17
Method ➍ 0.77 0.41 0.44 0.54 0.69 0.32 0.06 0.36 0.47 0.23 0.31 0.33 0.37 0.15 0.09 0.21
+O-Edit+ 0.88 0.53 0.76 0.72 0.84 0.51 0.45 0.60 0.81 0.50 0.31 0.54 0.79 0.44 0.28 0.50

B.12 FURTHER EXPERIMENT AND DISCUSSION

Can any method of reducing ∆W[total] improve the ability of sequential editing?

Hu et al. (2024b) posits that ∥∆W[total]∥2 is a key determinant of sequential editing, referred to as
“toxicity”. A higher ∥∆W[total]∥2 imposes greater constraints on sequential editing performance.
O-Edit+ effectively reduces ∥∆W[total]∥2 by diminishing projections in specific subspaces. Conse-
quently, a plausible hypothesis is that any method capable of reducing ∥∆W[total]∥2 could potentially
enhance sequential editing performance. To evaluate this hypothesis, we compare O-Edit+ with four
methods on COUNTERFACT: ➊ reducing the number of training steps to decrease ∥v∗ −Wk∗∥2,
thereby reducing ∥∆W[total]∥2 with each edit; ➋ randomly deleting some values in the update pa-
rameters, setting them to zero; ➌ randomly selecting a set of orthogonal subspaces and removing
the projection of ∆Wi onto them; ➍ multiplying the ∆W obtained by the original method by a co-
efficient η that is less than 1, updating the matrix as ∆W = η ·∆W . We adjust the hyperparameters
to ensure that the ∥∆W[total]∥2 generated by these methods approximates that of O-Edit+. As shown
in Table 8, although these five methods yield a similar ∥∆W[total]∥2, the first four fail to achieve
effective sequential editing. This indicates that while reducing ∥∆W[total]∥2 is a necessary but not
sufficient condition for successful sequential editing, choosing the correct projection space to ensure
minimal impact between knowledge is the key to the success of ours.

Theoretical analysis

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Considering MEMIT, we derive from the equations ∆W[total] =
∑n

i=1 ∆Wi and ∆Wunrelated =
∆W[total] −∆Wj that:

∥∆Wunrelated · kj∥2 = ∥(∆W[total] −∆Wj) · kj∥2

=

∥∥∥∥∥∥
n∑

i=1,i̸=j

∆Wi · kj

∥∥∥∥∥∥
2

=

∥∥∥∥∥∥
n∑

i=1;i̸=j

Rik
T
∗;i(λKKT + k∗;ik

T
∗;i)

−1 · kj

∥∥∥∥∥∥
2

=

n∑
i=1;i ̸=j

(
Rik

T
∗;i(λKKT + k∗;ik

T
∗;i)

−1kj
)T n∑

i=1;i ̸=j

Rik
T
∗;i(λKKT + k∗;ik

T
∗;i)

−1kj

=

n∑
i=1;i ̸=j

kTj
(
(λKKT + k∗;ik

T
∗;i)

−1
)T

k∗;iR
T
i

n∑
i=1;i ̸=j

Rik
T
∗;i(KKT + k∗;ik

T
∗;i)

−1kj

(29)

Since R is a column vector, RT is a row vector. For any Rn and Rm where n ̸= m, the updates in
O-Edit and O-Edit+ aim to ensure that each update matrix ∆W is orthogonal in the column space,
leading to RT

n ·Rm → 0. Consequently, the value of Eqn. 29 is smaller than that of MEMIT.

Differences and Similarities with Hu et al. (2024a)

From the perspective of activating ∥∆Wunrelated · kj∥2, (Hu et al., 2024a) emphasizes the reduction
of this metric’s activation value through orthogonal row space. They aim to achieve smaller acti-
vation values using the expression

∑n
i=1;i ̸=j k

T
∗;i(λKKT + k∗;ik

T
∗;i)

−1kj → 0. However, since
the variables K and k∗ are predetermined, their orthogonality cannot be optimized through training
methods. To address this, they suggest selecting bottom layers with lower row orthogonality. Yet,
this method undermines the extensibility of editing techniques, as knowledge is not solely stored in
the lower layers of the model (Li et al., 2024; Meng et al., 2023a; Geva et al., 2021; 2022).

In contrast, O-Edit and O-Edit+ tackle this issue by focusing on orthogonal column space, providing
a practical algorithm that supports multiple consecutive edits. These methods can achieve column
space orthogonality between update matrices at any layer, effectively reducing ∥∆Wunrelated · kj∥2
and facilitating expansion to multi-layer editing.

B.13 FURTHER EDITING DATASETS RESULTS

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 9: Main editing results for ZsRE. T : Num Edits.

Method
ZsRE

T = 200 T = 500 T = 1000 T = 1500

Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

Mistral-7B

ROME 0.82 0.41 0.38 0.53 0.32 0.22 0.08 0.20 0.30 0.17 0.06 0.18 0.31 0.15 0.06 0.17

+R-Edit 0.95 0.49 0.47 0.64 0.27 0.18 0.08 0.17 0.31 0.13 0.05 0.16 0.31 0.15 0.06 0.17
+WilKE 0.88 0.44 0.43 0.58 0.41 0.27 0.10 0.26 0.27 0.17 0.06 0.17 0.29 0.19 0.05 0.17
+PRUNE 0.92 0.30 0.82 0.68 0.77 0.32 0.53 0.54 0.36 0.19 0.34 0.30 0.33 0.21 0.27 0.27
+O-Edit 0.99 0.42 0.73 0.71 0.77 0.41 0.51 0.49 0.45 0.18 0.29 0.31 0.35 0.20 0.20 0.25
+O-Edit+ 0.99 0.46 0.75 0.73 0.80 0.45 0.51 0.60 0.68 0.42 0.32 0.47 0.43 0.16 0.25 0.28

MEMIT 0.95 0.50 0.38 0.61 0.52 0.37 0.14 0.34 0.31 0.20 0.06 0.19 0.24 0.10 0.06 0.13

+R-Edit 0.96 0.49 0.41 0.62 0.40 0.19 0.40 0.44 0.32 0.22 0.06 0.20 0.26 0.16 0.07 0.16
+WilKE 0.99 0.50 0.47 0.65 0.75 0.47 0.23 0.48 0.25 0.20 0.06 0.17 0.28 0.15 0.04 0.16
+PRUNE 0.83 0.53 0.47 0.61 0.76 0.52 0.29 0.52 0.65 0.45 0.22 0.44 0.43 0.27 0.12 0.27
+O-Edit 0.97 0.40 0.65 0.67 0.88 0.42 0.43 0.57 0.76 0.41 0.39 0.52 0.61 0.33 0.18 0.37
+O-Edit+ 0.94 0.33 0.80 0.69 0.82 0.33 0.60 0.58 0.69 0.31 0.54 0.51 0.60 0.26 0.51 0.43

Llama3-8B

ROME 0.84 0.63 0.23 0.56 0.69 0.62 0.03 0.44 0.73 0.60 0.03 0.45 0.74 0.63 0.02 0.46

+R-Edit 0.86 0.51 0.38 0.58 0.62 0.57 0.10 0.43 0.56 0.47 0.01 0.35 0.56 0.47 0.02 0.35
+WilKE 0.75 0.37 0.28 0.47 0.50 0.38 0.05 0.31 0.60 0.50 0.02 0.37 0.66 0.55 0.01 0.40
+PRUNE 0.90 0.57 0.33 0.60 0.77 0.50 0.24 0.50 0.83 0.41 0.21 0.48 0.79 0.36 0.18 0.44
+O-Edit 0.94 0.66 0.51 0.70 0.77 0.51 0.22 0.50 0.78 0.47 0.16 0.47 0.77 0.48 0.14 0.46
+O-Edit+ 0.91 0.47 0.55 0.52 0.82 0.46 0.27 0.52 0.84 0.49 0.25 0.53 0.82 0.42 0.24 0.49

MEMIT 0.93 0.63 0.30 0.62 0.75 0.65 0.03 0.48 0.53 0.40 0.04 0.32 0.33 0.23 0.04 0.20

+R-Edit 0.94 0.62 0.25 0.60 0.82 0.69 0.10 0.53 0.65 0.55 0.06 0.42 0.52 0.41 0.03 0.32
+ WilKE 0.98 0.42 0.70 0.70 0.78 0.65 0.10 0.51 0.61 0.50 0.07 0.40 0.52 0.42 0.05 0.33
+PRUNE 0.97 0.56 0.50 0.67 0.87 0.60 0.43 0.63 0.56 0.34 0.40 0.43 0.46 0.30 0.29 0.35
+O-Edit 0.96 0.42 0.52 0.63 0.90 0.49 0.41 0.60 0.77 0.51 0.32 0.53 0.55 0.40 0.27 0.40
+O-Edit+ 0.97 0.40 0.59 0.65 0.85 0.37 0.46 0.56 0.73 0.32 0.38 0.48 0.65 0.29 0.36 0.43

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Table 10: Main editing results for COUNTERFACT-Portability. T : Num Edits.

Method COUNTERFACT-Portability

T = 200 T = 500 T = 1000 T = 1500

Por. Por. Por. Por.

Mistral-7B

ROME 0.48 0.04 0.01 0.01

+R-Edit 0.47 0.02 0.02 0.01
+WilKE 0.41 0.2 0.2 0.02
+PRUNE 0.52 0.46 0.38 0.32
+O-Edit 0.52 0.46 0.41 0.39
+O-Edit+ 0.53 0.52 0.50 0.50

MEMIT 0.48 0.26 0.01 0.01

+R-Edit 0.44 0.27 0.02 0.01
+WilKE 0.44 0.10 0.02 0.01
+PRUNE 0.52 0.45 0.32 0.26
+O-Edit 0.51 0.45 0.38 0.34
+O-Edit+ 0.53 0.53 0.53 0.51

Llama3-8B

ROME 0.26 0.07 0.01 0.01

+R-Edit 0.25 0.07 0.02 0.01
+WilKE 0.24 0.07 0.02 0.02
+PRUNE 0.43 0.37 0.31 0.28
+O-Edit 0.42 0.40 0.37 0.33
+O-Edit+ 0.45 0.44 0.39 0.35

MEMIT 0.24 0.02 0.02 0.02

+R-Edit 0.23 0.02 0.02 0.01
+WilKE 0.24 0.12 0.02 0.02
+PRUNE 0.44 0.42 0.32 0.29
+O-Edit 0.45 0.42 0.39 0.39
+O-Edit+ 0.49 0.48 0.46 0.45

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

Table 11: Main editing results for RECENT. T : Num Edits.

Method
RECENT

T = 200 T = 500 T = 1000 T = 1200

Rel. Fog. Alg. Avg. Rel. Fog. Alg. Avg. Rel. Fog. Alg. Avg. Rel. Fog. Alg. Avg.

Mistral-7B

ROME 0.39 0.33 0.35 0.35 0.21 0.03 0.18 0.14 0.06 0.03 0.06 0.05 0.02 0.01 0.01 0.01

+RRUNE 0.69 0.43 0.45 0.52 0.53 0.27 0.28 0.36 0.26 0.27 0.23 0.25 0.24 0.23 0.22 0.23
+O-Edit 0.82 0.47 0.58 0.62 0.67 0.37 0.44 0.49 0.36 0.32 0.28 0.32 0.33 0.23 0.27 0.27
+O-Edit+ 0.80 0.51 0.61 0.64 0.67 0.44 0.53 0.54 0.46 0.36 0.35 0.39 0.42 0.31 0.30 0.34

MEMIT 0.82 0.48 0.67 0.66 0.16 0.02 0.15 0.11 0.08 0.00 0.07 0.05 0.07 0.00 0.05 0.04

+RRUNE 0.86 0.60 0.68 0.71 0.74 0.45 0.55 0.58 0.57 0.37 0.52 0.48 0.46 0.31 0.40 0.39
+O-Edit 0.88 0.58 0.64 0.70 0.79 0.50 0.61 0.63 0.62 0.40 0.51 0.51 0.57 0.35 0.44 0.45
+O-Edit+ 0.89 0.64 0.68 0.74 0.78 0.56 0.65 0.66 0.67 0.47 0.60 0.58 0.60 0.41 0.53 0.51

Llama3-8B

ROME 0.36 0.15 0.30 0.27 0.22 0.03 0.15 0.13 0.18 0.05 0.10 0.11 0.04 0.03 0.04 0.04

+RRUNE 0.78 0.45 0.50 0.57 0.52 0.27 0.39 0.39 0.33 0.19 0.24 0.25 0.27 0.15 0.18 0.20
+O-Edit 0.77 0.45 0.52 0.58 0.57 0.33 0.41 0.43 0.45 0.28 0.31 0.34 0.40 0.24 0.27 0.30
+O-Edit+ 0.78 0.45 0.56 0.60 0.57 0.31 0.48 0.45 0.44 0.27 0.33 0.34 0.41 0.25 0.30 0.32

MEMIT 0.52 0.15 0.41 0.36 0.21 0.03 0.18 0.14 0.16 0.01 0.11 0.09 0.11 0.01 0.05 0.07

+RRUNE 0.88 0.50 0.68 0.68 0.72 0.42 0.58 0.58 0.47 0.32 0.31 0.36 0.36 0.27 0.39 0.34
+O-Edit 0.86 0.54 0.64 0.68 0.78 0.51 0.60 0.63 0.69 0.45 0.55 0.56 0.61 0.33 0.47 0.47
+O-Edit+ 0.91 0.54 0.66 0.70 0.78 0.46 0.64 0.63 0.57 0.43 0.46 0.49 0.55 0.36 0.44 0.45

Table 12: Main editing results for WIKICF. T : Num Edits.

Method
WIKICF

T = 50 T = 100 T = 200 T = 400

Rel. Res. Lgn. Avg. Rel. Res. Lgn. Avg. Rel. Res. Lgn. Avg. Rel. Res. Lgn. Avg.

Mistral-7B

ROME 0.81 0.56 0.54 0.63 0.35 0.42 0.30 0.35 0.18 0.06 0.18 0.12 0.12 0.03 0.06 0.07

+RRUNE 0.82 0.54 0.60 0.65 0.67 0.55 0.54 0.58 0.48 0.51 0.50 0.49 0.42 0.44 0.39 0.41
+O-Edit 0.82 0.62 0.68 0.71 0.67 0.58 0.61 0.62 0.54 0.53 0.59 0.55 0.48 0.47 0.44 0.46
+O-Edit+ 0.82 0.62 0.66 0.70 0.73 0.62 0.65 0.66 0.61 0.60 0.66 0.62 0.60 0.60 0.54 0.65

MEMIT 0.87 0.74 0.72 0.77 0.66 0.42 0.48 0.52 0.26 0.06 0.21 0.17 0.13 0.02 0.03 0.06

+RRUNE 0.90 0.60 0.61 0.70 0.70 0.42 0.55 0.55 0.54 0.44 0.48 0.48 0.39 0.42 0.32 0.37
+O-Edit 0.92 0.60 0.64 0.72 0.77 0.47 0.61 0.61 0.54 0.65 0.48 0.55 0.43 0.40 0.30 0.37
+O-Edit+ 0.84 0.66 0.69 0.73 0.73 0.66 0.60 0.62 0.62 0.72 0.65 0.66 0.58 0.48 0.48 0.51

Llama3-8B

ROME 0.80 0.52 0.48 0.60 0.29 0.46 0.21 0.32 0.32 0.04 0.21 0.21 0.28 0.02 0.00 0.10

+RRUNE 0.78 0.56 0.50 0.61 0.53 0.46 0.42 0.47 0.45 0.35 0.38 0.39 0.42 0.31 0.27 0.33
+O-Edit 0.80 0.55 0.54 0.60 0.55 0.44 0.44 0.47 0.50 0.36 0.39 0.41 0.46 0.35 0.31 0.37
+O-Edit+ 0.77 0.54 0.54 0.62 0.61 0.48 0.48 0.52 0.56 0.40 0.45 0.47 0.52 0.40 0.36 0.42

MEMIT 0.75 0.52 0.48 0.58 0.57 0.24 0.24 0.35 0.31 0.04 0.06 0.13 0.28 0.02 0.00 0.10

+RRUNE 0.80 0.68 0.62 0.70 0.74 0.48 0.62 0.61 0.60 0.52 0.47 0.53 0.55 0.36 0.39 0.43
+O-Edit 0.80 0.70 0.60 0.70 0.72 0.50 0.64 0.62 0.65 0.51 0.50 0.55 0.61 0.40 0.41 0.47
+O-Edit+ 0.81 0.70 0.60 0.70 0.76 0.56 0.69 0.67 0.72 0.58 0.57 0.62 0.72 0.46 0.45 0.54

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Table 13: 3000 editing results for COUNTERFACT. T : Num Edits.

Method
COUNTERFACT-3000

T = 1500 T = 2000 T = 2500 T = 3000

Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg. Rel. Gen. Loc. Avg.

Mistral-7B

MEMIT 0.19 0.06 0.05 0.10 0.15 0.03 0.03 0.07 0.12 0.02 0.01 0.05 0.10 0.02 0.01 0.04

+O-Edit 0.51 0.33 0.18 0.34 0.44 0.26 0.15 0.28 0.42 0.26 0.15 0.27 0.40 0.22 0.12 0.25
+O-Edit+ 0.61 0.42 0.53 0.52 0.56 0.31 0.48 0.45 0.50 0.28 0.48 0.42 0.44 0.25 0.50 0.39

+♠ O-Edit+ 0.79 0.55 0.68 0.67 0.74 0.50 0.63 0.62 0.71 0.44 0.60 0.58 0.70 0.44 0.61 0.58
Llama3-8B

MEMIT 0.18 0.06 0.05 0.10 0.15 0.03 0.03 0.07 0.12 0.02 0.01 0.05 0.10 0.02 0.01 0.04

+O-Edit 0.55 0.40 0.27 0.41 0.46 0.30 0.25 0.33 0.42 0.28 0.24 0.31 0.39 0.30 0.20 0.26
+O-Edit+ 0.79 0.44 0.28 0.50 0.65 0.40 0.26 0.43 0.54 0.33 0.24 0.37 0.46 0.29 0.22 0.32
+♠ O-Edit+ 0.91 0.45 0.56 0.64 0.86 0.41 0.51 0.59 0.82 0.40 0.47 0.56 0.80 0.36 0.44 0.53

30

	Introduction
	PRELIMINARIES
	O-EDIT: SEQUENTIAL EDITING WITH GRADIENT PROJECTION MEMORY
	Towards an orthogonal editing method
	The knowledge to be edited should be mutually orthogonal
	The edited knowledge should be orthogonal to the implicit knowledge

	O-EDIT+: Towards More Efficient Sequential Model Editing
	Experiments
	Editing Experimental Settings and Evaluation Metrics
	Downstream Tasks Evaluation
	Further Analysis

	Limitations
	Conclusion
	Related Work
	 Knowledge Editing
	Sequential Editing
	Continual learning

	algorithm
	Orthogonal Gradient Descent for Continual Learning
	Singular Value Decomposition and Rank-r Approximation
	ROME
	MEMIT
	O-Edit and O -Edit+
	How to choose an appropriate gradient
	Baseline Editing Methods
	Experiments Compute Resources time and hyperparameters
	Ablation Experiments
	Editing Datasets and Extra Metrics
	DOWNSTREAM TASKS SETTINGS
	Further experiment and discussion
	Further Editing Datasets Results

