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Abstract

Discrete diffusion models, like continuous diffusion models, generate high-quality
samples by gradually undoing noise applied to datapoints with a Markov process.
Gradual generation in theory comes with many conceptual benefits; for example,
inductive biases can be incorporated into the noising Markov process, and access to
improved sampling algorithms. In practice, however, the consistently best perform-
ing discrete diffusion model is, surprisingly, masking diffusion, which does not
denoise gradually. Here we explain the superior performance of masking diffusion
by noting that it makes use of a fundamental difference between continuous and
discrete Markov processes: discrete Markov processes evolve by discontinuous
jumps at a fixed rate and, unlike other discrete diffusion models, masking diffusion
builds in the known distribution of jump times and only learns where to jump
to. We show that we can similarly bake in the known distribution of jump times
into any discrete diffusion model. The resulting models — schedule-conditioned
diffusion (SCUD) — generalize classical discrete diffusion and masking diffusion.
By applying SCUD to models with noising processes that incorporate inductive
biases on images, text, and protein data, we build models that outperform masking.

1 Introduction

Discrete diffusion models provide state-of-the-art conditional generation of discrete sequences. In
biological sequence design, for example, they allow one to generate sequences flexibly conditioned
on protein structure [15], DNA function [22], protein family [1], and other properties [9, 16]. They
are also nearing state-of-the-art generation on language data [20].

A diffusion model is defined by a “forward” process, which gradually transforms data token-by-token
into noise, and a “backward” transformation that turns noise into data, learned by optimizing an
evidence lower bound (ELBO). In principle, the quality of the learned model should benefit from a
forward process that captures structure in the data distribution. For example, works have suggested
forward processes that are more likely to transform tokens into similar tokens – a more “gradual”
noising process [2, 1] – as well as “state-dependent” processes that transform certain tokens more
quickly than others [23]. Surprisingly, these methods are all outperformed by “masking diffusion”
which has the simplest possible forward process – transforming each token into a masking token at a
uniform rate [2, 1, 23]. Having seemingly arrived at the optimal forward process, work on discrete
diffusion has instead shifted its focus to sampling [26, 18, 13, 7, 4] and scaling [15, 20].

Here we explore the causes of the superior performance of masking diffusion. We propose that
masking diffusion benefits from a parameterization that forces the distribution of corruption or
transition events, the “transition schedule”, in the backward process to match the distribution in the
forward process. Rather than allow us to conclude that masking is optimal, this insight allows us to
expand the design space of discrete diffusion models to give any forward process the same property;
we call models in this expanded design space schedule conditioned diffusion (SCUD). We show that
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Figure 1: Left: When trying to fit a forward process in diffusion, SCUD builds in the known
distribution of transition times. Classical discrete diffusion learns to reverse the paths generated
in the forward process by learning both when and where to transition. SCUD instead builds in
when to transition from the forward process, and therefore only must learn where to transition.
Right: Conditioning on more information about the transition time schedule results in a better
likelihoods. Models are fit on CIFAR-10 with B = 128 states. We show mean and standard error
over 3 replicates. Details are in App. D.

applying SCUD to discrete diffusion with a uniform forward process, the result is masking diffusion,
explaining its superior performance. We finally unlock the potential of structured and state-dependent
discrete diffusion by building SCUD versions of these methods and see that they finally beat masking
diffusion, achieving state-of-the-art results on images and proteins (Fig 1). We release our code at
https://github.com/AlanNawzadAmin/SCUD.

2 Background

Our goal is to model data from a distribution p(x0) where x0 is a sequence of discrete elements that
belong to a set of size B. We consider the one-dimensional case first, and sequences later.

Discrete diffusion In diffusion, we start with a distribution that is easy to sample from, q(x1); we
then learn a parameterized Markov process from time 1 to time 0 that evolves samples from q(x1)
to a distribution qθ(x0) that is approximately p(x0). To learn a Markov process that evolves q(x1)
to p(x0), we first pick a simple Markov process that approximately evolves samples from p(x0) to
q(x1) from time 0 to 1; then we try to match the trajectories from the parameterized Markov process
qθ((xt)t∈[0,1]) that evolves “backward” from time 1 to 0 to those of the simple process p((xt)t∈[0,1])
that evolve “forward” from time 0 to 1 [3]. We do so by maximizing the evidence lower bound
(ELBO)

Ep(x0) log qθ(x0) ≥Ep((xt)t∈[0,1]) log
qθ((xt)t∈[0,1])

p((xt)t∈[0,1]|x0)

=Ep((xt)t∈[0,1]) log
qθ((xt)t∈[0,1]|x1)

p((xt)t∈[0,1]|x0, x1)
+ Ep(x1,x0) log

q(x1)

p(x1|x0)
.

(1)

This ELBO is maximized when the distribution of forward and backward trajectories match. The
second term of the right hand side measures if the forward process indeed evolves samples x0 ∼ p(x0)
to q(x1). The first term measures how well the forward and backward trajectories match.

Discrete Markov processes and infinitesimal generators To define a diffusion model, we need
to define a simple Markov process to generate p((xt)t∈[0,1]) and we need to parameterize the
backward Markov process. Fortunately, discrete Markov processes are much easier to define than
their continuous counterparts. Every time-homogeneous discrete Markov process is fully described by
a B×B matrix that describes the “flow” of a particle at each instant in time known as the infinitesimal
generator L. In particular, Lb,b′ describes the rate at which state b transitions to state b′; the diagonal
of L describes the rate of transitions out of b: Lb,b = −

∑
b′ ̸=b Lb,b′ . Therefore, to simulate from a

Markov process described by L, starting at xt, one simulates the time at which xt would transition to
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Figure 2: State-of-the-art discrete diffusion models have backwards processes which do not
match the forward process in when they transition. Masking diffusion models have no such
error as they build in the known forward rate into their backward process (dotted line). We plot the
estimated transition rate of the backward process minus that of the forward process. We discuss
details in App. D.

each other state ∆tb ∼ Exp(Lxt,b) for b ̸= xt; then one transitions xt according to the first transition
sampled: it take ∆t = minb ∆tb time to transition and xt transitions to xt+∆t = argminb∆tb. By
a property of exponential distributions, the transition time is distributed according to the value on
the diagonal of L: ∆t ∼ Exp(

∑
b̸=x0

Lx0,b) = Exp(−Lx0,x0
). This procedure is known as the

Gillespie algorithm [8].

Picking the forward process Two popular choices for the forward process are the uniform and
masking processes. The uniform process has a constant rate of transitioning to any state. and the
masking distribution has a constant rate of transition to a masking state ∅. Both of these processes are
straightforward to simulate: simply sample ∆t ∼ Exp(1), and then transition to a uniformly random
state or to ∅. Other processes bake in inductive biases for text, images, and proteins [2, 1].

For typical Markov processes, information about the starting state x0 becomes lost as t gets larger
and p(xt) gets closer to a stationary distribution p(x∞). This distribution is a natural choice for q(x1)
as long as p(x1|x0) is close to converging to the stationary distribution.

In practice, p(x1|x0) is usually not near p(x∞), so we modulate the speed of the process by a rate βt

at time t: at the instant t we simulate from the process βtL. Simulating this modulated process for
time t is equivalent to simulating the original process for time

∫ t

0
βsds. By choosing βt to become

large as t→ 1, we can be sure p(x1|x0) ≈ p(x∞) = q(x1).

Parameterizing the backward distribution The backward Markov process is usually defined in
terms of a parameterized, time-dependent, infinitesimal generator Lθ,t. The first term of Eqn. 1 is
usually written as an integral in time Et∼Unif(0,1)L(Lθ,t, t), for some L which intuitively measures
how well the Lθ,t describes the “flow” of the reversal of p((xt)t) at instant t [3, 15].

3 Learning when and where to transition

To fit a discrete diffusion model, the backward process should match the forward in both when it
transitions and where it transitions to. One should expect that learning where to transition is hard;
on the other hand, since the distribution of when to transition is simple and known a priori in many
cases, one should expect learning when to transition should be trivial. We see however in Fig. 2 that
learning when to transition may also be challenging: state of the art published diffusion models have
detectable differences in the transition rates of their forward and backward processes.

Unlike previously derived forms of the ELBO which are written as an integral of the discrepancy
of the flow at each moment t, we will break up the ELBO into discrepancy of when and where to
transition. Define the “transition schedule”, S = {t1, t2, . . . , tM}, as the set of times at which xt

transitions.
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Proposition 3.1. (Proof in Prop A.1 in the Appendix) The expression in Eqn. 1 is equal to the
expression in Eqn 2 for some constant C.

Ep((xt)t) log
qθ((xt)t|x1, S)

p((xt)t|x0, x1, S)
−KL(p(S)||qθ(S))− Ep(S,x0)KL(p(x1|S, x0)||qθ(x1|S)) + C.

(2)

The first term represents the difference in log likelihoods between qθ and p when the transitions are
known, which measures if the forward and backward processes match where they transition to. The
second term measures if the forward and backward processes match when they transition. The third
term, like the second term of Eqn. 1 intuitively measures if p(x1|x0) has converged to p(x∞).

To build diffusion models that better fit their objective, we therefore would like to incorporate
knowledge of p(S) into the model. Eqn 2 is suggestive of how to do this: set q(S) = p(S) so that the
second term becomes 0 and then learn where to transition by optimizing the first term. We call this
procedure “schedule conditioning” (Fig. 1) and in Sec. 4 we describe how to perform it in practice.

Unlike diffusion models with the uniform forward process, diffusion models with the masking
forward process are parameterized so that the distribution of times at which tokens are masked
matches the distribution of times at which they are unmasked: these models know when to transition
( Fig. 2). In practice, masking diffusion models have been observed to outperform uniform diffusion
models [2, 1, 14]. In Sec. 5 we will prove that applying our methods in Sec. 4 gives exactly masking
diffusion, explaining their superior performance. By schedule conditioning other processes with more
appropriate inductive biases, we also improve on masking diffusion (Fig 1).

4 Scheduled conditioned diffusion (SCUD)

In this section, motivated by Eqn. 2, we describe how to build discrete diffusion models that
incorporate information about when to transition into a discrete diffusion model. We call such models
Scheduled conditioned diffusion (SCUD) models.

Ideally we could set q(S) = p(S); however, in general, L may not have constant transition rates at
each state, in which case S may be correlated with x0 and p(S) may be a complex distribution. Here
we build a family of SCUD models that, instead of looking directly at transitions, introduce latent
“events” which will act as transitions did above. These events occur with constant rate and often result
in transitions; in some cases we discuss below, they will coincide exactly with transitions. We will
condition on the schedule of these events, S.

In Sec. 4.1 we will describe models that condition on these event schedules, SCUD. Next in Sec. 4.2
we will write the loss in a form that is easy to train on high dimensional data. In App. B we will
describe how we use standard techniques in discrete diffusion to parameterize our de-noising model,
sample from SCUD, and choose the rate function βt.

4.1 Conditioning on event schedules

Markov processes with event schedules To sample from a uniform forward process starting
at xt, we sampled a transition time according to a rate that was independent of the current state,
∆t ∼ Exp(1), and then sampled xt+∆t with uniform probability. Consider more generally the
discrete Markov process on xt such that we sample an “event” ∆t ∼ Exp(r), and then sample
xt+∆t ∼ Categorical(Kxt,·) where Kxt,· is a matrix whose rows are normalized distributions; note
in this case xt may be equal to xt+∆t. By appealing to the formal definition of L, the next proposition
tells us that this process has infinitesimal generator that flows according to the rate r ×K, with a −I
to describe the flow out of x.
Proposition 4.1. (Proof in Prop A.2 in the Appendix) The infinitesimal generator of this process
is L = r(K − I) where I is the identity matrix. In particular, any Markov process with L can be
simulated in the above way by picking an r ≥ maxb−Lb,b and setting K = L/r + I .

We note there are many choices of r that allow one to write the same Markov process in this way. We
will evaluate different choices in Sec. 5.

Reversing the process conditioned on the event schedule Equip with the definition of events,
we now try to show we can reverse the distribution of paths by just predicting what xt was before
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Classical diffusion SCUD

Figure 3: When predicting the de-noised data x0 from the noised-data xt, SCUD uses more
“fine-grained” information about the number of corruptions st rather than just the corruption
time t. Classical discrete diffusion trains a model x̃0,θ to predict the uncorrupted sequence x0 from
the corrupted sequence xt and information for how long it’s been corrupted for t. SCUD trains a
model to predict x̃0,θ that replaces t with more fine-grained information about how many corruptions
have been applied to each token st, which be thought of as a measure of how “masked” each token is.

each event. Call p((xt)t) the distribution of paths that start at p(x0) and evolve according to the
above Markov process. The next proposition uses some algebra to suggest that we can simulate from
p((xt)t) “backwards” by 1) sampling the ending point x1 ∼ p(x1), 2) sampling the event schedule
{t1, t2, . . . , tM} ∼ p(S), and then 3) going backwards, sampling where the particle came from at
the m-th event.
Proposition 4.2. (Proof in Prop A.3 in the Appendix) Call the event schedule S = {t1, t2, . . . , tM}
and t0 = 0. Call st the number of events up to time t, so stm = m.

p((xt)t, S) = p(S)p(x1)

M∏
m=1

p(xtm−1 |xtm , stm). (3)

We now aim to model this backwards process.

SCUD: schedule conditioned discrete diffusion models As suggested in Sec 3, we wish to build
a discrete diffusion model qθ by setting q(x1) = p(x∞) and q(S) = p(S). Prop. 4.2 suggests
parameterizing q so that, at each event, it predicts the previous state xtm−1

given 1) the current state
xtm and 2) the number of events that have occurred so far st. We call such a model a SCUD (schedule
conditioned diffusion) model. With some algebra, in analogy with Eqn. 2, we get a closed form
objective.
Proposition 4.3. (Proof in Prop A.4 in the Appendix) Calling the event schedule S = {t1, t2, . . . , tM}
and t0 = 0, Ep(x0) log qθ(x0) is greater than

E

M∑
m=1

KL(p(xtm−1
|xtm , x0, stm)||qθ(xtm−1

|xtm , stm))− Ep(S,x0)KL(p(x1|s1, x0)||p(x∞)).

(4)
where the first expectation is over p((xt)t, S, x0). This objective is minimized when
qθ(xtm−1 |xtm , stm) = p(xtm−1 |xtm , stm).

The first term teaches qθ where to go at each event. The second term is small if p(x1) converges to
p(x∞). By Prop. 4.2 then, as the objective in Eqn. 4 is minimized, qθ((xt)t) approaches p((xt)t).

Computing the objective The ELBO in Eqn. 4 is straightforward to compute. To calculate the first
term, we note, writing each state as a one-hot vector,

p(xtm−1
|xtm , x0, st) =

p(xtm−1
|x0, st)p(xtm |xtm−1

, st)

p(xtm |x0, S)
=

xT
0 K

st−1xtm−1x
T
tm−1

Kxtm

xT
0 K

stxtm

. (5)

To calculate the second, we note p(x∞) is the left eigenvector of L that corresponds to the eigenvalue
0 (as it does not change under flow from L) and p(x1|s1, x0) = xT

0 K
s1x1.

4.2 High dimensional data

For high dimensional data such as images, language, and biological sequences, it is common to choose
processes L that act on each dimension independently. Say our data has D dimensions x1

0, . . . , x
D
0

with each xd
0 a discrete object in a set of size B. We extend SCUD to this case by simulating D

schedules for each dimension S1, . . . , SD ∼ p(S); so st becomes a D-dimensional vector (Fig. 3).
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Parameterizing qθ For a time t, if sdt > 0, define pr(xd
t ) as the state at the last event in dimension

d, and pr(xt) the previous state at each dimension; i.e., if the event schedule at dimension d is
Sd = {td1, . . . , tdm} and t ∈ [tdm, tdm+1), then pr(xd

t ) = xd
tdm−1

. Our formula for reversing p((xt)t)

in Prop. 4.2 remains the same, but in App. B.2 we show p(pr(xt)|xt, st) factorizes. Thus we
parameterize our predictor qθ(pr(xt)|xt, st) so it also factorizes as

∏D
d=1 qθ(pr(x

d
t )|xt, st). Thus

we get an objective as in Eqn. 4, but with a sum over D in front.

Efficient loss We could in principle use our objective in Eqn. 4 by taking empirical estimates of
the expectation and the sum over events. In this case, however, each empirical sample corresponds
to one event which affects a single dimension d, so it only checks the prediction qθ(pr(x

d
t )|xt, st).

The loss of other diffusion models, written as Et∼Unif(0,1)Ext∼p(xt|x0)

∑D
d=1 L

d(Lθ, xt, t|x0,L),
allow one to sample t and then check the predictions of qθ(pr(xd

t )|xt, st) at that time for every d in
parallel. To write our objective in a similar form, we sample t ∼ Unif(0, 1) and then add a weight
sdt × βt/

∫ t

0
βsds representing how likely an event is to occur at the instant t:

Proposition 4.4. (SCUD loss) (Proof in Prop. A.6 in the Appendix) The first term of Eqn. 4 is

− Et∼Unif(0,1)Ep(xt,x0,S)
βt∫ t

0
βsds

×
∑
d

sdtKL(p(pr(xd
t )|xd

t , s
d
t , x

d
0)||qθ(pr(xd

t )|xt, st)). (6)

We can approximate this objective by empirical estimates of all of the expectations and optimize with
minibatch gradient descent. For a single evaluation of qθ we can predict pr(xd

t ) for each dimension d
in parallel and check whether it matches the forward process along every dimension. The algorithm
for calculating an estimate of the ELBO for a x0 is summarized in App. B.1.

5 Connection SCUD to classical and masking discrete diffusion

To incorporate information about transitions into qθ, we wish to condition on the schedule. We
described how conditioning on “events” in the previous section allow us to incorporate this structure.
However not every event corresponds to a transition. The amount of information about the transitions
that we bake into our model depends on the diagonal of K, the probabilities of no transition at an
event. In turn the diagonal of K will depend on our choice of the rate of events r. For a fixed L, we
can choose any rate r ≥ r∗ = maxb−Lb,b. Let’s parameterize our choices of rate with a parameter
γ: let r = γ−1r∗. When γ is 1, the rate of events is as slow as possible; when γ → 0, the rate of
events goes to∞. γ therefore represents the amount of schedule conditioning.

We now show that when L is uniform and γ = 1 − 1/D, that is, we nearly fully condition on the
schedule, our process is equivalent to masking diffusion. On the other hand, as γ → 0, we learn a
backwards process while baking in no information about transitions; we show this recovers classical
discrete diffusion.

5.1 Connection to masking diffusion

Say γ = 1− 1/D and L is uniform: Lb,b′ is 1/B when b ̸= b′. For this choice, K is a matrix which
has 1/B at every position. If a token is corrupted at least once by K then it is distributed uniformly;
it tell us nothing about x0 so it is as if that token is “masked”. When we condition on the event
schedule, st will tell us exactly which positions are masked when sdt > 0. By integrating out st
conditioned on the mask, we get exactly the masking diffusion objective [23].
Proposition 5.1. (Proof in Prop. A.7 in the Appendix) Call the masking indicator md

t = sdt > 0.
x̃0,θ(xt, st) only depends on st through mt. Defining αt = exp(−

∫ t

0
βsds), the objective Eqn. 6 is

Et∼Unif(0,1)p(xt,mt|x0)
βtαt

1− αt

∑
d

xT
0 log x̃0,θ(xt,mt)

d.

The mask mt is distributed as md
t ∼ Bern(1− αt).

In App. B.4 we also show that our choice for rate βt for this SCUD process is linear (in the sense
αt = 1− t), just as for the masking process as discussed in [2].
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5.2 Connection to classical discrete diffusion

As γ → 0, each event represents an infinitesimal change in xt. Additionally, the number of events up
to time t, st, grows larger but fluctuates less and less; inputting st into qθ(pr(x

d
t )|xt, st) becomes

approximately identical to inputting the time t into qθ. Therefore, as γ → 0, qθ predicts the
infinitesimal change at time t: the infinitesimal generator. This is exactly the objective of classical
discrete diffusion. The next proposition shows that when we take the limit γ → 0 we recover exactly
the loss from SEDD [15] which is also equivalent to that from τLDR [3].

Proposition 5.2. (Proof in Prop. A.8 in the Appendix) As γ → 0 the objective in Eqn. 6 converges to
the SEDD loss (Eqn. 17).

In App. B.4 we show that our choice for βt approaches that for classical discrete diffusion as γ → 0.

6 Results

We apply SCUD to build an expanded design space for discrete diffusion models. We first demonstrate
the results of Sec. 5 that SCUD with a uniform forward process interpolates between uniform and
masking discrete diffusion. We next show that exploring the SCUD design space can unlock benefits
from structured forward processes – we demonstrate state of the art model fits to images and protein
data. Finally, with a case study in language, we discuss the practicality of SCUD – SCUD incurs
minimal computational overhead, and, with some clever model decisions, can actually enable model
decisions that were previously computationally intreactable. Other experimental details are in App. D.

6.1 Connection to other models

We show that by incorporating information about the distribution of transitions into a discrete diffusion
model, one gets better fits to the forward process. We fit models to CIFAR-10 where each pixel takes
a value from 1 to B = 128. In Fig. 1 we see that on this dataset discrete diffusion with a uniform
forward process is outperformed by masking diffusion. We see that sweeping γ between 0.1 and 1,
SCUD with the uniform forward process interpolates the performance of the two models.

Next we build a structured forward process that builds in the inductive bias that similar pixel values
describe similar colors – we set Li,j = exp(−200

(
i−j
B

)2
) for i ̸= j, similar to the discrete-time

Gaussian forward process in Austin et al. [2]. We see that a discrete diffusion model with this
forward process slightly outperforms masking distribution. We next build SCUD models with this
forward process; we see that these models better fit their objective as we incorporate more information
about transitions – γ → 1. These models outperform models that have structured forward processes
(Gaussian) or those that just condition on the transition schedule (masking) without doing the other.

6.2 SCUD allows models to leverage structure in the forward process

Many previous discrete diffusion papers have noticed that masking is optimal or near-optimal across
a wide range of domains, even outperforming bespoke forward process [1, 2]. Do structured forward
process, which bake in inductive biases of the data, not help modeling? In this section we show that
when we account for schedule conditioning (γ = 1), these bespoke processes actually substantially
improve model fit on image and protein data. In particular, we achieve state-of-the-art diffusion
model fits on these data by combining the schedule conditioning of masking with the strucuter of
bespoke forward processes.

The structured forward processes we build for each modality will be inspired by those from Austin
et al. [2] and Alamdari et al. [1]. However these papers used processes in discretized time that are not
equivalent to and continuous time Markov process; thus we describe new structured processes for
continuous time in terms of L or K.

In all cases we aim to make minimal modifications to the architecture and training from previous
models so that differences in scores are due to schedule conditioning. We propose several techniques
that enable moving from classical discrete diffusion to SCUD without substantial computational
overhead, summarized in App. D.7. We also compare SCUD with our own re-implementations of
classical and masking diffusion to best measure the effect of schedule conditioning and structure.
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Figure 4: Schedule conditioning unlocks improvements from structured forward processes on
on images and proteins. We compare discrete diffusion models from the literature and our own
implementations and report model fit in bits per dimension on CIFAR-10 and Perplexity on Uniref50.
Models labeled “unif.” use a uniform forward process and those labelled “struct.” use a structured
forward process – a Gaussian prior for images and a BLOSUM prior for proteins (see App. C).

Images Here we build models on CIFAR-10 with B = 256 and compare to state of the art diffusion
models. We use the architecture from [11] as in discrete diffusion models MD4 [23] and similar to
that in D3PM [2] and τLDR [3]. To incorporate st into our function, we replace additive layers that
inject t into every layer with FiLM [19] layers that incorporate st into every layer. We also use the
logistic parameterization from Salimans et al. [21] also used in D3PM, which interprets the output of
the model as the parameters of a discretized logistic distribution over pixel values, so that similar
pixel intensities have similar probabilities.

In Fig. 4a we compare SCUD with discrete diffusion models D3PM [2], τLDR [3], and MD4 [23]
as well as our implementations of classical discrete diffusion models. We see that applying SCUD
to model the Gaussian forward processes substantially improves likelihood with a fraction of the
compute. Among previous discrete diffusion models, masking diffusion is the most performant despite
not incorporating inductive biases. When accounting for schedule conditioning however, a structured
process beats a uniform process (Scud str. beats masking / SCUD uniform); in particular, we achieve
state-of-the-art ELBOs on images by unlocking the benefits of structured forward processes. This
suggests that masking beats Gaussian diffusion in classical models because the benefit of schedule
conditioning outweighs the benefit of incorporating inductive biases. By both incorporating inductive
biases and schedule condition, SCUD unlocks the potential of Gaussian discrete diffusion on images.

In App. D.1 we examine samples from SCUD Gaussian. The samples resemble real objects much
more than those from autoregressive models PixelCNN++ [21] and PixelSNAIL [5] which have
state-of-the-art likelihoods. Furthermore, they contain clear objects like those from D3PM [2] or
τLDR [3]; MD4 did not show or evaluate images. Future work could apply the many methods for
improving sampling quality of discrete diffusion models to SCUD – we focus our exploration here on
model fit as measured by likelihood.

Proteins Here we train models on the UniRef50 protein dataset with architectures from [1]. As
in [1] we build a forward process using the BLOSUM matrix; this matrix describes the rates of
mutations between amino acids seen in nature. We describe the details of our process in App C; we
note B = 31 = 20 canonical amino acids + 11 special tokens.

In Tab. 4b we compare SCUD BLOSUM with the small D3PM models from [1] as well as our
implementations of classical discrete diffusion models. We see again that applying SCUD to uniform
and BLOSUM diffusion substantially improves the model fit given a fraction of the compute budget
(See App. D.6). In classical discrete diffusion, masking strongly outperforms BLOSUM diffusion;
interestingly, in our reimplementation, classical BLOSUM outperformed masking. Nevertheless,
by both schedule conditioning and incorporating inductive biases, SCUD BLOSUM outperforms
masking and classical BLOSUM, achieving state-of-the-art model fit. In App. D.2 we show a similar
result when starting from pre-trained weights.
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Method Fwd. process Perplexity
D3PM Masking 76.9*
D3PM Graph 149.5*
SCUD Masking 37.82
SCUD Graph 37.63

Table 1: Schedule conditioning improves uniform corruptions and accommodates structured
forward processes. We compare to other discrete diffusion models on LM1B. *Numbers are not
directly comparable with D3PM as a different tokenizer was used.

6.3 Scaling case study: Language

In all cases above, SCUD and classical diffusion had very similar run times – within 10% of each-
other. This is because their loss computations are very similar and we only slightly changed the
architecture of our neural network to accommodate SCUD; a full explanation is in App. D.7. Here we
show that the SCUD design space also allows one to build models that are computationally intractable
using classical discrete diffusion.

Above we looked at whether bespoke structured processes from previous works could help modeling.
Austin et al. [2] build a discrete-time “nearest-neighbour graph” process on language and saw that it
was substantially outperformed by masking; could we test if this process also helps modeling?

We must build models on the one billion words dataset with a B = 30522 vocabulary size. Un-
fortunately, the continuous-time classical diffusion loss requires calculating exp(tL), which is
prohibitively expensive when B = 30522; indeed Luo et al. [15], Sahoo et al. [20] restrict L to be a
uniform or masking process so they can calculate this quantity in closed form.

SCUD on the other hand only needs to compute Ksdt . We therefore define a sparse 10-nearest
neighbour graph over the most frequent 2000 states, which make up 95% of tokens in the data.
Our forward process diffuses along this graph with some probability or transitions approximately
uniformly with some small probability; the less frequently used 25 thousand states always transition
uniformly. We discuss the details in App C. The result is that K is sparse so that Ksdt can be efficiently
calculated (computational complexity details in App. D.7).

Now able to implement the nearest neighbour process from Austin et al. [2] in continuous-time
models, in Tab. 1 we compare the effect of incorporating this structure with SCUD with the results in
Austin et al. [2]. In [2], masking strongly beats discrete diffusion with a nearest neighbor structure on
this dataset (D3PM in Tab. 1). Unlike Austin et al. [2], accounting for schedule conditioning, when
we add structure to the forward process, we improve our fit by a small amount. Unlike in images and
proteins, the improvement is not substantial however, suggesting that this process could be improved.

7 Discussion

The choice of forward process is critical to the definition of a discrete diffusion model. Yet previous
results have shown very strong performance from the simplest forward process — the masking
process. SCUD offers an explanation for this: masking incorporates information about the transition
schedule. By incorporating this information into models with other forward processes, SCUD allowed
us to build models that build in inductive biases and outperform masking.

Condition on everything? By adding more information, S, to the backwards process, SCUD was
able to fit the process much better. Future work may explore adding or removing information from
S: for forward process with multiple types of mutations, S may count each type of mutation; on the
other hand, SCUD trains a de-noiser qθ that conditions on S – different applications may call to learn
de-noiser that takes in different information S.

Is there a limit to how much information we can put in S? As more information goes into S, the
inference task for x̃0,θ becomes more challenging. As well, the third term in Eqn. 2 may become
large – if S describes exactly every mutation in the forward process for example, then p(x1|S, x0) is
a point mass, it never converges. Indeed, one may consider extending SCUD to continuous diffusion
by setting S to be, by analogy, the distance xt has traveled from x0; but in this case, p(x1|S, x0)
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has support only on a sphere – it doesn’t converge. In our case, the S we considered was able to
overcome these challenges to improve model fit, but future work may need to consider this tradeoff
when navigating the modeling space.

Sampling from diffusion models This work focuses on achieving better ELBOs without inves-
tigating the effect on sampling. There is huge work on exploring sampling from discrete diffusion
models. These methods approach the problem of trying to get a more faithful sample of qθ(xt) [3, 26]
or combining the de-noiser qθ with other predictors to get better samples [18, 13]; another popular
family of methods that falls in this camp is discrete flow matching [7, 4] – we explain how to extend
flow matching to SCUD in App. E. There has however been comparatively little work exploring the
design space of the forward process, potentially because of a mistaken belief that masking could be
the optimal forward process [23] (a telling exception is learning masking forward processes in Shi
et al. [23] and Wang et al. [25]). SCUD shows the potential of improving model fit by exploring
improved forward processes, potentially complementing work on sampling in future work.
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A Proofs of results

Proposition A.1. (Proof of Prop 3.1) The expression in Eqn. 1 is equal to the expression in Eqn 2 for
some constant C.

Proof. S is a deterministic function of (xt)t so we can write the first term of Eqn. 1 as

Ep((xt)t∈[0,1]|x0) log
qθ((xt)t∈[0,1]|x1)

p((xt)t∈[0,1]|x0, x1)
=Ep((xt)t∈[0,1]|x0) log

qθ((xt)t∈[0,1], S|x1)

p((xt)t∈[0,1], S|x0, x1)

=Ep((xt)t∈[0,1]|x0) log
qθ((xt)t∈[0,1]|x1, S)

p((xt)t∈[0,1]|x0, x1, S)
.

+ Ep(S,x1|x0) log
qθ(S|x1)

p(S|x0, x1)
.

(7)

We can combine the second term of this equation with the second term of Eqn. 1 to get

Ep(S,x1|x0) log
qθ(S|x1)

p(S|x0, x1)
+ Ep(x1|x0) log

q(x1)

p(x1|x0)

=Ep(S|x0) log
qθ(S)

p(S|x0)
+ Ep(S,x1|x0) log

qθ(x1|S)
p(x1|x0, S)

=Ep(S|x0) log
qθ(S)

p(S)
+ Ep(S|x0) log

p(S)

p(S|x0)
− Ep(S|x0)KL(p(x1|x0, S)|qθ(x1|S)).

(8)

The first term is −KL(p(S)||qθ(S)) and the second does not depend on q. This completes the
proof.

Proposition A.2. (Proof of Prop 4.1) The infinitesimal generator of this process is L = r(K − I)
where I is the identity matrix. In particular, any Markov process with L can be simulated in the
above way by picking an r ≥ maxb−Lb,b and setting K = L/r + I .

Proof. The process is described is clearly Markov. By the formal definition of L, for b′ ̸= b,

Lb,b′ = lim
t→0

1

t
p(xt = b′|x0 = b)

= lim
t→0

1

t
(p(an event occurs before t)× p(the event transitions to b′) + o(t))

= lim
t→0

1

t
(1− e−rt)Kb,b′ = rKb,b′ .

(9)

Then, since the rows of K sum to 1,

Lb,b = −
∑
b′ ̸=b

Lb,b′ = −r
∑
b′ ̸=b

Kb,b′ = −r(1−Kb,b).

The second statement follows from rearranging the first. The requirement that r ≥ maxb−Lb,b

comes from the fact that all entries in K must be non-negative and Kb,b = Lb,b/r + 1.

Proposition A.3. (Proof of Prop 4.2 in the Appendix) Call the event schedule S = {t1, t2, . . . , tM}
and t0 = 0. Call st the number of events up to time t, so stm = m.

p((xt)t, S) = p(S)p(x1)

M∏
m=1

p(xtm−1
|xtm , stm). (10)

Proof.
p((xt)t, S) =p(S)p(x1)p(xt0:M |x1, S)

=p(S)p(x1)

M∏
m=1

p(xtm−1 |xtm:M
, S).

By the Markov property, p(xtm−1 |xtm:M
, S) = p(xtm−1 |xtm , S). Finally, p(xtm−1 |xtm , S) ∝

p(xtm |xtm−1
, S)p(xtm−1

|S) = p(xtm |xtm−1
)p(xtm−1

|stm−1
) only depends on S through stm−1

, or
equivalently, stm = 1 + stm−1

.
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Proposition A.4. (Proof of Prop. 4.3) Calling the event schedule S = {t1, t2, . . . , tM} and t0 = 0.

Ep(x0) log qθ(x0) ≥− Ep((xt)t,S,x0)

M∑
m=1

KL(p(xtm−1
|xtm , x0, stm)||qθ(xtm−1

|xtm , stm))

− Ep(S,x0)KL(p(x1|s1, x0)||p(x∞)).

(11)

This objective is minimized when qθ(xtm−1 |xtm , stm) = p(xtm−1 |xtm , stm).

Proof. Just as with the classical ELBO, we can write

Ep(x0) log q(x0) ≥Ep(x0,S)Ep((xt)t∈[0,1],S|x0) log
qθ((xt)t∈[0,1], S)

p((xt)t∈[0,1], S|x0)
. (12)

Then we can break it up as in Prop. A.1 to get

Ep(x0) log q(x0) ≥Ep((xt)t) log
qθ((xt)t|x1, S)

p((xt)t|x0, x1, S)
−KL(p(S)||q(S))

Ep(S|x0) log
p(S)

p(S|x0)
− Ep(S,x0)KL(p(x1|S, x0)||qθ(x1|S)).

(13)

By our definition of the event schedule and q(S), the second and third term on the right are 0. For the
fourth term, clearly p(x1|x0, S) = p(x1|x0, s1).

By our definition of qθ,

qθ((xt)t|x1, S) =

M∏
m=1

q(xtm−1
|xtm , stm).

As in the proof of Prop. A.3, we can write

p((xt)t|x0, x1, S) =

M∏
m=1

p(xtm−1
|x0, x1, S, xtm:M

) =

M∏
m=1

p(xtm−1
|x0, stm , xtm)

where the last equality follows by the Markov property. Thus the first term is

M∑
m=1

log
q(xtm−1 |xtm , stm)

p(xtm−1 |x0, stm , xtm)
= −

M∑
m=1

KL(p(xtm−1 |x0, stm , xtm)||q(xtm−1 |xtm , stm)).

Proposition A.5. (Proof of Prop B.1) p(xt|xt, x0, st) factorizes as
∏D

d=1 p(pr(x
d
t )|xd

t , x
d
0, s

d
t ) and,

when marginalizing over x0, each dimension of xtm−1 is independent:

p(pr(xt)|xt, st) =

D∏
d=1

p(pr(xd
t )|xt, st).

Proof.

p(pr(xt)|xt, x0, st) =
p(pr(xd

t )|x0, st)p(xt|pr(xd
t ))

p(xt|x0, st)
=

D∏
d=1

p(pr(xd
t )|xd

0, s
d
t )p(x

d
t |pr(xd

t ))

p(xd
t |xd

0, st)

which equals
∏D

d=1 p(pr(x
d
t )|xd

t , x
d
0, s

d
t ). The second claim follows from integrating the later expres-

sion.

Proposition A.6. (Proof of Prop. 4.4) Define, if sdt > 0, pr(xd
t ) as the state at the last event in

dimension d. Then the first term of Eqn. 4 is

−Et∼Unif(0,1)Ep(xt,x0,S)
βt∫ t

0
βsds

∑
d

sdtKL(p(pr(xd
t )|xd

t , s
d
t , x

d
0)||qθ(pr(xd

t )|xt, st)). (14)
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Proof. Call Sd = {td1, . . . , tdMd}. The first term of Eqn. 4 can be written as

−Ep((xt)t,S,x0)

D∑
d=1

Md∑
m=1

KL(pr(xd
tdm

)|xd
tdm

, xd
0, s

d
tdm

)||qθ(pr(xd
tdm

)|xtdm
, stdm)).

The term in the sum can be written as L(st, xt, x0, d) so we can write

Ep((xt)t,S,x0)

D∑
d=1

∑
t∈Sd

L(st, xt, x0, d) =

D∑
d=1

Ep(Sd)

∑
t∈Sd

Ep(x0)p(S−d)p(xt|x0,st)L(st, xt, x0, d).

Call the function after
∑

t∈Sd equal to C(t, sdt ) so we can write the loss as Ep(Sd)

∑
t∈Sd C(t, sdt ).

We now investigate the measure Ep(Sd)

∑
t∈Sd . First note that Ep(Sd)

∑
t∈Sd is clearly abso-

lutely continuous in t with respect to the Lebesgue measure so this expression can be written as
Et∼Unif(0,1)

∑
sdt

f(t, sdt )C(t, sdt ) for some function f . By the Lebesgue differentiation theorem,
almost everywhere,

f(t′, s) = lim
ϵ→0

Ep(Sd)

∑
t∈Sd

1(t ∈ [t′ − ϵ, t′], sdt′ = s)/ϵ

=p(sdt′ = s) lim
ϵ→0

E
[
# events in [t′ − ϵ, t′]|sdt′ = s

]
/ϵ.

(15)

The distribution of events on an interval [0, t] is a Poisson process with density µ(s) = rβs;we can
simulate this by drawing st ∼ Pois(

∫ t

0
βsds) and then distributing the sdt events with probability

according to µ/µ([0, t]). Therefore, conditioned on s events occurring on [0, t′], the density of events
occurring at [t′ − ϵ, t′] is µ(t′)/µ([0, t′]), that is, the expectation in Eqn. 15 is

s events× µ(t′)

µ([0, t′])
mass = s

βt′∫ t′

0
βsds

.

Subbing this into the previous equation completes the proof.

Proposition A.7. (Proof of Prop. 5.1) Defining αt = exp(−
∫ t

0
βsds), the objective in Eqn. 6 is

Et∼Unif(0,1)Ep(mt)Ep(xt|x0,mt)
βtαt

1− αt

∑
d

xT
0 log x̃0,θ(xt,mt)

d.

Proof. If sdt > 1 then pr(xd
t ) is corrupted so p(pr(xd

t )|xd
t , s

d
t , x

d
0) is a uniform categorical and

doesn’t depend on x0; therefore, by our parameterization of qθ, we have that the KL term in the loss
Eqn 6 is non-zero if and only if sdt = 1. As well, when sdt = 1, p(pr(xd

t )|xd
t , s

d
t = 1, xd

0) = δx0
. In

this case we can write the loss as

Et∼Unif(0,1)
βt∫

s<t
βsds

Ep(S)Ep(xt|S,x0)

∑
d

1(sdt = 1)xT
0 log x̃0,θ(xt, st)

d.

Finally note that when x̃0,θ(xt, st) predicts x0, st is only useful in telling the model which tokens
are corrupted. If we call mt = st > 0 an indicator of which tokens have been corrupted, then we can
parameterize our prediction as x̃0,θ(xt,mt).

Note p(xt|x0, S) = p(xt|x0,mt), so

Ep(S)Ep(xt|S,x0)

∑
d

1(sdt = 1)xT
0 log x̃0,θ(xt,mt)

d =

Ep(m)Ep(xt|mt,x0)

∑
d

p(sdt = 1|md
t )x

T
0 log x̃0,θ(xt,mt)

d.
(16)

st ∼ Pois(
∫ t

0
βsds) so p(sdt = 1|md

t ) = 0 if md
t = 0 and

p(sdt = 1|md
t ) = p(sdt = 1|sdt ≥ 1) =

∫ t

0
βsds αt

1− αt
.
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Proposition A.8. (Proof of Prop. 5.2) Define the score function estimator as in SEDD [15]1

s̃(xt, t)
d
θ,b =

qθ(x
d
t = b|x−d

t )

qθ(xd
t |x−d

t )
=

Ex̃0,θ(xt,st)p(x
d
t = b|xd

0)

Ex̃0,θ(xt,st)p(x
d
t |xd

0)
.

Suppressing the dependence of s̃θ on xt, t, as γ → 0 the objective in Eqn. 6 converges to

−Et∼Unif(0,1)Ep(x0,xt)βt

∑
d

∑
b̸=xd

t

Lb,xd
t

(
s̃dθ,b −

p(xd
t = b|xd

0)

p(xd
t |xd

0)
log s̃dθ,b − g

(
p(xd

t = b|xd
0)

p(xd
t |xd

0)

))
(17)

where g(x) = x(log x− 1).

Proof. Note st ∼ Pois(r∗
∫ t

0
βsds/γ), so, as γ → 0, stγ converges to r∗

∫ t

0
βsds.

As γ → 0,

Kst = (I + γL/r∗)st = exp(γstL/r∗) + o(γ)→ exp

(∫ t

0

βsdsL
)

= Qt,

where Qt is the matrix where Qt,b,b′ = p(xt = b′|x0 = b).

qθ(pr(x
d
t )|xt, st) =

Kxd
t ◦Kst−1x̃d

0,θ

xd,T
t Kst x̃d

0,θ

=
Kxd

t ◦K−1Qtx̃
d
0,θ

xd,T
t Qtx̃d

0,θ

+ o(γ)

=Kxd
t ◦K−1s̃dθ + o(γ)

=xd
t +

γ

r∗
(
Lxd

t ◦ s̃dθ − xd
t ◦ Ls̃dθ

)
+ o(γ).

(18)

The expression for p(pr(xd
t )|xd

t , x
d
0, s

d
t ) is identical replacing x̃0,θ with x0. Thus

−KL(p(pr(xd
t )|xd

t , s
d
t , x

d
0)||qθ(pr(xd

t )|xt, st))

=
∑
b̸=xd

t

γ

r∗
Lb,xd

t

p(xd
t = b|xd

0)

p(xd
t |xd

0)
log

s̃dθ,b
p(xd

t = b|xd
0)/p(x

d
t |xd

0)

+ (1−O(γ)) log
1 + γ

r∗

(
Lxd

t ,x
d
t
− xd

tLs̃dθ
)

1 + γ
r∗

(
Lxd

t ,x
d
t
− xd

tL(p(xd
t = b|xd

0)/p(x
d
t |xd

0))b

) + o(γ)

=
γ

r∗

∑
b ̸=xd

t

Lb,xd
t

(
s̃dθ,b −

p(xd
t = b|xd

0)

p(xd
t |xd

0)
log s̃dθ,b − g

(
p(xd

t = b|xd
0)

p(xd
t |xd

0)

))+ o(γ).

(19)

Multiplying this by sdt , we get γ
r∗ s

d
t →

∫ t

0
βsds.

B Details of method

Here we describe how we parameterize, sample, and pick βt for SCUD.

B.1 Algorithm for estimating ELBO

We calculate p(x∞) from an spectral decomposition of K, or, if K is very large, using power iteration.

1Recall x̃d
0,θ(xt, st) is trained to fit p(xd

0|x−d
t , s−d

t ).
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Algorithm 1 Unbiased estimate of the SCUD ELBO (Eqn. 4) using Prop. 4.4

Input: x0

S ∼ p(S)
t ∼ Unif(0, 1)
// Sample xt

for d = 1, . . . , D do
xd
t ∼ Categorical(Ksdt xd

0)
end for
// Denoise one event of each dimension of xt

Predict x̃0,θ(xt, st)
for d = 1, . . . , D do

Calculate qθ(pr(x
d
t )|xd

t , s
d
t ) ▷ use Eqn. 20

Calculate p(pr(xd
t )|xd

t , s
d
t , x

d
0) ▷ use Eqn. 5

Calculate p(xd
1|sd1, xd

0) = Categorical(Ksd1xd
0).

end for
Return:

−
D∑

d=1

(
sdtβt∫ t

0
βsds

KL(p(pr(xd
t )|xd

t , s
d
t , x

d
0)||qθ(pr(xd

t )|xd
t , s

d
t )) + KL(p(xd

1|sd1, xd
0)||p(x∞))

)
.

B.2 Parameterization

qθ must predict, for each dimension, p(pr(xd
t )|xt, st), which is an expectation over the posterior of

xd
0 given xtand S:∑

xd
0

p(pr(xd
t )|xd

t , s
d
t , x

d
0)p(x

d
0|xt, S) =

∑
xd
0

p(xd
t |pr(xd

t ))p(pr(x
d
t )|sdt , xd

0)
p(xd

0|xt, st)

p(xd
t |sdt , xd

0)
.

Below we show that the fraction on the right hand side is proportional to p(xd
0|x−d

t , s−d
t ) where x−d

t

and s−d
t are xt and st without dimension d. Other discrete diffusion methods parameterize their qθ to

predict analogues of this quantity. Austin et al. [2] predicted a similar quantity rather than directly
predicting p(xd

0|xt, S). Moreover, predicting p(xd
0|x−d

t , s−d
t ) is identical to predicting p(xd

0|xt, S)
when xd

t is masked. Predicting this quantity has the benefit that we do not need to learn what xd
t tells

us about xd
0; it is baked into our prediction. We parameterize our qθ similarly.

Thus, to predict qθ(pr(xd
t )|xt, S) we input xt and st into a neural network that outputs a vector of

probabilities x̃0,θ and set qθ(pr(xd
t )|xt, st) equal to∑

b

p(xd
t |pr(xd

t ))p(pr(x
d
t )|sdt , xd

0 = b)x̃0,θ,b (20)

which can be writen as Kxd
t ◦Ksdt−1,T x̃0,θ. Note we do not explicitly forbid x̃0,θ from using xd

t , s
d
t

to predict xd
0.

Now we show that p(pr(xd
t )|x0, st, xt) factorizes across its dimensions.

Proposition B.1. (Proof in Prop A.5 in the Appendix) p(xt|xt, x0, st) factorizes as∏D
d=1 p(pr(x

d
t )|xd

t , x
d
0, s

d
t ) and, when marginalizing over x0, each dimension of xtm−1

is inde-
pendent:

p(pr(xt)|xt, st) =

D∏
d=1

p(pr(xd
t )|xt, st).

Recall this allows us to parameterize qθ(pr(xt)|xt, st) so it also factorizes as
∏D

d=1 qθ(pr(x
d
t )|xt, st).

We parameterize qθ(pr(x
d
t )|xt, st) to predict

p(xd
0|xt, st)

p(xd
t |xd

0, s
d
t )

=
p(xd

t , s
d
t |xd

0, x
−d
t , s−d

t )

p(xd
t |xd

0, s
d
t )p(x

d
t , s

d
t )

p(xd
0|x−d

t , s−d
t ) =

p(xd
t |xd

0, x
−d
t , st)p(s

d
t )

p(xd
t |xd

0, s
d
t )p(x

d
t , s

d
t )

p(xd
0|x−d

t , s−d
t ).
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Now note p(xd
t |xd

0, x
−d
t , st) = p(xd

t |xd
0, st) and p(sdt )/p(x

d
t |sdt ) does not depend on xd

0. Thus we
aim to predict a quantity proportional to p(xd

0|x−d
t , s−d

t ); we call our prediction x̃0,θ(xt, st), which
we plug into Eqn. 20 and then normalize.

B.3 Sampling

To sample, in principle we could take x1 ∼ p(x∞), S ∼ p(S), and then iteratively reverse each event
in S in order using our predictions of qθ(pr(xd

t )|xt, st). For data with many dimensions however, S
could contain tens of thousands of events, requiring many evaluations of x̃0,θ. Instead, like Campbell
et al. [3] and Zhao et al. [26], we reverse many events at once. In particular we use an analogue
of a k-Gillespie procedure [26]: we pick k events to reverse, and then reverse them with a single
evaluation of x̃0,θ.

To sample a point x0 ∼ q(x0) we first sample the noised sample x1 ∼ q(x1) = p(x∞) and the
number of events in each dimension S ∼ q(S) = p(S). We now sample given a budget of C
evaluations of x̃0,θ. Every step we denoise the last ⌈s1/C⌉ events that have yet to be denoised. To
denoise we can use Eqn. 20. In the case that we denoise k ≥ 1 events for a dimension d at once, we
can use the fact that

p(prk(xd
t )|xt, st) =

∑
xd
0

p(prk(xd
t )|xd

t , s
d
t , x

d
0)p(x

d
0|xt, S)

=
∑
xd
0

p(xd
t |prk(xd

t ))p(pr
k(xd

t )|sdt , xd
0)

p(xd
0|xt, st)

p(xd
t |sdt , xd

0)
.

We can write

p(xd
t |prk(xd

t )) = prk(xd
t )

TKkxd
t

p(prk(xd
t )|sdt , xd

0) = xd,T
0 Ksdt−kprk(xd

t )

And we can approximate the fraction with x̃0,θ just as in Eqn. 20. Thus we define

qθ(pr
k(xd

t )|xt, st) = Kkxd
t ◦Ksdt−k,T x̃0,θ. (21)

The total procedure is summarized in Alg. 2.

B.4 Choosing the rate

Our choice of βt describes how we compress the forward process running from time 0 to
∫ 1

0
βsds

into the interval [0, 1]. βt controls what times we sample when training the objective Eqn. 6 and∫ 1

0
βsds controls the convergence of p(x1) to p(x∞). Austin et al. [2] suggest picking βt so that

the mutual information between x0 and xt decreases linearly to ϵ on the interval [0, 1]. For SCUD
models, we pick βt so that the same is true when conditioning on the schedule: EstMI(x0, xt|st)
decreases linearly on the interval [0, 1].

Mutual information rate functions To choose the rate function βt, Austin et al. [2] calculated the
frequency of tokens in the training data p0(b) and then calculated the joint distribution of x0 and a
particle which has evolved according to L for time τ along one dimension –

p(x0 = b, xτ = b′) = p0(b)(e
τL)b,b′ .

They calculate the mutual information function MI(τ) of this joint distribution; the mutual information
is normalized so MI(0) = 1. They then pick βt so that evolving in the modulated process linearly
decreases the mutual information from 1 to ϵ on the interval [0, 1], i.e. MI(

∫ t

0
βsds) = 1− (1− ϵ)t.

For clarity, we’ll set MI(
∫ t

0
βsds) = 1− t and look at the interval [0, 1− ϵ] below.

Implementation in continuous time The process in [2] has discrete time, so the integral over β is
a sum and each βt can be pre-calculated before training begins. When we implement continuous time
discrete diffusion, we use a Newton root finder to calculate

∫ t

0
βsds = MI−1(1− t) and the implicit

function theorem to calculate βt =
d
dt

∫ t

0
βsds = 1/

(
d
dtMI(

∫ t

0
βsds)

)
.
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Algorithm 2 Efficient sampling from SCUD

Input: function evaluation budget C.
// Sample x1, s1
for d = 1, . . . , D do

xd ∼ p(x∞)

sd ∼ p(s1) = Pois(
∫ 1

0
βsds)

end for
L← ⌈

∑D
d=1 s

d/C⌉ ▷ Number of events to denoise per step
for c = 1, . . . , C do

// Decide which positions to denoise in this step
k ← 0⃗
for ℓ = 1, . . . , L do

if
∑D

d=1(s
d − kd) > 0 then ▷ If there are remaining events to reverse...

d ∼ Categorical
(

s−k∑D
d=1(s

d−kd)

)
▷ ...sample uniformly from remaining events in s.

kd ← kd + 1
end if

end for
// Denoise kd steps at each dimension d
Predict x̃0,θ(x, s)
for d = 1, . . . , D do

xd ∼ qθ(pr
kd

(xd)|x, s) ▷ use Eqn. 21
sd ← sd − kd

end for
end for
Return: x

Schedules for SCUD For SCUD, we instead calculate the joint distribution between x0 and the
particle after m events, xtm , along one dimension –

p(x0 = b, xtm = b′) = p0(b)(K
m)b,b′ .

Calling the mutual information between these variables MIm we choose βt so that EstMIst = 1− t

where st ∼ Pois(r∗
∫ t

0
βsds/γ). Again we calculate these values using a Newton root finder and the

implicit function theorem.

Connection to classical discrete diffusion With this choice, note as γ → 0, for any τ

MIr∗τ/γ = MI(p0(b)((I + γL/r∗)r
∗τ/γ)b,b′)→ MI(p0(b)(e

τL)b,b′) = MI(τ).

Therefore, EstMIst → MI(
∫ t

0
βsds), so

∫ t

0
βsds converges to the same value as in classical discrete

diffusion.

Connection to masking discrete diffusion In this case, xtm is uniform independent of x0 for all
m ≥ 1 Therefore, MIm = 0 for all m ≥ 1 and EstMIst = e−

∫ t
0
βsds = αt. Therefore, αt = 1− t.

C Structured processes

In this section we will describe the structured continuous time Markov processes we used in Sec. 6.
Our processes are inspired by those from Austin et al. [2] and Alamdari et al. [1]; however those
works framed the process in discrete time in such a way that they are not related to any continuous
time Markov model, requiring us to design new processes. Note also that those works modified their
processes to ensure that the transition matrix at every time-point was doubly stochastic; this was so
that all transition matrices would have the same stationary distribution – a uniform distribution. In
our case, we are free to pick any L that converges to a stationary distribution, even if it is not uniform.
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C.1 Gaussian process for images

To include the bias that two pixel values i ̸= j are similar if (i − j)2 is small, we set Li,j =

exp(−200 (i−j)2

B ) the value 200 was chosen as it gave the best results in small scale experiments. We
then set Li,i = −

∑
j ̸=i Li,j .

C.2 Nearest neighbour process for language

Our vocabulary in the language result was approximately 30’000 tokens from the Bert-base-uncased
tokenizer [6]. It is prohibitively expensive to compute a 30′000× 30′000 matrix K to take matrix
vector products during training. Instead, we pick a sparse K built using the embeddings from Devlin
et al. [6]; for the most frequent 1000 words (which make up 95% of tokens seen in the data) i, j we
computed their similarity as vTi vj where vi is the normalized embedding of word i. For each word
we found the 10 nearest neighbours; we noticed restricting to the top 1000 words resulted in nearest
enighbours which were much more semantically similar. We next set, for nearest neighbours,

L̃i,j = exp(vTi vj/0.3).

We next normalized L̃ so that the diagonal is 1 – this ensures that every word has an identical
transition rate, avoiding the case where a word never transitions because it has no nearby neighbours.

We noticed that it often took a long time for particles to reach a stationary distribution with this process,
so we added occasional transitions across the nearest neighbour graph; we called p the normalized
frequencies of the top 1000 words in the data and define the uniform transition infinitesimal generator

Lunif = 1⊗ p− I,

where 1 is the vector of all 1’s; this transitions tokens to a random token based on the final token’s
frequency in the data. We combine our two processes by defining

L = L̃+ 0.4× Lunif

and normalizing so that the smallest value on the diagonal was −1. We do not store this matrix
explicitly, and only perform matrix operations with sparse matrix products and multiplication with 1
or p.

For tokens outside of the most frequent 1000, we transition using Lunif .

C.3 BLOSUM process for protein

BLOSUM is a matrix that can be describes how often different amino acids are seen in the same
position in related protein families [10]. The i, j entry of the matrix is

Bi,j = 2 log
Pij

PiPj

where Pij is the probability of two related proteins having amino acids i, j at the same position, and
Pi is the marginal probability. We build a stochastic process to emulate drawing a related protein, so
we set

Ki,j = exp(Bi,j/2)× Pj = Pj|i.

There are other letters in our vocabulary for non-canonical amino acids and padding; for i not one of
the canonical 20 amino acids, we set Ki,j = Pj , so all transitions an only occur to a canonical amino
acid. Finally we set L = K − I (Fig. 5).

D Experimental details

In all cases we trained models on 2 A100 GPUs on an academic cluster.
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Figure 5: BLOSUM process K.

D.1 Samples from image SCUD

Figure 6: Samples from SCUD Gaussian trained on CIFAR-10.

D.2 Pretrained protein weights

We train 150M parameter ESM2 models [12] with pre-trained weights on Uniref2 and compare to a
masking diffusion model, DPLM [24], which used a similar strategy.

To get an ELBO for DPLM, we considered it as a discrete-time masking diffusion model with 500
timesteps. We used the formula from Austin et al. [2] to evaluate the ELBO of such a model. In
particualr, the ELBO is

500∑
t=1

1

t
EX0,Xt

L∑
i=1

1(X
(i)
t = mask) log qθ(X

(i)
0 | Xt).

D.3 Transition rates in Fig. 2

For τLDR we downloaded the CIFAR-10 model from https://github.com/andrew-cr/tauLDR.
We simulated 2000000 forward trajectories using samples from CIFAR-10 and 1000 backward
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Method Fwd. process Perplexity
DPLM Masking 10.61
Classical BLOSUM 10.34
SCUD Uniform 10.95
SCUD BLOSUM 10.04

Table 2: Schedule conditioning improves uniform corruptions and accommodates structured
forward processes for proteins, even when starting from pre-trained model weights. We perform
the protein experiment from the main text but replace the architecture with a pre-trained ESM2
backbone.

samples using τ leaping with 216 = 65536 steps. For forward samples x we calculated rates −Lx,x

and for backward samples we calculated rates −Lθ,x,x. We then averaged forward and backward
rates at each timestep and calculate the difference between the average forward and backward rates.

For D3PM we download the 640M uniform model from https://github.com/microsoft/
evodiff. We were able to calculate the forward rates analytically. We simulated 1000 back-
ward samples of length 110 and at each time step we calculated the probability of a transition; we
multiplied this probability by 1/∆t to get a rate. We did not average with a sliding window.

D.4 Images

We use an architecture inspired by Kingma et al. [11] like in MD4 [23] with a slight modification
to incorporate st. The architecture first embeds x0 like in Shi et al. [23] and then puts it through a
UNet with 32 layers and no up- or down-sampling. At every layer of the UNet, a feed forward layer
is applied to a sinusoidal embedding of the time t and the output is added to the channels at every
pixel – ax position i, j, activations ai,j at updated

ai,j ← FFθ(emb(t)) + ai,j .

Instead each activation is updated using a FiLM layer using the number of events up to time t.

ai,j ← FF1,θ(emb(si,jt )) + FF2,θ(emb(si,jt )) ◦ ai,j .
The feed forward layers are shared across every position i, j. We used the same training parameters
as in Shi et al. [23]; we trained each of our large models for 2 days and each of our models from
Fig. 1 took between 1.5 and 2 hours. Our large models were trained on 2.6× 109 images, the same
amount as MD4 [23] and τLDR [3] and compared to 1.9× 109 for D3PM [2].

We use K = 2048 function evaluations to generate images. The results of Fig. 1 used a batch size of
16 and the same architecture but with an 8 layer UNet – masking and classical models used FiLM
layers with t instead of st.

D.5 Language

We use the diffusion transformer architecture [17] as in SEDD [15]. This architecture has FiLM
layers to add t at each layer; as above, we replace t with st. We use the training settings as in
SEDD [15], accumulating to match their batch size of 512. We trained our models for 2 days each on
1.1× 1010 tokens.

D.6 Protein

We use the small CARP architecture from [1]. The original architecture added as embedding of t
at the first layer. We add FiLM layers for st at every layer as described above. We train and test
on the March 2020 release of Uniprot2020 released by Alamdari et al. [1]. We use a batch size of
128 protein up to size 1024 as in Alamdari et al. [1], randomly truncating proteins over that size.
We trained each model for 2 days on 1.1× 1011 tokens, compared with 3.3× 1011 for the baseline
D3PM models from Alamdari et al. [1].

D.7 Computational complexity

In terms of computational complexity, the major differences between SCUD and classical discrete
diffusion are (A) replacing operations of L with operations of K, and (B) replacing the time t in the
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argument of x̃0,θ with the number of transitions S. We discuss how (B) does not result in a large
increase of computational complexity below, and note that (A) does not change the computational
complexity except when the number of tokens B is large, when it actually enables strategies that
reduce complexity.

(A) Matrix computations To calculate our loss, Eqn. 6, in Eqn. 6 we see that we only need to take
matrix vector products with K; the analogous quantity in classical discrete diffusion requires matrix
exponentiation exp(tL) (Luo et al., 2022). When B is small, both these calculations have negligible
complexity and can be calculated similarly quickly by precomputing an eigen-decomposition of K or
L. But when B is large, as in the language modeling case, these calculations become very expensive;
Luo et al., 2022 settled for very simple L, masking and uniform, such that exp(tL) can be easily
analytically calculated; SCUD is able to build in a richer forward process by picking a sparse + low
rank K so that matrix vector products are very fast.

In terms of big-O notation, when an eigendecomposition is precomputed, (exp(tL)x̃d
0)

D
d=1 and

(Ksdt x̃d
0)

D
d=1 each cost Θ(DB2) for two dense matrix multiplies and a scaling by the exponentiation

or power of the eigenvalues. When Ksdt is a sparse matrix with O(rB) entries or has a rank of r,
calculating (Ksdt x̃d

0)
D
d=1 is O(DBrmaxd(s

d
t )); in our language case, B is large while maxd(s

d
t ) ≈

30 and we pick r ≈ 20 resulting in a large speedup.

(B) Computations with S Indeed, the place that SCUD adds some overhead to calculations is
in replacing the arguments of x̃0,θ(xt, ·): the time over which x0 has been corrupted, t, a scalar, is
replaced with the number of corruptions of each token S, a D-dimensional object. The overhead of
this operation is dependent on the architecture of x̃0,θ. We picked x̃0,θ so that no parameters were
added by replacing t with S, and such that the computational and memory overhead caused by this
replacement were negligible compared to the operations and memory spent on operations on the
D-dimensional xt. Above we used previous architectures modified so that each operation on t was
also applied to each dimension of S. As well, for the architectures we chose, whenever a function of
t was added or multiplied to a set of activations, say at layer ℓ, hℓ,θ, the activations had a dimension
D, so we could perform the same operation with element-wise addition or multiplication with S, i.e.

hd
ℓ+1,θ = f1,θ(t)h

d
ℓ,θ + f2,θ(t) was replaced with hd

ℓ+1,θ = f1,θ(s
d
t )h

d
ℓ,θ + f2,θ(s

d
t ).

Thus, adapting x̃0,θ for SCUD in this way adds no extra parameters. The overhead of this change
is that every call to fθ is replaced by D calls, D-times the activations fθ(sdt ) must be stored, and
D-times more gradients must be calculated for fθ(sdt ). fθ is however a set of linear functions and
activations. The operations on the corrupted data xt involve convolutions and attention, which have
much larger memory and computational costs. In big-O notation, the cost of calculating x̃0,θ(xt, t)
and x̃0,θ(xt, S) are therefore identical – at worst, the constant in front of the largest term changes.
Therefore, in our experiments, we ran all models for roughly equal time with the same batch sizes
and did not observe any substantial difference in computation.

E Extending flow matching to SCUD

Here we follow the exposition of Campbell et al. [4] to derive flow matching models that are
conditioned on schedule. In App. E.1 we derive schedule conditioned flow matching (SCUM) in
generality. In App. E.2 we describe how SCUD is an instance of SCUM and show how by training a
SCUD model, one can sample from a large class of SCUM models. Finally in App. E.3 we derive an
example class of SCUM models. The conclusion is that schedule conditioning can be extended to the
flow matching case just as classical discrete diffusion can.

E.1 Schedule conditioned flow matching (SCUM)

We consider discrete objects in a set of size B and in this quick exposition leave out the multi-
dimensional case as an easy extension of the logic of SCUD or Campbell et al. [4]. In flow matching,
we wish to approximately sample from a target p(x0) (this is called x1 in Campbell et al. [4]). In
regular flow matching, we define distributions of samples noised for time t: p(xt|x1) (Eqn. 6 of
Campbell et al. [4]). To condition on the schedule, we instead define distributions of samples that
have been noised by s events from x1: p(xs|x0). We assume p(xs|x1) is close to an easy to sample
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from distribution p(x∞) when s has large entries. In particular, for s with large entries, the marginal
p(xs) ≈ p(x∞); Now we want to denoise events to get p(xs−1) and ultimately p(x0) (Eqn. 5 of
Campbell et al. [4]).

To do so, we first choose how to denoise elements in p(xs|x0). Say Ks|x0
is a stochastic matrix

such that sampling p(xs|x0) then xs−1 ∼ Categorical(KT
s,d|x0

xd
s) gives a sample from p(xs−1|x0).

The next result is the analogous result of Prop. 3.1 of Campbell et al. [4]: given a sample from the
marginal, xs ∼ p(xs) we can denoise an event in dimension d by averaging over x0|xs and using
Ks|x0

.

Proposition E.1. Define Ks;xs,· = Ep(x0|xs)Ks|x0;xs,·. Then sampling xs ∼ p(xs) and xs−1 ∼
Categorical(Ks;xs,·) gives a sample from p(xs−1).

Proof.
Ep(xs)Ep(x|xs)Ks|x0;xs,xs−1

=
∑
x0

p(x0)
(
Ep(xs|x0)Ks|x0;xs,xs−1

)
=
∑
x0

p(x0)p(xs−1|x)

=p(xs−1).

Given this result, we can define schedule conditioned flow matching models (SCUM). First we
approximate p(x0|xs) with a neural network x̃0,θ(xs, s); next we sample from p(x∞) which is
≈ p(xs) for some large s, and then iteratively denoise by approximating Ks;xs,· (Alg. 3).

Algorithm 3 Sampling from SCUM in analogy to Alg. 1 in Campbell et al. [4]

s← large number
xs ∼ p(x∞) ≈ p(xs)
while s > 0 do

Ks;xs,· ← Ex̃0,θ(xs,s)Ks|x0;xs,·
xs−1 ∼ Categorical(Ks;xs,·)
s← s− 1

end while
Return: x0

To train x̃0,θ(xs, s) we can just minimize the cross entropy

Es∼Unif(1,2,...,large number),p(x0),p(xs|x0)x
T
0 log x̃0,θ(xs, s).

We could alternatively use a different distribution for s, such as a Poisson. Note that p(xs|x0) does
not depend on the particular choice of Ks|x0

, so we can train x̃0,θ(xs, s) once and then decide the
best Ks|x0

for sampling at test time.

E.2 SCUD is SCUM

We now show that for a particular choice of Ks|x0
, the simulated trajectories of SCUM are that of

SCUD as in Appendix H of Campbell et al. [4]. Next we discuss how, given a trained SCUD model
we can sample from a wide variety of SCUM models.

Define a Markov process that noises datapoints x0 with an infinitesimal generator L with rate
function βt. Say we have a data point x0 that’s been noised s > 0 times and define Ks|x0;xs,· =
p(pr(xs)|xs, x0, s) as in Eqn. 5. Then

Ks;xs,· =Ep(x0|xs)Ks|x0;xs,·

=Ep(x0|xs,s)p(pr(xs)|xs, x0, s)

=p(pr(xs)|xs, s)
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which is exactly the distribution we approximate to denoise an event in SCUD (Alg. 2). There-
fore SCUD is just SCUM with a particular choice of Ks|x0

, with “large number" in Alg. 3 set to
Pois(

∫ t

0
βsds).

Furthermore, SCUD trains a x̃0,θ(xs, s) to predict x0 given xs, s
2. Campbell et al. [4] suggests that

an advantage of flow matching is that one can train x̃0,θ once and then decide on the best infinitesimal
generator at test time; we can do the same by training x̃0,θ with the SCUD objective and then changing
Ks|x0

at test time.

E.3 Examples of SCUM

Say we have built a SCUD model with transition matrix K. The canonical choice for Ks|x0
above is

Ks|x0;xs,xs−1
= xT

s−1Kxs
xT
0 K

s−1xs−1

xT
0 K

sxs
.

We now describe a family of Ks|x0
that can be alternatively used to sample from p(x0).

First note that for SCUD, p(xs|x0) = Ks,Tx0. Therefore Ks|x0
can be any matrix with

KT
x|x0

Ks,Tx0 = Ks−1,Tx0 and positive entries with rows that add to 1. Campbell et al. [4]
suggested picking the process to minimally move mass from position with too much in Ks−1,Tx0

to those with too little in Ks,Tx0 (R∗ in Prop. 3.2 in Campbell et al. [4]); we can do that with the
choice

K∗
s|x0;xs,y

=
ReLU(yTKs−1,Tx0 − yTKs,Tx0)∑
z ReLU(zTKs−1,Tx0 − zTKs,Tx0)

× ReLU(xT
s K

s,Tx0 − xT
s K

s−1,Tx0)

for xs ̸= y, which moves mass from xs with too much mass to y with too little in proportion to how
much mass they need.

To augment this “most efficient" choice Campbell et al. [4] describe a method to add stochasticity to
Ks|x0

. They do so by introducing an infinitesimal generator that obeys details balance; we do the
same. Say LDB

s|x0
keeps the distribution p(xs|x0) stationary, say by satisfying detailed balance. Then

we can add more noise to Ks|x0;xs,y by defining Kη
s|x0

= eηL
DB

K∗
s|x0

since

KT
x|x0

Ks,Tx0 = K∗
s|x0

eηL
DB

Ks,Tx0 = K∗
s|x0

Ks,Tx0 = Ks−1,Tx0.

By varying η, Campbell et al. [4] optimized samples for stochasticity against likelihood.

In conclusion, just as one can do with classical discrete diffusion models, after training a SCUD
model, one can optimize a stochasticity parameter η to get desirable samples.

2In the high dimensional case, unlike our exposition of SCUM, SCUD trains x̃0,θ(xs, s) to approximate, for
each dimension d, p(xd

0|x−d
s , s) rather than p(xd

0|xs, s) (Sec. B.2). However any prediction of p(xd
0|x−d

s , s) can
be transformed into a prediction of p(xd

0|xs, s) via the identity p(xd
0|xs, s) ∝ p(xd

s |sd, xd
0)p(x

d
0|xs, s) which

doesn’t depend on the specific choice of Ks|x0
– the difference is just a matter of parameterization.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: See Sec. 6.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Discussion of SCUD tradeoffs and sampling in Sec. 7.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: See App. A.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: See App. D.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: See code release in Sec. 1 and App. D.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: See App. D and B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: Test likelihoods in Sec. 6 are calculated on large and fixed test sets.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: See App. D and B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
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• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Agrees with codes of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The authors consider improvements to training diffusion models to improve
ELBOs. While there are potential broader impacts in all generative modeling work, there
are none particular to this work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: We use existing datasets and do not scale models far beyond existing architec-
tures.
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Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: See App. D.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: See code release in Sec. 1.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: No crowdsourcing.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: No IRB.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: We do not use LLMs in any core or non-standard way.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

31

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Learning when and where to transition
	Scheduled conditioned diffusion (SCUD)
	Conditioning on event schedules
	High dimensional data

	Connection SCUD to classical and masking discrete diffusion
	Connection to masking diffusion
	Connection to classical discrete diffusion

	Results
	Connection to other models
	SCUD allows models to leverage structure in the forward process
	Scaling case study: Language

	Discussion
	Proofs of results
	Details of method
	Algorithm for estimating ELBO
	Parameterization
	Sampling
	Choosing the rate

	Structured processes
	Gaussian process for images
	Nearest neighbour process for language
	BLOSUM process for protein

	Experimental details
	Samples from image SCUD
	Pretrained protein weights
	Transition rates in Fig. 2
	Images
	Language
	Protein
	Computational complexity

	Extending flow matching to SCUD
	Schedule conditioned flow matching (SCUM)
	SCUD is SCUM
	Examples of SCUM


