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Abstract

Chinese word boundaries cannot be directly dis-
played as Chinese is a sequence of characters.
To attend words in sentences, inspired by span-
based NER and boundary module in NER, the
hidden states of current character come from
its context in BILSTM and are activated by sig-
moid gate to represent boundaries. The bound-
aries are added into encode to get word-lever in-
formation of Chinese named entity. The values
of boundaries are soft to show sentences struc-
ture obtained with labels. Experimental studies
on four benchmark datasets and incorporated
BERT for pre-training show our method gets
the optimal recognition result in Chinese NER.

1 Introduction

Language equals speech plus structure, and with-
out boundaries there is no structure. In contrast to
English, Chinese is a sequence of characters. There
is no separator between characters (Su et al., 2018;
Liet al., 2014), so word boundaries cannot be di-
rectly displayed. However, word-level information
is very important for natural language processing
(Mao et al., 2008; Peng and Dredze, 2016b; Zhang
and Yang, 2018). Different ways of defining words
can lead to different word segmentation results.
There are still some basic questions like "what is a
word" and "a word is what" that are not answered.
Research (Sproat et al., 1994) shows that even if
one is a native Chinese speaker, the rate of agree-
ment on words appearing in Chinese texts is only
about 70%. Therefore, in a strict sense, automatic
word segmentation is a problem that is not clearly
defined.

Traditionally, for Chinese NER, Chinese Word
segmentation(CWS) system is first performed
(Yang et al., 2016; He and Sun, 2017b). How-
ever, the existing CWS output a large number of
incorrect word segmentation results, which leads
to unsatisfactory language processing, and do not
perform well in recognizing long entities as they fo-

cus only on word-level information. In contrast to
word-based partitioning methods, character-based
partitioning methods (He and Wang, 2008; Liu
et al., 2010; Li et al., 2014; Liu et al., 2019; Sui
etal., 2019; Gui et al., 2019; Ding et al., 2019) have
been empirically proven to be effective. A draw-
back of the purely character-based NER method
is that the word information is not fully exploited.
With this consideration, word lexicons are incorpo-
rated into the character-based NER model (Zhang
and Yang, 2018; Peng et al., 2019; Li et al., 2020).
However, they incorporate many wrong word lexi-
cons without considering the whole sentences for
segmentation. Moreover, as boundary detection
and type prediction may cooperate with each other
for the NER task, it is also important for the two
subtasks to mutually reinforce each other by shar-
ing their information.

To address the issue, we perform hidden state of
boundary(HSB) to comparing with CWS system.
HSB adopts a sequence to sequence model with
RNN networks. Specifically, the model employs a
bidirectional LSTM to model sequential dependen-
cies of each character. The hidden states of current
character come from its context and are activated
by gate to represent boundaries. The boundaries
are added into hidden states in forward to produce
entity boundaries based on input sequence. Experi-
mental results show our model outperforms on the
performance. In summary, the main contributions
of this paper include:

* We propose a simple but effective method for
incorporating word boundaries into the char-
acter representations for Chinese NER.

* The proposed method is transferable to differ-
ent sequence-labeling architectures and can be
easily incorporated with pre-trained models
like BERT (Devlin et al., 2018).



2 Background
2.1 Span-based NER

In the domain, NER is usually considered as a
sequence labeling problem (Liu et al., 2018). Span-
based NER identifies segments in a sentence and
classifies each segment with a special label (e.g.,
PER, ORG or LOC). For boundary embedding,
span representation is calculated by the concate-
nation of the start and end tokens’ representations
(Fu et al., 2021). To enumerate all possible text
spans in a sentence, the concatenation of word rep-
resentations of its startpoint and endpoint with a 20-
dimensional embedding represent the span width
(Li et al., 2021a) following previous work. Zhang
et al. (2018) use adaptive co-attention network with
LSTM structure. There are also inspiring tasks (Xu
et al., 2021; Ma et al., 2022; Cao and Wang, 2022;
Hong et al., 2022) about boundary representation
that integrate better feature of language structure in
model . More recently, pretrained language models
such as ELMo and BERT have been adopted to
further enhance the performance of NER.

2.2 Boundary Module in NER

The Boundary Module needs to provide not only
distinct contextual boundary information but also
segment information for the NER Module. Huang
et al. (2015) utilize the BiLSTM as an encoder to
learn the contextual representation of words, and
then Conditional Random Fields (CRFs) is used
as a decoder to label the words. It has achieved
the state-of-the-art results on various datasets for
the past many years. Inspired by the success of
the BiLSTM-CRF architecture, many other state-
of-the-art models have adopted such architecture.
Li et al. (2021b) use another BILSTM as encoder
to extract distinct contextual boundary information.
To add extra information to the input of the LSTM,
they use the sum of the hidden states of current ,
previous and next words instead of word embed-
ding. Specifically, the encoders obtain the distinct
boundary hidden sequences and a sentinel vector is
padded into the last positions of hidden sequences
for the sentinel word inactive. Then, a unidirec-
tional LSTM is used as a decoder to generate the
decoded state at each time step. Li et al. (2021c)
processes the starting boundary word in an entity to
point to the corresponding ending boundary word.
They train the starting boundary word to point to
the corresponding ending boundary word, and the
other words in the sentence to a sentinel word in-

active. Boundary smoothing(Zhu and Li, 2022)
applies the smoothing technique to entity bound-
aries, rather than labels. Smoothed boundary pro-
vides more continuous targets across spans, which
are conceptually more compatible with the induc-
tive bias of neural networks that prefers continuous
solutions.

3 Method

3.1 LSTM-HSB structure

The character-based model uses an LSTM-CRF
model on the character sequence ci,ca, ...
Each character ¢; is represented using

X = e“(ct), ey

e denotes a character embedding lookup table.

The character representations are put into the
sequence modeling layer, which models the de-
pendency between characters. Generic architec-
tures for this layer including the bidirectional long-
short term memory network(BiLSTM), the Con-
volutional Neural Network(CNN) and the trans-
former(Vaswani et al., 2017). In this work, we im-
plemented this layer with a single-layer Bi-LSTM.
In our model, we use hidden states as boundaries.

Here, we precisely show the definition of the
forward LSTM-HSB(Figure 1):
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where o is the element-wise sigmoid function and
® represents element-wise product. T, b, W and
b" are trainable parameters.

A bidirectional LSTM-HSB is applied to

[
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X1,X2,...,X,, to obtain H{, HS, ...,

¢ H3,..., HS in the left-to-right and right-to-
left directions, respectively, with two distinct sets
of parameters. The backward LSTM-HSB shares
the same definition as the forward LSTM-HSB yet
model the sequence in a reverse order. The con-
catenated hidden states at the step of the forward
and backward LSTM-HSBs forms the context-
dependent representation. The hidden vector repre-

sentation of each character is:

HY = [H; HY). 3)



Figure 1: LSTM-HSB structure.

A standard CRF model is
{,Hs, ... H;, for sequence labelling.

By explicitly assigning probability to surround-
ing spans, the soft boundary of hidden states pre-
vents the model from concentrating all probability
mass on the scarce positive samples. This intu-
itively helps alleviate over-confidence. In addition,
hard boundary presents noticeable sharpness be-
tween the classification targets of positive spans
and surrounding ones, although they share similar
contextualized representations. Soft boundary pro-
vides more continuous targets across spans, which
are conceptually more compatible with the induc-
tive bias of neural networks that prefers continuous
solutions.

used on

3.2 Hidden Boundary State Model of Chinese
NER

We design the NER model (Figure 2) based on
LSTM-HSB. Sequences of characters are pre-
trained to obtain character vectors. With Bi-LSTM,
we get context hidden state. The hidden state is
performed on the character vector to obtain the
boundary between nearby characters. The bound-
ary is activated and added with original hidden state
to obtain the results. In addition, we show Table 1
for detail idea in model.

In Figure 2, the character sequences of
["Fd(South)’, *F{(Capital)’, * T (City)’, > :(Long)’,
{L(River)’ , *K(Big)’, ’#T(Bridge)’],pretrained
unigram and bigram embeddings, result in char-
acter vector groups (1, x2, X3, X4, T5, T, T7) TE-
spectively. With Bi-LSTM, we get context hid-
den states (hi, ho, hg, hy, hs, hg, h7). The hid-
den states are activated by sigmoid ¢ and added
original hidden states to form boundary states

Figure 2: Character hidden boundary states model.

(H1,H>,Hs, Hy, H5, Hg, H7). The results are ob-
tained with labels (B, M, E, O, O, O, O).

Table 1 indicates that boundaries come from
the context hidden state. The value activated by
sigmoid in the span of [0,1] is a soft way to lo-
cate boundary between nearby characters. Then
is is added with original hidden states to obtain
the results. Compering with input of boundary en-
hance(Table 2), our boundaries are dynamic and
smoothed from hidden state activation without vo-
cabulary.

4 Experiment

4.1 Setup

Datasets. The LSTM-HSB is evaluated on four
Chinese NER datasets, including MSRA (Levow,
2006), OntoNotes (Weischedel et al., 2011), Re-
sume NER (Zhang and Yang, 2018) and Weibo
NER (Peng and Dredze, 2015; He and Sun, 2017a).
Weibo NER is a social media domain dataset,
which is drawn from Sina Weibo, while OntoNotes
and MSRA datasets are in the news domain. Re-
sume NER dataset consists of resumes of senior
executives, which is annotated by (Zhang and Yang,
2018).

Evaluation. We use P, R and F1 in average to
evaluate our performance on MSRA, OntoNotes
and Resume datasets comparing with BERT-base
and other methods. We used F1 in average to eval-
uate our performance on the NE, NM and Overall
of Weibo dataset comparing with BERT-base and
other methods.

Model settings. For LSTM-HSB model,
we adopted similar settings as LSTM+CRF
(https://github.com/TVect/ChinNER/
tree/master/models/lstm_crif),

LSTM+CRF+BERT (https://github.com/
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W R 0.9 DIRRIWNG 0.1 [7170.9;770.1]
K EETK 0.8 KL ARHF 0.8 [#:0.8;10.8]
L TR 0.6 AW 0.4 [71.0.6;/1.0.4]
K ERTRKIIK 0.2 Kife 0.8 [K0.2;K0.8]
IR AN ) 0.8 i 0.2 [#70.8:1770.2]
Table 1: Hidden states of boundaries.
Models Boundary Enhance
BERT B #IE #TT K #HL #R #
Labels aware FB XM THE KB {IM KM #FE
Word pos O 1 T2 K0 L1 K2 73
Table 2: Input of boundary enhance.
TVect/ChinNER/tree/master/models/ Models 3 R F1
bert_ner) and Lattice LSTM(https: Chen et al. (2006) 91.22 81.71 86.20
//github.com/jiesutd/Lattice). Zhang et al. (2006)* 92.20 90.18 91.18
Most implementation details followed those, Zhou et al. (2013) 91.86 8875 90.28
including character and word embedding sizes, Luetal. (2016) ) : 87.94
dropout, embedding initialization, and layer Dong etal. (2016) 9128 90.6290.95
pout, - embedding : X y Ma et al. (2020)" f 94.63 9270 93.66
number. Additionally, the hidden size was set to Li et al. (2020)" 1 0246 9377 93.11
200 for small datasets Weibo and Resume, and BiLSTM+CRE 9223 9052 9137
300 for larger datasets OntoNotes and MSRA. The BiLSTM-HSB+CRF 9226 90.68 91.46
initial learning rate was set to 0.005 for Weibo and Lattice LSTM 93.68 92.33 93.00
0.0015 for the rest three datasets. Lattice LSTM-HSB 93.82 93.26 93.54
. Bert+BiLSTM+CRF 94.72  94.10 94.41
4.2 Effectiveness Study Bert+BiLSTM-HSB+CRF  95.08 94.51 94.79

We conducted experiments on the four datasets to
further verify the effectiveness of LSTM-HSB in
combination with pre-trained model. Tables 3—6'
show results on the MSRA, OntoNotes, Resume
and Weibo datasets respectively against the com-
pared baselines.

In Tables 3—6, compared methods include the
best statistical models on these data set, which
leveraged rich handcrafted features (Chen et al.,
2006; Zhang et al., 2006; Zhou et al., 2013), char-
acter embedding features (Lu et al., 2016; Peng and
Dredze, 2016a), radical features (Dong et al., 2016),
cross-domain data, semi-supervised data (He and
Sun, 2017b) and incorporating word lexicons meth-
ods (Zhang and Yang, 2018; Peng et al., 2019; Li
et al., 2020). From the tables, we can see that the

'In Table 3—6,  indicates that the model uses external

labeled data for semi-supervised learning.  means that the
model also uses discrete features.

Table 3: Performance on MSRA.

performance of the LSTM-HSB method is better
than baseline methods on four datasets. The aver-
age performance of the LSTM-HSB method is near
to SOTA on four datasets. The reason of cannot
over SOTA may be the embedding in static state
and depending on tokenizations which may fail
to recognize unnamed words like L. K#f(Dagiao
Jiang)’. Comparing with BILSTM+CRF and Lat-
tice LSTM, we find that, the BiLSTM-HSB+CRF
and Lattice LSTM-HSB methods have better per-
formance. Those results show our method is trans-
ferable to different sequence-labeling architecture.

The proposed methods (Zhang and Yang, 2018;
Ma et al., 2020) employ lattice-LSTM and consider
the multiple tokenizations. The real difference be-
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Models P R F1 Models NE NM  Overall
Yang et al. (2016) 65.59 71.84 68.57 Peng and Dredze (2015) 5196 61.05 56.05
Yang et al. (2016)*f 7298 80.15 76.40 Peng and Dredze (2016a)* 55.28 62.97  58.99
Che et al. (2013)* 7771 7251 75.02 He and Sun (2017a) 50.60 59.32  54.82
Wang et al. (2013)* 76.43 7232 7432 He and Sun (2017b)* 5450 62.17  58.23
Ma et al. (2020)* i 7713 7522 76.16 Ma et al. (2020)" 58.12 6420 59.81
Li et al. (2020)" T 7473 7670 7570 Li et al. (2020)" 1 6167 6527 63.42
BiLSTM+CRF 7460 7491 7475 BiLSTM+CRF 5298 60.59 56.59
BiLSTM-HSB+CRF 7554 73.96 7475 BiLSTM-HSB+CRF 53.08 6148 57.85
Lattice LSTM 7551 7590 75.70 Lattice LSTM 53376203 38.10
. Lattice LSTM-HSB 5517 64.07 59.90
Lattice LSTM-HSB 76.42 75.12 75.77 -
B BILSTMACRE 7797 7941 7833 Bert+BiLSTM+CRF 67.83 67.65 67.96
ert+b * : : : Bert+BiLSTM-HSB+CRF  70.74 68.21  69.70
Bert+BiLSTM-HSB+CRF 77.72 79.74 78.71
Table 6: Performance on Weibo. NE, NM and Overall
Table 4: Performance on OntoNotes. L . L
denote F1 scores for named entities, nominal entities
(excluding named entities) and both, respectively.
Models P R F1
Zhang and Yang (2018)" 93.72 9344 9358
Zhu and Wang (2019) 9407 9442 9424  structure of sentence.
Liu et al. (2019)" 93.66 9331 93.48 L
Ding et al. (2019) 9453 9429 9441 43 Compatibility with BERT
Ma et al. (2020)" 96.14 94.72 9543 We compare LSTM-HSB with BERT on
Li et al. (2020)" T 95.71 95.77 95.74 four datasets. We download the speci-
B¥LSTM+CRF 9449 94.49 9449 fied pretrained BERT model provided by
BILSTM'HSB +CRF 9464 9478 9471 huggingface. We use bert-base-chinese
Lattice LSTM 9481 94.11 94.46 (https://storage.googleapis.com/
Lattice LSTM-HSB 94.67 9472 94.69 ps: , gl : gl ) greapis.
Bert+BILSTM+CRE 9471 9598 9534  Pert.models/2018 11_03/chinese_
Bert+BiLSTM-HSB+CRF 9542 96.27 9585  L~12_H-768_A-12.zip) for Chinese task.

Table 5: Performance on Resume.

tween this and the proposed methods should be
discussed. However, they incorporate many wrong
word lexicons without considering the whole sen-
tences for segmentation. For example, in the sen-
tence "F4 R 1 F VL K #i(Nanjing Yangtze River
Bridge)", they will incorporate wrong word *Ji
T (Jing City)” without considering the whole sen-
tence for segmentation. In our method, we consider
the whole sentence for hidden boundary states. The
smoothing technique to entity boundaries is bet-
ter than hard word incorporation to show sentence
structure and relationship between nearby charac-
ters.

For Chinese NER, the hidden boundary states
in LSTM are unbalanced of each character. We
activate hidden states of character with context for
boundary. It can be trained fast and reduce the
parameters in model. During the hidden boundary
of sentence, we provide a soft way to locate the
word boundary. It simplifies the model to learn
structure from large data. With the additional states
of boundary, the model can fast and better learn the

In these experiments, we use BERT encoders to
obtain the character representations.

From the Table 3—6, we can see that the LSTM-
HSB method with BERT outperforms the BERT
tagger on all four datasets. These results show
that the LSTM-HSB method can be effectively
combined with pre-trained model. Moreover,
the results also verify the effectiveness of our
method in utilizing lexicon information, which
means it can complement the information obtained
from the pre-trained model. We also find that,
Bert+BiLSTM-HSB+CRF have an improvement
over Bert+BiLSTM+CRE. Those results show our
method is transferable to sequence-labeling archi-
tecture and improve the F1 in Chinese NER with
pre-trained model.

4.4 Ablation Study

To investigate the contribution of each component
of our method, we conduct ablation experiments
on all four datasets, as shown in table 7.

In the "LSTM-HSB w/ tanh" experiment, we
replace the sigmoid activation as tanh activation in
LSTM-HSB.

Ht = ht + tanh(thtllnhht + biltlanh% (4)
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Models MSRA OntoNotes Resume Weibo
LSTM-HSB 91.46 74.75 94.71 57.85
LSTM-HSB w/ tanh 88.69 72.06 91.75 53.44
LSTM-HSB w/ cell-sigmoid  90.76 73.19 9291 54.80
LSTM-HSB w/ cell-tanh 87.61 69.95 90.72 52.17

Table 7: An ablation study of the proposed model.

where Wt}énh and b?(m ;, are trainable parameters.

The degradation in performance on all four
datasets indicates the importance of the sigmoid ac-
tivation, and confirms the advantage of our method.
The information of boundary should be activate as
values of gate rather than tanh input. The values of
[0,1] is better than [-1,1] to represent boundaries
between nearby characters.

In the "LSTM-HSB w/ cell-sigmoid" experiment,
we replace the hidden states as cell states in LSTM-
HSB.

Hy = hy + o(WYC; 4+ b)), (5)

where W€ and b® are trainable parameters.

The degradation in performance on all four
datasets indicates the importance of the hidden
states, and confirms the advantage of our method.
The cell states can be activated as boundaries but
perform not better than hidden states which encode
union structure with parameters in LSTM.

In the "LSTM-HSB w/ cell-tanh" experiment, we
replace the hidden states as cell states and sigmoid
activation as tanh activation in LSTM-HSB.

H; = hy + tanh(WE,,Cr + b5 ). (6)

where thnh and bgn ;, are trainable parameters.

The degradation in performance on all four
datasets indicates the importance of the hidden
states and the sigmoid activation, and confirms
the advantage of our method. The combines of
boundary gates and hidden states are harmonious
in model.

5 Conclusion

In this work, we address the hidden boundary state
in Chinese NER. We propose a novel method to
locate the soft boundary with considering the se-
quence of characters in whole sentence, which re-
duces many wrong words incorporated into the
character representations. We use LSTM with hid-
den state activation instead of CWS system to em-
bed the word-lever information. Experimental stud-

ies show that our performances have an improve-
ment of existing methods.
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