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Abstract
In this paper, we conduct a comprehensive analy-
sis of two dual-branch (Siamese architecture) self-
supervised learning approaches, namely Barlow
Twins and spectral contrastive learning, through
the lens of matrix mutual information. We prove
that the loss functions of these methods implic-
itly optimize both matrix mutual information and
matrix joint entropy. This insight prompts us to
further explore the category of single-branch algo-
rithms, specifically MAE and U-MAE, for which
mutual information and joint entropy become the
entropy. Building on this intuition, we introduce
the Matrix Variational Masked Auto-Encoder (M-
MAE), a novel method that leverages the matrix-
based estimation of entropy as a regularizer and
subsumes U-MAE as a special case. The empiri-
cal evaluations underscore the effectiveness of M-
MAE compared with the state-of-the-art methods,
including a 3.9% improvement in linear probing
ViT-Base, and a 1% improvement in fine-tuning
ViT-Large, both on ImageNet.

1. Introduction
Self-supervised learning (SSL) has demonstrated remark-
able advancements across various tasks, including image
classification and segmentation, often surpassing the per-
formance of supervised learning approaches (Chen et al.,
2020; Caron et al., 2021; Li et al., 2021; Zbontar et al.,
2021; Bardes et al., 2021). Broadly, SSL methods can be
categorized into three types: contrastive learning, feature
decorrelation-based learning, and masked image modeling.

One prominent approach in contrastive self-supervised learn-
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ing is SimCLR (Chen et al., 2020), which employs the
InfoNCE loss (Oord et al., 2018) to facilitate the learning
process. Interestingly, Oord et al. (2018) show that InfoNCE
loss can serve as a surrogate loss for the mutual information
between two augmented views. Unlike contrastive learning
which needs to include large amounts of negative samples to
“contrast”, another line of work usually operates without ex-
plicitly contrasting with negative samples which are usually
called feature decorrelation-based learning (Garrido et al.,
2022), e.g., BYOL (Grill et al., 2020), SimSiam (Chen & He,
2021), Barlow Twins (Zbontar et al., 2021), VICReg (Bardes
et al., 2021), etc. These methods have garnered attention
from researchers seeking to explore alternative avenues for
SSL beyond contrastive approaches.

On a different path, the masked autoencoder (MAE) (He
et al., 2022) introduces a different way to tackle self-
supervised learning. Unlike contrastive and feature
decorrelation-based methods that learn useful representa-
tions by exploiting the invariance between augmented views,
MAE employs a masking strategy to have the model de-
duce the masked patches from visible patches. Therefore,
the representation of MAE carries valuable information for
downstream tasks.

At first glance, these three types of self-supervised learn-
ing methods may seem distinct, but researchers have made
progress in understanding their connections. Garrido et al.
(2022) establish a duality between contrastive and feature
decorrelation-based methods, shedding light on their fun-
damental connections and complementarity. Additionally,
Balestriero & LeCun (2022) unveil the links between pop-
ular feature decorrelation-based SSL methods and dimen-
sion reduction methods commonly employed in traditional
unsupervised learning. These findings contribute to our un-
derstanding of the theoretical underpinnings and potential
applications of feature decorrelation-based SSL techniques.
However, compared to connections between contrastive and
feature decorrelation-based methods, the relationship be-
tween MAE and contrastive or feature decorrelation-based
methods remains largely unknown. To the best of our knowl-
edge, (Zhang et al., 2022b) is the only paper that relates
MAE to the alignment term in contrastive learning.

Though progress has been made in understanding the ex-
isting self-supervised learning methods, the tools used
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in the literature are diverse. As contrastive and feature
decorrelation-based learning usually use two augmented
views of the same image, one prominent approach is an-
alyzing the mutual information between two views (Oord
et al., 2018; Shwartz-Ziv et al., 2023; Shwartz-Ziv & Le-
Cun, 2023). A unified toolbox to understand and improve
self-supervised methods is needed. Recently, (Bach, 2022;
Skean et al., 2023) have considered generalizing the tradi-
tional information-theoretic quantities to the matrix regime.
Interestingly, we find these quantities can be powerful tools
in understanding and improving existing self-supervised
methods regardless of whether they are contrastive, feature
decorrelation-based, or masking-based (He et al., 2022).

Taking the matrix information theoretic perspective, we an-
alyze some prominent contrastive and feature decorrelation-
based losses and prove that both Barlow Twins and spectral
contrastive learning (HaoChen et al., 2021) are maximizing
mutual information and joint entropy, see Theorem 4.4 and
Theorem 4.14. These claims are crucial for analyzing con-
trastive and feature decorrelation-based methods, offering
a cohesive and elegant understanding. More interestingly,
the same analytical framework extends to MAE as well,
wherein the concepts of mutual information and joint en-
tropy gracefully degenerate to entropy. Propelled by this
observation, we augment the MAE loss with a matrix-based
estimation of entropy, giving rise to our new method, Ma-
trix variational Masked Auto-Encoder (M-MAE), which
subsumes U-MAE as a special case, see Theorem 5.2.

Empirically, M-MAE stands out with commendable perfor-
mance. Specifically, it has achieved a 3.9% improvement
in linear probing ViT-Base, and a 1% improvement in fine-
tuning ViT-Large, both on ImageNet. This empirical result
not only underscores the efficacy of M-MAE but also accen-
tuates the potential of matrix information theory in ushering
advancements in self-supervised learning paradigms.

In summary, our contributions can be listed as follows:

• We use matrix information-theoretic tools like matrix
mutual information and joint entropies to understand
existing contrastive and feature decorrelation-based
self-supervised methods.

• We introduce a novel method, M-MAE, which is rooted
in matrix information theory, and subsumes U-MAE
as a special case.

• Our proposed M-MAE has demonstrated remarkable
empirical performance, showcasing a notable improve-
ment in self-supervised learning benchmarks.

2. Related Work
Self-supervised learning. Contrastive and feature decor-
relation based methods have emerged as powerful ap-

proaches for unsupervised representation learning. By lever-
aging diverse views or augmentations of input data, they aim
to capture meaningful and informative representations that
can generalize across different tasks and domains (Chen
et al., 2020; Hjelm et al., 2018; Wu et al., 2018; Tian et al.,
2019; Chen & He, 2021; Gao et al., 2021; Bachman et al.,
2019; Oord et al., 2018; Ye et al., 2019; Henaff, 2020; Misra
& Maaten, 2020; Caron et al., 2020; HaoChen et al., 2021;
Caron et al., 2021; Li et al., 2021; Zbontar et al., 2021; Tsai
et al., 2021; Bardes et al., 2021; Tian et al., 2020; Robinson
et al., 2021; Dubois et al., 2022).

Inspired by the widely adopted Masked Language Mod-
eling (MLM) paradigm in NLP, such as BERT (Devlin
et al., 2018), Masked Image Modeling (MIM) (Zhang et al.,
2022a) has gained attention as a visual representation learn-
ing approach. Notably, several MIM methods, including
iBOT (Zhou et al., 2021), SimMIM (Xie et al., 2022), and
MAE (He et al., 2022), have demonstrated promising results
in this domain.

Matrix information theory. Recently, there have been
attempts to generalize information theory to measure the
relationships between matrices (Bach, 2022; Skean et al.,
2023; Zhang et al., 2023a;b). The idea is to apply the tradi-
tional information-theoretic quantities on the spectrum of
matrices. (Zhang et al., 2023a) discuss the relationship be-
tween matrix entropy and effective rank. They also discuss
the relationship between matrix KL divergence, total coding
rate, and matrix entropy, and propose loss to improve the
feature decorrelation-based method. (Liu et al., 2022) use to-
tal coding rate to understand the feature decorrelation-based
methods.

Theoretical understanding of self-supervised learning.
The practical achievements of contrastive learning have
ignited a surge of theoretical investigations into the under-
standing how contrastive loss works (Arora et al., 2019;
HaoChen et al., 2021; 2022; Tosh et al., 2020; 2021; Lee
et al., 2020; Wang et al., 2022; Nozawa & Sato, 2021; Huang
et al., 2021; Tian, 2022; Hu et al., 2022; Tan et al., 2023).
(Wang & Isola, 2020) provide an insightful analysis of the
optimal solutions of the InfoNCE loss, providing insights
into the alignment term and uniformity term that constitute
the loss, thus contributing to a deeper understanding of self-
supervised learning. (HaoChen et al., 2021; Wang et al.,
2022; Tan et al., 2023) explore contrastive self-supervised
learning methods from a spectral graph perspective. Sev-
eral theoretical investigations have delved into the realm
of feature decorrelation based methods within the domain
of self-supervised learning, as evidenced by a collection of
notable studies (Wen & Li, 2022; Tian et al., 2021; Garrido
et al., 2022; Balestriero & LeCun, 2022; Tsai et al., 2021;
Pokle et al., 2022; Tao et al., 2022; Lee et al., 2021).

2



Information Flow in Self-Supervised Learning

Compared to contrastive and feature decorrelation based
methods, the theoretical understanding of masked image
modeling is still in an early stage. Cao et al. (2022) use
the viewpoint of the integral kernel to understand MAE.
Zhang et al. (2022b) use the idea of a masked graph to
relate MAE with the alignment loss in contrastive learning.
Recently, Kong et al. (2023) show MAE effectively detects
and identifies a specific group of latent variables using a
hierarchical model.

3. Background
3.1. Matrix information-theoretic quantities

In this subsection, we assume all the mentioned matrices
are positive semi-definite and follow the constraint that all
their diagonal elements are 1.

We shall first provide the definition of (matrix) entropy as
follows:

Definition 3.1 (Matrix-based α-order (Rényi) en-
tropy (Skean et al., 2023)). Suppose matrix K1 ∈ Rn×n

and α is a positive real number. The α-order (Rényi)
entropy for matrix K1 is defined as follows:

Hα (K1) =
1

1− α
log

[
tr

((
1

n
K1

)α)]
,

where Kα
1 is the matrix power.

The case of α = 1 is defined as the von Neumann (matrix)
entropy (Von Neumann, 2013), i.e.

H1 (K1) = − tr

(
1

n
K1 log

1

n
K1

)
,

where log is the matrix logarithm.

Using the definition of matrix entropy, we can define matrix
mutual information and joint entropy as follows.

Definition 3.2 (Matrix-based mutual information (Skean
et al., 2023)). Suppose matrix K1,K2 ∈ Rn×n and α is a
positive real number. The α-order (Rényi) mutual informa-
tion for matrices K1 and K2 is defined as follows:

Iα(K1;K2) = Hα(K1) + Hα(K2)−Hα(K1 ⊙K2).

Definition 3.3 (Matrix-based joint entropy (Skean et al.,
2023)). Suppose matrix K1,K2 ∈ Rn×n and α is a positive
real number. The α-order (Rényi) joint-entropy for matrices
K1 and K2 is defined as follows:

Hα(K1,K2) = Hα(K1 ⊙K2),

where ⊙ is the (matrix) Hadamard product.

3.2. Canonical self-supervised learning losses

We shall recap some canonical losses used in self-supervised
learning. As we roughly characterize self-supervised learn-
ing into contrastive learning, feature decorrelation-based
learning, and masked image modeling. We shall introduce
the canonical losses used in these areas sequentially.

In contrastive and feature decorrelation-based learning, peo-
ple usually adopt the Siamese architecture (dual networks),
namely using two parameterized networks: the online net-
work fθ and the target network fϕ. To create different
perspectives of a batch of B data points {xi}Bi=1, we ran-
domly select an augmentation T from a predefined set τ
and use it to transform each data point, resulting in new rep-
resentations z(1)i = fθ(T (xi)) ∈ Rd and z

(2)
i = fϕ(xi) ∈

Rd generated by the online and target networks, respec-
tively. We then combine these representations into matri-
ces Z1 = [z

(1)
1 , . . . , z

(1)
B ] and Z2 = [z

(2)
1 , . . . , z

(2)
B ], we

assume ∥z(k)j ∥2 = 1 (k = 1.2 and j = 1, · · · , B). De-
note the (batch normalized) vectors for each dimension i

(1 ≤ i ≤ d) of the online and target networks as z̄(1)i and
z̄
(2)
i , i.e. coordinate-wise

z̄
(k)
i (j) =

z
(k)
j (i)√∑B

j=1(z
(k)
j (i))2

(k = 1.2 and i = 1, · · · , d, and j = 1, · · · , B). We also de-
fine Z̄1 = [z̄

(1)
1 · · · z̄(1)d ]⊤ and Z̄2 = [z̄

(2)
1 · · · z̄(2)d ]⊤, where

z̄
(k)
i = [z̄

(k)
i (1) · · · z̄(k)i (B)]⊤ (k = 1, 2).

The idea of contrastive learning is to make the representation
of similar objects align and dissimilar objects apart. One of
the widely adopted losses in contrastive learning is InfoNCE
loss (Chen et al., 2020), which is defined as follows:

LInfoNCE =− 1

2
(

B∑
i=1

log
exp ((z

(1)
i )⊤z

(2)
i )∑B

j=1 exp ((z
(1)
i )⊤z

(2)
j )

+

B∑
i=1

log
exp ((z

(2)
i )⊤z

(1)
i )∑B

j=1 exp ((z
(2)
i )⊤z

(1)
j )

). (1)

As the InfoNCE loss may be difficult to analyze theoretically,
HaoChen et al. (2021) then propose spectral contrastive loss
as a good surrogate for InfoNCE. The loss is defined as
follows:

LSC =

B∑
i=1

|| z(1)i − z
(2)
i ||22 +λ

∑
i ̸=j

((z
(1)
i )⊤z

(2)
j )2, (2)

where λ is a hyperparameter. (Here, we slightly generalize
the initial loss a bit, the initial paper sets λ = 1.)

The idea of feature decorrelation-based learning is to learn
useful representation by decorrelating features and not ex-
plicitly distinguish negative samples. Some notable losses
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involve VICReg (Bardes et al., 2021), and Barlow Twins
(Zbontar et al., 2021). The Barlow Twins loss is given as
follows:

LBT =

d∑
i=1

(1− Cii)2 + λ

d∑
i=1

∑
j ̸=i

Cij2, (3)

where λ is a hyperparameter and Cij = (z̄
(1)
i )⊤z̄

(2)
j is the

cross-correlation coefficient.

The idea of masked image modeling is to learn useful rep-
resentations by generating the representation from partially
visible patches and predicting the rest of the image from
the representation, thus useful information in the image
remains in the representation. We shall briefly introduce
MAE (He et al., 2022) as an example. In masked image
modeling, people usually adopt only one branch and do not
use Siamese architecture. Given a batch of images {xi}Bi=1,
we shall first partition each of the images into n disjoint
patches xi = xi(j) (1 ≤ j ≤ n). Then B random mask
vectors mi ∈ {0, 1}n will be generated, and denote the two
images generated by these masks as

x
(1)
i = xi ⊙mi and x

(2)
i = xi ⊙ (1−mi). (4)

The model consists of two modules: an encoder f and
a decoder g. The encoder transform each view x

(1)
i into

a representation zi = f(x
(1)
i ). The loss function is∑B

i=1 ∥g(zi)− x(2)∥22. We also denote the representations
in a batch as Z = [z1, · · · , zB ].

Finally, we will present the U-MAE loss (Zhang et al.,
2022b) as:

LU-MAE = LMAE + γ
∑
i̸=j

(z⊤i zj)
2,

where γ is a hyper-parameter.

The goal of this paper is to use a matrix information max-
imization viewpoint to understand the seemingly different
losses in contrastive and feature decorrelation-based meth-
ods. We would like also to use matrix information-theoretic
tools to improve MAE. We only analyze 4 popular losses:
spectral contrastive, Barlow Twins, MAE, and U-MAE. All
the proofs can be found in Appendix A. More experiments
can be found in Appendix C.

4. Applying matrix information theory to
contrastive and feature decorrelation-based
methods

As we have discussed in the preliminary session, in con-
trastive and feature decorrelation-based methods, a com-
mon practice is to use two branches (Siamese architecture)

namely an online network and a target network to learn
useful representations. However, the relationship of the two
branches during the training process is mysterious. In this
section, we shall use matrix information quantities to unveil
the complicated relationship in Siamese architectures.

4.1. Measuring the mutual information

One interesting derivation in (Oord et al., 2018) is that it
can be shown that

LInfoNCE ≥ − I(Z(1);Z(2)) + logB, (5)

where Z(i) denotes the sampled distribution of the represen-
tation.

Though InfoNCE loss is a promising surrogate for estimat-
ing the mutual information between the two branches in
self-supervised learning. (Sordoni et al., 2021) doubt its
effectiveness when facing high-dimensional inputs, where
the mutual information may be larger than logB, making
the bound vacuous. Then a natural question arises: Can we
calculate the mutual information exactly? Unfortunately,
it is hard to calculate the mutual information reliably and
effectively. Thus we want to see the effect of changing our
strategy by using the matrix mutual information instead of
the traditional one.

As the matrix mutual information has a closed-form ex-
pression with only requires a few mild conditions on the
input matrices (please refer to section 3.1), one question
remains: How to choose the matrices used in the (matrix)
mutual information? We find the (batch normalized) sample
covariance matrix and batch gram matrix of l2 normalized
representations serve as good candidates. The reason is that
by using normalization, the covariance and gram matrices
naturally satisfy the requirements that: All the diagonals
equal to 1, the matrix is positive semi-definite and it is easy
to estimate from data samples.

Notably, the covariance and garm matrix can be seen to have
an informal “duality” (Garrido et al., 2022). Specifically, the
sample covariance matrix can be expressed as ZZ⊤ ∈ Rd×d

and the batch-sample Gram matrix can be expressed as
Z⊤Z ∈ RB×B . The closeness of these two matrices makes
us call B and d has duality. As matrix information theory
can not only deal with samples from batches but also can
exploit the relationship among batches. This makes this
theory well-suited for analyzing self-supervised learning
methods.

Notably, spectral contrastive loss (Eqn. 2) is a good surro-
gate loss for InfoNCE loss and calculates the loss involving
the batch gram matrix. Another famous loss used in feature
decorrelation-based methods is the Barlow Twins (Eqn. 3),
which involves the batch-normalized sample covariance ma-
trix. Therefore, these two losses will be our main focus for
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Figure 1. Visualization of matrix-based mutual information on CI-
FAR10 for Barlow-Twins, BYOL, and SimCLR.

theoretical investigation.

As traditional information theory provides a bound Eqn. (5),
thus we are interested in investigating whether there is a
matrix information type bound. In the following, we will
show that spectral contrastive loss and Barlow Twins loss
have (matrix) mutual information bound. Specifically, for
ease of theoretical analysis, we first consider setting the α
in entropy to be 2.

To prove the bound, we will first present a proposition that
relates the mutual information with the Frobenius norm.
Proposition 4.1. I2(K1;K2) = 2 log d−log

||K1||2F ||K2||2F
||K1⊙K2||2F

,
where d is the size of matrix K1.

We will also need a technical proposition that relates the
cross-correlation and auto-correlation.
Lemma 4.2. Suppose a, b, a′ and b′ are l2 normal-
ized, then |a⊤b| ≤ |a⊤b′| + ∥b − b′∥ = |a⊤b′| +√

2(1− b⊤b′).

Using the previous two propositions, we can derive the
following bounds that relate the matrix mutual information
and the loss value.
Theorem 4.3. 1. For the spectral contrastive loss, we have

I2(Z
⊤
1 Z1;Z

⊤
2 Z2) ≥ logB − 2 log(1 + (2 +

2

Bλ
)LSC).

2. For the Barlow Twins’ loss, we have

I2(Z̄1Z̄
⊤
1 ; Z̄2Z̄

⊤
2 ) ≥ log d−2 log(1+

2

dλ
LBT+4

√
dLBT ).

Proof. We will only present the proof for spectral con-
trastive loss as Barlow Twins loss is similar.

By Proposition 4.1, we know that I2(Z
⊤
1 Z1;Z

⊤
2 Z2) =

2 logB − log
||Z⊤

1 Z1||2F ||Z⊤
2 Z2||2F

||Z⊤
1 Z1⊙Z⊤

2 Z2||2F
≥ 2 logB −

log
||Z⊤

1 Z1||2F ||Z⊤
2 Z2||2F

B = logB − log
||Z⊤

1 Z1||2F
B

||Z⊤
2 Z2||2F
B .

On the other hand, ||Z⊤
1 Z1||2F
B = 1 +

∑
i̸=j((z

(1)
i )⊤z

(1)
j )2

B .

Using Lemma 4.2, we know that ((z
(1)
i )⊤z

(1)
j )2 ≤

(|(z(1)i )⊤z
(2)
j | + ∥z(1)j − z

(2)
j ∥)2 ≤ 2(|(z(1)i )⊤z

(2)
j |2 +

∥z(1)j − z
(2)
j ∥2).

Therefore,
∑

i̸=j((z
(1)
i )⊤z

(1)
j )2 ≤ 2(

∑
i ̸=j |(z

(1)
i )⊤z

(2)
j |2+∑

i ̸=j ∥z
(1)
j − z

(2)
j ∥2) < 2(

∑
i ̸=j |(z

(1)
i )⊤z

(2)
j |2 +

B
∑

j ∥z
(1)
j − z

(2)
j ∥2) ≤ 2( 1λ +B)LSC .

Combining all the above, the conclusion follows.

What about the mutual information when α ̸= 2. For exam-
ple α = 1? We then plot the mutual information of covari-
ance matrices between branches in Figure 1. We can find
out that the mutual information increases during training,
which is similar to the case of α = 2 proved by Theorem
4.3. More interestingly, the mutual information of SimCLR
and Barlow Twins meet at the end of the training, strongly
emphasizing the duality of these algorithms. The empirical
findings motivate us to consider the case of general α > 0.

Unfortunately, it is hard for us to provide bounds similar to
Theorem 4.3 for general α > 0. But interestingly, we find
the following interesting theorem.

Theorem 4.4. When α > 0, Barlow Twins and spectral
contrastive learning losses maximize the matrix mutual in-
formation when their loss value is 0.

The proof of theorem 4.4 relies on the following upper
bound (Proposition 4.5). The key idea is when the loss value
is 0, the mutual information can be explicitly calculated and
meets the upper bound.

Proposition 4.5. Suppose K1 and K2 are d × d positive
semi-definite matrices with the constraint that each of its
diagonals is 1. Then Iα(K1;K2) ≤ log d.

By combining Theorems 4.3 and 4.4, we can conclude the
following corollary.

Corollary 4.6. When α = 2, the bounds given by Theorem
4.3 is tight when loss values are 0.

From the above theorems, we know that when minimizing
the spectral contrastive loss and Barlow Twins loss, the mu-
tual information follows a trajectory towards its maximum.
This can be seen as mitigating the slight drawback of bound
Eqn. (5) in that it only provides an inequality and does not
discuss the optimal point.

4.2. Measuring the (joint) entropy

After discussing the application of matrix mutual informa-
tion in self-supervised learning. We wonder how another
import quantity (joint entropy) evolves during the process.
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We can show that the matrix joint entropy can indeed reflect
the dimensions of representations in Siamese architectures
through the following Proposition 4.7.

Proposition 4.7. The joint entropy lower bounds the repre-
sentation rank in two branches by having the inequality as
follows:

H1(K1,K2) ≤ log(rank(K1 ⊙K2))

≤ log rank(K1) + log rank(K2).

max{Hα(K1),Hα(K2)}
≤ Hα(K1,K2) ≤ Hα(K1) + Hα(K2).

This proposition shows that the bigger the joint entropy
between the two branches is, the less likely that the rep-
resentation (rank) collapse. Interestingly, similar results
can be proven for (traditional) entropy surrogates (Yu et al.,
2020), which we will briefly introduce as follows.

We shall introduce a matrix-based surrogate for entropy as
follows:

Definition 4.8. Suppose B samples Z =
[z1, z2, · · · , zB ] ∈ Rd×B are i.i.d. samples from a
distribution p(z). Then the total coding rate (TCR) (Yu
et al., 2020) of p(z) is defined as follows:

TCRµ(Z) = log det(µId + ZZ⊤), (6)

where µ is a non-negative hyperparameter.

For notation simplicity, we shall also write TCRµ(Z) as
TCRµ(ZZ

⊤). Notably, there is a close relationship between
TCR and matrix entropy, which is presented in the following
theorem through the lens of matrix KL divergence 4.9. The
key is utilizing the asymmetries of the matrix KL divergence
(Zhang et al., 2023a).

Definition 4.9 (Matrix KL divergence (Bach, 2022)).
Suppose matrices K1,K2 ∈ Rn×n which K1(i, i) =
K2(i, i) = 1 for every i = 1, · · · , n. Then the Kullback-
Leibler (KL) divergence between two positive semi-definite
matrices K1 and K2 is defined as

KL (K1 || K2) = tr [K1 (logK1 − logK2)] .

Proposition 4.10. Suppose K is a d × d matrix with the
constraint that each of its diagonals is 1. Then the following
equalities holds:

H1(K) = log d− 1

d
KL(K, Id),

TCRµ(K) = d log(1 + µ)−KL(Id,
1

1 + µ
(µId +K)).

(7)

Figure 2. Visualization of matrix-based joint entropy on CIFAR10
for Barlow-Twins, BYOL and SimCLR.

As TCR can be treated as a good surrogate for entropy, we
can obtain the following bound for its joint entropy version.

Proposition 4.11. The (joint) total coding rate upper
bounds the rate in two branches by having the inequality as
follows:

TCRµ2+2µ(K1⊙K2) ≥ TCRµ(K1)+TCRµ(K2). (8)

Combining Propositions 4.10, 4.7, and 4.11, it is clear that
the bigger the entropy is for each branch the bigger the
joint entropy. Thus by combining the conclusion from the
above two theorems, it is evident that the joint (matrix or
TCR) entropy strongly reflects the extent of collapse during
training.

We will then show a bound relating to the matrix joint en-
tropy and the loss values. This remarkable conclusion is
proved when the Renyi entropy order α = 2.

We shall first present a proposition that relates the joint
entropy with the Frobenius norm.

Proposition 4.12. Suppose K1,K2 ∈ Rd×d. Then
H2(K1,K2) = 2 log d − log || K1 ⊙ K2 ||2F , where F
is the Frobenius norm.

We can use Lemma 4.2 and Proposition 4.12 to bind the
matrix joint entropy with the loss values.

Theorem 4.13. 1. In the spectral contrastive loss, we have

H2(Z
⊤
1 Z1,Z

⊤
2 Z2) ≥ logB − log(1 + (2 +

2

Bλ
)LSC).

2. In the Barlow Twins loss, we have

H2(Z̄1Z̄
⊤
1 , Z̄2Z̄

⊤
2 ) ≥ log d−log(1+

2

dλ
LBT+4

√
dLBT ).

What about the joint entropy when α = 1 behaves empir-
ically? We shall then plot the joint entropy of covariance

6
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matrices between branches in Figure 2. We can find out that
the joint entropy increases during training. More interest-
ingly, the joint entropy of SimCLR and Barlow Twins meet
at the end of training, strongly reflects a duality of these
algorithms.

Motivated by the above bound, one may wonder what will
happen to the joint entropy when the loss is optimized to 0
for general α > 0.

Then we can show the following theorem for general α > 0.

Theorem 4.14. When α > 0, Barlow Twins and spectral
contrastive learning losses maximize the matrix joint en-
tropy when their loss value is 0.

The key to proving theorem 4.14 lies in the following propo-
sition that finds the optimal point of entropy.

Proposition 4.15.

Id = argmaxHα(K), and Id = argmaxTCRµ(K), (9)

where the maximization is over d× d positive semi-definite
matrices with the constraint that each of its diagonals is 1.

By combining Theorems 4.13 and 4.14, we can conclude
the following corollary.

Corollary 4.16. When α = 2, the bounds given by Theorem
4.13 is tight when loss values are 0.

Similarly, one may also prove that

Theorem 4.17. TCRµ(Z̄1Z̄
⊤
1 ⊙ Z̄2Z̄

⊤
2 ) ≥ d log(µ+ 1)−

1
2µ2 (

2
λLBT + 4(d− 1)

√
dLBT ).

Remark: The bound given by theorem 4.17 is also tight
when the loss value is 0. A similar bound can also be proven
batch-wise.

From the above theorems, we know that when minimizing
the spectral contrastive loss and Barlow Twins loss, the ma-
trix joint entropy follows a trajectory towards its maximum.

Our theoretical results may show that various contrastive and
feature-decorrelation-based methods have similar implicit
information maximization processes, thus explaining why
they get comparable performance after sufficient training.

5. Applying matrix information theory to
masked image modeling

As we have previously discussed the central role of mutual
information and joint entropy in the contrastive and fea-
ture decorrelation-based methods (Which are all Siamese
architecture-based due to the use of augmented views of im-
ages). We wonder if can we apply this matrix information
theory to improve self-supervised methods using only one
network, not the Siamese architecture. To the best of our

knowledge, the famous vision self-supervised method using
only one network is the masked autoencoder type (MAE)
(He et al., 2022).

From a (traditional) information-theoretic point of view,
when the two branches merge into one branch the mutual
information I(X;X) and the joint entropy H(X,X) both
equal to the Shannon entropy H(X). By Propositions 4.10,
4.7, and 4.11, one may see that the joint entropy maxi-
mization is closely related to each branch’s maximization.
Additionally, by the conclusion of Theorems 4.13 and 4.14,
one may expect a higher entropy during contrastive and
feature decorrelation-based methods. Thus we would like
to use the matrix-based entropy in MAE training.

Moreover, matrix entropy can be shown to be very close to
a quantity called effective rank. And Zhang et al. (2022b);
Garrido et al. (2023) show that the effective rank is a critical
quantity for better representation. The definition of effective
rank is formally stated in Definition 5.1 and it is easy to
show when the matrix is positive semi-definite and has all
its diagonal being 1 the effective rank is the exponential of
the matrix entropy (Zhang et al., 2023a).

Definition 5.1 (Effective Rank (Roy & Vetterli, 2007)). For
a non-all-zero matrix A ∈ Rn×n, the effective rank, de-
noted as erank(A), is defined as

erank(A) ≜ exp (H (p1, p2, . . . , pn)), (10)

where pi = σi∑n
k=1 σk

, {σi | i = 1, · · · , n} represents the
singular values of A, and H denotes the Shannon entropy.

Thus it is natural to add the matrix entropy to the MAE
loss to give a new self-supervised learning method. As the
numerical instability of calculating matrix entropy is larger
than its proxy TCR during training, we shall use the TCR
loss (definition 4.8), which is a matrix-based estimator for
entropy (Yu et al., 2020).

Recall that we assume each representation zi is l2 normal-
ized. If we take the latent distribution of Z as the uniform
distribution on the unit hyper-sphere Sd−1, we shall get the
following loss for self-supervised learning.

LM-MAE ≜ LMAE − λ · TCRµ(Z), (11)

where λ is a loss-balancing hyperparameter.

The name of matrix variational masked auto-encoder (M-
MAE) is due to the reason that we can link this new loss
to a traditional unsupervised learning method variational
auto-encoder (VAE) (Doersch, 2016).

Recall the loss for traditional variational auto-encoder which
is given as follows.

LVAE ≜Ez[− log q(x|z) + KL(p(z|x)∥q(z))],
where z ∼ p(z|x).
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The loss contains two terms, the first term − log q(x|z) is a
reconstruction loss that measures the decoding error. The
second term is a discriminative term, which measures the
divergence of the encoder distribution p(z|x) with the latent
distribution q(z).

We will first show why MAE loss resembles the first term in
VAE, i.e. Ez[− log q(x|z)]. In the context of masked image
modeling, we usually use MSE loss in place of the log-
likelihood. For any input image x, the process of randomly
generating a masked vector m and obtaining z = f(x⊙m)
can be seen as modeling the generating process of z|x. The
decoding process x|z can be modeled by concatenating g(z)
and x⊙m by the (random) position induced by m. Thus the
reconstruction loss will be ∥concat(g(z),x⊙m)− x∥22 =
∥g(z) − x ⊙ (1 − m)∥22. For a batch of images {xi}Bi=1,
this recovers the MAE loss.

We will then show how matrix entropy resembles the sec-
ond term in VAE, i.e. Ez[KL(p(z|x)∥q(z))]. This is clear
by noticing that q(z) is a latent distribution on the unit
hyper-sphere Sd−1 and we naturally choose it as uniform
distribution. By taking the covariance matrix of p(z|x) and
q(z) and using the matrix KL divergence (definition 4.9),
this term becomes KL(ZZ⊤∥Id). By Theorem 4.10, this
closely relates to the TCR (and matrix entropy)

Finally, we will present the link of our M-MAE loss to a
state-of-the-art one U-MAE (Zhang et al., 2022b).

Theorem 5.2. U-MAE is a second-order approximation of
our proposed M-MAE.

Proof. The key point is noticing that representations are l2
normalized and the fact that ∥Z⊤Z∥2F = tr((Z⊤Z)2).

Using Taylor expansion, we will have:

LM-MAE = LMAE − λ · log det(Id +
1

µ
ZZ⊤) + Const.

= LMAE − λ · log det(IB +
1

µ
Z⊤Z) + Const.

= LMAE − λ · tr log(IB +
1

µ
Z⊤Z) + Const.

= LMAE − λ · tr( 1
µ
Z⊤Z− 1

2µ2
(Z⊤Z)2 + · · · )

= LU-MAE + Higher-order-terms + Const.

Remark: A proof similar to theorem 4.17 will also give a
bound that relates M-MAE and U-MAE.

6. Experiments
In this section, we empirically evaluate our Matrix Vari-
ational Masked Auto-Encoder (M-MAE) with TCR loss,
placing special emphasis on its performance in compari-
son to the U-MAE model with Square uniformity loss as a

baseline. This experiment aims to shed light on the benefits
that matrix information-theoretic tools can bring to methods
based on masked image modeling.

6.1. Experimental setup

Datasets: ImageNet-1K. We utilize the ImageNet-1K
dataset (Deng et al., 2009), which is one of the most com-
prehensive datasets for image classification. It contains
over 1 million images spread across 1000 classes and in
self-supervised learning experiments the labels are dropped,
providing a robust platform for evaluating our method’s
generalization capabilities.

Model architectures. We adopt Vision Transformers (ViT)
such as ViT-Base and ViT-Large for our models. We closely
follow the precedent settings by the U-MAE (Zhang et al.,
2022b) paper, as Theorem 5.2 shows the closeness of this
method to our M-MAE loss.

Hyperparameters. For a fair comparison, we adopt U-
MAE’s original hyperparameters: a mask ratio of 0.75 and a
uniformity term coefficient λ of 0.01 by default. Both mod-
els are pre-trained for 200 epochs on ImageNet-1K with a
batch size of 1024, and weight decay is similarly config-
ured as 0.05 to ensure parity in the experimental conditions.
For ViT-Base, we set the TCR coefficients µ = 1, and for
ViT-Large, we set µ = 3.

6.2. Evaluation results

Evaluation metrics. From Table 1, it’s evident that the
M-MAE loss outperforms both MAE and U-MAE in terms
of linear evaluation and fine-tuning accuracy. Specifically,
for ViT-Base, M-MAE achieves a linear probing accuracy
of 62.4%, which is a substantial improvement over MAE’s
55.4% and U-MAE’s 58.5%. Similarly, in the context of
ViT-Large, M-MAE achieves an accuracy of 66.0%, again
surpassing both MAE and U-MAE. In terms of fine-tuning
performance, M-MAE also exhibits superiority, achieving
83.1% and 84.3% accuracy for ViT-Base and ViT-Large re-
spectively. Notably, a 1% increase in accuracy at ViT-Large
is very significant. These results empirically validate the
theoretical advantages of incorporating matrix information-
theoretic tools into masked image modeling, as encapsulated
by the TCR loss term in the M-MAE loss function.

7. Conclusion
In conclusion, this study delves into self-supervised learning
(SSL), examining contrastive, feature decorrelation-based
learning, and masked image modeling through the lens of
matrix information theory. Our exploration reveals that
many SSL methods are maximizing matrix information-
theoretic quantities like matrix mutual information and ma-
trix joint entropy on Siamese architectures.
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Table 1. Linear evaluation accuracy (%) and fine-tuning accuracy
(%) of pretrained models by MAE loss, U-MAE loss, and M-MAE
loss with different ViT backbones on ImageNet-1K. The uniformity
regularizer TCR loss in the M-MAE loss significantly improves
the linear evaluation performance and fine-tuning performance of
the MAE loss.

Downstream Task Method ViT-Base ViT-Large

Linear Probing MAE 55.4 62.2
U-MAE 58.5 65.8
M-MAE 62.4 66.0

Fine-tuning MAE 82.9 83.3
U-MAE 83.0 83.2
M-MAE 83.1 84.3

Motivated by the theoretical findings, we also introduce a
novel method, the matrix variational masked auto-encoder
(M-MAE), enhancing masked image modeling by adding
matrix-based estimators for entropy. Empirical results show
the effectiveness of the introduced M-MAE loss.
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A. Appendix for proofs

Proposition A.1. I2(K1;K2) = 2 log d− log
||K1||2F ||K2||2F
||K1⊙K2||2F

, where d is the size of matrix K1.

Proof. The proof is straightforward by using the definition of matrix mutual information when α = 2 and the fact that when
K is symmetric tr(K2) = tr(K⊤K) =|| K ||2F .

Lemma A.2. Suppose a, b, a′ and b′ are l2 normalized, then |a⊤b| ≤ |a⊤b′|+ ∥b− b′∥ = |a⊤b′|+
√
2(1− b⊤b′).

Proof. Note |a⊤b| = |a⊤b′ + a⊤(b− b′)| ≤ |a⊤b′|+ ∥a∥∥b− b′∥ = |a⊤b′|+
√
2(1− b⊤b′).

Proposition A.3. Suppose K1 and K2 are d×d positive semi-definite matrices with the constraint that each of its diagonals
is 1. Then Iα(K1;K2) ≤ log d.

Proof. The proof is straightforward by using the inequalities introduced in (Giraldo et al., 2014) as follows. Iα(K1;K2) =
Hα(K1) + Hα(K2)−Hα(K1 ⊙K2) ≤ Hα(K1) ≤ log d.

Theorem A.4. When α > 0, Barlow Twins and spectral contrastive learning losses maximize the matrix mutual information
when their loss value is 0.

Proof. Denote the (batch normalized) vectors for each dimension i (1 ≤ i ≤ d) of the online and target networks as z̄(1)i

and z̄
(2)
i .

Take K1 = [z̄
(1)
1 · · · z̄(1)d ]⊤[z̄

(1)
1 · · · z̄(1)d ] and K2 = [z̄

(2)
1 · · · z̄(2)d ]⊤[z̄

(2)
1 · · · z̄(2)d ].

When the loss value is 0, Barlow Twins loss has z̄(1)i = z̄
(2)
i for each i ∈ {1, · · · , d} and (z̄

(1)
i )⊤z̄

(2)
j = 0 for each i ̸= j.

Then for each i ̸= j, (z̄(1)i )⊤z̄
(1)
j = (z̄

(1)
i )⊤z̄

(2)
j = 0. Similarly, (z̄(2)i )⊤z̄

(2)
j = 0. Then K1 = K2 = Id. By noticing

Hα(Id, Id) = log d. Then the matrix mutual information is maximized.

When performing spectral contrastive learning, the loss is
∑B

i=1 || z(1)i − z
(2)
i ||22 +λ

∑
i ̸=j((z

(1)
i )⊤z

(2)
j )2. Take K1 =

Z⊤
1 Z1 and K2 = Z⊤

2 Z2, the results follows similarly. Thus concludes the proof.

Proposition A.5. The joint entropy lower bounds the representation rank in two branches by having the inequality as
follows:

H1(K1,K2) ≤ log(rank(K1 ⊙K2)) ≤ log rank(K1) + log rank(K2).

max{Hα(K1),Hα(K2)} ≤ Hα(K1,K2) ≤ Hα(K1) + Hα(K2).

Proof. The first inequality comes from the fact that effective rank lower bounds the rank. The second inequality comes from
the rank inequality of Hadamard product. The third and fourth inequalities follow from (Giraldo et al., 2014).

Proposition A.6. Suppose K is a d × d matrix with the constraint that each of its diagonals is 1. Then the following
equalities holds:

H1(K) = log d− 1

d
KL(K, Id),

TCRµ(K) = d log(1 + µ)−KL(Id,
1

1 + µ
(µId +K)).

(12)

Proof. The proof is from directly using the definition of matrix KL divergence.

Proposition A.7. The (joint) total coding rate upperbounds the rate in two branches by having the inequality as follows:

TCRµ2+2µ(K1 ⊙K2) ≥ TCRµ(K1) + TCRµ(K2). (13)

Proof. The inequality comes from the determinant inequality of Hadamard products and the fact that (K1 + µI)⊙ (K1 +
µI) = K1 ⊙K2 + (µ2 + 2µ)I.
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Theorem A.8. 1. In the spectral contrastive loss, we have

H2(Z
⊤
1 Z1,Z

⊤
2 Z2) ≥ logB − log(1 + (2 +

2

Bλ
)LSC).

2. In the Barlow Twins loss, we have

H2(Z̄1Z̄
⊤
1 , Z̄2Z̄

⊤
2 ) ≥ log d− log(1 +

2

dλ
LBT + 4

√
dLBT ).

Proof. We will only present the proof for spectral contrastive loss as Barlow Twins loss is similar.

By Proposition 4.12, we know that H2(Z
⊤
1 Z1,Z

⊤
2 Z2) = 2 logB− log ||Z⊤

1 Z1 ⊙ Z⊤
2 Z2||2F = logB− log

||Z⊤
1 Z1⊙Z⊤

2 Z2||2F
B .

On the other hand, ||Z⊤
1 Z1⊙Z⊤

2 Z2||2F
B = 1 +

∑
i̸=j((z

(1)
i )⊤z

(1)
j )2(z

(2)
i )⊤z

(2)
j )2

B .

Using Lemma 4.2, we know that ((z(1)i )⊤z
(1)
j )2 ≤ (|(z(1)i )⊤z

(2)
j |+ ∥z(1)j − z

(2)
j ∥)2 ≤ 2(|(z(1)i )⊤z

(2)
j |2 + ∥z(1)j − z

(2)
j ∥2).

Therefore,
∑

i̸=j((z
(1)
i )⊤z

(1)
j )2(z

(2)
i )⊤z

(2)
j )2 ≤

∑
i̸=j((z

(1)
i )⊤z

(1)
j )2 ≤ 2( 1λ +B)LSC .

Combining all the above, the conclusion follows.

Proposition A.9.
Id = argmaxHα(K), and Id = argmaxTCRµ(K), (14)

where the maximization is over d× d positive semi-definite matrices with the constraint that each of its diagonals is 1.

Proof. Specifically, matrix entropy is Shannon entropy on the spectrum and the uniform distribution on the spectrum
maximizes the entropy. Consider the spectrum will also give the result for TCR. Another proof directly using matrix KL
divergence can be seen in (Zhang et al., 2023a).

Theorem A.10. When α > 0, Barlow twins and spectral contrastive learning losses maximize the matrix joint entropy
when their loss value is 0.

Proof. Denote the (along batch normalized) vectors for each dimension i (1 ≤ i ≤ d) of the online and target networks
as z̄(1)i and z̄

(2)
i . Take K1 = [z̄

(1)
1 · · · z̄(1)d ]⊤[z̄

(1)
1 · · · z̄(1)d ] and K2 = [z̄

(2)
1 · · · z̄(2)d ]⊤[z̄

(2)
1 · · · z̄(2)d ]. When the loss value is

0, Barlow Twins loss has z̄(1)i = z̄
(2)
i for each i ∈ {1, · · · , d} and (z̄

(1)
i )⊤z̄

(2)
j = 0 for each i ̸= j. Then for each i ̸= j,

(z̄
(1)
i )⊤z̄

(1)
j = (z̄

(1)
i )⊤z̄

(2)
j = 0. Similarly, (z̄(2)i )⊤z̄

(2)
j = 0. Then K1 = K2 = Id. By noticing Id ⊙ Id = Id. Then the

matrix joint entropy is maximized by noticing Proposition 4.15.

When performing spectral contrastive learning, the loss is
∑B

i=1 || z(1)i − z
(2)
i ||22 +λ

∑
i ̸=j((z

(1)
i )⊤z

(2)
j )2. Take K1 =

Z⊤
1 Z1 and K2 = Z⊤

2 Z2, the results follows similarly.

Theorem A.11. TCRµ(Z̄1Z̄
⊤
1 ⊙ Z̄2Z̄

⊤
2 ) ≥ d log(µ+ 1)− 1

2µ2 (
2
λLBT + 4(d− 1)

√
dLBT ).

Proof.

Lemma A.12. ∀ x, a ≥ 0, we have log(1 + x) ≥ log(1 + a)− 1
2 (x− a)2 + 1

1+a (x− a).

Proof. The proof of the lemma is direct from taking the derivative and finding that x = a is the minimal point.

Denote λi as the eigenvalues of Z̄1Z̄
⊤
1 ⊙Z̄2Z̄

⊤
2 , we know that λi ≥ 0 and

∑d
i=1 λi = d and

∑d
i=1 λ

2
i = ∥Z̄1Z̄

⊤
1 ⊙Z̄2Z̄

⊤
2 ∥2F .

Then take a = 1
µ in the above lemma, we will get the following: TCRµ(Z̄1Z̄

⊤
1 ⊙Z̄2Z̄

⊤
2 ) = log det(µId+Z̄1Z̄

⊤
1 ⊙Z̄2Z̄

⊤
2 ) =∑d

i=1 log(µ + λi) = d log(µ) +
∑d

i=1 log(1 +
λi

µ ) ≥ d log(µ) +
∑d

i=1(log(1 +
1
µ ) +

1
1+ 1

µ

(λi

µ − 1
µ ) −

1
2 (

λi

µ − 1
µ )

2) =

d log(µ + 1) + 1
2µ2 d − 1

2µ2

∑d
i=1 λ

2
i = d log(µ + 1) + 1

2µ2 d − 1
2µ2 ∥Z̄1Z̄

⊤
1 ⊙ Z̄2Z̄

⊤
2 ∥2F . If we denote K1 = Z̄1Z̄

⊤
1 and

14
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K2 = Z̄2Z̄
⊤
2 , then TCRµ(K1⊙K2) ≥ d log(µ+1)− 1

2µ2

∑
i ̸=j K

2
1(i, j)K

2
2(i, j) ≥ d log(µ+1)− 1

2µ2

∑
i ̸=j K

2
1(i, j) ≥

d log(µ+ 1)− 1
2µ2

∑
i ̸=j 2(C2

i,j + (2− 2Cj,j)) ≥ d log(µ+ 1)− 1
2µ2 (

2
λLBT + 4(d− 1)

√
dLBT ).

Remark: Following the proof of our Theorem 4.6 and Theorem 4.14 and Theorem 4.17, our theoretical results can be
generalized to sample contrastive and dimension contrastive methods defined in (Garrido et al., 2022). As pointed out by
(Garrido et al., 2022), sample and dimension contrastive methods contain many famous self-supervised methods (Proposition
3.2 of (Garrido et al., 2022)).

Below are other ways of proving the case of α = 2.

Theorem A.13. When α = 2, Barlow Twins and spectral contrastive learning losses maximize the matrix mutual information
when their loss value is 0.

We shall first present a lemma as follows:

Lemma A.14. Given two positive integers n,m. Denote two sequences x = (x1, · · · , xm) and y = (y1, · · · , ym). Then
x = y = 0 is the unique solution to the following optimization problem:

min0≤x≤1,0≤y≤1
(n+

∑m
i=1 xi)(n+

∑m
i=1 yi)

n+
∑m

i=1 xiyi
.

Proof. Notice that

(n+
∑m

i=1 xi)(n+
∑m

i=1 yi)

n+
∑m

i=1 xiyi
− n =

n(
∑m

i=1 xi +
∑m

i=1 yi)− n
∑m

i=1 xiyi + (
∑m

i=1 xi)(
∑m

i=1 yi)

n+
∑m

i=1 xiyi

Note xi ≥ x2
i and yi ≥ y2i . Then we shall get inequality as follows:

m∑
i=1

xi +

m∑
i=1

yi ≥ 2

√√√√(

m∑
i=1

xi)(

m∑
i=1

yi) ≥ 2

√√√√(

m∑
i=1

x2
i )(

m∑
i=1

y2i ) ≥ 2

m∑
i=1

xiyi.

Thus the above optimization problem gets a minimum of n, with x = y = 0 the unique solution.

Proof. Denote the (batch normalized) vectors for each dimension i (1 ≤ i ≤ d) of the online and target networks as z̄(1)i

and z̄
(2)
i .

Take K1 = [z̄
(1)
1 · · · z̄(1)d ]⊤[z̄

(1)
1 · · · z̄(1)d ] and K2 = [z̄

(2)
1 · · · z̄(2)d ]⊤[z̄

(2)
1 · · · z̄(2)d ].

From Proposition 4.1, it is clear that the mutual information I2(K1;K2) is maximized iff ||K1||2F ||K2||2F
||K1⊙K2||2F

is minimized. Take

((z̄
(1)
i )⊤z̄

(1)
j )2 and ((z̄

(2)
i )⊤z̄

(2)
j )2 as elements of x and y in Lemma A.14, then we can see the maximal mutual information

is attained iff (z̄(1)i )⊤z̄
(1)
j = 0 and (z̄

(2)
i )⊤z̄

(2)
j = 0.

When the loss value is 0, Barlow Twins loss has z̄(1)i = z̄
(2)
i for each i ∈ {1, · · · , d} and (z̄

(1)
i )⊤z̄

(2)
j = 0 for each i ̸= j.

Then for each i ̸= j, (z̄(1)i )⊤z̄
(1)
j = (z̄

(1)
i )⊤z̄

(2)
j = 0. Similarly, (z̄(2)i )⊤z̄

(2)
j = 0. Then the matrix mutual information is

maximized.

When performing spectral contrastive learning, the loss is
∑B

i=1 || z(1)i − z
(2)
i ||22 +λ

∑
i ̸=j((z

(1)
i )⊤z

(2)
j )2. Take K1 =

Z⊤
1 Z1 and K2 = Z⊤

2 Z2, the results follows similarly. Thus concludes the proof.

Theorem A.15. When α = 2, Barlow Twins and spectral contrastive learning losses maximize the matrix joint entropy
when their loss value is 0.

Proof. Denote the (along batch normalized) vectors for each dimension i (1 ≤ i ≤ d) of the online and target networks
as z̄(1)i and z̄

(2)
i . Take K1 = [z̄

(1)
1 · · · z̄(1)d ]⊤[z̄

(1)
1 · · · z̄(1)d ] and K2 = [z̄

(2)
1 · · · z̄(2)d ]⊤[z̄

(2)
1 · · · z̄(2)d ]. From Proposition 4.12,

it is clear that the joint entropy H2(K1,K2) is maximized iff || K1 ⊙ K2 ||2F is minimized. Note from the definition
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of Frobenius norm, || K1 ⊙ K2 ||2F=
∑

i,j((K1 ⊙ K2)(i, j))
2 =

∑
i,j(K1(i, j)K2(i, j))

2. When the loss value is 0,

Barlow Twins loss has z̄
(1)
i = z̄

(2)
i for each i ∈ {1, · · · , d} and (z̄

(1)
i )⊤z̄

(2)
j = 0 for each i ̸= j. Then for each i ̸= j,

(z̄
(1)
i )⊤z̄

(1)
j = (z̄

(1)
i )⊤z̄

(2)
j = 0. Similarly, (z̄(2)i )⊤z̄

(2)
j = 0. When performing spectral contrastive learning, the loss is∑B

i=1 || z(1)i − z
(2)
i ||22 +λ

∑
i ̸=j((z

(1)
i )⊤z

(2)
j )2. Take K1 = Z⊤

1 Z1 and K2 = Z⊤
2 Z2, the results follows similarly.

B. Ablation study

Table 2. Linear probing accuracy (%) of M-MAE for ViT-Base with varying µ coefficients.

µ Coefficient 0.1 0.5 0.75 1 1.25 1.5 3

Accuracy 58.61 59.38 59.87 62.40 59.54 57.76 50.46

To investigate the robustness of our approach to variations in hyperparameters, we perform an ablation study focusing on the
coefficients µ in the TCR loss. The results for different µ values are summarized as in Table 2.

As observed in Table 2, the M-MAE model exhibits a peak performance at µ = 1 for ViT-Base. Deviating from this value
leads to a gradual degradation in performance, illustrating the importance of careful hyperparameter tuning for maximizing
the benefits of the TCR loss.

C. More experiments
C.1. The tendency under different temperatures

One of the important hyper-parameters in SimCLR is the temperature in InfoNCE loss. We plot the matrix mutual
information and matrix joint entropy during the pretraining of SimCLR on CIFAR-10 with different temperatures. We set
temperatures as 0.3, 0.5, 0.7. From the Figure 3, we can observe that the increase of matrix mutual information or matrix
joint entropy during training ties closely with the final accuracy. As temperature = 0.3 outperforms 0.5 and 0.7 in KNN
accuracy, it also has the biggest matrix mutual information and matrix joint entropy value.

(a) Matrix joint entropy. (b) Matrix mutual information

Figure 3. Tendency of matrix information quantities under different temperatures. The experiments are conducted on CIFAR-10 using
SimCLR.

C.2. Longer training on masked modeling

We have conducted experiments on CIFAR-100. The hyper-parameters are similar to U-MAE, and we set µ = 1 and pretrain
CIFAR-100 for 1000 epochs. M-MAE may use hyperparameters that are not identical to U-MAE to fully reflect its potential.
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However, due to time constraints, we were unable to extensively search for these hyperparameters. We believe that with
more reasonable hyperparameters, M-MAE can achieve even better results. As shown in the Table 3, our method performs
remarkably well, even without an exhaustive hyperparameter search.

Table 3. Results on CIFAR-100 under various masked modeling pretraining algorithms.
Method linear probe@1 linear probe@5 finetune@1 finetune@5

M-MAE (vit-base) 60.9 88.1 83.8 97.0
U-MAE (vit-base) 59.7 86.8 84.1 96.5

MAE (vit-base) 59.2 86.8 84.5 96.6

We plot the effective rank of learned representations under algorithms MAE, U-MAE, and M-MAE in Figure 4. We find
that M-MAE has the biggest effective rank among the algorithms U-MAE has its effective rank bigger than MAE, and the
effective ranks of M-MAE have an increasing trend during training. This aligns with our theorem which shows U-MAE can
be seen as a second-order approximation of our M-MAE method.

Figure 4. The effective rank during pre-training.

C.3. Measuring the difference between Siamese branches

As we have discussed the total or shared information in the Siamese architectures, we haven’t used the matrix information-
theoretic tools to analyze the differences in the two branches.

From information theory, we know that KL divergence is a special case of f -divergence defined as follows:
Definition C.1. For two probability distributions P and Q, where P is absolutely continuous with respect to Q. Suppose P
and Q has density p(x) and q(x) respectively. Then for a convex function f is defined on non-negative numbers which is
right-continuous at 0 and satisfies f(1) = 0. The f -divergence is defined as:

Df (P || Q) =

∫
f

(
p(x)

q(x)

)
q(x)dx. (15)

When f(x) = x log x will recover the KL divergence. Then a natural question arises: are there other f divergences that
can be easily generalized to matrices? Note by taking f(x) = −(x+ 1) log x+1

2 + x log x, we shall retrieve JS divergence.
Recently, (Hoyos-Osorio & Sanchez-Giraldo, 2023) generalized JS divergence to the matrix regime.
Definition C.2 (Matrix JS divergence (Hoyos-Osorio & Sanchez-Giraldo, 2023)). Suppose matrix K1,K2 ∈ Rn×n which
K1(i, i) = K2(i, i) = 1 for every i = 1, · · · , n. The Jensen-Shannon (JS) divergence between these two matrices K1 and
K2 is defined as

JS (K1 || K2) = H1

(
K1 +K2

2

)
− H1(K1) +H1(K2)

2
.

One may think the matrix KL divergence is a good candidate, but this quantity has some severe problems making it not
a good choice. One problem is that the matrix KL divergence is not symmetric. Another problem is that the matrix KL
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divergence is not bounded, and sometimes may even be undefined. Recall these drawbacks are similar to that of KL
divergence in traditional information theory. In traditional information theory, JS divergence successfully overcomes these
drawbacks, thus we may use the matrix JS divergence to measure the differences between branches. As matrix JS divergence
considers the interactions between branches, we shall also include the JS divergence between eigenspace distributions as
another difference measure.

Specifically, the online and target batch normalized feature correlation matrices can be calculated by K1 = Z̄1Z̄
⊤
1 and

K2 = Z̄2Z̄
⊤
2 . Denote p1 and p2 the online and target (normalized) eigen distribution respectively. We plot the matrix JS

divergence JS(K1,K2) between branches in Figure 5a. It is evident that throughout the whole training, the JS divergence is
a small value, indicating a small gap between the branches. More interestingly, the JS divergence increases during training,
which means that an effect of “symmetry-breaking” may exist in self-supervised learning. Additionally, we plot the plain
JS divergence JS(p1,p2) between branches in Figure 5b. It is evident that JS(p1,p2) is very small, even compared to
JS(K1,K2). Thus we hypothesize that the “symmetry-breaking” phenomenon is mainly due to the interactions between
Siamese branches.

(a) Matrix JS Divergence. (b) Eigenspace JS Divergence.

Figure 5. Visualization of matrix JS divergence and eigenspace JS divergence on CIFAR10 for Barlow-Twins, BYOL and SimCLR.
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