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ABSTRACT

Spamming reviews are prevalent in review systems to manipulate

seller reputation and mislead customers. Spam detectors based on

graph neural networks (GNN) exploit representation learning and

graph patterns to achieve state-of-the-art detection accuracy. The

detection can influence a large number of real-world entities and it

is ethical to treat different groups of entities as equally as possible.

However, due to skewed distributions of the graphs, GNN can fail

to meet diverse fairness criteria designed for different parties. We

formulate linear systems of the input features and the adjacency

matrix of the review graphs for the certification of multiple fairness

criteria. When the criteria are competing, we relax the certifica-

tion and design a multi-objective optimization (MOO) algorithm

to explore multiple efficient trade-offs, so that no objective can be

improved without harming another objective. We prove that the

algorithm converges to a Pareto efficient solution using duality and

the implicit function theorem. Since there can be exponentially

many trade-offs of the criteria, we propose a data-driven stochastic

search algorithm to approximate Pareto fronts consisting of multi-

ple efficient trade-offs. Experimentally, we show that the algorithms

converge to solutions that dominate baselines based on fairness

regularization and adversarial training.

CCS CONCEPTS

• Information systems→ Spamdetection; •Computingmethod-

ologies→ Neural networks; • Applied computing→ Multi-

criterion optimization and decision-making.
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1 INTRODUCTION

Online reviews evaluate the reputations of businesses and guide

customers on e-commerce websites, such as Amazon [14], Yelp [30],

and Google Play [35]. However, these websites have also attracted

many spammers1 to manipulate product ratings and the less in-

formed customers. Numerous detectors are proposed, using features

derived from texts [20, 34, 42], reviewer behaviors [27, 33, 46], and

graphs [19, 21, 28, 37]. The literature has seen a steady improvement

in detection accuracy, which is nonetheless not the only evaluation

metric. Since the detection can affect many parties in e-commerce,

ethical aspects, such as fairness, have caught much attention. We

focus on the fairness of graph neural networks (GNN), which com-

bine representation learning and patterns of the review graphs

connecting reviewers, reviews, and products to deliver superior

detection accuracy [28]. The GNN detector outputs Pr(𝑌𝑖 = 1|𝐺) as
the probability of the suspiciousness of the 𝑖-th review. The reviews

with high probabilities will be screened or automatically removed.

Whether a review needs to be blocked should depend only on

the characteristics relevant to spamming (such as the intention

and impact of the review [47]). However, such characteristics are

unobservable due to the anonymity of the spammers. Furthermore,

the review graphs can contain attributes, such as the number of

reviews by an author, that can bias the detection2.

We focus on the fairness issue due to the highly skewed distribu-

tion of node degree (see Figure 1, panel (a)). Prior accuracy-focusing

detectors did not consider the degree and can have unfair detection.

For example, reviewers or products with fewer reviews can have a

higher chance of being screened and such treatment is unfair to the

majority of reviewers. We define the protected group of reviewers

(indicated by the sensitive attribute𝐴 = 1) as those that have posted

less than a certain number of reviews, and the remaining reviewers

are in the favored group (𝐴 = 0). The reviews are grouped according

to their authors (reviewers).

To demonstrate the fairness issue, Figure 1 panel (b) shows the

computation graphs for example reviews from the two groups. A

review from the favored group (𝐴 = 0) is connected to its author (the

larger blue circles), which is connected to many other reviews that

can be spam (red circles) or non-spams (black circles). Informative

detection signals of the reviews in the input (bottom) layer can

be diluted by the aggregation operator (averaging or summing)

as messages are passed up. Pr(𝑌𝑖 = 1|𝐺) calculated at the root

of reviews from group 0 can be lower than those from group 1,

due to the dilution. The discrepancy between the probabilities is

termed łdisparate impactž [11], and łstatistical parityž means the

two probabilities are equal.

1According to [40], about 40% of the reviews on Amazon are fake ones.
2The unobservable characteristics form the łconstruct feature spacež (CFS) and the
observable features form the łobservable feature spacež (OFS) [15]





spam detection features. The undirected edge 𝑒𝑖 𝑗 ∈ E indicates that

𝑣𝑖 and 𝑣 𝑗 are related. Let𝑊 ∈ {0, 1}𝑁×𝑁 be the adjacency matrix

of the graph 𝐺 , so that𝑊𝑖 𝑗 = 1 if and only if 𝑒𝑖 𝑗 ∈ E. GNN is a

𝐾-layered neural network. Let {ℎ(𝑘)𝑗 , 𝑗 = 1, . . . , 𝑁 , 𝑘 = 1, . . . , 𝐾} be
the feature vectors of the node 𝑣 𝑗 output at the 𝑘-th layer. The input

feature vector x𝑗 is considered to be ℎ
(0)
𝑗 at layer 0. GNN computes

ℎ
(𝑘)
𝑗 , 𝑘 ∈ {1, . . . , 𝐾}, as follows:

𝑎
(𝑘)
𝑗 = AGGREGATE(𝑘)

({

ℎ
(𝑘−1)
𝑖 : 𝑒𝑖 𝑗 ∈ E

})

, (1)

ℎ
(𝑘)
𝑗 = COMBINE(𝑘)

(

ℎ
(𝑘−1)
𝑗 , 𝑎

(𝑘)
𝑗

)

, (2)

where the AGGREGATE function finds a single vector 𝑎
(𝑘)
𝑗 from

the vectors of the neighboring nodes at the previous layer. These

functions can take various forms. For example, AGGREGATE(𝑘) can

be the mean of the input vectors, and COMBINE(𝑘) the composition

of the ReLU and an affine mapping parameterized by 𝜽 (𝑘) [25].

Let 𝜽 = [𝜽 (0), . . . , 𝜽 (𝐾 )] ∈ R𝑑 denote all the 𝑑 trainable parame-

ters of the GNN. The prediction Pr(𝑌𝑗 = 𝑦 𝑗 |𝜽 ;𝐺) is computed by

the sigmoid function 𝜎(𝑧 𝑗 ). 𝑧 𝑗 =
〈

𝜽 (𝐾 ), ℎ
(𝐾 )
𝑗

〉

is the logic and 𝜽 (𝐾 )

maps the last layer’s output ℎ
(𝐾 )
𝑗 to 𝑧 𝑗 .

The aggregation function in multiple layers can represented

by a computation graph. For a node 𝑣 𝑗 , to compute Pr(𝑌𝑗 |𝜽 ;𝐺), a
spanning tree of the graph 𝐺 is constructed with root at 𝑣 𝑗 . The

tree is cut-off at the depth 𝐾 . We will use the computation graphs

to analyze the compatibility of multiple fairness criteria.

GNN needs to be trained on labeled nodes (assumed to be the first

𝑛 of the 𝑁 nodes on𝐺 , whose labels are denoted by 𝑦 𝑗 ∈ {0, 1}, 𝑗 =
1, . . . , 𝑛). Since the number of spams and non-spams are imbalanced,

we choose to maximize the NDCG metric for evaluating rankings:

1

𝑍

𝑛
∑

𝑗=1

1[𝑦 𝑗 = 1]
1

log(𝑟 𝑗 + 1)
, (3)

where 𝑟 𝑗 is the ranking position of the 𝑗-th labeled node among

all labeled nodes sorted in descending order of Pr(𝑌𝑗 = 𝑦 𝑗 |𝜽 ;𝐺). 𝑍
is the maximal possible value of

∑𝑛
𝑗=1 1[𝑦 𝑗 = 1] 1

log(𝑟 𝑗+1)
across all

rankings so that the loss is in [0, 1]. NDCG is not differentiable due

to the sorting, and we adopt the differentiable surrogate [6]

ℓ1(𝜽 ;𝐺) =
1

𝑍

∑

𝑗, 𝑗 ′:𝑦 𝑗<𝑦 𝑗

log(1 + exp(𝑧𝑖 − 𝑧 𝑗 )), (4)

where 𝑍 is the total number of pairs of positive and negative nodes.

The detection can be evaluated on the test set using the NDCG.

2.2 Optimizing fairness metrics

A commonly found fairness criteria is disparate impact [8, 11]

min

{

Pr(𝑌 = 1|𝐴 = 0)

Pr(𝑌 = 1|𝐴 = 1)
,
Pr(𝑌 = 1|𝐴 = 1)

Pr(𝑌 = 1|𝐴 = 0)

}

. (5)

The fairness is maximized when the above metric is 1, and the

predicted probability is independent of 𝐴. To facilitate gradient-

based optimization, we adopt the corresponding surrogate [8, 10]:

ℓ (DI)(𝜽 ;𝐺) = |Pr(𝑌 = 1|𝐴 = 0) − Pr(𝑌 = 1|𝐴 = 1)|, (6)

where Pr(𝑌 = 1|𝐴 = 𝑎) is estimated as the percentage of the re-

views from group 𝑎 classified positive by 𝑌 . Since the GNN has

probabilistic outputs, we use the approximation

Pr(𝑌 = 1|𝐴 = 𝑎;𝜽 ,𝐺) =

∑𝑛
𝑗=1 1[𝐴 𝑗 = 𝑎]Pr(𝑌𝑗 = 1|𝜽 ,𝐺)

∑𝑚
𝑗=1 1[𝐴 𝑗 = 𝑎]

. (7)

Equalized odd is another fairness criterion proposed in [18]. Two

specific instances of equalized odd is łequalized false positive ratež,

enforced by the fairness loss

ℓ (EFPR)(𝜽 ;𝐺) = |Pr(𝑌 = 1|𝐴 = 0, 𝑌 = 0) − Pr(𝑌 = 1|𝐴 = 1, 𝑌 = 0)|,
(8)

and łequalized false negative ratež enforced by the loss

ℓ (EFNR)(𝜽 ;𝐺) = |Pr(𝑌 = 0|𝐴 = 0, 𝑌 = 1) − Pr(𝑌 = 0|𝐴 = 1, 𝑌 = 1)|.
(9)

The conditional probabilities in ℓ (EFPR) and ℓ (EFNR) can be estimated

similarly as in Eq. (7) but conditioning on both 𝐴 and 𝑌 . Lastly, we

would prefer the detection performance measured in NDCG to be

equal across two groups, using the following loss function

ℓ (XN)(𝜽 ;𝐺) =

�

�

�

�

�

1

𝑍0

𝑛0
∑

𝑗=1

1[𝑦 𝑗 = 1, 𝐴 𝑗 = 0]
1

log(𝑟0𝑗 + 1)
(10)

− 1

𝑍1

𝑛1
∑

𝑗=1

1[𝑦 𝑗 = 1, 𝐴 𝑗 = 1]
1

log(𝑟1𝑗 + 1)

�

�

�

�

�

, (11)

with 𝑍0 and 𝑍1 being the normalization for the two groups and 𝑟0𝑗
and 𝑟1𝑗 the ranking position of the 𝑗-th node from two groups (𝐴 = 0

and 𝐴 = 1), respectively (nodes are ranked within each group). We

approximate the group-wise NDCG using Eq. (4) within individual

groups ℓ (XN)(𝜽 ;𝐺).

3 MULTI-OBJECTIVE FAIR DETECTION

3.1 Motivating multi-objective optimization

Let’s revisit Figure 2. In the left subfigure, by averaging the pos-

teriors of the three instances within each of the two groups, it is

clear that the averages are different, leading to disparate impact.

However, the detection NDCG are the same across the groups. In

the middle, we let all the Pr(𝑌 = 1|𝐺) be positioned so that their

distances to the decision boundary are the same, leading to statis-

tical parity (no disparate impact). However, the FPR and FNR are

different between both groups. Lastly, on the right subfigure, we see

no disparate impact and the FPR/FNR are equal across the groups,

but the NDCGs are different between the two groups. The above

example shows that enforcing one fairness criterion (e.g., FPR) is

insufficient for ensuring another fairness criterion (e.g., NDCG). Is

it possible to satisfy a set of fairness criteria simultaneously?

3.2 (Im)possibility of satisfying multiple
fairness criteria

The above question has been studied in [24, 26], but their statements

are not about the representation learning on graphs. To simplified

our analysis, we consider the linearized GNN [44]:

Pr(𝑌𝑗 = 1|𝐺 ;𝜽 ) = 𝜎
(

(𝑊̃ )𝐾H(0)
𝐾
∏

𝑘=0

𝜽 (𝑘)

)

, (12)



where 𝐻 (0) = [ℎ
(0)
1 , . . . , ℎ

(0)
𝑛 ]⊤ is the input feature matrix, 𝑊̃ =

𝐷−1𝑊 , and 𝐷 = diag(𝑊1𝑛×1). We prove that certain fairness crite-

ria can be translated into linear constraints over H0 and𝑊 .

Let 𝐺0 and 𝐺1 be two groups defined by a sensitive attribute 𝐴

and the random variables in group 𝐺𝑖 be denoted by {𝑌𝑖, 𝑗 }, where
𝑖 ∈ {0, 1} and 𝑗 ∈ {1, . . . , |𝐺𝑖 |}. Define the indicator vector 1[𝐺𝑖 ],
with 1’s in the entries 𝑗 for 𝑌𝑗 ∈ 𝐺𝑖 and 0 otherwise. The computa-

tion graph of the simplified GNN, when predicting the class of any

node 𝑌𝑗 , is a spanning tree of height 𝐾 rooted at 𝑌𝑗 . The spanning

tree’s leaves are the input vectors ℎ
(0)
𝑗 ′ of the node 𝑌𝑗 ′ reachable

from 𝑌𝑗 on the graph 𝐺 in 𝐾 hops 5. Example computation graphs

are given in Figure 3.

Theorem 3.1. Assume the linearized GNN with fixed parameters

𝜽 = (𝜽 (0), . . . , 𝜽 (𝐾 )). If the rows of the matrix
∏𝐾
𝑘=0

𝜽 (𝑘) are linearly

independent, then an equality fairness constraint𝐶 based on disparate

impact, EFPR, and EFNR, defined using the logits 𝑧𝑖, 𝑗 for nodes 𝑌𝑖, 𝑗 , is

satisfied if

1

|𝐺0 |
1[𝐺0]

⊤(𝑊̃ )𝐾𝐻 (0) =
1

|𝐺1 |
1[𝐺1]

⊤(𝑊̃ )𝐾𝐻 (0), (13)

Proof. The averaged logits from group 𝐺𝑖 is

1

|𝐺𝑖 |
1[𝐺𝑖 ]

⊤(𝑊̃ )𝐾𝐻 (0)
𝐾
∏

𝑘=0

𝜽 (𝑘) . (14)

By equating the two averages, we have

[

1

|𝐺0 |
1[𝐺0]

⊤(𝑊̃ )𝐾𝐻 (0) − 1

|𝐺1 |
1[𝐺1]

⊤(𝑊̃ )𝐾𝐻 (0)

] 𝐾
∏

𝑘=0

𝜽 (𝑘) = 0.

(15)

Since the rows of
∏𝐾
𝑘=0

𝜽 (𝑘) are linearly independent,

1

|𝐺0 |
1[𝐺0]

⊤(𝑊̃ )𝐾𝐻 (0) − 1

|𝐺1 |
1[𝐺1]

⊤(𝑊̃ )𝐾𝐻 (0) = 0. (16)

□

Corollary 3.1.1. Under the assumptions of Theorem 3.1, the com-

patibility of 𝑆 fairness equality criteria 𝐶1, . . . ,𝐶𝑆 , with two groups

𝐺0,𝑠 and𝐺1,𝑠 , 𝑠 = 1, . . . , 𝑆 , can be certificated by the feasibility of the

following linear system

1

|𝐺0,𝑠 |
1[𝐺0,𝑠 ]

⊤(𝑊̃ )𝐾𝐻 (0) =
1

|𝐺1,𝑠 |
1[𝐺1,𝑠 ]

⊤(𝑊̃ )𝐾𝐻 (0), 𝑠 = 1, . . . , 𝑆 .

where 1[𝐺0,𝑠 ] and 1[𝐺1,𝑠 ] are the binary indicator vectors for the

two groups defined by the criterion 𝐶𝑠 .

Corollary 3.1.2. Under the assumptions of Theorem 3.1, if an

fairness criterion is defined across over 𝑆 groups, the criterion is satis-

fied if the following linear system is feasible

1

|𝐺𝑠 |
1[𝐺𝑠 ]

⊤(𝑊̃ )𝐾𝐻 (0) =
1

|𝐺𝑡 |
1[𝐺𝑡 ]

⊤(𝑊̃ )𝐾𝐻 (0),∀𝑠, 𝑡 ∈ {1, . . . , 𝑆}.

where 1[𝐺𝑠 ] and 1[𝐺𝑡 ] are the binary indicator vectors for the two

groups 𝐺𝑠 and 𝐺𝑡 .

5In most neural network implementations, such as PyTorch, network parameters are
leaf nodes of computation graphs. We don’t consider parameters in the constraints
since the parameters are fixed as constants.
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Figure 3: A running example demonstrating the (im)possibility.

A similar equality constraint can be proved for the ranking-based

fairness criterion of equalized NDCG. Let 𝐺+
𝑖 (𝐺−𝑖 , resp.) be the set

of positive (negative, resp.) of group 𝑖 , and 1[𝐺+
𝑖 ] and 1[𝐺

−
𝑖 ] be

the corresponding indicator vectors. Let 𝑛+𝑖 = |𝐺+
𝑖 | and 𝑛

−
𝑖 = |𝐺−𝑖 |

be the number of positive and negative examples in group 𝑖 , for

𝑖 = 0, 1.

Theorem 3.2. Under the assumptions of Theorem 3.1, the fairness

criterion of equality in NDCG approximated using logits 𝑧𝑖, 𝑗 of 𝑌𝑖, 𝑗 is

satisfied if

1

𝑛−0 × 𝑛
+
0

∆⊤0 (𝑊̃ )𝐾𝐻 (0) =
1

𝑛−1 × 𝑛
+
1

∆⊤1 (𝑊̃ )𝐾𝐻 (0), (17)

with ∆𝑖 = 𝑛
+
𝑖 × 1[𝐺

−
𝑖 ] − 𝑛

−
𝑖 × 1[𝐺

+
𝑖 ], for 𝑖 = 0, 1.

Proof. The proof of the theorem is similar to Theorem 3.1. To

use the logits to define equality in NDCG,we replace log(1+exp(𝑧 𝑗 ′−
𝑧 𝑗 )) in the approximated NDCG loss function ℓ (XN)(𝜽 ;𝐺) with 𝑧 𝑗 ′ −
𝑧 𝑗 . The summation in the definition of the loss function is then

replaced with the inner product ∆⊤0 (𝑊̃ )𝐾𝐻 (0) and ∆⊤1 (𝑊̃ )𝐾𝐻 (0) for

groups 0 and 1, respectively. □

The above theorems are applicable to general graphs beyond the

review graphs. In the proof, rather than working with the output

probabilities in the fairness constraints, as defined in Seciton 2.2,

we relax the fairness criteria that use the probabilities Pr(𝑌 |𝑋 ) and
Pr(𝑌 |𝑋,𝐴) to use the logits 𝑧 𝑗 for the ease of analysis. Be cautioned
that the closeness in the averaged logits is not equivalent to the

closeness in the averaged probabilities. However, when the sigmoid

function is used to compute the probabilities and the logits or their

differences are near 0, the approximation is close.

A running example. We demonstrate the theorem on the review

graph, in Figure 3 with three reviewer accounts, 5 reviews, and

3 products. The two spamming reviews are highlighted with red

circles. The letters A, R, and P above the three columns denote the

types (reviewer, review, and product) of the nodes in the respective

columns, and the numbers besides each node identify a node of

the type in those columns. For example, 𝐴1 is the first reviewer

and 𝑅3 is the third review, which is a spamming review. For the

ease of analysis, we assume that the simplified GNN has two layers

(𝐾 = 2), and there is no edge connecting a node to itself. The

adjacency matrix is row normalized by node degrees as in Eq. (12).

The computation graphs are shown in Figure 3 panel (b).

The protected group has reviews 𝑅1 and 𝑅2, and the favored

group has reviews 𝑅3, 𝑅4, and 𝑅5. Statistical parity requires

1

2

(

ℎ
(2)
𝑅1

+ ℎ
(2)
𝑅2

)

=
1

3

(

ℎ
(2)
𝑅3

+ ℎ
(2)
𝑅4

+ ℎ
(2)
𝑅5

)

.



The superscripts indicate the second (output) layer of the GNN.

Using the computational graphs, if the rows of 𝜽 (0)𝜽 (1)𝜽 (2) are

linearly independent, the requirement becomes the following linear

equality constraint:

1

12

(

5ℎ
(0)
𝑅1

+ 5ℎ
(0)
𝑅2

+ 2ℎ
(0)
𝑅3

)

=
1

18

(

ℎ
(0)
𝑅1

+ ℎ
(0)
𝑅2

+ 4ℎ
(0)
𝑅3

+ 6ℎ
(0)
𝑅4

+ 6ℎ
(0)
𝑅5

)

.

3.3 Learning a GNN satisfying multiple
fairness requirements

What if multiple desired fairness criteria cannot be satisfied simulta-

neously? One can then find GNNmodels that trade one criterion for

others, with the constraint that the trade-offs are efficient, meaning

that improving one fairness criterion necessarily harms at least

another criterion. Such a model is called łPareto optimal (efficient)ž,

which can be found by the following multi-objective optimization:

min
𝜽

ℓ(𝜽 ) = (ℓ1(𝜽 ), . . . , ℓ𝑚(𝜽 ))⊤, (18)

where ℓ𝑖 is some loss function mapping from Θ to R+ and 𝐿 is a

function mapping from R𝑑 to R𝑚 . We assume all loss functions are

differentiable so that their gradients are well-defined. In particular,

we always let the first objective function ℓ1 be the ranking loss

Eq. (4) to optimize spam detection performance. Depending on

what fairness criteria are desired, the corresponding fairness loss

functions can be appended as objective functions. For example, if

we care about fairness defined by disparate impact, we let𝑚 = 2

and ℓ2(𝜽 ) be the loss defined in Eq. (5); if we want to ensure fairness

defined in DI, FNR, FPR, and xNDCG, we can let𝑚 = 5 and ℓ2(𝜽 ) =

ℓDI(𝜽 ), ℓ3(𝜽 ) = ℓ
FNR(𝜽 ), ℓ4(𝜽 ) = ℓ

FPR(𝜽 ), and ℓ5(𝜽 ) = ℓ
XN(𝜽 ).

Definition 3.3 (Dominance). A model 𝜽 is dominated by the

model 𝜽 ′, if ℓ(𝜽 ′) ≤ ℓ(𝜽 ) element-wisely and for at least one 𝑖 ∈
{1, . . . ,𝑚}, ℓ𝑖 (𝜽 ′) < ℓ𝑖 (𝜽 ).

Definition 3.4 (Pareto optimal and front). A model 𝜽 is

Pareto optimal (or efficient) if it is not dominated by any other model.

The Pareto front is image of the set of all Pareto optimal solutions

under the mapping ℓ : Θ→ R𝑚 .

To characterize Pareto optimal solutions, we define the𝑚 × 𝑑
Jacobian matrix

(𝐽 (𝜽 ))𝑖, 𝑗 =
𝜕ℓ𝑖

𝜕𝜃 𝑗
(𝜽 ). (19)

Unlike single objective optimization, at a local Pareto optimal

solution 𝜽 , the Jacobian matrix 𝐽 (𝜽 ) may not be all zero. That is,

there exists a Pareto optimal solution 𝜽 so that the gradient of

ℓ𝑖 is not a zero vector for at least one 𝑖 ∈ {1, . . . ,𝑚}. A necessary

condition of a local Pareto optimal solution is that there is no vector

g ∈ R𝑑 so that 𝐽 (𝜽 )g < 0, where the inequality is element-wise in

the𝑚 objective values. If there is a vector g so that 𝐽 (𝜽 )g < 0, then

g is a descent direction to make ℓ(𝜽 +𝛼g) smaller than ℓ(𝜽 ) for some

sufficiently small positive step size 𝛼 ∈ (0, 𝛽) for some 𝛽 ∈ (0, 1).
To certificate that 𝜽 is Pareto optimal, or equivalently that there

is no descent direction to further reduce all objectives, one can

solve the following optimization problem [13]:

min
𝜏,g

𝜏 + 1
2 ∥g∥2 (20)

s.t. (𝐴g)𝑖 ≤ 𝜏, 𝑖 = 1, . . . ,𝑚. (21)

Algorithm 1 MOO for finding one Pareto optimal solution

Input:𝑚 objective functions ℓ1, . . . , ℓ𝑚 (NDCG and some fairness

objective(s)), a small positive tolerance 𝜖 > 0.

Output: a Pareto optimal solution 𝜽 .

Initialize GNN model 𝜽 .

for 𝑡 = 1, . . . , do

Find the gradients (𝐽 (𝜽 ))𝑖 of individual objective functions ℓ𝑖
at the current solution 𝜽 .

Use a QP solver to find the optimal dual variables 𝜆∗1, . . . , 𝜆
∗
𝑚 ,

by solving the dual problem Eq. (22)-(23).

Compute the multi-gradient g =
∑𝑚
𝑗=1 𝜆

∗
𝑗 (𝐽 (𝜽 ))𝑗 .

if at g, max𝑗 (𝐽 (𝜽 )g)𝑗 > −𝜖 then
break

end if

Update 𝜽 ← 𝜽 − 𝜂𝑘g.
end for

Return the GNN model 𝜽 .

where𝐴 = 𝐽 (𝜽 ) is a constant matrix given 𝜽 . If 𝜽 is a Pareto optimal

solution, then 𝐴g ≥ 0 for any g ∈ R𝑑 and the optimal value of the

above optimization is 0 by taking 𝜏 = 0 and g = 0 ∈ R𝑑 . If 𝜽 is not

a Pareto optimal solution, then there is a g ̸= 0 so that 𝐴g < 0 and

𝜏 = max𝑖 (𝐴g)𝑖 ≤ − 1
2 ∥g∥2< 0. Note that 𝜏 and the descent direction

g are both functions of the current solution 𝜽 .

In practice, it is not necessary to find the global optimum of

the above strongly convex optimization problem. Instead, finding a

descent direction g so that 𝜏 + 1
2 ∥g∥2 is sufficiently smaller than 0

is good enough. According to [13], it is more common to solve the

following dual problem of the above primal problem:

max
𝝀

− 1
2 ∥

∑𝑚
𝑗=1 𝜆 𝑗 (𝐽 (𝜽 ))𝑗 ∥

2 (22)

s.t.
∑𝑚
𝑗=1 𝜆 𝑗 = 1, 𝜆 𝑗 ≥ 0, 𝑗 = 1, . . . ,𝑚. (23)

The dual problem is a quadratic programming (QP) problem and

𝝀 = [𝜆1, . . . , 𝜆𝑚] is the set of dual variables for the 𝑚 inequality

constraints in Eq. (21). Off-shelf software and library can be adopted

to find the approximately optimal 𝝀∗. After the QP is solved, if the

current solution 𝜽 is not Pareto optimal, a descent direction is

obtained as a so-called łmulti-gradientž g =
∑𝑚
𝑗=1 𝜆

∗
𝑗 (𝐽 (𝜽 ))𝑗 , which

is used to update the GNN parameters 𝜽 :

𝜽 ← 𝜽 − 𝜂𝑘
𝑚
∑

𝑗=1

𝜆∗𝑗 (𝐽 (𝜽 ))𝑗 . (24)

Otherwise, if 𝜏 = max𝑗 (𝐴g)𝑗 is not sufficiently smaller than 0 and

𝜽 can be claimed to be Pareto optimal. The algorithm description

is given in Algorithm 1. The learning rate 𝜂𝑘 should be adjusted so

that 𝜂𝑘 < (1 − 𝛽)/(2𝐿max) where 0 < 𝛽 < 1 is a pre-specified hyper-

parameter and 𝐿max is the maximum of the Lipschitz constants of

the gradients of the objective functions.

Relation to regularization-based approaches. Compared with

the training a fairness-regularized GNN [9], such as

ℓ(𝜽 ;𝐺) = ℓ1(𝜽 ;𝐺) + 𝜆ℓ
DI(𝜽 ;𝐺), (25)

the QP-based approach can find the relative importance of differ-

ent objective functions which are unknown a prior. Further, the



regularized GNN does not guarantee a Pareto optimal solution, as

shown in the experiments.

Finding Pareto fronts. To find multiple Pareto optimal solutions

in the Pareto fronts, Algorithm 2 is adopted from [39]. It maintains a

list of dominating solutions in each outer iteration, while in each of

the inner iterations, it randomly perturbs each previous dominating

solution into several slightly different solutions (łlocal searchž),

which are further optimized by Algorithm 1. Dominated solutions

are removed at the end of each outer iteration.

Algorithm 2 Searching the Pareto front with Stochastic Multi-

Gradient

Input: graph 𝐺

Initialization: a list of a single GNN model L0 = {𝜽 }.
for 𝑡 = 0, 1, . . . do

Let L𝑡+1 = ∅.
for each model 𝜽 in L𝑡 do
Sample 𝑟 GNN parameters independently from N (𝜽 , 𝜎2𝐼 )

(adding Gaussian noise to each dimension of 𝜽 ).

Add the sampled model to L𝑡+1.
end for

Let L′𝑡+1 = ∅.
for each model 𝜽 in L𝑡+1 do
Apply Algorithm 1 to update 𝜽 to 𝜽 ′.
Add 𝜽 ′ to L′𝑡+1.

end for

Remove models that are dominated from L′𝑡+1.
Let L𝑡+1 = L′𝑡+1.

end for

3.4 Convergence to a Pareto efficient solution

It has been proved in [13], that Algorithm 1 will converge to a

local Pareto optimal solution given that the objectives are Lipschitz

continuously differentiable and the step sizes are selected using

the Armijo method. Further, in [12], the authors proved that the

rate of convergence for non-convex, convex, and strongly convex

objective functions. There are discussions on whether to use convex

relaxation of fairness metrics [3]. On the one hand, using convex ob-

jective functions can ensure convergence and the rate. On the other

hand, neural networks are typically non-convex, even with con-

vex loss functions, and too much relaxation can cause the fairness

objectives to lose their effect [29].

We prove the convergence of Algorithm 1, with a key results

stated in [12, 13] without proof. We found the convergence proof

(Proof of Theorem 3, Section 4.6.4) in [22] also miss a key step (not

proving how the dual variables converge to a stationary point). We

close the gap by completing the proof in [12, 13].

Theorem 3.5. (Theorem 3.1 of [12]) All loss functions are lower-

bounded by zero. Let 𝜽 (0) be the initial GNN model and the maxi-

mal loss function value be 𝐹max = max{ℓ1(𝜽 (0)), . . . , ℓ𝑚(𝜽 (0))}. Algo-
rithm 1 generates a sequence {𝜽 (𝑡 )} such that

min
𝑡=0,...,𝑇−1

∥g(𝑡 )∥≤
√

𝐹max

𝑀

1
√
𝑇
, (26)

where𝑀 = 𝛽𝜂min/2 and 𝜂min = min{(1 − 𝛽)/2𝐿max, 1}.

The theorem shows that the descent direction sequence {g(𝑡 )}
satisfies

lim inf
𝑡→∞

∥g(𝑡 )∥→ 0, (27)

and by passing to a subsequence, there is a subsequence of the

descent directions ∥𝜽 (𝑡𝑘 )∥→ 0 as 𝑘 →∞. 𝜽 (𝑡𝑘 ) converges to a limit

point 𝜽 ∗ where the corresponding ∥g∗∥= 0. By Eq. (20)-(21), 𝜽 ∗ is
a Pareto optimal solution. In [12], the authors stated but did not

prove why the corresponding dual variables 𝝀 also converges to

a stationary point 𝝀∗. We close the gap by proving that 𝝀(𝜽 ) is a

continuous function 𝜽 .

Theorem 3.6. Let 𝑓 (𝜽 ,𝝀) =
∑𝑚
𝑗=1 𝜆 𝑗 ℓ𝑗 (𝜽 ) be the objective function

Eq. (22) of the dual problem, and 𝝀∗ be an optimal solution of the

problem. 𝑓 : R𝑑+𝑚 → R𝑚 . If ∇𝝀 𝑓 (𝜽 ,𝝀) is full-rank, then there is a

differentiable function 𝝀(𝜽 ) near 𝝀∗.

Proof. Since the dual problem is a linearly constrained qua-

dratic programming and is convex, there is a unique solution 𝝀∗

if the Hessian matrix ∇2
𝝀,𝝀

𝑓 (𝜽 ,𝝀) is positive definite. Let the con-

straints be

ℎ(𝜽 ,𝝀) =
𝑚
∑

𝑗=1

𝜆 𝑗 − 1 = 0, (28)

𝑓𝑗 (𝜽 ,𝝀) = −𝜆 𝑗 ≤ 0, 𝑗 = 1, . . . ,𝑚. (29)

The Lagrangian is

𝐿(𝝀, 𝜇, 𝜈, 𝜽 ) = 𝑓 (𝜽 ,𝝀) + 𝜇 𝑗 𝑓𝑗 (𝜽 ,𝝀) + 𝜈ℎ(𝜽 ,𝝀)

Fixing the parameter 𝜽 , the optimal 𝝀∗ is a function of 𝜽 , denoted

by 𝝀∗(𝜽 ). The KKT conditions at 𝝀∗(𝜽 ) are

𝑓𝑗 (𝜽 ,𝝀
∗(𝜽 )) ≤ 0, 𝑗 = 1, . . . ,𝑚, (30)

ℎ(𝜽 ,𝝀∗(𝜽 )) = 0, (31)

𝜇∗𝑗 ≥ 0, 𝑗 = 1, . . . ,𝑚 (32)

𝜇∗𝑗 𝑓𝑗 (𝜽 ,𝝀
∗(𝜽 )) = 0, 𝑗 = 1, . . . ,𝑚, (33)

∇𝐿(𝝀∗(𝜽 ), 𝝁∗, 𝜈∗, 𝜽 ) = 0, (34)

The three equalities above constitute a linear system 𝐹 (𝝀, 𝜇, 𝜈, 𝜽 ) =

[∇𝝀𝐿(𝝀, 𝜇, 𝜈, 𝜽 ); 𝜇1 𝑓1(𝜽 ,𝝀); . . . ; 𝜇𝑚 𝑓𝑚(𝜽 ,𝝀)];ℎ(𝜽 ,𝝀)) = 0. By the Im-

plicit Function Theorem [2], there is a neighborhood around the

point (𝝀∗, 𝝁∗, 𝜈∗, 𝜽 ) and a function 𝑠 : 𝜽 → (𝝀, 𝝁, 𝜈) that is continu-

ously differentiable in a neighbor of 𝜽 , with Jacobian being:

∇𝜽 𝑠(𝜽 ) = −∇𝝀,𝜇,𝜈𝐹 (𝝀, 𝜇, 𝜈, 𝜽 )−1∇𝜽 𝐹 (𝝀, 𝜇, 𝜈, 𝜽 ). (35)

The function 𝑠 further satisfies 𝐹 (𝑠(𝜽 ), 𝜽 ) = 0, the equalities in the

KKT conditions. □

The differentiable function 𝑠(𝜽 ) maps from a model 𝜽 to the

optimal dual variable values when solving the problem Eq. (22)-

(23). It shows that 𝝀 is a continuous function of 𝜽 . As a result, 𝝀

converges to 𝝀(𝜽 ∗) as 𝜽 converges to 𝜽 ∗.
Note: the convergence proof applies to multiple objectives de-

fined on a training set only. Convergence on the unseen test data

requires more assumptions, such as sufficiently large training sets

and identical training and test distributions.
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