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Abstract

In the bandits with knapsacks framework
(BwK) the learner has m resource-consumption
(i.e., packing) constraints. We focus on the gen-
eralization of BwK in which the learner has a set
of general long-term constraints. The goal of the
learner is to maximize their cumulative reward,
while at the same time achieving small cumulative
constraints violations. In this scenario, there ex-
ist simple instances where conventional methods
for BwK fail to yield sublinear violations of con-
straints. We show that it is possible to circumvent
this issue by requiring the primal and dual algo-
rithm to be weakly adaptive. Indeed, even without
any information on the Slater’s parameter ρ char-
acterizing the problem, the interaction between
weakly adaptive primal and dual regret minimiz-
ers leads to a “self-bounding” behavior of dual
variables. In particular, their norm remains suit-
ably upper bounded across the entire time horizon
even without explicit projection steps. By exploit-
ing this property, we provide best-of-both-worlds
guarantees for stochastic and adversarial inputs.
In the first case, we show that the algorithm guar-
antees sublinear regret. In the latter case, we
establish a tight competitive ratio of ρ/(1 + ρ).
In both settings, constraints violations are guaran-
teed to be sublinear in time. Finally, this results
allow us to obtain new result for the problem of
contextual bandits with linear constraints, provid-
ing the first no-α-regret guarantees for adversarial
contexts.
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1. Introduction
We consider a problem in which a decision maker tries
to maximize their cumulative reward over a time horizon
T , subject to a set of m long-term constraints. At each
round t, the learner chooses xt ∈ X and, subsequently,
observes a reward ft(xt) ∈ [0, 1] andm constraint functions
gt(xt) ∈ [−1, 1]m. Then, the problem becomes that of
finding a sequence of decisions which guarantees a reward
close to that of the best fixed decision in hindsight, while
satisfying long-term constraints

∑T
t=1 gt(xt) ≤ 0 up to

small sublinear violations. This framework subsumes the
bandits with knapsacks (BwK) problem, where there are
only resource-consumption constraints (Badanidiyuru et al.,
2018; Agrawal & Devanur, 2019; Immorlica et al., 2022).

Inputs (ft, gt) may be either stochastic or adversarial. The
goal is designing algorithms providing guarantees for both
input models, without prior knowledge of the specific en-
vironment they will encounter. Achieving this goal in-
volves addressing two crucial challenges which prevent a
direct application of primal-dual approaches based on the
LagrangeBwK framework in Immorlica et al. (2022).

1.1. Technical Challenges

In order to obtain meaningful regret guarantees, primal-
dual frameworks based on LagrangeBwK need to control
the magnitude of dual variables. This is necessary as dual
variables appear in the loss function of the primal algo-
rithm, and, therefore, influence the no-regret guarantees
provided by the primal algorithm. In the context of knap-
sack constraints, this is usually achieved by exploiting the
existence of a strictly feasible solution with Slater’s parame-
ter ρ, consisting of a void action which yields zero reward
and resource consumption. For instance, the frameworks of
(Balseiro et al., 2022; Castiglioni et al., 2022a) guarantee
boundedness of dual multipliers through an explicit projec-
tion step on the interval [0, 1/ρ]. However, in settings with
general constraints beyond resource consumption, it is often
unreasonable to assume that the learner knows the Slater’s
parameter ρ a priori. The problem of operating without
knowledge of ρ has been already addressed in the stochastic
setting (Agrawal & Devanur, 2014; 2019; Yu et al., 2017;
Wei et al., 2020; Castiglioni et al., 2022b). For instance, a
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simple approach for the case of stochastic inputs involves
adding an initial estimation phase to calculate an estimate of
ρ, and subsequently treating this estimate as the true param-
eter (Castiglioni et al., 2022b). However, these techniques
cannot be applied in adversarial environments as estimates
of ρ based on the initial rounds could be inaccurate about
future inputs.

Primal-dual templates based on LagrangeBwK usually
operate under the assumption that the primal and dual al-
gorithms have the no-regret property. In the case of stan-
dard BwK, the no-regret requirement is sufficient to obtain
optimal guarantees (see, e.g., (Immorlica et al., 2022; Cas-
tiglioni et al., 2022a)). However, in our model, there exist
simple instances in which the primal and dual algorithms
satisfy the no-regret requirement, but the overall frame-
work fails to guarantee small constraints violations (see
Section 5.1). Moreover, known techniques to prevent this
problem, such as introducing a recovery phase to prevent
excessive violations, crucially require a priori knowledge of
the Slater’s parameter ρ (Castiglioni et al., 2022b).

1.2. Contributions

Our approach is based on a generalization of the technique
presented in Castiglioni et al. (2023) for online bidding un-
der one budget and one return-on-investments constraint.
The crux of the approach is requiring that both the primal
and dual algorithms are weakly adaptive, that is, they guar-
antee a regret upper bound of o(T ) for each sub-interval
of the time horizon (Hazan & Seshadhri, 2007). We gen-
eralize this approach to the case of m general constraints,
thereby providing the first primal-dual framework for this
problem that can operate without any knowledge of Slater’s
parameter in both stochastic and adversarial environments.

First, we prove a “self-bounding” lemma for the case of
m arbitrary constraints. It shows that, if the primal and
dual algorithms are weakly adaptive, then boundedness of
dual multipliers emerges as a byproduct of the interaction
between the primal and dual algorithm. Thus, it is possible
to guarantee a suitable upper bound on the dual multipliers
even without any information on Slater’s parameter.

We use this result to prove best-of-both-worlds no-regret
guarantees for primal-dual frameworks derived from
LagrangeBwK which employ weakly adaptive primal and
dual algorithms. Our guarantees will be modular with re-
spect to the regret guarantees of the primal and dual algo-
rithms. In presence of a suitable primal regret minimizer,
we show that our framework yields the following no-regret
guarantees while attaining sublinear constraints violations:
in the stochastic setting, it guarantees sublinear regret with
respect to the best fixed randomized strategy that is feasible
in expectation. Remarkably, this result is obtained without
having to allocate the initial T 1/2 rounds for estimating

the unknown parameter as in Castiglioni et al. (2022b). In
the adversarial setting, our framework guarantees a com-
petitive ratio of ρ/(1 + ρ) against the best unconstrained
strategy in hindsight. We provide a lower bound showing
that this cannot be improved if constraint violations have to
be o(T ). This is the first regret guarantee for our problem
in adversarial environments.

Finally, we show that our model can be used to describe the
contextual bandits with linear constraints (CBwLC) prob-
lem, which was recently studied by Slivkins et al. (2023b);
Han et al. (2023) in the context of stochastic and non-
stationary environments. Our framework allows to extend
these works in two directions: we establish the first no-α-
regret guarantees for CBwLC when contexts are generated
by an adversary, and we provide the first Õ(

√
T ) guarantees

for the stochastic setting when the learner does not know an
estimate of the Slater’s parameter of the problem.

2. Related Work

Bandits with Knapsacks. The (stochastic) BwK problem
was introduced an optimally solved by Badanidiyuru et al.
(2013; 2018). Other algorithms with optimal regret guar-
antees have been proposed by Agrawal & Devanur (2014;
2019), whose approach is based on the paradigm of opti-
mism in the face of uncertainty, and in (Immorlica et al.,
2019; 2022). In the latter works, the authors propose the
LagrangeBwK framework, which has a natural interpre-
tation: arms can be thought of as primal variables, and
resources as dual variables. The framework works by set-
ting up a repeated two-player zero-sum game between a
primal and a dual player, and by showing convergence to a
Nash equilibrium of the expected Lagrangian game.

Adversarial BwK. The adversarial BwK problem was first
introduced in Immorlica et al. (2019; 2022), where they stud-
ied the case in which the learner hasm knapsack constraints,
and inputs are selected by an oblivious adversary. Their al-
gorithm is based on a modified analysis of LagrangeBwK,
and guarantees a O(m log T ) competitive ratio. Subse-
quently, Kesselheim & Singla (2020) provided a new analy-
sis obtaining a O(logm log T ) competitive ratio, which is
optimal. In the case in which budgets are Ω(T ), Castiglioni
et al. (2022a) showed that it is possible to achieve a constant
competitive ratio of 1/ρ where ρ is the per-iteration budget.

Beyond packing constraints. Castiglioni et al. (2022a)
studies a setting with general constraints analogous to ours,
and show how to adapt the LagrangeBwK framework to
obtain best-of-both-worlds guarantees when Slater’s param-
eter is known a priori. Similar guarantees are also pro-
vided, in the stochastic setting, by Slivkins et al. (2023b),
which then extend the results to the CBwLC model. Fi-
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nally, the work of Castiglioni et al. (2023) introduces
the use of weakly adaptive regret minimizers within the
LagrangeBwK framework, and provides guarantees in the
specific case of one budget constraint and one return-on-
investments constraint.

Contextual bandits (CB). We briefly survey the most rele-
vant works for our paper. Further references can be found
in the monograph by Slivkins et al. (2019). As in (Slivkins
et al., 2023a), we focus on CB with regression oracles (Fos-
ter et al., 2018; Foster & Rakhlin, 2020; Bietti et al., 2021;
Simchi-Levi & Xu, 2022). The contextual version of BwK
was first studied by Badanidiyuru et al. (2014) in the case of
classification oracles. A regret-optimal and oracle-efficient
algorithm for this problem was proposed by Agrawal et al.
(2016) by exploiting the oracle-efficient algorithm for CB by
Agarwal et al. (2014). The first regression-based approach
for constrained BwK was proposed by Agrawal & Devanur
(2016) by exploiting the optimistic approach for linear CB
(Li et al., 2010; Chu et al., 2011; Abbasi-Yadkori et al.,
2011). Han et al. (2023) propose a regression-based ap-
proach for a constrained BwK setup under stochastic inputs.
Finally, a notable special case of constrained CB is online
bidding under constraints (Balseiro & Gur, 2019; Celli et al.,
2023; Gaitonde et al., 2023; Feng et al., 2023; Wang et al.,
2023).

Other related works. Fikioris & Tardos (2023) show how
to interpolate between the fully stochastic and the fully ad-
versarial setting, depending on the magnitude of fluctuations
in expected rewards and consumptions across rounds. Liu
et al. (2022) study a non-stationary setting and provide no-
regret guarantees against the best dynamic policy through
a UCB-based algorithm. Some recent works explore the
case in which resource consumptions in BwK can be non-
monotonic (Kumar & Kleinberg, 2022; Bernasconi et al.,
2023). Finally, a related line of works is the one on online
allocation problems with fixed per-iteration budget, where
the input pair of reward and costs is observed before the
learner makes a decision (Balseiro et al., 2022; 2023).

3. Preliminaries
There are T rounds and m constraints. We denote with
X ⊂ RK the decision space of the agent. At each round
t ∈ JT K, the agent selects an action xt ∈ X and sub-
sequently observes a reward ft(xt) and costs function
gt(xt) ∈ [−1, 1]m, with ft : X → [0, 1] and gt,i : X →
[−1, 1] for each i ∈ JmK.1 The reward and cost functions
can either be chosen by an oblivious adversary or drawn
from a distribution. The goal of the decision maker is to max-

1In this work, for any a, b ∈ N, with a < b we denote with JaK
the set {1, . . . , a} while Ja, bK the set {a+ 1, . . . , b}.

imize the cumulative reward Rew(T ) :=
∑
t∈JT K ft(xt),

while minimizing the cumulative violation Vi(T ) defined as

Vi(T ) :=
∑
t∈JT K

gt,i(xt)

for each constraint i ∈ JmK. We denote by V (T ) :=
maxi∈JmK Vi(T ) the maximum cumulative violation across
the m constraints.

3.1. Baselines

We will provide best-of-both-worlds no-regret guarantees
for our algorithm, meaning that it achieves optimal theoreti-
cal guarantees both in the stochastic and adversarial setting.
In this section, we introduce the baselines used to define the
regret in these two scenarios.

Adversarial Setting In the adversarial setting we employ
the strongest baseline possible, i.e., the best unconstrained
strategy in hindsight:

OptAdv := sup
x∈X

∑
t∈JT K

ft(x).

This baseline is more powerful than the best fixed strategy
which is feasible on average (Immorlica et al., 2022; Cas-
tiglioni et al., 2022a), which is the most common baseline
in the literature. Our algorithm will yield an optimal com-
petitive ratio against this stronger baseline. In this setting,
we define ρAdv as the feasibility parameter of the problem
instance, i.e., the largest reduction of cumulative violations
that the agent is guaranteed to achieve by playing a “safe”
strategy ξ◦ ∈ ∆(X ), where ∆(X ) is the set of all probabil-
ity measures on X . Formally,

ρAdv := − max
t∈JT K,i∈JmK

Ex∼ξ◦ [gt,i(x)]

and
ξ◦ := arg inf

ξ∈∆(X )

max
t∈JT K,i∈JmK

Ex∼ξ[gt,i(x)].

Stochastic Setting When the reward and the costs are
stochastic we denote by f̄ and ḡ the mean of ft and gt, re-
spectively. In particular, we have that the rewards are drawn
so that EEnv[ft(x)] = f̄(x) (and similarly for the costs),
where EEnv denotes expectation over the environment mea-
sure. We define the baseline for the stochastic setting as the
best fixed randomized strategy that satisfies the constraints
in expectation, which is the standard choice in Stochastic
Bandits with Knapsacks settings (Badanidiyuru et al., 2013;
Immorlica et al., 2022). Formally,

OptStoc := sup
ξ∈∆(X ):Ex∼ξ[ḡ(x)]≤0

Ex∼ξ[f̄(x)].
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Similarly to the adversarial case, we define the feasibility
parameter ρStoc as the “most negative” cost achievable by
randomized strategies in expectation:

ρStoc := − inf
ξ∈∆(X )

max
i∈JmK

Ex∼ξ[ḡi(x)].

As it is customary in relevant literature (see, e.g., (Immorlica
et al., 2022; Castiglioni et al., 2022a;b)), we make the fol-
lowing natural assumption about the existence of a strictly
feasible solution. Note that we do not make any assump-
tion on the variance of the samples (ft, gt) as we assume
that they have bounded support, i.e., with probability holds
that ft(x) ∈ [0, 1] and gt,i(x) ∈ [−1, 1] for all x ∈ X and
i ∈ JmK.

Assumption 3.1. In the adversarial setting, the sequence of
inputs (ft, gt)

T
t=1 is such that ρAdv > 0. In the stochastic

setting, the environment Env is such that ρStoc > 0.

Remark 3.2. We will describe a best-of-both-worlds type al-
gorithm, that attains optimal guarantees both under stochas-
tic and adversarial inputs, without knowledge of the specific
setting in which the algorithm operates. It should be noted
that ρAdv and ρStoc are not known by the algorithm. While
the algorithm could potentially efficiently estimate ρStoc in
stochastic settings, as shown in Castiglioni et al. (2022b), ac-
quiring knowledge of ρAdv in the adversarial setting would
necessitate information about future inputs. This require-
ment is generally unfeasible for most instances of interest.

4. On Best-Of-Both-Worlds Guarantees
We employ the expression best-of-both-worlds as defined
in Balseiro et al. (2022) for the case of online allocation
problems with resource-consumption constraints. In this
context, we expect different types of guarantees depending
on the input model being considered.

When inputs are stochastic, a best-of-both-worlds algorithm
should guarantee that, given failure probability δ > 0, with
probability at least 1− δ

max(OptStoc − Rew(T ), V (T )) = Õ(
√
T ).

The dependency on T is optimal since, in the worst case, it
is optimal even without constraints (Auer et al., 2002).

In adversarial settings, a best-of-both-worlds algorithm
should guarantee that, with probability at least 1− δ,

max (OptAdv − αRew(T ), V (T )) = Õ(
√
T ),

where α > 1 is the competitive ratio. In the BwK scenario
with only resource-consumption constraints, the optimal
competitive ratio attainable is α = 1/ρAdv. In that setting,
ρAdv denotes the per-iteration budget, which we can assume
is equal for each resource without loss of generality.

Algorithm 1 Primal-Dual Algorithm

1: Input: AlgP and AlgD.
2: for t = 1, 2, . . . , T do
3: Primal decision: xt ← AlgP
4: Dual decision: λt ← AlgD
5: Observe: ft(xt) and gt(xt)
6: Primal update: feed uPt (xt) to AlgP, where
7: uPt (xt)← ft(xt)− 〈λt, gt(xt)〉
8: Dual update:
8: Feed uDt : λ 7→ −ft(xt) + 〈λ, gt(xt)〉 to AlgD
9: end for

Remark 4.1 (Comparison with BwK). To model BwK prob-
lems with our framework, we define gt(x) =

c>t x−ρBwK
1−ρBwK ,

where ct ∈ [0, 1]m is the vector of costs of the BwK instance
and ρBwK = B/T . The zero cost action a◦ of the BwK
instance translates in the following ρAdv of our framework:

gt(a
◦) = − ρBwK

1− ρBwK
= −ρAdv.

Inverting the formula we obtain ρBwK = ρAdv
1+ρAdv

and 1
ρBwK

=

1 + 1
ρAdv

. This relation will be particularly helpful in inter-
preting our results and comparing it with previous works.

In our set-up, considering arbitrary and potentially nega-
tive constraints, we will present an algorithm for which the
above holds for α := 1 + 1/ρAdv. The following result
shows that this competitive ratio is optimal. In particular,
we show that it is not possible to obtain cumulative con-
straint violations of order o(T ) and competitive ratio strictly
less that 1 + 1/ρAdv (omitted proofs can be found in the
Appendix).

Theorem 4.2 (Lower bound adversarial setting). Consider
the family of all adversarial instances with X = {a1, a2},
each characterized by a parameter ρAdv and optimal re-
ward OptAdv. Then, no algorithm can achieve, on all in-
stances, sublinear cumulative violations E[V (T )] = o(T )
and OptAdv/E[Rew] < 1 + 1/ρAdv.

5. Lagrangian Framework
Given the reward function f : X → [0, 1] and the costs
functions g : X → [−1, 1]m we define the Lagrangian
Lf,g : X × Rm+ → R as:

Lf,g(x,λ) := f(x)− 〈λ, g(x)〉.

We will consider a modular primal-dual approach that em-
ploys a primal algorithm AlgP, producing primal decisions
xt, and a dual algorithm AlgD that produces dual deci-
sions λt for all t. We assume that AlgP and AlgD produce
their decisions in order to maximize their utilities uPt and
uDt , respectively. We define uPt : x 7→ Lft,gt(x,λt) and
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uDt : λ 7→ −Lft,gt(xt,λ). The regret of the primal algo-
rithm AlgP on any subset I ⊆ JT K is defined as:

RP
I (X ) := sup

x∈X

∑
t∈I

[uPt (x)− uPt (xt)].

The regret of the dual algorithm AlgD is defined similarly
for any bounded subset D ⊆ R+:

RD
I (D) := sup

λ∈D

∑
t∈I

[uDt (λ)− uDt (λt)].

For ease of notation we write RP
T (X ) and RD

T (D) when
I = JT K, instead of RP

JT K(X ) and RD
JT K(D).

The interaction of AlgP and AlgD with the environment is
reported in Algorithm 1. Note that the feedback of AlgP
is forced to be bandit by the fact that we do not have coun-
terfactual information of ft and gt, however AlgD receives
full feedback by design.

Remark 5.1 (The Challenges of the Adversarial Setting). In
the stochastic setting, adaptive regret minimization is not re-
quired (see, e.g., Slivkins et al. (2023b)), as one can directly
analyze the expected zero-sum game between AlgP and
AlgD. However, in the adversarial setting, the algorithms
AlgP and AlgD face a different zero-sum game at each time
t. Indeed, since ft and gt are adversarial, the zero-sum game
with payoffs Lft,gt(·, ·) is only seen at time t. This is in
contrast to what happens in the stochastic setting in which
the zero-sum game Lf̄ ,ḡ(·, ·) at each time t is the same for
all time t.

5.1. No-Regret is Not Enough!

Typically, Lagrangian frameworks for constrained bandit
problems are solved by instantiating AlgP and AlgD with
two regret minimizers, which are algorithms guaranteeing
RP
T (X ), RD

T (D) = o(T ), respectively (Immorlica et al.,
2022; Castiglioni et al., 2022a). The dual regret minimizer is
usually instantiated with D := [0,M ]m, for some constant
M > 0. Ensuring that D is bounded is crucial to control the
magnitude of primal utilities uPt (·), whose scale influences
the magnitude of the primal regret. In the following example,
we show that we cannot rely solely on arguments based on
the black-box no-regret property of AlgP and AlgD and
hence we need stronger guarantees then simple no-regret.

Example 5.2. We have one constraint, i.e., m = 1 and
the set X = {a1, a2, a3} is a discrete set of 3 actions. The
rewards of a1 is always 0, i.e., ft(a1) = 0 for all t ∈ JT K,
while its cost is always −ρ, i.e., gt,1(a1) = −ρ for all
t ∈ t. The rewards for a2 and a3 are defined as follows:
for t ∈ JT/3K we have ft(a2) = 0 while ft(a3) = 1. On
the other hand, for t ∈ JT/3, 2T/3K we have ft(a2) = 1
while ft(a3) = 0. Finally ft(a2) = ft(a3) = 0 for all
t ∈ J2T/3, T K. The costs for a2 and a3 are defined as

follows: for t ∈ J2T/3K we have gt,1(a2) = gt,1(a3) = 0,
while gt,1(a2) = gt,1(a3) = 1 for all t ∈ J2T/3, T K. The
instance is depicted in Figure 1.

Proposition 5.3. Consider the instance of Example 5.2.
Even if AlgP and AlgD suffer regret less than or equal then
zero, the primal-dual framework fails to achieve sublinear
constraint violations.

Intuitively, the reason for which a standard primal-dual
framework fails in Example 5.2 is that the primal regret
minimizer can accumulate enough negative regret in the
first two phases to “absorb” large regret suffered in the third
phase. This “laziness” of AlgP allows it to play actions
in the last phase for which it incurs linear violations of the
constraint. For more details see the proof of Proposition 5.3
in Appendix A. One could solve the problem employing the
recovery technique proposed in Castiglioni et al. (2022b),
which prescribes to minimize the violations at a prescribed
time. However, selecting the right time to start the recovery
phase crucially requires knowledge of the Slater’s parameter,
which is not available in our setting. The only approach
which does not require knowledge of Slater’s parameter is
the one proposed in Castiglioni et al. (2023) for the case
of return-on-investment constraints, whose core idea we
describe in the next section.
Remark 5.4. We remark that it is not possible to prove
that any choice of AlgP and AlgD satisfying the no-regret
property fails in our setting. Indeed, we will end up choosing
AlgP and AlgD algorithms that have a stronger no-regret
property (and hence are also no-regret). Proposition 5.3
shows that our arguments and algorithms must necessarily
rely on a stronger version of regret, specifically no-adaptive
regret.

5.2. No-Adaptive Regret

The reason why generic regret minimizes fail to give satis-
factory result on the instance described in Example 5.2 is
that they fail to adapt to the changing environment, even if
the regret of the primal is zero on the entire horizon JT K,
it fails to “adapt” in the final rounds J2T/3, T K. Indeed,
in these last rounds, if the primal algorithm’s objective is
guaranteeing sublinear regret over JT K, it is not required
to updated its decision, since it accumulated large nega-
tive regret of −2T/3 regret in the initial rounds J2T/3K.
Therefore, standard no-regret guarantees are not enough.

A stronger requirement for the primal and dual algorithm is
being weakly adaptive (Hazan & Seshadhri, 2007), that is,
guaranteeing that in high probability supI=Jt1,t2KR

P,D
I =

o(T ). Intuitively, this requirement would force AlgP to
change its action during the last phase of Example 5.2. This
idea was first proposed in (Castiglioni et al., 2023) for the
specific case of a learner with one budget and one return-on-
investments constraints. In the following section, we show
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Figure 1: Reward and costs of each arm of the instance employed in Example 5.2.

how such approach can be extended to the case of general
constraints.

6. Self-Bounding Lemma
One crucial difference with the previous literature is that
the feasibility parameter is not known a priori, and thus we
cannot directly bound the range of the Lagrange multipliers
as in BwK. At a high level we want that, regardless of the
choices of ft and gt, the `1 norm of the Lagrange multipliers
is bounded by a quantity that depends on the (unknown)
parameters of the instance. However, for this to hold we
need that the primal algorithm AlgP is (almost) scale free,
i.e., that its regret scale quadratically in the unknown range
of its reward function.2 Formally:
Definition 6.1. For any c ≥ 1, we say that AlgP is a c-
scale-free and weakly-adaptive regret minimizer if, for any
subset of rounds I = Jt1, t2K ⊆ JT K, with probability at
least 1− δ it holds that

RP
I (X ) ≤ Lc ·RP

T,δ(X ),

where the maximum module of the primal utilities is
supt∈JT K,x∈X |uPt (x)| =: L, and RP

T,δ(X ) depends only
on T , δ and X , and is non-decreasing in the length of the
time horizon T .

Now, we show that online gradient descent (OGD) (Zinke-
vich, 2003) with a carefully defined learning rate yields the
required self-bounding property both in the stochastic and
adversarial setting.
Lemma 6.2 (Self-bounding lemma). Let ηOGD :=(
800 ·m ·max

{
RP

T,δ(X ), ET,δ
})−1

, then if AlgD is
OGD on the set D = Rm≥0, and the primal algorithm AlgP
is 2-scale-free and has a high-probability weakly adaptive
regret bound RP

T,δ(X ), then with probability at least 1− δ:

max
t∈JT K

‖λt‖1 ≤
13m

ρ
,

where ρ = ρAdv or ρ = ρStoc depending on the setting and
ET,δ :=

√
16T log (2T/δ).

2Usually we say that an algorithm is scale-free (Orabona &
Pál, 2018) if its regret scales linearly in the (unknown) range of its
rewards, i.e., 1-scale-free with our definition.

We remark that the self-bounding lemma shows that, if
we choose OGD as AlgP, together with a carefully defined
learning rate of

ηOGD = Õ((mmax{RP
T,δ(X ),

√
T})−1),

then the `1-norm of the variables λt is automatically
bounded by the reciprocal of the feasibility parameter, even
if the feasibility parameter is unknown to the learner. This
is the central result that allows us to build algorithms that
work without knowing Slater’s parameter.

The proof relies on the key observation that Lagrangian
multipliers jointly affect the primal utility but evolve inde-
pendently. Thus, we need to reason about the joint behavior
of the Lagrangian multipliers and look at their `1 norm.
In particular, the proof proceeds by contradiction (see Ap-
pendix B for the full proof): if the Lagrangian multipliers
exceed a certain threshold, then they must have remained
“large” for an extended period of time (Equation (3) in the
Appendix). Then, we leverage the scale-free property of
the primal regret minimizer, along with its regret bound
relative to the feasible action that satisfies the constraints
(Equation (4)), to establish that the cumulative primal utility
is large over such interval (Equation (6)). However, this
is in contradiction with the fact that the dual utility is also
large (because of the growth of the Lagrangian multipliers,
see Claim B.4). The proof of Claim B.4 is particularly in-
volved, as it needs to analyze the separate behavior of the
Lagrangian multipliers relative to different constraints. In-
deed, it is possible for the norm of the multipliers to increase
without having all individual components growing. This
makes it nontrivial to conclude that the dual utility must
have increased as well.

Remark 6.3. Even in the simplest instances of bandit prob-
lems one has RP

T,δ(X ) = Ω̃(
√
T ) and, therefore, we can

assume that ηOGD = Õ
(
(mRP

T,δ(X ))−1
)
.

Remark 6.4. We will work with 2-scale-free algorithms,
which suffice to obtain the desired guarantees for our frame-
work. We observe that scale-free algorithms would yield
a tighter bound of 1/ρ in the Theorems 7.2 and 7.3 and a
simpler analysis of Lemma 6.2. However, scale-free algo-
rithm are much more difficult to find and this would limit the
extent to which our framework can be applied. On the other

6
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hand, 2-scale-free algorithm seems to be more abundant
(see, e.g., Section 8). Indeed, as we show in Section 8, it is
usually the case that setting the learning rate independent
on the scale of the rewards provides 2-scale-freeness. We
leave such characterization to future research.

7. General Guarantees
First, we exploit Lemma 6.2 to bound the total violations of
the framework.

Theorem 7.1. Let AlgD be OGD with learning rate η as in
Lemma 6.2, and let AlgP any 2-scale-free algorithm with
no-adaptive regret. Then, with probability at least 1− δ, it
holds that

VT = Õ

(
m2

ρ
RP

T,δ(X )

)
,

where ρ = ρAdv in the adversarial setting and ρ = ρStoc in
the stochastic.

Moreover, the proof of Theorem 7.1 can be easily adapted
to show that the violations of any constraint i ∈ JmK is
bounded on any interval JtK with t ∈ JT K.

Now, we prove that the framework, with high probability,
yields optimal guarantees in both stochastic and adversarial
settings. We start with the adversarial setting, for which the
following result holds.

Theorem 7.2. If AlgD is OGD with learning rate ηOGD and
domain D := Rm≥0, and AlgP is 2-scale-free, then, in the
adversarial setting, with high probability:

Rew ≥ ρAdv
1 + ρAdv

OptAdv − Õ

((
m

ρAdv

)2

RP
T,δ(X )

)
.

On the other hand, for the stochastic setting we can prove
the following result:

Theorem 7.3. If AlgD is OGD with learning rate ηOGD and
domain D := Rm≥0, and AlgP is 2-scale-free, then in the
stochastic setting, in high probability:

Rew ≥ OptStoc − Õ

((
m

ρStoc

)2

RP
T,δ(X )

)
.

Remark 7.4. Any algorithm with vanishing constraints vi-
olations can be employed to handle also BwK constraints.
In such setting, the learner has resource-consumption con-
straints with hard stopping (i.e., once the budget for a re-
source is fully depleted the learner must play the void action
until the end of time horizon). This does not yield any
fundamental complication for our framework. Indeed, we
could introduce an initial phase of o(T ) rounds in which the
algorithm collects the extra budget needed to cover potential
violations, before starting the primal-dual procedure.

8. Applications
In this section, we show how our framework can be in-
stantiated to handle scenarios such as bandits with general
constraints, as well as contextual bandits with constraints
(i.e., CBwLC). Thanks to the modularity of the results de-
rived in the previous sections, we only need to provide an
algorithm AlgP which is 2-scale-free and weakly adaptive
for a desired action space X and rewards uPt .

8.1. Bandits with General Constraints

In this setting, the action space isX = JKK. Castiglioni et al.
(2023) showed that the EXP3-SIX algorithm introduced
by Neu (2015) can be used as AlgP, since it guarantees
sublinear weakly adaptive regret in high probability, and it
is 2-scale-free.

Theorem 8.1 (Theorem 8.1 of (Castiglioni et al., 2023)).
EXP3-SIX instantiated with suitable parameters guaran-
tees that, with probability at least 1− δ that

sup
I=Jt1,t2K

RP
I (X ) = O

(√
KT log

(
KTδ−1

))
.

Thus, by applying Theorem 7.1 on the violations, and Theo-
rem 7.2 and Theorem 7.3 on the adversarial and stochastic
reward guarantees respectively, we get the following result:

Corollary 8.2. Consider a multi armed bandit problem
with constraints. There exists an algorithm that w.h.p. guar-
antees, in the adversarial setting, violations at most
Õ
(
m2

ρAdv

√
KT

)
and

Rew ≥ ρAdv
1 + ρAdv

OptAdv − Õ
(
m2

ρ2
Adv

√
KT

)
,

while,in the stochastic setting, it guarantees violations at
most Õ

(
m2

ρStoc

√
KT

)
and reward at least

Rew ≥ OptStoc − Õ
(

m2

ρ2
Stoc

√
KT

)
.

8.2. Contextual Bandits with Constraints

Following Slivkins et al. (2023a), we apply our general
framework to contextual bandits with regression oracles.
In this setting, the decision maker observes a context
zt ∈ Z from some context set Z , where zt is possibly
chosen by an adversary. Then, the decision maker picks
its decision at from an action set A. Then, the reward
is computed as a function of the context and the action,
i.e., ft : Z × A → [0, 1], and similarly for the con-
straints gt : Z × A → [−1, 1]m. At each t, ft and gt
are drawn from some distribution. More precisely, there
exist a class F of functions and f̄ , ḡi ∈ F such that for all

7
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Algorithm 2 Primal-Dual Algorithm
for Contextual Bandits

1: Input: AlgP and AlgD.
2: for t = 1, 2, . . . , T do
3: Observe context zt
4: Dual decision: λt ← AlgD
5: Primal decision:
6: at ← AlgP(zt,λt)
7: Observe: ft(zt, at) and gt(zt, at)
8: Primal update: feed uPt (at) to AlgP, where
9: uPt (at)=ft(zt, at)−〈λt, gt(zt, at)〉

10: Dual update: feed uDt to AlgD, where
10: uDt (λ)− ft(zt, at) + 〈λ, gt(zt, at)〉
11: end for

Algorithm 3 Primal Algorithm for Contextual Bandits

1: Input: Learning rate ηP
2: Get regressors from online regression oracles:
3: f̂t ← Of , and ĝt,i ← Oi for all i ∈ JmK
4: Observe context zt and dual variable λt
5: For all a ∈ A compute L̂t(a) := Lf̂t,ĝt((zt, a),λt)

6: Compute ξt ∈ ∆(A) as:

ξt(a) =
(
µt + ηP

(
max
a′
L̂t(a′)− L̂t(a)

))−1

. µt is such that ξt ∈ ∆(A)
7: Sample at ∼ ξt and return it.
8: Update online regression oracles:
9: Feed (zt, at, ft(zt, at)) to Of

10: Feed (zt, at, gt,i(zt, at)) to Oi ∀i ∈ JmK

(z, a) ∈ Z ×A it holds that E[ft(z, a)|z, a] = f̄(z, a) and
E[gt,i(z, a)|z, a] = ḡi(z, a) for i ∈ JmK.

We slightly modify the primal-dual algorithm to handle
contexts. In particular, AlgP gets to observe a context
zt before deciding their action. Formally, we can use the
machinery introduced in Section 3 by taking X as the set
of deterministic policies Π := {π : Z → A}. Then,
uPt (π) = ft(zt, π(zt))− 〈λt, gt(zt, π(zt))〉, and the action
at is computed through πt returned by the primal algorithm.
Although this choice transforms the contextual framework
into an application of the framework introduced in Section 3,
in practical terms, it is simpler to think of at as the direct
output of AlgP upon observing the context zt. The extended
primal-dual framework is sketched in Algorithm 2.

We assume to have m + 1 online regression oracles
(Of ,O1, . . . ,Om) for the functions f̄ and ḡ1, . . . , ḡm, re-
spectively. The regression oracle Of produces, at each t,
a regressor f̂t ∈ F that tries to approximate the true re-
gressor f̄ . Then, the oracle is feed with a new data point,
comprised of a context zt ∈ Z and an action at ∈ A,

and the performance of the regressor is evaluated on the
basis of its prediction for the tuple (zt, at). The online re-
gression oracle Of is updated with the labeled data point
(zt, at, ft(zt, at)). Overall, its performance is measured by
its cumulative `2-error:

Err(Of ) :=
∑
t∈JT K

(
f̂t(zt, at)− f̄(zt, at)

)2

.

Each online regression oracle (Oi)i∈JmK works analo-
gously, and its performance is measured by Err(Oi) :=∑
t∈JT K (ĝt(zt, at)− ḡ(zt, at))

2
.

By combining the online regression oracles Of and
{Oi}i∈JmK we can build an online regression oracle OL for
the Lagrangian which outputs regressors L̂t : Z ×A → R
defined as:

L̂t(z, a) = Lf̂t,ĝt((z, a),λt) = f̂t((z, a))− 〈λt, ĝt(z, a)〉,

while we define L̄(z, a) := Lf̄ ,ḡ((z, a),λt). The `2-error
of OL can be bounded via the following extension of Theo-
rem 16 in Slivkins et al. (2023b).

Lemma 8.3. The error of OL can be bounded as

Err(OL) ≤ 2Err(Of )+2

(
sup
t∈JT K

‖λt‖1

)2∑
i∈JmK

Err(Oi).

The fundamental idea of (Foster & Rakhlin, 2020) is to
reduce (unconstrained) contextual bandit problems to on-
line linear regression. Recently, this ideas was extended in
(Slivkins et al., 2023a; Han et al., 2023) in order to design
a primal algorithm AlgP capable of handling stochastic
contextual bandits with constraints (see Algorithm 3).

To apply Algorithm 3 to our framework we need to find an
algorithm AlgP which is 2-scale-free and weakly adaptive
with high probability. We extend the result of (Foster &
Rakhlin, 2020) to prove that their reduction actually satisfies
the required guarantees.

Lemma 8.4. Assume that max{Err(Of ),Err(Oi)} ≤
Err. Then, we have that Algorithm 3 with ηP :=

√
KT

guarantees that

sup
I=Jt1,t2K

RP
I (Π) = Õ

(
m · Err · L2 ·

√
KT

)
with high probability, where L := supt∈JT K,π∈Π |uPt (π)|.

Equipped with a 2-scale free algorithm that suffers no adap-
tive regret with high probability, we can combine AlgP with
the results of Theorems 7.1 to 7.3 to prove the first optimal
guarantees for CBwLC with adversarial contexts.
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Corollary 8.5. Consider a functional class F and an on-
line regression oracle that guarantees `2-error Err. There
exists an algorithm that w.h.p. guarantees violations at most
Õ
(
m3

ρAdv
Err
√
KT

)
and reward at least

Rew ≥ ρAdv
1 + ρAdv

OptAdv − Õ
(
Err

m3

ρ2
Adv

√
KT

)
in the adversarial setting, while it guarantees violations at
most Õ

(
m3

ρStoc
Err
√
KT

)
and reward at least

Rew ≥ OptStoc − Õ
(
Err

m3

ρ2
Stoc

√
KT

)
in the stochastic setting.

Foster & Rakhlin (2020) includes many examples of func-
tional classes F that have good online regression oracles,
meaning that their error is subpolynomial in the time horizon
T . We report here some notable mentions for completeness.

If F is a finite set of functions we have that Err =
O(log |F|), which comes from using as regression oracles
the Vovk forecaster (Vovk, 1995). Another important exam-
ples is the case in which F is the class of linear functions,
i.e.,F = {h(z, a) = 〈za, θ〉 : θ ∈ Rd, ‖θ‖2 ≤ 1}, i.e., each
actions a is associated with a known feature vector za ∈ Rd
which generates the reward/costs trough a unknown param-
eter θ that characterize the linear function. Here, there
exists a online regression oracle which provides `2-error
Err = O(d log(T/d)) (Azoury & Warmuth, 2001).
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A. Omitted Proofs from Section 4 and Section 5
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Figure 2: Lower bound adversarial setting: rewards and costs in the two instances A and B.

Theorem 4.2 (Lower bound adversarial setting). Consider the family of all adversarial instances with X = {a1, a2}, each
characterized by a parameter ρAdv and optimal reward OptAdv. Then, no algorithm can achieve, on all instances, sublinear
cumulative violations E[V (T )] = o(T ) and OptAdv/E[Rew] < 1 + 1/ρAdv.

Proof. We show that, for all ε > 0 and δ ∈ (0, 1), there exists two instances such that it is impossible to obtain E[V (T )] ≤ εT
and

OptAdv
E[Rew]

<
1 + ρAdv

ρAdv(1 + δ) + 2ε

in both instances. The two instances are denoted by A and B respectively, with X = {a1, a2} and sequences of inputs of
length T . The two instances are identical in the first T/2 rounds. Rewards in instance A are, for each t ∈ JT K, fAt (a2) = 0
and fAt (a1) = 1[t ≤ T/2]. On the other hand, in instance B we have fBt (a2) = 0, and fBt (a1) = 1 for all t ∈ JT K. Costs for
the first instance A are define as

gAt (a1) :=

{
1 if t ≤ T/2
−1 otherwise ,

and gAt (a2) = −ρ for all t ∈ JT K. In the second instance B, costs are gBt (a1) = 1 for all t ∈ JT K, and

gAt (a2) :=

{
−ρ if t ≤ T/2
−δρ otherwise ,

for some δ > 0. The two instances are depicted in Figure 2.

Let N be the expected number of times that action a1 is played in rounds JT/2K, that is

N :=
∑

t∈JT/2K

EA[xt = a1] =
∑

t∈JT/2K

EB[xt = a1],

where expectation is with respect to the algorithm’s randomization. We observe that the algorithm plays in the same way
in both instances up to time T/2, as they are identical (formally, the KL between instance A and B is zero in the first T/2
rounds). Then, we have that the optimal action in instance A is to play deterministically action a1. Therefore, OptAAdv = T/2.
The expected reward in instance A comes only from the number of plays of a1 in the first T/2 rounds: EA[Rew] = N . On
the other hand, call M the expected number of times an algorithm plays action a1 in the last JT/2, T K rounds of instance B,
that is

M :=
∑

t∈JT/2,T K

EB[xt = a1].

We have that, in order to have EB[V (T )] ≤ εT violations in the second instance, we need to play a1 a small number of
times:

M − δρ
(
T

2
−M

)
+N − ρ

(
T

2
−N

)
≤ εT,

which yields

N ≤ T (ρ(δ + 1) + 2ε)

2(ρ+ 1)
.
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Then, we get that
OptAAdv
EA[Rew]

≥ 1 + ρ

ρ(1 + δ) + 2ε
,

which concludes the proof since ρAAdv = ρ.

Proposition 5.3. Consider the instance of Example 5.2. Even if AlgP and AlgD suffer regret less than or equal then zero,
the primal-dual framework fails to achieve sublinear constraint violations.

Proof. Consider the instance described in Example 5.2, and consider an algorithm AlgP for X = {a1, a2, a3} such that
xt = a3 for t ∈ JT/3K, while xt = a2 for t ∈ JT/3, T K. Moreover, consider an algorithm AlgD instantiated on D = [0,M ],
with M ≥ 1/ρ, that plays λt = 0 for all t ∈ J2T/3K, and λt = M for all t ∈ J2T/3, T K.

We start by analyzing the primal regret achieved by AlgP:

RP
T := sup

x∈X

∑
t∈JT K

[ft(x)− ft(xt)− λt(gt,1(x)− gt,1(xt))]

= sup
x∈X

∑
t∈JT K

[ft(x)− λtgt,1(x)]− 2

3
T +

Mρ

3
T

=
∑
t∈JT K

[ft(a1)− λtgt,1(a1)] +
T

3
(Mρ− 2)

= ρM
T

3
+
T

3
(Mρ− 2)

=
T

3
(2Mρ− 2) ≤ 0,

where we replaced the sup with the utility at a1 since M ≥ 1/ρ. Moreover, the dual regret is such that

RD
T := sup

λ∈[0,M ]

∑
t∈J2T/3,T K

(λ−M) gt,1(xt)

= sup
λ∈[0,M ]

T

3
(λ−M) ρ = 0.

However, for a suitable choice of ρ, the violations are linear in T since

V1(T ) :=
∑
t∈JT K

gt,1(xt) =
ρ

3
T = Ω(T ).

This concludes the proof.

B. Proof of Lemma 6.2
We start by providing the following auxiliary lemmas.

Lemma B.1. Let yt ∈ Rm≥0 be generated by OGD with learning rate η and utilities y 7→ 〈y, gt〉, where ‖gt‖∞ ≤ 1 for all
t ∈ JT K. Then:

|‖yt+1‖1 − ‖yt‖1| ≤ m · η

Proof. The update of the i-th component of yt+1 can be written as:

yt+1,i := max(0, yt,i + ηgt,i).

If gt,i ≥ 0 then the update can be simplified to yt+1,i = yt+ηgt,i ≤ yt+η. If gt,i < 0 then yt+1,i ≥ yt,i+ηgt,i ≥ yt,i−η.
Thus |yt+1,i− yt,i| ≤ η for all i ∈ JmK. By summing over all component we have that ‖yt+1−yt‖1 ≤ m · η. By triangular
inequality we have the desired statement.

13
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Lemma B.2. [Chapter 10 of Hazan (2016)] For any t1, t2 ∈ JT K with t1 < t2, it holds that if λt is generated by OGD with
learning rate η > 0 on a set D, then:

RP
Jt1,t2K({λ}) ≤

‖λ− λt1‖22
2η

+
1

2
ηmT.

with probability probability one on the randomization of the algorithm, i.e., δ = 0. Moreover it also holds component-wise,
i.e., for all λ ≥ 0: ∑

t∈Jt1,t2K

(λ− λt)gt(xt) ≤
(λ− λt1)2

2η
+

1

2
ηT.

Lemma B.3. In the stochastic setting, for any ξ ∈ ∆(X ) and δ ∈ (0, 1], with probability at least 1− δ, it holds that:∑
t∈I

Ex∼ξ [〈λt, gt(x)〉] ≤
∑
t∈I

Ex∼ξ [〈λt, ḡt(x)〉] +MET,δ and (1)∑
t∈I

Ex∼ξ [ft(x)] ≥
∑
t∈I

Ex∼ξ
[
f̄(x)

]
− ET,δ, (2)

for any interval I = [t1, t2] ⊆ [T ], where ET,δ :=
√

16T log
(

2T
δ

)
and M = sup

t∈JT K
‖λ‖1.

Proof. We start by proving that the all the inequalities of Equation (1) holds simultaneously with probability 1− δ/2. We
have that given a I = [t1, t2] ⊆ [T ], with probability at least 1− δ/(2T 2),

∑
t∈I

Ex∼ξ [〈λt, gt(x)〉]−
∑
t∈I

Ex∼ξ [〈λt, ḡt(x)〉] ≤M

√
8|I| log

(
2T 2

δ

)
≤M

√
16T log

(
2T

δ

)
,

where the first inequality holds by Azuma-Hoeffding inequality. By taking a union bound over all possible intervals I
(which are at most T 2), we obtain that all the first set of equations holdswith probability at least 1− δ/2.

Equation (2) can be proved in a similar way. Indeed, for any fixed interval I = [t1, t2] ⊆ [T ], and for any strategy mixture
ξ ∈ ∆(X ), by the Azuma-Hoeffding inequality we have that, with probability at least 1− δ/(2T 2), the following holds

∑
t∈I

Ex∼ξ
[
f̄(x)

]
−
∑
t∈I

Ex∼ξ [ft(x)] ≤

√
2|I| log

(
2T 2

δ

)
≤

√
4T log

(
2T

δ

)
.

By taking a union bound over all possible T 2 intervals, we obtain that, for all possible intervals I , the equation above holds
with probability 1− δ/2.

The Lemma follows by a union bound on the two sets of equations above.

These auxiliary technical lemmas are used in proving the following result.

Lemma 6.2 (Self-bounding lemma). Let ηOGD :=
(
800 ·m ·max

{
RP

T,δ(X ), ET,δ
})−1

, then if AlgD is OGD on the
set D = Rm≥0, and the primal algorithm AlgP is 2-scale-free and has a high-probability weakly adaptive regret bound
RP

T,δ(X ), then with probability at least 1− δ:

max
t∈JT K

‖λt‖1 ≤
13m

ρ
,

where ρ = ρAdv or ρ = ρStoc depending on the setting and ET,δ :=
√

16T log (2T/δ).

Proof. Let c1 := 2 and c2 := 13m and any learning rate η for OGD with η ≤ ηOGD. By contradiction, suppose there exists a
time such that ‖λt‖1 ≥ c2/ρ, and let t2 ∈ JT K be the smallest t for which this happens. We unify the proof of the adversarial
and stochastic setting. In particular, let ρ = ρAdv if the losses (ft, gt) are adversarial, and let ρ = ρStoc if (ft, gt) are

14
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stochastic with mean (f̄ , ḡ). The extra stochasticity coming from the environment in the stochastic setting will be handled
through Lemma B.3. In order to streamline the notation, we define ET,δ :=

√
16T log (2T/δ).

Then, let t1 ∈ Jt2K be the largest time smaller than t2 such that ‖λt1‖ ≥ c1
ρ and ‖λt1−1‖ ≤ c1

ρ .

Step 1. First, we need to bound ‖λt1‖1 and ‖λt2‖1. To do that, we exploit Lemma B.1. In particular, by telescoping the
sum in the lemma, we obtain that:

‖λt2‖1 − ‖λt1‖1 ≤ ηm(t2 − t1).

Moreover, by the definition of λt1 and λt2 , we have:

c1
ρ
≤ ‖λt1‖1 ≤ ‖λt1−1‖1 +mη ≤ c1

ρ
+mη

and similarly
c2
ρ
≤ ‖λt2‖1 ≤ ‖λt2−1‖1 +mη ≤ c2

ρ
+mη.

This, together with the inequality above, yields

c2 − c1
2ηmρ

≤ t2 − t1. (3)

Step 2. The range of the primal utilities in the turns Jt1, t2K can now be bounded as:

sup
x∈X ,t∈Jt1,t2K

|uPt (x)| ≤ sup
x∈X ,t∈Jt1,t2K

{|ft(x)|+ ‖λt‖1 · ‖gt(x)‖∞}

≤ 1 +
c2
ρ

+mη

≤ 1 +
12m+ 1

ρ

≤ 14m

ρ
=: L.

Now, by the assumption that AlgP is weakly adaptive and 2-scale-free, we obtain:

RP
Jt1,t2K(X ) ≤ L2 ·RP

T,δ(X ),

which holds with probability at least 1− δ.

If we apply the primal no-regret condition above for strictly safe strategy ξ◦ ∈ ∆(X ) we have

∑
t∈Jt1,t2K

Lft,gt(xt,λt) ≥ Ex∼ξ◦

 ∑
t∈Jt1,t2K

Lft,gt(x,λt)

− L2RP
T,δ(X ). (4)

Moreover, by definition of safe strategy we have that in the adversarial setting Ex∼ξ◦ [gt,i(x)] ≤ −ρAdv for all i ∈ JmK and
t ∈ Jt1, t2K, while in the stochastic setting by Lemma B.3 it holds∑

t∈Jt1,t2K

Ex∼ξ◦ [〈λt, gt(x)〉] ≤
∑

t∈Jt1,t2K

Ex∼ξ◦ [〈λt, ḡt(x)〉] +MET,δ

and
Ex∼ξ◦ [ḡi(ξ)] ≤ −ρStoc ∀i ∈ JmK,

where we recall that ET,δ =
√

16T log (2T/δ) and M = sup
t∈JT K

‖λ‖1.

15
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Therefore, we can lower bound the first term of the right-hand side of Equation (4) the stochastic setting as:

Ex∼ξ◦

 ∑
t∈Jt1,t2K

Lft,gt(x,λt)

 = Ex∼ξ◦

 ∑
t∈Jt1,t2K

ft(x)− 〈λt, gt(x)〉


≥ −Ex∼ξ◦ [〈λt, gt(x)〉]

≥ −Ex∼ξ◦ [〈λt, ḡ(x)〉]−

(
sup
t∈JT K

‖λ‖1

)
ET,δ

≥ ρStoc
∑

t∈Jt1,t2K

‖λt‖1 −

(
sup
t∈JT K

‖λ‖1

)
ET,δ

≥ ρStoc
∑

t∈Jt1,t2K

‖λt‖1 −
(

c2
ρStoc

+mη

)
ET,δ

≥ c1(t2 − t1)−
(

c2
ρStoc

+mη

)
ET,δ

In the adversarial setting we can more easily conclude that Ex∼ξ◦
[ ∑
t∈Jt1,t2K

Lft,gt(x,λt)

]
≥ c1(t2 − t1) and thus in both

settings it holds that:

Ex∼ξ◦

 ∑
t∈Jt1,t2K

Lft,gt(x,λt)

 ≥ c1(t2 − t1)−
(

c2
ρStoc

+mη

)
ET,δ. (5)

Combining the two inequalities of Equation (4) and Equation (5), we can conclude that the overall utility of the primal
algorithm AlgP can be lower bounded by:∑

t∈Jt1,t2K

uPt (xt) ≥ c1(t2 − t1)− L2RP
T,δ(X )−

(
c2
ρ

+mη

)
ET,δ (6)

Now, we need an auxiliary result that we will use to upper bound the left hand side of the previous inequality.

Claim B.4. It holds that: ∑
t∈Jt1,t2K

〈λt, gt(xt)〉 ≥
m

2ρ2η
.

Then, we upper bound the left-hand side by using Claim B.4:∑
t∈Jt1,t2K

uPt (xt) =
∑

t∈Jt1,t2K

Lft,gt(xt,λt) =
∑

t∈Jt1,t2K

[ft(xt)− 〈λt, gt(xt)〉]

≤ (t2 − t1)− m

2ρ2η
(7)

Thus, combining Equation (7) and (6)

t2 − t1 ≤
1

c1 − 1

(
L2RP

T,δ(X )− m

2ρ2η
+

(
c2
ρ

+mη

)
ET,δ

)
.

Combining it with Equation (3) one obtains that:

c2 − c1
2ηmρ

≤ 1

c1 − 1

(
L2RP

T,δ(X )− m

2ρ2η
+

(
c2
ρ

+mη

)
ET,δ

)
,
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which gives as a solution η ≥ m2−2ρ+13mρ

392m3RP
T,δ(X+2mρET,δ(1+13m)

. Which is a contradiction since:

η ≤ ηOGD :=
1

800 ·m ·max
{
RP

T,δ(X ), ET,δ
} > m2 − 2ρ+ 13mρ

392m3RP
T,δ(X + 2mρET,δ(1 + 13m)

Thus, we can conclude that ‖λt‖t ≤ c2/ρ for each t ∈ JT K.

Now, we provide the proof of Claim B.4.

Proof of Claim B.4. We define t̃i as the last time in Jt1, t2K in which λt̃i,1 = 0, or t̃1,i = t1 if λt,i > 0 for all t ∈ Jt1, t2K.
Formally:

t̃1,i = max

{
t1, sup

τ∈Jt2K:λτ,i=0

τ

}
.

We are now going to analyze separately for all i ∈ JmK, the rounds Jt1, t̃1,iK and the rounds Jt̃1,i, t2K.

Phase 1: First, we analyze the rounds Jt1, t̃1,iK. By definition, it can be either that λt̃1,i = 0 or t̃1,i = t1. In the latter case,
Jt1, t̃1,iK = ∅ and the dual algorithm incurs zero regret. In the former case, we can use Lemma B.2 and write that the regret
over the interval with respect to λ∗i = 0 is

0 ≤
∑

t∈Jt1,t̃1,iK

λt,igt,i(xt) +
λ2
t1

2η
+

1

2
ηT ≤

∑
t∈Jt1,t̃1,iK

λt,igt,i(xt) +
λ2
t1

2η
+

1

2
ηT. (8)

Phase 2: Now, we consider the rounds Jt̃1,i, t2K. We take λ∗ defined as follows: λ∗i = 1
ρ for all i ∈ JmK.

Let ∆̃i := λt2,i − λt̃1,i,i. Due to the definition of t̃1,i, gradient descent never projects the multiplier relative to constraint i,
and we can write that ∑

t∈Jt̃1,i,t2K

gt,i(xt) =
∆̃i

η

and, therefore, ∑
t∈Jt̃1,i,t2K

λ∗i gt,i(xt) =
∆̃i

ρη
. (9)

Now we can use Lemma B.2 to find that:∑
t∈Jt̃1,i,t2K

λ∗i gt,i(xt) ≤
∑

t∈Jt̃1,t2K

λt,igt,i(xt) +
(λ∗i − λt̃1,i,i)

2

2η
+

1

2
ηT.

Combining it with Equation (9) yields the following

∑
t∈Jt̃1,i,t2K

λt,igt,i(xt) ≥
∆̃i

ρη
−

(λ∗i − λt̃1,i,i)
2

2η
− 1

2
ηT. (10)

Combining Equation (10) and Equation (8) we obtain:

∑
t∈Jt1,t2K

λt,igt,i(xt) ≥
∆̃i

ρη
−

(λ∗i − λt̃1,i,i)
2

2η
−
λ2
t1

2η
− ηT

≥ ∆̃i

ρη
−

(λ∗i )
2 + λ2

t̃1,i,i

2η
−
λ2
t1

2η
− ηT.

17



No-Regret is not enough! Bandits with General Constraints through Adaptive Regret Minimization

Now, by summing over all i ∈ JmK, and by letting λt̃1 be the vector that has λt̃1,i as its i-th component, we get:

∑
t∈Jt1,t2K

〈λt, gt(xt)〉 ≥
‖λt2‖1 − ‖λt̃1‖1

ρη
− 1

2η

(
‖λ∗‖22 + ‖λt̃1‖

2
2 + ‖λt1‖22

)
− 1

η
(as η ≤ 1/

√
T )

≥ c2
ρ2η
− 1

ρη
‖λt1‖1 −

1

2η

(
‖λ∗‖22 + 2‖λt1‖22

)
− 1

η
(‖λ‖1 ≥ c2/ρ and ‖λt̃1‖1 ≤ ‖λt1‖1)

≥ c2
ρ2η
− 1

ρη

(
c1
ρ

+mη

)
− 1

2η

(
m

ρ2
+ 2

(
c1
ρ

+mη

)2
)
− 1

η

≥ c2
ρ2η
− c1 + 1

ρ2η
− m

2ρ2η
− 2(c1 + 1)2

2ρ2η
− 1

η
(η ≤ 1/ρm)

≥ 2c2 − 24−m
2ρ2η

≥ m

2ρ2η

where the last two inequalities hold due to the choice of parameters in the proof of Claim B.4, that is c1 = 2 and c2 = 13m.
This concludes the proof.

C. Omitted Proofs from Section 7
Theorem 7.1. Let AlgD be OGD with learning rate η as in Lemma 6.2, and let AlgP any 2-scale-free algorithm with
no-adaptive regret. Then, with probability at least 1− δ, it holds that

VT = Õ

(
m2

ρ
RP

T,δ(X )

)
,

where ρ = ρAdv in the adversarial setting and ρ = ρStoc in the stochastic.

Proof. The update of OGD for each component i ∈ JmK is λt+1,i := [λt,i + ηgt,i(xt)]
+. Thus:

λt+1,i ≥ λt,i + ηOGDgt,i(xt),

and by induction:

λt+1,i ≥ λ0,i + ηOGD

t∑
τ=1

gτ,i(xτ ).

By rearranging and recalling that λ0,i = 0 we obtain:∑
t∈JT K

gt,i(xt) ≤
1

ηOGD
λT+1,i ≤

1

η
‖λT+1‖1

Moreover, by Lemma 6.2 we can bound ‖λT ‖1 ≤ 13m
ρ which holds with probability at least 1− δ. Thus, with probability

at least 1− δ, it holds:

VT := max
i∈JmK

Vi(T ) ≤ 13m

ηOGDρ
.

The proof is concluded by observing that ηOGD = Õ
(
(mRP

T,δ(X ))−1
)
.

Theorem 7.2. If AlgD is OGD with learning rate ηOGD and domain D := Rm≥0, and AlgP is 2-scale-free, then, in the
adversarial setting, with high probability:

Rew ≥ ρAdv
1 + ρAdv

OptAdv − Õ

((
m

ρAdv

)2

RP
T,δ(X )

)
.

18
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Proof. Define x∗ ∈ X such that: ∑
t∈JT K

ft(x
∗) = OptAdv

Now, consider a randomized strategy ξ that randomized with probability α between x∗ and ξ◦, where ξ◦ is any strategy for
which Ex∼ξ◦ [gt,i(xt)] ≤ −ρAdv. This strategy exists by assumption. Formally, for any x ∈ X the randomized strategy ξ
assigns probability to x:

ξ(x) = αδx∗(x) + (1− α)ξ◦(x).

Then, we compute the component of the primal utility of ξ due to a constraint i ∈ JmK as follows:

Ex∼ξ

 ∑
t∈JT K

λt,igt,i(x)

 = α
∑
t∈JT K

λt,igt,i(x
∗) + (1− α)Ex∼ξ◦

 ∑
t∈JT K

λt,igt,i(x)


≤ α

∑
t∈JT K

λt,i − (1− α)ρAdv
∑
t∈JT K

λt,i

≤ (α− (1− α)ρAdv)
∑
t∈JT K

λt,i.

Thus, setting α = ρAdv
1+ρAdv

we have that Ex∼ξ
[∑

t∈JT K λt,igt,i(x)
]
≤ 0, and

∑
t∈JT K

〈λt, gt(xt)〉 ≤ 0.

We now compute the reward of ξ for α = ρAdv
1+ρAdv

:

Ex∼ξ

 ∑
t∈JT K

ft(x)

 = α
∑
t∈JT K

ft(x
∗) + (1− α)Ex∼ξ◦

 ∑
t∈JT K

ft(x)


≥ ρAdv

1 + ρAdv
OptAdv

Now, we consider the regret of AlgP with respect to ξ and we find that:

∑
t∈JT K

Lft,gt(xt,λt) ≥ Ex∼ξ

 ∑
t∈JT K

Lft,gt(x,λt)

− L2 ·RP
T,δ(X ).

where L is the maximum module of the payoffs of the primal regret minimizer, i.e., L :− supt∈JT K,x∈X |uPt (x)|.

Exploiting the definition of Lft,gt(·, ·) in the inequality above we obtain that:

∑
t∈JT K

ft(xt)− 〈λt, gt(xt)〉 ≥ Ex∼ξ

 ∑
t∈JT K

ft(x)− 〈λt, gt(x)〉

− L2 ·RP
T,δ(X )

≥ Ex∼ξ

 ∑
t∈JT K

ft(x)

− L2 ·RP
T,δ(X )

≥ ρAdv
1 + ρAdv

OptAdv − L2 ·RP
T,δ(X ) (11)

Then, we lower bound the term
∑
t∈JT K

〈λt, gt(xt)〉 by using the dual regret of AlgD with respect to λ∗ = 0. Indeed,

∑
t∈JT K

〈λ∗ − λt, gt(xt)〉 ≤ RD
T,δ({λ∗})
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implies that ∑
t∈JT K

〈λt, gt(xt)〉 ≥ −RD
T,δ({λ∗}).

Combining it with Equation (11) gives:∑
t∈JT K

ft(xt) ≥
ρAdv

1 + ρAdv
OptAdv − L2 ·RP

T,δ(X )−RD
T,δ({λ∗}).

Now, we use Lemma 6.2 which bounds L ≤ 2 13m
ρAdv

and Lemma B.1 which we can use to bound RD
T,δ({λ∗}).

In particular, RD
T,δ({λ∗}) can be bounded with:

RD
T,δ({λ∗}) ≤

1

2
ηOGDmT,

and thus:

Rew :=
∑
t∈JT K

ft(xt) ≥
ρAdv

1 + ρAdv
OptAdv − 676

(
m

ρAdv

)2

RP
T,δ(X )− ηOGDmT.

The proof is concluded by noting that ηOGD = Õ
(
(mRP

T,δ(X ))−1
)
.

Theorem 7.3. If AlgD is OGD with learning rate ηOGD and domain D := Rm≥0, and AlgP is 2-scale-free, then in the
stochastic setting, in high probability:

Rew ≥ OptStoc − Õ

((
m

ρStoc

)2

RP
T,δ(X )

)
.

Proof. By Lemma 6.2 we have that with probability at least 1− δ we have that supt∈JT K ‖λt‖1 ≤ 13m
ρStoc

and in the same
way supt∈JT K,x∈X ‖uPt (x)‖1 ≤ 2 13m

ρStoc
.

Define ξ as the best strategy that satisfies the constraints, i.e., OptStoc := T Ex∼ξ
[
f̄(x)

]
and Ex∼ξ[ḡi(x)] ≤ 0. The

no-regret property of AlgP with respect to ξ gives that with probability 1− δ it holds:∑
t∈JT K

[ft(xt)− 〈λt, gt(xt)〉]

≥ Ex∼ξ

 ∑
t∈JT K

[ft(x)− 〈λt, gt(x)〉]

− (2
13m

ρStoc

)2

RP
T,δ(X )

≥ Ex∼ξ

 ∑
t∈JT K

[f̄(x)− 〈λt, ḡ(x)〉]

− 676

(
m

ρStoc

)2

RP
T,δ(X )− 2

(
13m

ρStoc

)
ET,δ

= T OptStoc − 676

(
m

ρStoc

)2

RP
T,δ(X )− 26m

ρStoc
ET,δ,

where the second inequality follows from Lemma B.3 with M := 13m
ρStoc

.

Moreover, the no-regret property of the dual regret minimizer AlgD, with respect to λ∗ = 0, gives that:∑
t∈JT K

〈λ∗ − λt, gt(xt)〉 ≤
1

2
ηOGDmT.

Finally, we can combine everything from which follows that:

Rew ≥ OptStoc − 676

(
m

ρStoc

)2

RP
T,δ(X )− 26m

ρStoc
ET,δ −

1

2
ηOGDmT.

The proof is concluded by observing that ηOGD = Õ
(
(mRP

T,δ(X ))−1
)

and ET,δ = Õ(
√
T )
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D. Proofs omitted from Section 8
Lemma 8.3. The error of OL can be bounded as

Err(OL) ≤ 2Err(Of ) + 2

(
sup
t∈JT K

‖λt‖1

)2∑
i∈JmK

Err(Oi).

Proof. Consider the following inequalities:

Err(OL) :=
∑
t∈JT K

(
L̂t(zt, at)− L̄(zt, at)

)2

≤ 2
∑
t∈JT K

(
f̂t(zt, at)− f̄(zt, at)

)2

+ 2
∑
t∈JT K

(〈λt, ĝt(zt, at)〉 − 〈λtḡ(zt, at)〉)2

(By AM-GM inequality: 2ab ≤ a2 + b2 for a, b ≥ 0.)

= 2 · Err(Of ) + 2
∑
t∈JT K

(〈λt, ĝt(zt, at)− ḡ(zt, at)〉)2

≤ 2 · Err(Of ) + 2
∑
t∈JT K

‖λt‖21 · ‖ĝt(zt, at)− ḡ(zt, at)‖2∞ (〈a, b〉 ≤ ‖a‖1 · ‖b‖∞)

≤ 2 · Err(Of ) + 2

(
sup
t∈JT K

‖λt‖1

)2

·
∑
t∈JT K

‖ĝt(zt, at)− ḡ(zt, at)‖2∞

≤ 2 · Err(Of ) + 2

(
sup
t∈JT K

‖λt‖1

)2

·
∑
t∈JT K

∑
i∈JmK

(ĝt,i(zt, at)− ḡi(zt, at))2

= 2 · Err(Of ) + 2

(
sup
t∈JT K

‖λt‖1

)2

·
∑
i∈JmK

Err(Oi)

which concludes the proof.

Lemma 8.4. Assume that max{Err(Of ),Err(Oi)} ≤ Err. Then, we have that Algorithm 3 with ηP :=
√
KT guarantees

that
sup

I=Jt1,t2K
RP
I (Π) = Õ

(
m · Err · L2 ·

√
KT

)
with high probability, where L := supt∈JT K,π∈Π |uPt (π)|.

Proof. Consider any interval I = Jt1, t2K ⊆ JT K. Since the prediction error at each time t is positive, one trivially has that:∑
t∈Jt1,t2K

(
L̂t(zt, at)− L̄(zt, at)

)2

≤ Err(OL).

Then, applying Lemma 8.3 we have that:∑
t∈Jt1,t2K

(
L̂t(zt, at)− L̄(zt, at)

)2

≤ 2Err(Of ) + 2 sup
t∈JT K

‖λt‖21
∑
i∈JmK

Err(Oi).

Moreover, by the assumption on the errors of the oracles it holds that:∑
t∈Jt1,t2K

(
L̂t(zt, at)− L̄(zt, at)

)2

≤ 2m(1 + sup
t∈JT K

‖λt‖21)Err. (12)
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Note that we could pretend that the algorithm starts at any time t1 ∈ JT K, and the same analysis of Theorem 1 by Foster &
Rakhlin (2020) would hold, as their algorithm behavior does not depend on its past behavior. Hence, the following holds:

RP
Jt1,t2K(Π) := sup

π∈Π

∑
t∈Jt1,t2K

[uPt (π)− uPt (πt)]

:= sup
π∈Π

∑
t∈Jt1,t2K

[Lt(π(zt))− Lt(πt(zt))]

= sup
π∈Π

∑
t∈Jt1,t2K

[Lt(π(zt))− Lt(at)]

≤ ηP
2
Err(OL) + 4ηP log

(
2T 2

δ

)
+ 2K

T

ηP
+

√
2T log

(
2T 2

δ

)
which holds with probability 1− δ/(T 2).

Thus, by an union bound, and combining it with Equation (12) we obtain that:

RP
Jt1,t2K(Π) ≤ ηPm(1 + sup

t∈JT K
‖λt‖21)Err + 4ηP log

(
2T 2

δ

)
+ 2K

T

ηP
+

√
2T log

(
2T 2

δ

)
,

which holds with probability 1− δ/T 2. Finally, by tuning ηP =
√
KT and applying an union bound on all the T 2 possible

intervals Jt1, t2K, we obtain that with probability 1− δ it holds that:

sup
I=Jt1,t2K

RP
Jt1,t2K(Π) ≤ 504 ·m Err L2 log(T 2/δ)

√
KT.
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