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Abstract
The limitations of purely neural learning have
sparked an interest in probabilistic neurosym-
bolic models, which combine neural networks
with probabilistic logical reasoning. As these neu-
rosymbolic models are trained with gradient de-
scent, we study the complexity of differentiating
probabilistic reasoning. We prove that although
approximating these gradients is intractable in
general, it becomes tractable during training. Fur-
thermore, we introduce WeightME, an unbiased
gradient estimator based on model sampling. Un-
der mild assumptions, WeightME approximates
the gradient with probabilistic guarantees using
a logarithmic number of calls to a SAT solver.
Lastly, we evaluate the necessity of these guar-
antees on the gradient. Our experiments indicate
that the existing biased approximations indeed
struggle to optimize even when exact solving is
still feasible.

1. Introduction
Neurosymbolic artificial intelligence aims to combine the
strengths of neural and symbolic methods into a single uni-
fied framework (Garcez et al., 2019; Hitzler, 2022; Marra
et al., 2024). One prominent strain of neurosymbolic mod-
els combines neural networks with probabilistic reason-
ing (Manhaeve et al., 2018; Xu et al., 2018; Yang et al.,
2021; Ahmed et al., 2023). These models are state-of-the-art
but suffer from scalability issues due to the #P-hard nature of
probabilistic inference. Probabilistic inference has been ex-
tensively studied on probabilistic graphical models (Koller
& Friedman, 2009) and model counting (Chakraborty et al.,
2021). However, neurosymbolic learning deviates from reg-
ular probabilistic inference due to its learning aspect: the
goal is to efficiently obtain useful gradients rather than to
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compute the exact probabilities. We therefore investigate
the approximation of gradients for probabilistic inference in
its own right and prove several positive and negative results.

In Section 3, we show that the intractability of probabilistic
inference also implies that it is impossible to approximate
gradients with probabilistic guarantees in polynomial time
(unless RP = NP, where RP is randomized polynomial time).
However, in Section 4, we prove that the gradient approxi-
mation problem becomes tractable during training when the
neural network outputs converge to binary values. On the
negative side, we find that this tractable region can become
unreachable for large problems.

In Section 5, we investigate more general-purpose gradient
estimators with strong guarantees by allowing access to a
SAT oracle. We introduce the Weighted Model Estimator
(WeightME), a novel gradient estimator for probabilistic
inference which relies on weighted model sampling. As op-
posed to existing approximations for neurosymbolic learn-
ing (Huang et al., 2021; Manhaeve et al., 2021; Ahmed et al.,
2022; Li et al., 2022; van Krieken et al., 2023; Verreet et al.,
2023), WeightME is unbiased and probably approximately
correct under mild assumptions. Furthermore, WeightME
only needs a logarithmic number of SAT invocations in the
number of variables.

Finally, Sections 6 and 7 provide a comprehensive overview
and evaluation of existing approximation techniques. Our
results indicate that they have difficulties optimizing bench-
marks that can still easily be solved exactly. This suggests
that principled methods are warranted if we want to apply
probabilistic neurosymbolic optimization to more complex
reasoning tasks.

2. Weighted Model Counting
Probabilistic inference can be reduced to weighted model
counting (WMC). WMC has been called “an assembly
language for probabilistic reasoning” (Belle et al., 2015)
as a wide range of probabilistic models can be cast into
WMC (Chavira & Darwiche, 2008; Domshlak & Hoffmann,
2007; Suciu et al., 2011; Holtzen et al., 2020; Derkinderen
et al., 2024). Bayesian networks are a notable example
where WMC solvers are state-of-the-art for exact infer-
ence (Chavira & Darwiche, 2008). Importantly, WMC also
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underlies probabilistic inference in NeSy frameworks (Man-
haeve et al., 2018; Xu et al., 2018; Huang et al., 2021;
Ahmed et al., 2022).

We briefly introduce propositional logic and WMC. Propo-
sitional variables are denoted with lowercase letters (e.g.
x or y). A literal is a variable x or its negation ¬x. A
propositional formula ϕ combines logical variables with the
usual connectives: negation ¬ϕ, conjunction ϕ1 ∧ ϕ2, and
disjunction ϕ1 ∨ ϕ2. A clause is a disjunction of literals. A
CNF formula is a conjunction of clauses. A DNF formula
is a disjunction of conjunctions of literals. We write var(ϕ)
for the number of variables in a formula ϕ. We use ϕ | x to
denote the formula ϕ conditioned on x being true, i.e. every
occurrence of x (resp. ¬x) in ϕ is replaced by true (resp.
false).

An interpretation I is a set of literals representing an instan-
tiation of the variables. We say that a variable x is true (resp.
false) in the interpretation I when x ∈ I (resp. ¬x ∈ I).
An interpretation I is a model of the formula ϕ, denoted as
I |= ϕ, when ϕ is satisfied under the truth assignment of
I . The satisfiability problem (SAT) asks whether a formula
has at least one model, while model counting (#SAT) asks
how many models a formula has. The weighted model count
(WMC) is a weighted sum over the models.
Definition 2.1 (Weighted Model Count). Given a proposi-
tional logic formula ϕ and a weight function w that maps
every literal to a real number, the weighted model count is

WMC(ϕ;w) =
∑

I:I|=ϕ

∏
l∈I

w(l) (1)

Both #SAT and WMC are #P-complete problems (Valiant,
1979), and even approximating them with probabilistic guar-
antees is NP-hard (Roth, 1996).

Due to our probabilistic focus, we only consider weights
corresponding to Bernoulli distributions. More concretely,
we assume w(x) ∈ [0, 1] and w(x) = 1− w(¬x) for every
variable x. Consequently, we have a probability distribution
over interpretations: P (I;w) =

∏
l∈I w(l).

Example 1. Consider the formula ϕ = (a ∨ b) ∧ (¬b ∨
c) with weights w(a) = 0.5, w(b) = 0.1, and w(c) =
0.25. This formula has four models: {a,¬b,¬c}, {¬a, b, c},
{a,¬b, c}, and {a, b, c}. When we sum the probabilities of
these models we get the weighted model count.

WMC(ϕ,w) = 0.3375+0.0125+0.1125+0.0125 = 0.475

We omit the weight function w when it is clear from context.
In Appendix A, we further discuss how to handle categorical
distributions and unweighted variables in WMC and explain
how inference on a Bayesian network reduces to WMC.

In the neurosymbolic context, the weights w are the prob-
abilities produced by a neural network. Typically, these

weights will be random at initialization and get closer to
zero or one during training as the neural network becomes
more confident in its predictions.

3. From WMC to ∇WMC
Probabilistic neurosymbolic methods optimize the WMC by
iteratively updating the weights w with gradient descent. So
just like inference in probabilistic models can be reduced to
WMC, learning in probabilistic neurosymbolic models can
be reduced to taking the gradient of the WMC.

∇wWMC(ϕ;w) =
[
∂WMC(ϕ;w)

∂w(x1)
, ...,

∂WMC(ϕ;w)
∂w(xvar(ϕ))

]⊤
This WMC gradient is the core focus of our work, and as the
next theorem shows, is closely related to the WMC itself.

Theorem 3.1. Computing the partial derivative of a WMC
problem is reducible to WMC problems, and vice versa.

Proof. Both directions follow from the decomposition

WMC(ϕ) = w(x)WMC(ϕ | x) + w(¬x)WMC(ϕ | ¬x)

The insight here is that WMC(ϕ | x) and WMC(ϕ | ¬x) do
not have a gradient for w(x), implying that

∂WMC(ϕ,w)
∂w(x)

= WMC(ϕ | x)− WMC(ϕ | ¬x)

For the other direction, we introduce a dummy variable t.

WMC(ϕ,w) =
∂WMC(ϕ ∧ t, w)

∂w(t)

Theorem 3.1 allows us to study the ∇WMC problem using
existing results on WMC. Notably, it follows immediately
that computing the exact gradients is #P-complete, just like
for WMC. Gradient descent does not necessarily need exact
gradients, however. We therefore investigate approxima-
tions of ∇WMC. In particular, we focus on approximations
that 1) are unbiased and 2) have probabilistic guarantees.
Informally, this means that the approximation 1) is correct
in expectation and 2) has a high probability of being close to
the true gradient. This probabilistic guarantee is formalized
as an (ϵ, δ)-approximation.

Definition 3.2. An estimator ŷ is an (ϵ, δ)-approximation
for y when P (|(y − ŷ)/y| > ϵ) ≤ δ.

The (ϵ, δ)-approximation enforces a probabilistic bound on
the relative error: the probability of having a relative error
larger than ϵ is at most δ. This guarantee is also known
as probably approximately correct (PAC). Unfortunately,
(ϵ, δ)-approximations of the WMC are still hard, and due to
Theorem 3.1 the same can be said for derivatives.
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Theorem 3.3. Computing an (ϵ, δ)-approximation of the
partial derivative ∂WMC(ϕ)/∂w(x) is NP-hard.

Proof. Follows from Theorem 3.2 of Roth (1996) and The-
orem 3.1.

It is worth reflecting on why an (ϵ, δ)-approximation of the
gradient is relevant as opposed to the variance of the gra-
dient, which is more commonly discussed. The variance
Var[ŷ] = E[(y − ŷ)2] measures the squared error instead
of the relative error. However, a low squared error is not
meaningful when the WMC and ∇WMC are near zero. In
Appendix B, we demonstrate how existing gradient estima-
tors for ∇WMC achieve low variance by simply returning
zero gradients. An (ϵ, δ)-approximation does not suffer
from this problem as it measures the relative instead of the
squared error.

4. The (In)tractability of Sampling
One way to get an unbiased (ϵ, δ)-approximation for the
WMC is by sampling. Indeed, the WMC can be seen as the
expectation that a random interpretation is a model.

WMC(ϕ;w) = EI∼P (I;w)[1(I |= ϕ)] (2)

Here, 1(·) denotes the indicator function. Equation 2 leads
to a straightforward Monte Carlo approximation, which we
call interpretation sampling. To the best of our knowledge,
all existing unbiased estimators for ∇WMC are based on
interpretation sampling. We can obtain gradients with con-
ventional techniques such as the score function estimator
(SFE), also known as REINFORCE (Sutton et al., 1999).

∇wWMC(ϕ;w) = EI∼P (I;w) 1(I |= ϕ)∇w logP (I;w)

Alternatively, we can use the decomposition of Theorem 3.1.
This corresponds to the IndeCateR estimator, which is a
Rao-Blackwellization of the SFE (De Smet et al., 2023).

∂WMC(ϕ,w)
∂w(x)

= EI∼P (I|x;w) 1(I |= ϕ)

− EI∼P (I|¬x;w) 1(I |= ϕ)

From Theorem 3.3, we already know that interpre-
tation sampling cannot give a (ϵ, δ)-approximation in
polynomial time. Indeed, Karp et al. (1989) showed
that c(ϵ, δ)/WMC(ϕ) samples are required for an (ϵ, δ)-
approximation of WMC(ϕ), where c(ϵ, δ) is in the order
of ϵ−2 log 2

δ . The problematic part here is 1/WMC(ϕ) be-
cause the WMC can decrease exponentially in the number
of variables1.

1To see this, consider the case where ϕ has a single model and
all weights are w(x) = 1

2
, so that WMC(ϕ) = 2−var(ϕ).
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Figure 1: When sampling from the distribution of interpreta-
tions, we need to hit a model to obtain a gradient. (left): At
initialization, the distribution over interpretations is fairly
uniform and the probability that interpretation sampling
finds a model is vanishingly small. Model sampling avoids
this by sampling directly from the models. (right): When
the neural network becomes more confident in its predic-
tions, it becomes easier to sample a model.

4.1. Example of Tractability

In the neurosymbolic setting, interpretation sampling can
become tractable during training. This occurs when the neu-
ral network becomes more confident, i.e. when the weights
w(x) approach zero or one. We illustrate this phenomenon
on the pedagogical MNIST-addition task.

In the MNIST-addition task, a digit classifier is trained
with distant supervision. There are no labels for the in-
dividual MNIST images, but only on the sums of two
numbers represented by images. For example, the input

+ has the label 3916. We refer to Man-
haeve et al. (2018) for more details on the experimental
setup.

Figure 2 displays the first epoch of training with exact infer-
ence on MNIST-addition with 4 digits. At every iteration,
we estimate the gradient with the SFE and compare it with
the true gradient. Initially, the neural network is random,
and estimating the gradients is infeasible. But at about
700 training iterations, there is a transition after which the
sampled gradient becomes a faithful approximation.

4.2. Tractability from Training

We formalize the above example using implicants. An impli-
cant of a formula ϕ is a conjunction of literals that models
a subset of the models of ϕ. Now, we prove that an (ϵ, δ)-
approximation of the gradient becomes tractable when a
single implicant dominates the WMC.

Theorem 4.1. The partial derivative of WMC(ϕ) with
respect to w(x) admits a polynomial time (ϵ, δ)-
approximation when there exists a implicant π such that
x ∈ π and WMC(π) ≥ WMC(ϕ | ¬x) + c(ϵ, δ).

Proof. See Appendix C.
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Figure 2: First epoch of training on 4-digit MNIST-addition
with exact inference. We also plot the cosine similarity
between the exact gradients and the sampled gradients from
the SFE. Results are averaged over 10 seeds.

The assumption that an implicant dominates the probability
mass towards the end of training has been observed before
empirically (Manhaeve et al., 2021) and was recently proven
to hold for all minima of a WMC problem (van Krieken
et al., 2024).

As our definition of an (ϵ, δ)-approximation pertains to a
single partial derivative, some partial derivatives in the gradi-
ent may be tractable while others are not. For Theorem 4.1
to apply, we need WMC(ϕ | ¬x) to converge to zero as
WMC(π) converges to one. This will generally be the case,
unless a different implicant π′ partly covers both π and
(π | x) ∧ ¬x. Or more informally, when tractability is not
achieved at convergence, it is precisely because the value of
this literal does not matter for the WMC. For example, this
can occur because π is not prime, meaning π | x is still an
implicant.

4.3. Tractability from Concept Supervision

The practical relevance of Theorem 4.1 depends on how
close the neural network must be to convergence before we
end up in the tractable region. We formalize this as follows.

Definition 4.2. Consider a formula ϕ with weights w and
M the most probable model. We say that ϕ is τ -supervised
when τ = #{x | x ∈ M and w(x) > 1/2}.

In other words, the weights are τ -supervised when the neural
network classifies τ of the var(ϕ) weights confidently with
respect to a model M .

Theorem 4.3. To ensure a polynomial time (ϵ, δ)-
approximation of the partial derivative ∂WMC(ϕ)/∂w(x)
for a τ -supervised formula ϕ with interpretation sampling,
it is required that var(ϕ)− c′(ϵ, δ) ≤ τ .

Proof. See Appendix C.

Theorem 4.3 says that in the worst case, the number of vari-
ables that should be τ -supervised is close to the total number
of variables. More precisely, the percentage of variables that
are allowed to be misclassified by the neural network de-
creases as 1/var(ϕ). Firstly, this implies that the tractability
of Theorem 4.1 might not always be reachable in practice.
Secondly, Theorem 4.3 suggests that concept supervision
cannot entirely alleviate the need for approximate inference.
Concept supervision uses some direct supervision on the
weights of logical variables, instead of training from scratch.
For example, in the MNIST-addition example, some images
get an individual label (e.g. = 9).

5. Weighted Model Sampling
When the WMC is too small for interpretation sampling,
we need to look elsewhere to obtain gradients. The past
decades have seen considerable progress in approximate
model counting, despite its NP-hardness (Chakraborty et al.,
2021). Leveraging this progress for ∇WMC could push the
scalability of gradient approximations with guarantees.

Stockmeyer (1983) proved that model counting with PAC
guarantees is possible using a polynomial number of SAT
calls. More recently, Chakraborty et al. (2016) sharpened
this to a logarithmic number of SAT calls in the number of
variables. The state-of-the-art in approximate unweighted
model counting implements this with hash-based methods
(Soos & Meel, 2019). In short, they use hash functions to
randomly partition the space of interpretations and count
models within these partitions.

Hash-based methods could be applied immediately to obtain
gradients using the decomposition of Theorem 3.1. How-
ever, that would require 2var(ϕ) calls to the approximate
counter to calculate a single gradient, as every partial deriva-
tive is computed separately. Furthermore, the subtraction of
two (ϵ, δ)-approximations weakens the provided guarantees.

We can do better by instead relying on model sampling.
Weighted model sampling (WMS) is the task of sampling
models from a weighted formula ϕ such that the probability
of selecting a model M is P (M)/WMC(ϕ). Using WMS,
we introduce the following estimator.

Definition 5.1. The weighted model estimator (WeightME)
is defined as

∂ logWMC(ϕ)
∂w(x)

= EM

[
1(x ∈ M)

w(x)
− 1(x ̸∈ M)

w(¬x)

]

With EM we denote an expectation over the models of ϕ.
WeightME is unbiased and achieves probabilistic guarantees
using only a constant number of samples.

Theorem 5.2. WeightME is an unbiased estimator for
∂ logWMC(ϕ)/∂w(x) when w(x) ∈ (0, 1).
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Proof. See Appendix C.

Theorem 5.3. Given WMC(ϕ), WeightME can (ϵ, δ)-
approximate the partial derivative ∂WMC(ϕ)/∂w(x) using
a constant number of weighted model samples when there
is a constant λ > 0 such that |P (x | ϕ) − w(x)| > λ and
w(x) ∈ (0, 1).

Proof. The proof relies on the observation that

∂WMC(ϕ)
∂w(x)

=
WMC(ϕ)
w(¬x) ·

(
EM [1(x ∈ M)]

w(x)
− 1

)
With c(ϵ, δ)/λ2 weighted model samples, the above is an
(ϵ, δ)-approximation. The full proof is in Appendix C.

This last theorem has several implications.

1. The required number of model samples for an (ϵ, δ)-
approximation does not increase with formula size. In-
deed, the condition that w(x) and WMC(ϕ) are depen-
dent does not rely on the formula size. So in contrast
to Theorem 4.1, Theorem 5.3 scales to large formulas
where WMC(ϕ) is very small.

2. Theorems 4.1 and 5.3 can be seen as complementary.
The variance of IndeCateR is zero when the weights
are binary, while WeightME has a low variance when
the weights are close to 1/2.

3. The condition in Theorem 5.3 of having WMC(ϕ) can
be dropped if we are satisfied with ∇ logWMC in-
stead of ∇WMC. This is a reasonable assumption as
the WMC tends to be optimized with a negative log-
likelihood loss.

5.1. Approximate model sampling

The question remains how to actually sample the models.
WMS and WMC are polynomially inter-reducible, so ex-
act WMS is also #P-hard (Jerrum et al., 1986). Scalable
WMS methods hence resort to approximations and do not
sample exactly according to the weighted model distribu-
tion P (M)/WMC(ϕ). Crucially, Theorem 5.3 can still
apply when the WMS samples are (ϵ, δ)-approximate (see
Appendix C). A single WeightME gradient is therefore pos-
sible with only a logarithmic number of calls to a SAT oracle
(Chakraborty et al., 2016).

Just as for WMC, approximate WMS with PAC guarantees
is implemented with hash-based techniques (Soos et al.,
2020). The unweighted variant of model sampling has re-
ceived more attention than WMS (Chakraborty et al., 2014).
However, it is possible to convert weighted into unweighted
problems (Chakraborty et al., 2015), which could make it
possible to leverage the progress in unweighted sampling
for gradient approximation.

Biased WMS approximations have the promise to scale fur-
ther, but lack guarantees. Golia et al. (2021) investigated
this trade-off, by using sampling testers on biased approxi-
mations. This led them to propose a performant solver that
samples from a distribution that does not differ from the
true distribution on statistical tests. Markov-Chain Monte-
Carlo (MCMC) techniques have also been proposed for
model sampling (Ermon et al., 2012). Unfortunately, com-
binatorial problems face an exponential mixing time of the
Markov chains. Li et al. (2022) addressed this problem by
using projection techniques from SMT solvers.

A promising recent development is the sampling of models
using neural approximations. van Krieken et al. (2023)
connected the theory of GFlowNets (Bengio et al., 2023)
to model sampling. However, to the best of our knowledge,
this has not yet been realized on practical WMC problems.

6. Biased WMC
Various approximate inference methods exist that trade in
guarantees for better scalability, and are often not NP-hard.
Theory does not always align with practice, and it is hence
not implausible that some of these could be competitive.

We give a comprehensive overview of relevant approxima-
tions for WMC but do not aim to be exhaustive. Instead,
we focus on the most notable and common approaches. We
summarize all methods in Table 1.

6.1. Biased inference

The following methods compute a biased yet differentiable
approximation for the WMC.

k-Best approximates a formula using a DNF, containing the
k implicants with the highest probability (Kimmig et al.,
2008; Manhaeve et al., 2021; Huang et al., 2021). This
works well when the probability mass of a formula can be
captured by only a small number of implicants, for which
exact WMC is then feasible. For k = 1, k-best coincides
with the most probable explanation (MPE).

The probability mass of the k-best implicants can overlap
heavily, so k-optimal greedily searches for the k-DNF with
the maximum total probability (Renkens et al., 2012). Find-
ing these implicants reduces to iteratively solving weighted
MaxSAT problems (Renkens et al., 2014).

Uniform model sampling samples models uniformly with-
out considering the weights. As with k-best, these models
can be used as a lower bound for the true WMC. Verreet et al.
(2023) argue for this approach to maximize the diversity of
samples during training.

Fuzzy t-norms are arguably the most common neurosym-
bolic semantics. They replace the logical (Boolean) oper-
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Table 1: Classification of all considered approximation methods according to whether they are unbiased, deterministic, are
learned from data, what formulas they support, and their complexity. For the complexity, we denote the number of clauses
as c, and the number of samples as s. We assume the clause length is bounded, and the number of variables is linear in the
size of the clause.

Method Unbiased Deterministic Learned Formula Time Complexity

Interpretation sampling Y N N Any cs
Weighted model sampling Y N N Any NP-hard

Hash-based Y N N Any NP-hard
Fuzzy t-norms N Y N Any c
MPE / k-best N Y N Any NP-hard
Unweighted model sampling N N N Any NP-hard
Neural#DNF N Y Y DNF c
A-NeSI N Y Y Any c
Collapsed sampling Y N N Any cs
Bounded inference / Y N Any c
Semantic strengthening N Y N Any c2

Straight-trough estimator N N N Any cs
Gumbel-Softmax N N N Any cs
I-MLE N N N Any NP-hard

ations with continuous generalizations (Badreddine et al.,
2022; van Krieken et al., 2022). For example, the product
t-norm computes conjunction as w(x ∧ y) = w(x) · w(y)
and disjunction as w(x ∨ y) = 1 − w(¬x) · w(¬y). Cru-
cially, fuzzy semantics has linear complexity in the size of
the propositional formula. T-norms can also be used as an
approximation of probabilistic semantics. For example, the
product t-norm computes the WMC of a CNF under the
assumption that all clauses are independent.

Neural approximations. As neural networks are universal
approximators, recent works have proposed using them to
approximate probabilistic inference. From the algebraic
view, Zuidberg Dos Martires (2021) introduces the neural
semiring, where a neural network learns the algebraic oper-
ations for conjunction and disjunction. Abboud et al. (2020)
realize this with graph neural networks. The authors limit
the scope to DNFs, motivated by the tractability of this
special case.

6.2. Biased gradient estimation

Several gradient estimators have been proposed to differenti-
ate through sampling and hence can be applied to Equation 2.
Notably, several biased estimators can still give a gradient
when the WMC is tiny.

When estimating the gradients of an expectation of the form
Ex∼P (x) f(x), biased estimators typically assume that f is
continuous. As such, we need a continuous relaxation for
1(I |= ϕ). The straightforward solution we consider is to
use fuzzy semantics to determine whether an interpretation

is a model of the formula.

The straight-through estimator (STE) replaces the sample
with its probability during backpropagation (Bengio et al.,
2013). Gumbel-Softmax estimates gradients by replacing
the Categorical distribution with the differentiable Gumbel-
Softmax distribution (Jang et al., 2016; Maddison et al.,
2016).

Implicit Maximum Likelihood Estimation (I-MLE) is a
biased gradient estimator designed for combinatorial prob-
lems (Niepert et al., 2021). I-MLE approximates the gra-
dient using a perturb-and-MAP approach: the weights are
perturbed by adding some noise from a distribution such as
Gumbel, and on these weights the most probable model is
computed. I-MLE can hence be seen as an alternative to
k-best rooted in perturbation-based implicit differentation.

6.3. Hybrid methods

Many of the approximation methods can be combined with
each other, or with exact solving. We highlight some exam-
ples of this.

Collapsed sampling uses an exact solver up to a time or
memory limit, after which the remaining components are
estimated using interpretation sampling. Similar to exact
solving, the choice of variable ordering greatly impacts the
effectiveness of this method (Friedman & Van den Broeck,
2018).

Semantic strengthening combines exact solving with fuzzy
t-norms (Ahmed et al., 2022). It uses mutual information
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to determine which clause pairs violate the independence
assumption most, and hence benefit from exact compilation.
The remaining conjunctions are computed with a t-norm.

7. Experiments
It is clear that many methods exist to approximate WMC
gradients, so the question arises as to which of the methods
are appropriate in practice. For this reason, we evaluate the
gradients of the various methods on a set of challenging
WMC benchmarks.2

Benchmarks The model counting competition (MCC) is
an annual competition on (weighted) model counting (Fichte
et al., 2021). We take the benchmarks of the last three
competitions (2021, 2023, and 2023) and take the instances
that are probabilistic and can be solved exactly by state-of-
the-art solvers (Lagniez & Marquis, 2017; Golia et al., 2021).
As an easier benchmark, we also include the logical formula
from the ROAD-R dataset (Giunchiglia et al., 2023), which
imposes constraints on the object detection of self-driving
cars. All benchmarks are CNF formulas. The weights are
initialized with a Gaussian distribution with a mean of 1/2.

Setup All methods were executed on the same machine
with an Intel Xeon E5-2690 CPU and used PyTorch to
compute the gradients. WeightME was implemented using
CMSGen (Golia et al., 2021) for WMS, as it was found to
be the most scalable WMS solver available. For MPE and k-
optimal we used the EvalMaxSAT solver (Avellaneda, 2020).
The SFE was implemented with the Reinforce-Leave-One-
Out baseline (Kool et al., 2019). All approximate methods
got a timeout of 5 minutes per gradient. The true gradients
were computed as ground truths using the d4 knowledge
compiler (Lagniez & Marquis, 2017), which did not get a
timeout.

7.1. Gradients at initialization

In the first experiment, we empirically validate which ap-
proximation methods succeed at the gradient estimation task
at initialization.

Quality To evaluate the quality of the gradients, we com-
pute the cosine similarity between the exact and approxi-
mate gradients on our set of benchmarks. Table 2 summa-
rizes the results. WeightME attains the best results, both
compared to polynomial and NP-hard methods. For the poly-
nomial methods, the product t-norm and Gumbel-Softmax
perform best. The Gödel t-norm performs weak, as by de-
sign it gives zero gradients to all but one variable. The
SFE usually fails to sample a model, which is why it per-

2The code to replicate these experiments can be found at
https://github.com/jjcmoon/hardness-nesy.

forms very poorly on these benchmarks. IndeCateR is not
included in the results, as it suffers even harder from this
problem. Unweighted model sampling performs similarly
to WeightME on the smaller ROAD-R benchmark, but falls
behind on more challenging problems.

Scalability In Figure 3, we look at the runtime of the
various approaches. None of the NP-hard approximation
methods manages to solve all benchmarks within the time
limit (5 minutes/instance). Surprisingly, none of the tested
MaxSAT or approximate WMS solvers could fully match
d4. The polynomial methods scale quite well as expected,
except for semantic strengthening, which quickly becomes
infeasible when the number of clauses is high.
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Figure 3: Cumulative runtimes on all the MCC instances.
Omitted methods achieve similar performance to the Prod-
uct t-norm.

7.2. Optimization

The previous experiments evaluate the quality of a single
gradient in isolation. However, the real question is whether
the approximate gradients suffice to optimize. The setup
in Table 2 penalizes unbiased methods with high gradient
variance. So in a second experiment, the task is to optimize
the log-likelihood of the formulas. We can see this as a
necessary (though not necessarily sufficient) requirement for
probabilistic neurosymbolic learning. The NP-hard methods
that explicitly find a model can trivially achieve this task
and are omitted from this experiment.

In Figure 4, we let polynomial approximation methods opti-
mize the log-likelihood of a formula on an easier subset of
the MCC benchmarks. These benchmarks have fewer than
1000 variables and are well below the limit of state-of-the-
art exact solvers. We plot the best achieved loss, within a
maximum of 10000 iterations. Our results indicate that none
of the tested approaches can consistently optimize. The re-
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Table 2: Benchmarks for gradient estimation at initialization. For each solver-benchmark combination, we list the average
cosine similarity between the approximate and true gradient, as well as the standard deviation. Higher is better. We use − to
indicate that at least one instance timed out.

MCC2021 MCC2022 MCC2023 ROAD-R

Number of Instances 120 93 61 100

WeightME (k=100) 0.784 ± 0.248 0.721 ± 0.259 0.821 ± 0.172 0.955 ± 0.009
Unweighted model sampling (k=100) - 0.578 ± 0.332 - 0.946 ± 0.014
MPE - - - 0.609 ± 0.042
k-Optimal (k=100) - - - 0.691 ± 0.034

Product t-norm 0.643 ± 0.259 0.592 ± 0.188 0.537 ± 0.310 0.918 ± 0.005
Gödel t-norm 0.092 ± 0.153 0.107 ± 0.119 0.103 ± 0.136 0.191 ± 0.094
Straight-through estimator (s=10) 0.195 ± 0.217 0.167 ± 0.202 0.309 ± 0.187 0.537 ± 0.078
Gumbel-Softmax estimator (s=10, τ=2) 0.584 ± 0.263 0.501 ± 0.187 0.510 ± 0.293 0.897 ± 0.020
SFE (s=10k) 0.035 ± 0.173 0.010 ± 0.093 0.000 ± 0.000 0.006 ± 0.064
Semantic strengthening (κ=100) - - - 0.895 ± 0.019
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Figure 4: Maximum log-likelihood achieved by the various biased gradient approximations, sorted from best to worst. The
benchmarks are 33 easy instances from the Model Counting Competitions. Higher is better.

sults in Figure 4 also include some novel baselines which
are described in Appendix D. In Appendix E, we further
validate that adding concept supervision does not alleviate
the optimization problem.

8. Related work
The estimation of gradients is a well-studied problem in ma-
chine learning (Mohamed et al., 2020). Existing works have
studied the gradient estimation of categorical distributions
(Jang et al., 2016; Maddison et al., 2016; De Smet et al.,
2023), while we are the first to focus on the gradients of
WMC. van Krieken et al. (2022) analyze the gradients of
fuzzy semantics in neurosymbolic learning. On the other
hand, we target neurosymbolic learning with probabilistic
semantics.

Related to our work, Niepert et al. (2021) propose a gradient
estimator for black-box combinatorial solvers relying on the
most probable model, which is both biased and harder to
compute than approximate weighted model samples. Ver-
reet et al. (2023) introduce a neurosymbolic optimization
method using unweighted model samples, motivated by
increasing the sample diversity. However, unweighted sam-
pling provides weaker guarantees while being just as hard
as weighted sampling.

Considerable progress has been made on approximating
WMC and WMS (Wei & Selman, 2005; Gogate & Dechter,
2011; Ermon et al., 2012; Chakraborty et al., 2014; 2016;
Soos & Meel, 2019; Golia et al., 2021; Soos et al., 2020).
We focus on the gradients of WMC in a learning setting
instead of approximating the WMC itself.
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9. Limitations
As with any empirical study, the results of Section 7 are
influenced by the choice of benchmarks, and might not gen-
eralize to all neurosymbolic tasks. Our work only consid-
ers propositional logic, while some neurosymbolic systems
target the more expressive first-order logic. First-order neu-
rosymbolic systems usually end up grounding their theory
such that the propositional case studied here remains rel-
evant. Inference for weighted first-order model counting
is much harder still (Gribkoff et al., 2014), and hence the
need to approximate is even more pertinent. We also do not
consider DNFs, which in contrast to CNFs admit a tractable
(ϵ, δ)-approximation (Karp et al., 1989).

10. Conclusion
We studied the gradient estimation of probabilistic reason-
ing by connecting this problem to weighted model counting.
This allowed us to prove several results on the intractabil-
ity, and prove how gradient estimation for neurosymbolic
learning becomes tractable during training. Next, we con-
tributed a general-purpose gradient estimator that builds on
the progress in approximate counting and sampling. We
showed that a constant number of weighted model samples
is sufficient to achieve strong guarantees.

Finally, we turned our attention to existing approximation
methods. Our experiments suggest that none of the poly-
nomial methods can consistently optimize a formula. In
contrast, existing NP-hard approximations typically strug-
gle to scale, while lacking guarantees. Potential further
work includes improving our understanding of the interac-
tion between approximating the weighted model samples
and the PAC guarantee of WeightME and expanding our
analysis from propositional to first-order weighted model
counting.
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A. Example of Baysian Networks as Weighted Model Counting
As a small example, consider the context of a Bayesian network with a conditional probability P (B|A) and independent
probabilistic fact P (A), over probabilistic Boolean variables A and B. This can be encoded into a WMC formula ϕ′:

b ⇐⇒
(
a ∧ θb|a

)
∨
(
¬a ∧ θb|¬a), (3)

with the weights of P (B|A) attached to newly introduced variables θb|a and θb|¬a. As is common, we can set w(b) =
w(¬b) = 1. The probability of B, for instance, is then P (B) = WMC(ϕ′ ∧ b).

We limit our study to WMC problems where the weights correspond to a Bernoulli distribution. The example above, where
w(b) = w(¬b) = 1, can be encoded into this setting by instead using w(b) = w(¬b) = 0.5 and normalizing the WMC by a
factor 2u, with u the number of variables whose original weights were 1. We do remark that this affects the tractability of
additive (ϵ, δ)-bounds.

Categorical variables can be modeled using exclusively Boolean variables. For example, without using w(·) = 1, suppose A
takes values a1, a2 or a3: (

a1 ⇐⇒ θa1

)
∧
(
a2 ⇐⇒ ¬a1 ∧ θa2|¬a1

)
∧
(
a3 ⇐⇒ ¬a1 ∧ ¬a2

)
(4)

The weights of ai are 0.5 (using the method above), and the other weights are as expected: w(θa1
) = P (a1), w(¬θa1

) =

1− w(θa1), w(θa2|¬a1
) = P (A=a2)

P (A̸=a1)
and w(¬θa2|¬a1

) = 1− w(θa2|¬a1
).

B. Variance of IndeCateR
Consider the single-sample IndeCateR estimator (De Smet et al., 2023) for ∂WMC(ϕ)/∂w(x).

C = 1(I0 ∧ x |= ϕ)− 1(I1 ∧ ¬x |= ϕ)

By considering Theorem 3.1, it follows that Var[C] ≤ E[C2] = (WMC(ϕ | x) − WMC(ϕ | ¬x))2 ≤ 1. Moreover, this
variance is maximized when the weights w are binary. If we also know that the weights are bounded by [t, 1 − t] and ϕ
has a single model, we achieve the much stronger result that Var[C] ≤ (1− t)var(ϕ). Although IndeCateR has vanishingly
small variance on formulas with a single model, IndeCateR will almost never sample a model here and simply return zero
gradients. This motivates that variance is not an ideal lens for looking at the quality of a gradient estimator for WMC.

C. Proofs
Theorem 4.1

Proof. We need to show that the following bound can be computed in polynomial time:

P (|(y − ŷ)/y| > ϵ) ≤ δ where y =
∂WMC(ϕ,w)

∂w(x)
= WMC(ϕ | x)− WMC(ϕ | ¬x)

As the theorem assumes that there is an implicant π with x ∈ π, it follows that:

y = WMC(ϕ | x)− WMC(ϕ | ¬x)
≥ WMC(π | x)− WMC(ϕ | ¬x)
≥ WMC(π)− WMC(ϕ | ¬x)
≥ c(ϵ, δ)

In the last step, we use the assumed inequality of the theorem. So in summary, the assumption of the theorem implies that we
know that y ≥ c(ϵ, δ). We also know that ŷ ∈ [−1, 1]. It follows that we can estimate it in polynomial time with sampling.
To get a concrete expression for c(ϵ, δ) and derive a bound on the number samples, we can use e.g. Hoefdding bounds.
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Theorem 4.3

Proof. Suppose ϕ only has a single model. This means that y = ∂WMC(ϕ)/∂w(x) = WMC(M | x) = p(M)/w(x),
assuming w.l.o.g. that x ∈ M . To ensure tractability by interpretation sampling, we need y > c(ϵ, δ) (Karp et al., 1989).
Because ϕ is τ -supervised, we have P (M) ≤ 2τ−var(ϕ). When we combine these facts, we get that w(x)·c(ϵ, δ) < 2τ−var(ϕ),
which is equivalent to log2 w(x)c(ϵ, δ) + var(ϕ) < τ . To simplify the theorem, we set c′(ϵ, δ) = − log2 w(x)c(ϵ, δ), which
brings use to var(ϕ)− c′(ϵ, δ) < τ .

Theorem 5.2

Proof. We write X for the random variable of WeightME.

EM [X] =
1

w(x)
EM [1(x ∈ M)]− 1

w(¬x) EM [1(x ̸∈ M)]

=
(∑

M

1(x ∈ M)P (M)

w(x)WMC(ϕ)

)
−

(∑
M

1(x ̸∈ M)P (M)

w(¬x)WMC(ϕ)

)
=

WMC(ϕ ∧ x)

w(x)WMC(ϕ)
− WMC(ϕ ∧ ¬x)

w(¬x)WMC(ϕ)

=
WMC(ϕ | x)

WMC(ϕ)
− WMC(ϕ | ¬x)

WMC(ϕ)

=
1

WMC(ϕ)
· ∂WMC(ϕ)

∂w(x)
=

∂ logWMC(ϕ)
∂w(x)

Theorem 5.3

Proof. We introduce an random variable T for 1(x ∈ M), where EM [T ] = WMC(ϕ ∧ x)/WMC(ϕ). Using T , single-
sample WeightME can be written as

X =
1

w(x)
T − 1

w(¬x) (1− T )

= T

(
1

w(x)
+

1

w(¬x)

)
− 1

w(¬x)

=
T

w(x)w(¬x) −
1

w(¬x)

Remember that the theorem assumes w(x) ̸= 0 and w(¬x) ̸= 0. Next, we look for an (ϵ, δ)-approximation for WeightME,
i.e. we again need to prove that

P (|(y − ŷ)/y| > ϵ) ≤ δ where y =
∂WMC(ϕ,w)

∂w(x)
= WMC(ϕ | x)− WMC(ϕ | ¬x)

We can write WeightME with s weighted model samples as the estimator X ′ =
∑s

i=1
Xi

s where E[X ′] = E[X] =
y/WMC(ϕ) and ŷ = WMC(ϕ)X ′.

P

(∣∣∣∣ ŷ − y

y

∣∣∣∣ > ϵ

)
= P

(∣∣∣∣X ′ − E[X ′]

E[X ′]

∣∣∣∣ > ϵ

)
= P (|T ′ − E[T ′]| > ϵ|E[T ′]− w(x)|)
≤ 2 exp(−2sϵ2(E[T ′]− w(x))2)

In the last step, we use Hoeffding’s inequality. This is possible as Ti is bounded by
[
0, 1

s

]
. We can work out this expression
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to get a concrete lower bound on the number of samples.

δ = − exp(−2sϵ2(E[T ′]− w(x))2)

log
2

δ
= 2sϵ2(E[T ′]− w(x))2

s =
1

2ϵ2(E[T ′]− w(x))2
log

2

δ

s >
1

2ϵ2λ2
log

2

δ
= c(ϵ, δ)/λ2

The last line uses the assumption of the theorem.

Approximate weighted model sampling

When we use an approximate weighted model sampler for WeightME, we introduce some bias. However, we can still get
bounds on the approximation, if the approximate sampler has guarantees. An (ϵ, δ)-approximate sampler will sample a model
M of ϕ with a probability between p(M)/WMC(ϕ)(1 − ϵ) and p(M)/WMC(ϕ)(1 + ϵ), or fail to sample a model with
probability less than δ. So in other words, WeightME with an (ϵ, δ)-approximate sampler is bounded between (1− ϵ)E[X]
and (1 + ϵ)E[X], and the bias on the gradient is at most ϵ · ∇ logWMC(ϕ). Moreover, we retain the probabilistic guarantee
of Theorem 5.3.

D. Extra Baselines
The CatLog-trick (De Smet et al., 2023) applies the same decomposition as Theorem 3.1 to create gradient estimators:

∂WMC(ϕ)
∂w(x)

= WMC(ϕ | x)− WMC(ϕ | ¬x)

We can in principle use any other approximate method to compute WMC(ϕ|x) and WMC(ϕ|¬x). When these are unbiased,
it can be seen as a Rao-Blackwellization. This method does introduce a linear increase in complexity in the number of
variables. In Figure 4, we include the CatLog-trick in combination with the product t-norm and Gumbel-softmax estimator.

Semantic strengthening needs to compare all clause pairs in order to choose which pairs to conjoin exactly. So it has
a quadratic complexity in the number of clauses. As this becomes problematic on large formulas, we also consider
the combination of sampling with fuzzy t-norms. Here, we keep sampling as long as we have models. The remaining
conjunctions are calculated with the t-norm.

E. Additional experiments
In Figure 5, we repeat the optimization experiment. However, we now provide 90% accurate concept supervision. This
means that we pick a model for each formula, and set the weight correctly for 90% of the variables. Although the results are
a clear improvement on Figure 4, still none of the methods manage to optimize across the board. This confirms the result in
Theorem 4.3.
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Figure 5: Maximum negative log-likelihood achieved by the various biased gradient approximations, sorted from best to
worst. The benchmarks are 33 easy instances from the Model Counting Competition. Higher is better. All weights are
initialized such that 90% of weights are already correct for a certain model.
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