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Abstract

In this paper, we delve into a new perspective to solve image matting by revealing the
foreground with flash priors. Previous Background Matting frameworks require a clean
background as input, and although demonstrated powerfully, they are not practical to han-
dle real-world scenarios with dynamic camera or background movement. We introduce the
flash /no-flash image pair to portray the foreground object while eliminating the influence
of dynamic background. The rationale behind this is that the foreground object is closer to
the camera and thus received more light than the background. We propose a cascaded end-
to-end network to integrate flash prior knowledge into the alpha matte estimation process.
Particularly, a transformer-based Foreground Correlation Module is presented to connect
foregrounds exposed in different lightings, which can effectively filter out the perturbation
from the dynamic background and also robust to foreground motion. The initial prediction is
concatenated with a Boundary Matting Network to polish the details of previous predictions.
To supplement the training and evaluation of our flash/no-flash framework, we construct the
first flash/no-flash portrait image matting dataset with 3,025 well-annotated alpha mattes.
Experimental evaluations show that our proposed model significantly outperforms existing
trimap-free matting methods on scenes with dynamic backgrounds. Moreover, we detailedly
discuss and analyze the effects of different prior knowledge on static and dynamic back-
grounds. In contrast to the restricted scenarios of Background Matting, we demonstrate a
flexible and reliable solution in real-world cases with the camera or background movements.

1 Introduction

Image matting has been a core and fundamental problem in computer vision that extensively applied in
film production, social media, video conferencing, and many other fields. Nowadays, video conferencing has
become the status quo in business and educational contexts, and image matting can be used to prevent
privacy leakage by replacing a virtual background. Mathematically, the image matting problem can be
formulated as

I=aF +(1-a)B, (1)

where the foreground F', background B, and the pixel-wise opacity « are unknowns. Given an input image
I in RGB representation, estimating seven unknown factors are obviously an ill-posed problem.

To resolve this problem, traditional matting methods (Ruzon & Tomasi, 2000; |(Chuang et al.l [2001; Wang &
Cohenl 2007; |Gastal & Oliveiral, 2010; He et al. 2011; |Feng et al., |2016)) usually rely on a trimap as a prior
to limit the solution space. However, generating a high-quality trimap is time-consuming and impractical in
real-time applications. Recently, some trimap-free methods are proposed to replace the trimap with other
prior knowledge. Such of methods adopt the clean background (Sengupta et al., |2020; |Lin et al., [2021)),
semantic mask (Chen et al [2018; [Yu et al., [2021b} Park et al.| 2023; Jiang et al. [2025)), or temporal features
in videos (Sun et all |2021b; [Lin et al.l [2022; [Li et al., 2023a; 2024a3b} |Lin et al., 2023)), as auxiliaries to
predict the alpha matte.

Among these methods, Background Matting series (i.e., BGMv1 (Sengupta et al. [2020) and BGMv2 (Lin
et al., 2021)) achieves robust performances by taking a clean background as an additional input (see Fig. 1a).
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(a) Inputs of BGMv2 (b) Inputs of our model

Figure 1: We consider the portrait matting problem in the dynamic scene. BGMv2 requires
two images (a) as inputs. However, their assumption of a clean and static background image does not hold
in a dynamic scene, in which it produces a poor alpha matte. We propose a new setting to use an additional
flash image to shed light on the foreground object. Our setting is robust to misalignments like background
objects and camera movements.

This clean and static background provides a very strong prior knowledge that objects that have not appeared
in the background image must belong to the foreground. With great assumption comes great restriction,
background matting cannot handle any types of movements that make the source image not aligned with
the background image.

In this paper, we resolve this problem from an opposite perspective. Instead of providing background hints,
we shed light on the foreground regions with flash photography. The rationale behind is that foreground
objects are typically closer to the camera and thus received more lights than the background. Taking
an additional flash input can not only provide strong foreground clues, it also enables a more flexible and
practical setting: 1) users are not required to take the additional reference image in advance (e.g., background
image in BGM), and the matting process can start together with filming; 2) main objects can move around,
and we can take a new flash image anytime during filming to adapt to the new scene.

To fully exploit flash priors, we devise the Flash and No-flash Net (FNFNet), which uses flash /no-flash image
pair to produce high-resolution portrait alpha matte and the foreground of the no-flash image. The estimation
is insensitive to moving foreground, background misalignment, and camera shaking. Our FNFNet consists of
two cascaded stages. The first stage aims to explore the interaction between flash and no-flash images, and
provides coarse estimations of trimap and initial alpha matte. Concretely, we propose a transformer-based
Foreground Correlation Module (FCM) to jointly identify illumination-irrelevant foreground appearances
across two inputs in a reciprocal manner. Moreover, we calculate a flash ratio map between flash /no-flash
images as a coarse indicator of foreground regions to supplement the alpha matte estimation. In the second
stage, the trimap and initial alpha matte are fed to the Boundary Matting Network, which has a unique
emphasis on producing fine boundary details of the mattes.

In order to train and evaluate our method and promote research on flash photography, we construct the first
flash /no-flash portrait matting dataset. It consists of more than 100 diverse videos captured using the green
screen, in total containing 3,025 well-annotated alpha mattes. We also collect dynamic videos of various real-
world scenes to compose dynamic background image pairs. Therefore our benchmark can be used to evaluate
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matting methods with static and dynamic backgrounds. Several trimap-free matting methods are compared
on this benchmark. Extensive experiments show that our proposed method achieves superior performances
on the scenarios with dynamic backgrounds, and our flash prior demonstrates comparable performance to
the background prior in static scenes.

In summary, our contribution is fourfold:

e We construct the first flash/no-flash portrait matting dataset. It consists of more than 100 diverse
videos with 3,025 well-annotated alpha mattes. We collect additional dynamic background videos,
together with static backgrounds, to form a benchmark for evaluating the matting performance on
both scenarios.

o Rather than relying on a clean background, we propose a deep flash prior, which enables a more
flexible and practical solution for real-time or live-streaming matting.

e We propose FNFNet to integrate flash photography into a deep neural network. It explores the
interaction between two differently illuminated foregrounds to extract high-quality alpha matte.

o Experiment results show that our model achieves state-of-the-art performance among other trimap-
free matting methods. More importantly, our method is insensitive to the dynamic background and
not restricted to well-aligned foreground or background between source and reference images.

2 Related work

2.1 Trimap-based Matting

Traditional methods often require a manually annotated trimap as additional information for solving the
matting problem, which can be classified into sampling-based methods and propagation-based methods.
Sampling-based methods (Ruzon & Tomasi, 2000; (Chuang et al., |2001; Wang & Cohen) [2007; |Gastal &
[Oliveiral 2010 [He et all [2011; Feng et al. [2016; Johnson et al) 2016) sample pixels from the labelled
foreground and background regions to get the color information, and then estimate the alpha matte of the
unknown region. Propagation-based methods (Sun et al. |2004; Levin et al., 2007; [2008; |Chen et al., [2013;
[Aksoy et al.l 2017)) build the similarity of neighboring pixels, trying to propagate alpha value from known
to unknown regions. Since the above methods only utilize low-level features, they seldom achieve good
performance in complex scenes. With the rapid development of deep learning, many methods (Yao et al.

[2024; |Cai et all 2022} [Park et al., |2022; [Lutz et al., 2018} |Tang et al.l 2019; Liu et al., 2021c) based on
neural network have been explored and have made unprecedented progress in image matting, which have
been comprehensively reviewed in [Li et al.| (2023bl); Lepcha et al.| (2023). Xu et al. 2017)) proposes
a two-stage neural network structure named Deep Image Matting (DIM) to obtain the coarse alpha and
refined alpha matte, respectively. They also collects the first large-scale matting dataset, which empowers
the development of many following works. Hou et al. (Hou & Liul, [2019) employs two encoders to extract local
features and the global context information respectively, and estimates foreground and alpha simultaneously.
Lu et al. presents IndexNet, which can dynamically generates indices as conditions to guide
the matting context modelling and operating. GCAMatting designs a Guided Contextual
Attention module to propagate global high-level features based on the learned low-level affinity. Cai et al.
disentangles image matting into two sub-tasks: trimap adaptation and alpha estimation, with
a disentangled framework proposed named AdaMatting to solve them. Yu et al. extend
the matting problem to high-resolution images relying on a patch-based method with several modules to
capture long-range matting contextual and handle information propagation. Zhang et al. (Zhang et al., [2021))
suggest propagating the trimap via temporal dimension to achieve video object matting using a temporal
aggregation module. In|Sun et al|(2021al) and [Liu et al.| (2021al), semantic classification of matting regions
is incorporated into the matting framework. Recently, some methods leverage diffusion algorithm
2020) to facilitate image matting, including diffusing in pixel space by diffusing a disturbed trimap
et al.l [2023) or pure noise until a clean alpha matte is produced, or diffusing in latent
space (Li et al|2024d). However, as trimap-based methods rely on a well-annotated trimap as the input for
generating plausible results, they often fail to be applied in real-time scenarios.
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2.2 Trimap-free Matting

Many recent works (Zhang et al., |2019; Dai et al., 2022; |Zhu et al., |2017; [Shen et al., 2016; (Chen et all
[2018} Liu et al., 2020; |Yu et all 2021b; |Qiao et al, [2020; Park et al., 2023; |Jiang et al., [2025)) try to
relax trimap input by adding a segmentation process before acquiring the final alpha matte, while matting
performance overly depends on the results of segmentation. HAttMatting (Qiao et al., 2020) introduces
a blended attention mechanism to integrate features. Self-guidance provided by Progressive Refinement
Network (PRN) module in [Yu et al.| (2021b) can deal with versatile guidance masks. LFPNet
learns long-range context features outside the reception field and propagates learned surrounding
features to help matting prediction inside the reception field. Sun et al. introduce flaw
detection as a sub-task to achieve automatic error-correcting in trimap-free portrait matting problems.
et al| (2022); [Li et al] (2023a); Sun et al| (2023); [Li et al| (2024a); |Gu et al| (2023); [Li et al| (2024b);
et al, adopt temporal information in the video as guidance to do the video objects or portrait matting.
However, the temporal priors relied on by these video matting methods may face challenges in various
dynamic backgrounds. Recently, some trimap-free matting methods (Ke et al., 2022; |(Chen et al., [2022bja;
let al;|2022; Ma et al.| |2023)) follow the idea of decomposing the matting problem into semantic prediction and
detail prediction and then considering fusion or collaboration between these two sub-objectives. However,
these methods usually perform worse than trimap-based methods in matting quality. Some methods take
advantage of the text-image correspondence prior (e.g., CLIP (Radford et al., |2021))) to achieve referring
image matting (Xu et al., 2024} [Li et al. 2023c). Some methods also try to directly solve the alpha via
in-context prior (Guo et al., [2024]), latent diffusion prior (Wang et al.,|2024])), or vision foundation model
let all |2024} |Li et al., 2024c)). Sengupta et al. (Sengupta et al., [2020) proposes Background Matting (BGM)
which only requires a pre-captured background image without foreground objects as auxiliary cues to help
determine the position of the foreground. This method achieves high-quality results. Based on
, Lin et al. further uses a two-stage network to realize real-time high-resolution

matting. However, background matting cannot handle dynamic backgrounds and large camera movements.

LI

2.3 Flash Photography Applications

The advantages of exploiting flash photography have been explored in many computer vision tasks. For
adopting flash and no-flash image pairs, specially, Sun et al. (Sun et all [2006) tries to recover the matte
based on the simple observation that the most noticeable difference between the flash and no-flash images
is the foreground object if the background scene is far enough away. Additional information given by
flash /no-flash image pairs is also explored in for saliency detection. However, they strictly
require perfect alignment for the foregrounds in flash and no-flash images, making it unsuitable for scenarios
involving dynamic foregrounds. Sun et al. (Sun et al) [2007) suggests adopting a Markov Random Field
to combine flash, motion, and color cues and model the flash effect using the histograms of the flash/no-
flash images. However, it strongly relies on several strict low-level feature assumptions like the background
consistency (i.e., near-bijective relationship for the background region) and obvious contrast due to flash in
foreground regions in flash/no-flash image pairs, making it fail when the foreground undergoes significant
pose variations, or when the background exhibits dynamic changes (e.g., new objects appearing), or the flash
contrast for the foreground is not obvious.

In our work, we explore the previously unaddressed connection between flash cues and high-level instance-
level representations. By modeling instance-level matching representations, our method effectively tackles
the challenges of dynamic flash matting, including variations in foreground pose and position, as well as
interference from dynamic backgrounds.

3 FNF Matting Dataset

To the best of our knowledge, there does not exist an available large-scale dataset containing flash and no-
flash image pairs that can be used for portrait matting. Therefore, we construct the first flash and no-flash
portrait matting dataset by combing foreground portraits (Fig. and dynamic background scenes (Fig.
together.
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Figure 2: Examples from our dataset: (a) flash/no-flash portrait frames with ground truth alpha mattes,
and (b) dynamic backgrounds.

3.1 Data Collection and Processing

Foreground Portrait. To collect the foreground portrait videos, we take the green screen as the background
and use the two latest smartphones for shooting. We invited 133 participants (66 males and 67 females)
for taking the videos. Each video is in a resolution of 1080P and lasts around 20 seconds. Participants
were asked to act on some common actions that happened during the online meeting for simulating the
real scenarios, such as turning around, talking, and playing with their hair. A hand-held lamp is used for
generating the flash and no-flash effects. We ensure the lighting conditions and camera settings are consistent
across all videos, to minimize individual bias and improve annotation convenience. For each video, we use
the Super Key function in Adobe Premiere to extract the foregrounds and alpha mattes automatically. In
practical, process a single video only takes less than 10 minutes, and the entire annotation process for the
dataset was completed in several days with 3 skilled workers. As shown in Fig. 2a] our dataset covers diverse
foreground portraits under common matting cases, such as long and spread hair (e.g., 4" row of Fig.
and transparent area (e.g., eyeglasses in 2"d row of Fig. . The portraits are also in different clothes and
poses to enhance the robustness of the model. In total, we obtain 1,322 flash and 1,703 no-flash portraits
with their well-annotated alpha mattes.

Dynamic Background. For background, we collect 714 videos under diverse real-world scenes from the
Internet. We sample frames from each video with an interval of 15, and we only select 20 frames at most
from each video. Several examples have been shown in Fig. 2H

We split the dataset for training and testing in the video-level and show the statistics in Tab. [I]
3.2 Dataset Statistics Analysis

To gain more knowledge from our dataset, we conduct some statistic analysis in this subsection and show
the results in Fig. 3]

3.2.1 Flash/no-flash Frames

The number of selected flash/no-flash frames of each person (i.e., video) is shown in Fig. We can see
that majority of video has no less than 20 flash and no-flash frames in total. Some video has more than 20
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Figure 3: The statistics of the proposed FNF Matting dataset. We show that the dataset has a rational
distribution of flash /no-flash foregrounds for each green-screen portrait video. We also illustrate some basic
properties (resolution and frame rate) of collected dynamic background videos and distribution in various
scenes.

selected frames, indicating they contain more various poses or complexity in the edge area of the portrait
(e.g., hair, eyeglasses, etc.) relatively. Videos with 20 selected frames are common in portrait variety and
normal quality, while videos with poor recording quality have less than 20 selected frames.
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Table 1: Statistics of our proposed dataset.

Training Set | Test Set | Total

Protrait Videos 111 22 133

Flash Frames 1,102 220 | 1,322

No-flash Frames 1,408 295 1,703
Dynamic

Background Videos 625 89 14
Dynamic

Background Frames 11,806 1,712 1 13,518

3.2.2 Resolution and Frame Rate of Dynamic Backgrounds

The left chart of Fig. shows the resolution distribution of dynamic background videos. It can be seen
that more than 80 percent of the videos have a resolution of 1080 x 1920, and almost all videos are high
resolution. And the vast majority of videos are horizontal, and a few videos are vertical. The right chart of
Fig. shows the frame rate (fps) distribution of our dataset. In this chart, we approximate some videos
with standard frame rates to the nearest integer frame rates when counting statistics (e.g., video in 29.97
fps is counted as 30 fps). Nearly half of the videos have a frame rate of 30 fps, and most of the videos are
recorded at a common frame speed. About 10 percent of the videos have a higher frame rate (e.g., 50 fps,
60 fps, etc.), which means that the difference between two adjacent frames of these videos may be smaller
in general.

3.2.3 Scenes of Background Videos

Our dataset consists of background videos across 29 categories, and the specific statistics are shown in Fig.
As can be seen, the category “city” is the most common one in our dataset, as most of our background videos
come from urban street views. There are also many videos shot in places such as building interiors and natural
landscapes. Almost all of them record dynamic changing due to camera shaking or movement, pedestrian
or vehicle movement, water flowing, or other dynamic changes. Examples of such changes can also be found

in Fig. 20
3.3 Mitigating Synthetic Data Discrepancy

In light of the disparities between composite data used for training and natural data, such as differences
in resolution, noise distribution, and composite artifacts between the foreground and background, we have
adopted techniques from |Li et al.| (2022)) to address these discrepancies. To tackle resolution differences, we
have meticulously selected background videos with high resolutions that align with those of the foreground
videos, as elaborated in Sec. [3.2.2] In addressing differences in noise distribution, we initiate the process
by applying BM3D (Dabov et al., |2009)) for denoising both the foreground and background. Subsequently,
we introduce Gaussian noise with the same deviation to further refine the composition. To further mitigate
composite artifacts, we incorporate the re-JPEG (Hou & Liul [2019) operation into our data augmentation
strategy for training samples.

4 Method

Considering the person in front of the camera cannot remain completely still and the background may also
undergo some dynamic changes in real-world video conference scenes, we need to take full advantage of the
assumption that flash has a significant enhancement of foreground color intensity. This leads us to establish a
non-local relationship between foreground person in flash and no-flash images, providing foreground location
cues to guide the matting of no-flash image.

To this end, we propose the Foreground Correlation Module (FCM), a dual-branch and Transformer-based
component to integrate implicit foreground information extracted from flash image to no-flash image features.
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Figure 4: Overview of our FNFNet structure. Given a pair of flash/no-flash images {I/, 1"/} as input,
we first down-sample them with a scale factor ¢/(¢/ < 0.1) to {I, Cf/, I:,f }, and calculate the smoothed flash
ratio map (7'1]: ) of the flash image according to the interior transfer of pixels affected by flash in the image
histograms. Then we randomly select g points from the truncated ratio map as flash cues, and adopt
a pretrained segmentation model to extract the trimap t/ of the flash image I with down-sample scale
c(c < 0.5). The Coarse Matting Network (CMN) takes {I, I"f ¢/} as inputs and predicts low-resolution
matting results of the no-flash image: trimap ¢7f, detail map d?/, foreground color F¥ with context hidden
feature F™f. The Boundary Matting Network (BMN) is further introduced to enhance the fine details and
up-sample d?/ and F™f to the original resolution (d"f,Fnf).

Moreover, inspired by [Sun et al.| (2007)); He & Laul (2014), we introduce the flash ratio map as another flash
cue, imprecisely labelling pixels in both flash and no-flash images with significant intensity changes as
foreground based on the image histogram. We furthermore embed FCM to the Flash and No-flash matting
network (FNFNet) to obtain robust and high-quality alpha matte of the no-flash image in the dynamic
background scene.

4.1 Model Overview

Fig. [4] demonstrates the pipeline of our proposed FNFNet. FNFNet includes a Coarse Matting Network
(CMN) and a Boundary Matting Network (BMN). The CMN has two inputs, one is the down-sampled
no-flash image I™/, the other is the concatenation of flash image I/ with its trimap ¢/ (which is obtained
by flash cues guided trimap prediction), two inputs are extracted to their high-level features respectively.
Then these two features are fed into the Foreground Correlation Module (FCM) for feature aggregation,
following three separate decoders to predict the trimap t?f , detail map d?f , and foreground prediction Fc"f
of the no-flash image. In BMN, we take the original no-flash image and reuse the first three layers of the
encoder in CMN to extract low-level textual features, enabling BMN to recover details and up-sample the
low-resolution outputs from CMN to produce the high-resolution detail map d™f and foreground prediction
F™f of the no-flash image. Then the alpha matte o™/ of the no-flash image can be obtained by compositing
the up-sampled trimap ¢*/ and detail map d"7.
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Figure 5: Demonstration of our flash ratio map. Foreground pixels are normally transferred from low
intensity to high intensity due to the flash. Takes the ¢-th bin in the histograms of no-flash and flash image
(h?f and hf respectively) as an example. If h?f > h{ , it means that the number of pixels transferred to
other bins is more than the newly added pixels. Therefore, pixels in the i-th bin of the no-flash image are
more likely to be foreground. Similar conclusion can be found in the j-th bin of the flash image if h?f < th- .

7
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(a) Original flash/no-flash pair (b) Flash ratio maps calculated
with down-sample scale ¢’. using Eq. directly.

J.

(c) Truncated ratio maps with § = 0.7. (d) Smoothed ratio maps using medium filter with » = 5.

Figure 6: Examples of flash ratio maps. For pairs of down-sampled flash /no-flash images in (a), (b) shows
the flash ratio maps computed by the differences between histogram distributions. We furthermore refine
(b) by increasing truncate threshold ¢ (c¢) and applying medium filtering to get a smoother result (d).

4.2 Flash Guided Flash-Trimap Prediction

The additional flash provides strong cues on revealing foreground objects. Before getting into the network,
we first derive an extra input of our framework, the trimap of flash image predicted using flash ratio map.

4.2.1 Flash ratio map

The flash ratio map is obtained by analyzing the differences between flash and no-flash histograms. The
reason for utilizing the image histogram is that it gives the distribution of the color intensity of each pixel
from the overall statistical level, making the produced flash ratio map insensitive to small background changes
and foreground movements.
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We denote the RGB color histogram of the flash images as Hf = {h£ }, and no-flash image histogram as
H = {hzf}, where h; indicates the corresponding number of pixel in the k-th bin. Here, both HY and
H™ are computed in the entire RGB space, which ensures that the same index value (i.e., “global” index)
refers to the same color bin in both histograms, ensuring consistency across both images. We observe that
the flash will modify and transfer some pixels in the low-intensity bins of the no-flash image histogram to
the high-intensity bins of the flash image histogram (illustrated in Fig. [5), we have the following analysis
with hf and b}’

For h£ > hZf , we can infer that some pixels in low-intensity bins of no-flash histogram have been transferred
to the k-th bin of flash image histogram due to the flash effect. Thus, pixels in the k-th bin of the flash
image histogram are more likely to be the foreground. While h£ < hZf indicates that some pixels in the
k-th bin of the no-flash image histogram have been transferred to high-intensity bins of the flash image
histogram. Similarly, pixels in the k-th bin of the flash image histogram have a higher probability of being
the foreground.

Based on the above analysis, given a pair of flash/no-flash image, their corresponding flash ratio maps 7’1/;
and 7/ at pixel p can be quantified as:

nf _pf
Moy “ My g Py~ Ty 2)
p f ’ P nf ’
hi hy?

where k,, is the bin index which contains p.

4.2.2 Flash-Trimap Processing

In order to get a flash ratio map that can provide a more accurate flash hint for further trimap prediction, we
extract the confident points as flash cues by following steps. We first calculate the flash ratio map 7/ of the
down-sampled flash image I ({, with the scale factor % using Eq. . Particularly, ¢’ is usually set to be less
than 0.1 to eliminate interference from irrelevant pixels as much as possible. Here we do not calculate 7™/
because 7™/ is often inaccurate while rf has a more accurate estimate of the foreground in the flash image.
In order to retain more reliable regions in rf, we first perform truncation on r/ using following equation:

! I'>4
f._ r, Ttz
"= { 0, otherwise (3)

where § is a threshold to control the truncation level considering the flash ratio map may not be completely
correct. Note that Eq. can also help to eliminate the undefined cases when hép or /zl'fp/ is 0 in Eq. ,
since r will become —oo but can be truncated to 0 directly given positive §. rf is further smoothed by
applying the medium filter with kernel size r for further refinement.

We showcase intermediate results before and after smoothing in Fig. [f] To ensure that selected points are
distributed evenly and do not accumulate in local areas, we randomly choose ¢ points from r/ as flash cues
and then map these points to the resolution of IJ. We employ a pretrained segmentation model to extract
the segmentation mask of the foreground, using I/ and the flash cues as input. Subsequently, we derive
the trimap ¢/ for I/ from the segmentation mask using an erosion-dilation operation. During training, to
enhance the training process for the subsequent end-to-end network, we directly apply the erosion-dilation
operation to the ground truth alpha o of I to obtain /.

4.3 Coarse Matting Network

Inspired by DeeplabV3 (Chen et al., [2017), our CMN has the encoder-decoder architecture, which includes
two separate encoders with ResNet-50 (He et al., [2016) structures, the Atrous Spatial Pyramid Pooling
(ASPP) modules, a Foreground Correlation Module (FCM), and three decoder networks for different types
of output.

10



Under review as submission to TMLR

e o s s s e e e

( 2 . nf / A
| Input % X Input / Z™ Output o
| features f embeddings 7t feature / X
\ 5 )

— — — — — — i,

Convolutional Block Attention Module (CBAM)

Channel Attention \( Spatial Attention

I Module Module |

1

X

( Linear-Flatten + Position Embedding )

Figure 7: Overview of the Foreground Correlation Module (FCM). FCM consists of two branches: T7
and T, each of which contains L y and L,y transformer layers respectively. Each layer in TS only have
Multi-head Self-Attention (MHSA), while in 7™/, each layer have the Multi-head Cross-Attention (MHCA).
The Convolutional Block Attention Module (CBAM) (Woo et al., 2018) is applied for the reshaped feature
outputted by T"f for feature re-attention.

4.3.1 Backbone Network

Given a pair of flash and no-flash images I/, I"f € RE*W*3 e first down-sample them with a scale factor
Lto 1/, 100 € RE**>3 and obtain one-hot trimap ¢/ € {0,1}¢ X% >3 of I7. As discussed in Sec.
I™f | and the concatenation between I and t{ are fed into the two non-shared encoders following the ASPP
module separately to extract their respective feature maps, denoted as f, 2™/ € R"*w*C regpectively. Here,
the ASPP module consists of three dilated convolution layers with dilation rates of 3, 6, and 9 to summarize
the contextual information.

4.3.2 Foreground Correlation Module

As depicted in Fig. E we feed zf and 2™/ into the FCM. Our objective is to establish an association between
the flash image and the no-flash information using a cross-attention mechanism. The leftmost branch, 777,
comprises L, ¢ identical cross-attention layers, which are designed to facilitate the connection and fusion of
the no-flash information with the foreground in the flash image. On the other hand, the rightmost branch,
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Tf, consists of L ¢ identical self-attention layers, focusing solely on extracting features from the flash image.
Both of these branches take input sequences with a length of h x w. To create these sequences, we apply
a linear projection followed by a flatten operation to the input features 2/, 2™/, resulting in corresponding
input sequences denoted as Z7, Z™ € RM*C" where C' represents the dimension of the embedding space.
Additionally, we incorporate learnable positional embeddings into these sequences.

Computation of Tf: The embedded sequences Z7 is fed into T. At each layer I in T/, we first calculate
the triplet (Ql]:l, Kljil, Vl]il) of Zl’il, the input of current layer. Then the self-attention SAIJL1 is given as:

Qf (K )7T)
Vd

We further calculate the multi-head self-attention M SA{:l with the residual connection by concatenating
m independent self-attention operation following a linear projection. Then, a feed-forward network (FFN)
with the residual connection is used to transform M SAlf_1 and obtain the output Zlf € Rhwx¢’
layer:

SA;:I = softmax( )(Vlil) (4)

of current

7zl = FFN/ ((MSA] )+ MSA] . (5)
We denote Z ff as the output of the last layer of 7/. Recall that L represents the layer number of 7.

Computation of T™f: At each layer "/ in T™f, we utilize the multi-head cross-attention to fuse flash image
features extracted from T/ with the input Z;" _fl. For multi-head cross-attention, denoted as M C’A?_f 1, we
first calculate the query(Q)Y,) from MSAJ  and the key (K]"Y,) and value(V,")) from Z £f. Then MCAJY,
can be similarly carried out based on Eq. . An FFN with the residual connection is applied for feature
refinement to produce the output sequence Zl"_f , of current layer:

ZM = FENM (MCAM ) + MCAM . (6)

We denote ZZf , as the output of the last layer of 77/. Finally, ZE,{ ; € RMwxC" g reshaped to shape of

R"*wXC and passed to the Convolutional Block Attention Module (CBAM) (Woo et al., [2018) for feature
re-attention both in spatial and channel-wise and obtain 2"/ for further decoding.

4.3.3 Decoders

Considering the distinct appearance of semantic and detail features, we adopt three non-shared decoders
(Dtrimaps Daetait, D foreground) to predict the low-resolution trimap, detail of alpha prediction, and foreground
color. Each of these decoders includes different number of Conv-BN-ReLU groups. In each group, the input
feature is bilinear-upsampled with a scale factor 2, and then concatenated with the shortcut feature following
a 3 x 3 convolution, batch normalization (loffe & Szegedy, [2015)), and ReLU activation (Nair & Hintonl 2010)).

The trimap decoder Dyyjmap only contains 2 groups of Conv-BN-ReLU considering Dyyimap only responsible
for coarse trimap estimation. It takes "/ as input and outputs the classification probabilities with 3
classes (foreground, background, and unknown region) of all pixel of Ifcf at i resolution of I7f, denoted
as SZCf € [o, 1]4%X4ch3. Then we directly up-sample sch to original resolution of I/ denoted as s%f €
[0, 1}%X%X3. By taking the Argmax operation, s”/ can be easily converted to the trimap prediction,
denoted as t7f € {0,1,2} €<%

The detail decoder Dgesqq; is responsible for predicting fine alpha matte in the unknown region. For pre-
serving rich low-level contextual features, Dgetqi; consists of 3 groups of Conv-BN-ReLU, and takes shortcut
feature of no-flash image encoder at 1/8 resolution of I/ as input. It also receives the Argmax operation
applied sch from Dirimap and concatenate it with midden features before going into the second group, fus-
ing semantic information in to better estimate detail alpha. Dgetqq finally outputs the detail alpha matte
dnf € [0,1]* > which is only meaningful in the unknown region.

The foreground decoder Dforeground consists of 4 groups of Conv-BN-ReLU and also takes z*/ as input.
Following [Lin et al.| (2021)), Dforeground predicts the foreground residual R and we then add the original
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image with clamping into [0, 1] to obtain the foreground color prediction of the no-flash image, denoted as
Fc"f € RExEx3, Dyoreground also produces the hidden features Hg’f € R%X%XW, which contains the
contextual information of foreground. In addition, both Dgeieit and D foreground have skip connections with

the no-flash image encoder (see in Fig. [4)).

4.4 Boundary Matting Network

To obtain the matting result of the no-flash image with the original resolution, we design the boundary
matting network to improve the matting result boundaries to high-resolution by incorporating low-level
features. For the trimap ¢7f, we directly take a bi-linear interpolation operation to up-sample it to the
original resolution, denoted as t"/. And for the detail map d?f and foreground residual R/, we treat them
differently for enhancement. We first adopt a bi-linear interpolation to up-sample the detail map feature (or
foreground feature) to % of the original resolution. Then, we reuse the first three layers from the backbone
network in CMN, including a 7 x 7 convolutional layers, a batch-normalization layer, and a ReLU operation,
to extract the low-level feature. We also apply several shallow convolutional layers with a small number of
channels to process detailed low-level information. In detail, the low-level feature is concatenated with the
detail map feature and passed into two groups of 3x3Conv-BN-ReLU to help restore the matting details.
Furthermore, the output feature that has been interpolated to the original resolution, is concatenated with
the original no-flash image and passed to another two groups of 3x3Conv-BN-ReLU (with the last ReLU
removed) to obtain the final enhanced and high-resolution detail map (or foreground residual), denoted as
d"f (or R™).

4.5 Loss Function
4.5.1 Trimap Loss

To learn the trimap of the foreground, we adopt the cross entropy loss on the semantic classification proba-
bilities s:

3
Lsem(s) = — Z s&rlog s, (7)
c=1

where s¢ € [0,1] is the classification probability of ¢-th class in s and s € {0, 1} is the corresponding label.
s¢r is generated by the dilation and erosion operation on the ground-truth alpha.

4.5.2 Alpha Loss

Before calculating the alpha loss, we convert the trimap prediction ¢ to the corresponding binary class
masks of the foreground, background, and unknown region, denoted as {t/9,¢%9 t“"}. Then, the two alpha
losses, calculated on both unknown region (Lgetqi) and the whole image (Laipha), are given by the following
equations.

5

Laetait(d, ") = t""{||d — agr|l + |Vd = Vagr|i + > [|Lap*(d) — Lap*(acr)|h}, (8)
k=1
5
Lapha(a) = o = agrl1 + [Va = Vagr|: + > | Lap*(a) — Lap*(acr) |1, (9)
k=1

where d is the predicted detail map, agr is the ground-truth alpha, and « is the alpha prediction given by
a = d-t"" + 9. In addition to directly use the L1 loss, we also use the Sobel gradient operator (V) and
Laplacian pyramid (Lap®(-)) loss (Hou & Liul 2019)) to get better results.

4.5.3 Foreground Loss and Re-construction Loss

To learn the foreground color prediction, we adopt L1 loss on the foreground prediction F' where agr > 0:

Lrg(F) = [l(acr >0)© (F = Fer)l, (10)
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where © is the Hadamard product.

We also use alpha prediction to re-construct the image using Eq. and take the L1 loss when training with
the synthetic data:
Lrecons(a) = HO['FGT‘F(I_@)'B_IHh (11)

where B is the background for compositing to the training data, and I is the original image.

4.5.4 Overall Loss

We first train the Coarse Matting Network using following loss:
LCMN - ‘Csem(sgf) + £detail(d?f7 t?f(un)) + Ealpha(a?f) + ‘C’fg (Fcnf) + Lrecons (a?f)a (12)

where c¢ is the down-sampling scale in CMN.

Once the training of CMN converges, we attach BMN to the CMN and train the entire model jointly using:

Leun = Loun + Lactai(d™ 177 4 Lopna (™) + Ly (F7). (13)

5 Experiment evaluation

5.1 Data Preparation

5.1.1 Data Synthesis

Foreground Acquirement. In addition to training with our own constructed dataset, we also adopt
foreground samples in VideoMatte240K (Lin et al.,[2021) dataset for training. For a foreground video in this
dataset, we select 10 frames with a large and uniform time interval and adjust their V channel in the YUV
space to enhance the brightness. It forms flash /no-flash image pairs with the remaining frames of the video.
For implementation, we use the adjust_gamma function in skimage . exposure to adjust the V channel, where
the gamma value is randomly selected in [0.2,0.5]. Although the pseudo flash image generated in this way
is far from the real flash image, our model has no selectivity for the enhancement of foreground object color
intensity, these images can effectively prevent the model from over-fitting with a small amount of data. Our
model is trained on the mixed dataset of our real flash/no-flash image samples and pseudo flash/no-flash
image samples from VideoMatte240K.

Composite with Backgrounds. Following Eq. , we can build flash /no-flash image pairs by compositing
flash/no-flash foregrounds and their corresponding alpha matte onto dynamic background pairs under the
same scene. During training, we first pair flash/no-flash foregrounds of the same person one by one. Then
we select two background images of the same scene with a random interval from all the background images
as a dynamic background pair. To enhance the robustness of our model to static backgrounds, we replace a
certain dynamic background pair (B;, B;) with a static background pair (B;, B;) with a probability of 0.4,
where (B;, Bj) represents two different background images but from the same scene and (B, B;) represents
two identical background images. The background pair is composited with the previous foreground pair to
obtain flash/no-flash image pairs for training.

Test Set Building. To build the test set, we composite pairs of flash/no-flash foreground with pairs
of pre-randomly scrambled dynamic background images alternatively. A flash/no-flash foreground pair is
composited with five different dynamic background pairs to form the test set.

Adapt to Real-world Domain. The model trained only on the synthetic data often suffers from the
domain shift problem, i.e., the model has a poor performance on real-world data. This is mainly due to
the compositional artifacts and invariable texture of these samples, leading to over-fitting of the model. To
eliminate such a domain gap, in addition to introducing some data augmentation methods, we directly use
PM-10K, a real-world portrait matting dataset proposed by [Li et al.[(2022) to transfer our model to the real-
world domain. We use the same manner discussed above to generate the corresponding pseudo flash image
for every real-world training sample in PM-10K dataset. Examples of generated training samples are shown
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Table 2: Quantitative results on the synthetic data on our dataset (testing set). Best results under dynamic
background are marked in blue, while those in green are the best under static backgrounds. A ’{’ indicates
the model is retrained using our mixed training dataset. (BG=Background, FG=Foreground)

Evaluation Metrics
MSE| [ SAD] | Grad] [ Conn]
MODNett (Ke et al.| [2022) 1.751 | 4744.656 | 4188.432 | 3491.866
SHMj{ (Chen et al.||2018) 3.289 | 5931.676 | 5462.052 | 5287.020

BG Type | Input Image Type Method

LFf (Zhang et al. ;2019) 3.504 | 6582.503 | 5911.190 | 5445.151
HATTY (Qiao et al.|[2020) 3.651 | 6892.154 | 6529.803 | 5792.352
RVM{ (Lin et al.||[2022) 1.981 | 4270.903 | 7097.109 | 4133.624

- Single FG image | SGHMT (Chen ot al.| [2022b) | 1.830 | 3859.964 | 4160.247 | 3837.104
PPMT (Chen ot al.| 2022a) | 2.891 | 5726.036 | 4793.306 | 4907.765
GFMT (Li et al.| [2022) 2.265 | 5415.296 | 4674.963 | 4321.387
MADMT (Li et al.|[2024c) | 2.374 | 4480.037 | 3959.617 | 2202.677
SmartMat{ (Ye et al.| [2024) | 1.034 | 2450.608 | 4019.710 | 1753.940
P3M-Netf (Ma ot al.| 2023) | 1.733 | 3034.637 | 5130.156 | 2828.504

Static FG BG BGMv2 (Lin et al.:2021) 0.396 | 1112.788 | 1851.081 992.213
Flash | No-flash Ours 0.634 | 1767.632 | 3697.195 | 1589.147

FG BG BGMv2 (Lin et al.|[2021) 115.7 | 116675.8 | 32762.20 | 116327.7

FG BG - 1.212 | 2744.400 | 5314.358 | 2615.139

Dynamic FG Other FG BGMv27t (Lin et al.|[2021) 2.547 | 4415.687 | 7394.905 | 4352.937
Flash | No-flash 1.989 | 3768.433 | 6802.648 | 3701.530

Flash | No-flash Ours 0.652 | 1804.741 | 3742.230 | 1626.339

5 L8

Pseudo flash image No-flash image GT alpha
Figure 8: Example of generated pseudo real-world flash/no-flash samples from PM-10K (Li et al., [2022)).

in Fig. 8] However, we only brighten the foreground part of each sample by taking the weighted average of
brightened image and the original image. The weight mask is obtained by applying erosion operation and
averaging filter of the GT alpha matte.

5.1.2 Data Augmentation for Training

Moreover, we do the following augmentation operations for each pair of composited flash/no-flash image
pairs. The operations include affine transformations, horizontal flipping, brightness, hue, and saturation ad-
justments on both foreground and background. We also apply blur, sharpening on the foreground randomly.
The foreground is resized randomly and also placed to a random position to accommodate the perturbations
caused by the movement of characters in the real world. After generating the training samples, each batch
of images is cropped to a random height and width between 960 and 1600 to adapt the model to inputs of
different resolutions.

5.2 Implementation Details

We use DeeplabV3 (Chen et al., 2017) weights pre-trained on Pascal VOC 2012 (Everingham et al.l 2010))
for semantic segmentation to initialize the backbone network and ASPP module, and adopt Adam as the
optimizer. In the initial training of CMN, we set the down-sampling rate ¢ and batch size to 0.25 and 8
respectively. To learn the trimap prediction, the kernel size of erosion-dilation operation in generating GT
trimap and ¢/ is set to be 25 x 25. In FCM, we set L,y = Ly = 2. And the learning rates are set to 5e-5
for the backbone, and le-4 for ASPP, FCM, and three decoders. In the joint training of CMN and BMN,
the batch size is 4 and the learning rates of the backbone, ASPP, FCM, decoders, and BMN are set to
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Figure 9: Qualitative results on the synthetic data with static backgrounds.

No-flash images

. Flash image Given background BGMv2 MODNet MAM
(Source image)

No-flash images

Flash image Given background BGMv2 MODNet MAM

(Source image)
RVM SGHM P3M-Net SmartMat Ours GT

Figure 10: Qualitative results on the synthetic data with dynamic backgrounds.

le-5, le-5, le-5, 2e-5, 3e-5, 3e-4 respectively. In CMN training, we use a single Nvidia GeForce RTX 3090
to accelerate training. In the joint training, two Nvidia GeForce RTX 3090 cards are used for distributed
training. For inference and following evaluation experiments, we set ¢’ = 20, r =5, § = 0.7, and ¢ = 5 in the
flash guided trimap prediction process. We also use Segment Anything Model (SAM) (Kirillov et al., [2023)
as the pretrained segmentation model.

5.3 Evaluation Metrics
We use four common metrics proposed in Rhemann et al.| (2009) to measure the quality of the alpha matte
prediction with ground-truth alpha matte, including mean square error (MSE), the sum of absolute difference

(SAD), the gradient difference (Grad) and the connectivity difference (Conn). All MSE values are scaled by
1073,

5.4 Comparisons on Synthetic Data

We composite testing foreground videos and testing dynamic background videos of our dataset introduced
in Sec. |3| to build the test set, and perform both quantitative and qualitative comparisons on it.
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Table 3: Ablation study on the proposed FNF test set with dynamic backgrounds.

Evaluate metrics Evaluate metrics

Methods I SreprTSADT [ Grad] | Comnl O I'NMSE[ | SADL | Gradl | Connl Kernel Size. |-y ngﬂ““e ‘éi;‘(ﬁb T
Basic 1.874 | 5153.745 | 9239.828 | 5783.462 0.4 | 2.381 | 5769.857 | 6834.817 | 4743.609 e EammE e e B
FSepDecoder | 1.729 | 4426.630 | 7239.828 | 4330.583 05 | 1.214 | 2996.780 | 4970.955 | 2498.168 T T L B Tk T
TBMN 1212 | 2744400 | 5314.357 | 2615.139 0.6 | 0.794 | 2257.089 | 4275520 | 1841.292 (Y et o e ol e e
77 1197 | 2617.628 | 5035.997 | 2380.563 0.7 | 0.652 | 1804.741 | 3742.230 | 1626.339 B I} o B o i
717 0.836 | 2005.576 | 4257.153 | 1885.072 0.8 | 0.701 | 1932.605 | 3861.104 | 1801.177 5;§5; 05 243‘7)';44 150,305 | 2353.018
TCBAM 0.652 | 1804.741 | 3742.230 | 1626.339 0.0 | 0.893 | 2160.262 | 4342540 | 2389.265 : : - :

(c) Kernel size of erosion-dilation
for generating GT trimaps. Larger
kernel size of erosion-dilation will make

(a) Each component. Progressively at- (b) Flash ratio map trunca-
taching each component can significant tion threshold §. Using lower
improve the performance, demonstrating or higher ¢ will result in inaccu-

. the performance worse.
importance of each module. rate tf thus degrade the perfor- p
mance.
Medium Filter Evaluate metrics . Evaluate metrics
Kernel Size MSE] SADJ] Grad| Connl 1 MSE] SAD] Gra l(l Connl Segmentation Evaluate metrics

3 0.652 | 1804.810 1626.490 3| 1.199 | 2641.574 7 ’()‘SZ )1‘) model MSE] SAD] Grad] Conn]
5 0.652 | 1804.741 1626.339 4] 0.686 | 1819.145 SAM 0.652 | 1804.741 | 3742.230 | 1626.339
7 0.652 | 1804.740 1626.338 5| 0.652 | 1804.741 InterFormer 0.684 | 1815.367 | 3801.018 | 1652.824
9 0.652 | 1804.741 374) 231 | 1626.339 6 | 0.652 | 1804.742

(f) Pre-trained segmentation model
for generating flash trimap. Our
method is not selective for different seg-
mentation models.

(d) Kernel size of medium filter for (¢) Number of confidence
generating flash trimap. The effect of points ¢ for generating flash
adopting different medium filter kernel on  trimap. Smaller ¢ results in
the performance is negligible. worse performance.

5.4.1 Quantitative Comparison

For quantitative comparison, we benchmark one background-based matting method (BGMv2 (Lin et al.
2021)), and several trimap-free matting methods including MODNet (Ke et al., [2022), SHM (Chen et al.
2018), LF (Zhang et all 2019), HATT (Qiao et al} [2020), RVM (Lin et al., lm[), SGHM (Chen et al.
2022b), PPM (Chen et al., 2022a)), GFM (Li et al. [2022), and P3M-Net (Ma et al., 2023|) We also include
two interactive matting methods, including SmartMat (Ye et al., 2024) and MAM (Li et al., 2024c)). Since
SmartMat supports automatic matting originally, we apply it in such mode directly. For MAM, since it
requires user interaction as input, we utilize one of the state-of-the-art detection models (GDINO
2025)) to obtain the bounding box of the foreground in the no-flash image (with the text input for GDINO
set as “foreground person”) as prompt for MAM for further alpha prediction. For a fair comparison, all
methods are retrained on the same mixed dataset. For MAM, we follow its original training settings, which
only train the matting components and let the SAM (Kirillov et al.,|2023) backbone frozen. In addition, we
retrain the BGMv2 with three types of input and evaluate them respectively, including with/without subject
image pairs, different image pairs of the same subject, and flash/no-flash image pairs. The comparison with
the BGMv2 is performed with both static and dynamic backgrounds. For static background, the input image
pair has the same background. For dynamic background, the backgrounds of the input image pair are under
the same scene but are different caused by dynamic changes. All the test samples for testing are resized to
a resolution of 1280 x 720.

The quantitative comparison result is shown in Tab. 2 According to the results, we found our model shows
superior performance on dynamic scenes while slightly falling behind BGMv2 on static scenes. This is mainly
because modeling static and dynamic scenes involves contradictory objectives: static scenes prioritize the
detection of foreground inconsistency solely, while dynamic scenes require modeling high-level foreground
correspondences under motion and pose variations in both foreground and background. It is also worth
knowing that dynamic scenes are a generalization of static ones, and training for broader generalization often
reduces overfitting to simpler tasks, leading to slightly lower performance on static cases. This phenomenon
aligns with the bias-variance dilemma (Zou & Hastie, [2005; [Kohavi et al.l [1996; |Geman et al.| [1992)), showing
that improving generalization may sacrifice some task-specific accuracy. Despite this, our model demonstrates
strong generalization, excelling in dynamic backgrounds and effectively handling both static and dynamic
scenarios. This versatility is a key strength, even if it comes at a small cost in static performance compared
to static-specific methods like BGMv2.

Moreover, when training with flash/no-flash image pairs using the architecture of BGMv2, it performs much
worse than our model. This also justifies the rationality of our model architecture for predicting alpha matte

17



Under review as submission to TMLR

under dynamically changing backgrounds using flash/no-flash pairs. Also, since the input of trimap-free
based methods is only one single image and does not contain any priors, they do not perform well in some
diverse backgrounds. The corresponding quantitative results also show their performance is weaker than our
model in the test set. It is worth noting that our proposed method still outperforms MAM (Li et al.| 2024c)
on the dynamic scenes although it adopts SAM (Kirillov et al, 2023) as backbone. However, in addition to
generating ¢/, our model does not directly use any external segmentation model to solve the alpha matte of
the no-flash image.

5.4.2 Qualitative Comparison

We also select several latest state-of-the-art trimap-free methods (MODNet (Ke et al2022), RVM (Lin et al.,
2022), SGHM (Chen et al.,[2022b)), P3M-Net (Ma et al.,|2023)), SmartMat (Ye et al., |2024)), MAM (Li et al.,
2024c)) and BGMv2 (Lin et all [2021) for qualitative comparison. When dealing with static background,
as shown in Fig. 0] we can see the performance gap between BGMv2 and our model is only reflected in
the details of the edges in static backgrounds. However, BGMv2 performs poorly when the background
is not aligned due to objects moving or camera shaking, which is shown in Fig. [I0] Most of trimap-free
methods also suffer from interference from background salient objects, but our model is robust to dynamic
backgrounds and also have well performance.

5.5 Ablation Study
5.56.1 Component Analysis

To demonstrate the effect of the proposed Foreground Correlation Module and Boundary Matting Network,
we first define the baseline as a network that only includes the encoder, ASPP module, and a single decoder
without down-sampling. This baseline takes I™f as input only, and we denote it as Basic. We further
replace the single decoder with three separate decoders, denoted as SepDecoder. Then we progressively
attach BMN with down-sampling before the encoder, and each branch of FCM to build the corresponding
combinations. These combinations are all retrained on the mixed dataset, and quantitative evaluation tests
are carried out on the test set under dynamic background. The quantitative results are shown in Tab. [{a]
We can see that decomposing the matting problem into semantic and detail predictions separately can
effectively improve the matting performance. The BMN can recover fine details to predict alpha matte with
higher-quality in the original resolution. However, attaching 7"/ with only self-attention blocks has a minor
performance improvement, since a single no-flash image does not contain any foreground cues in various
dynamic scenes. We further start to utilize the guidance information from I/ by taking (I"f, 1/ ,tZ ) as
input, and introduce T¥ and add cross-attention blocks in 7™ for modeling the foreground correspondence,
resulting in a significant improvement. On this basis, the model with CBAM module adopted before T"f
can achieve better performance, showing the effectiveness of feature re-attention operation.

5.5.2 Hyper-Parameter Analysis

We also conduct ablation studies on various hyper-parameter aspects, including the truncation threshold §
of the flash ratio map (presented in Tab. , and the kernel size of erosion-dilation for generating the ground
truth trimap (shown in Tab. [id).

For the truncation threshold &, we observed that using a smaller threshold value degrades performance, as
it results in a ratio map containing more inaccurate regions with low confidence scores. Conversely, a larger
0 overly truncates regions with higher confidence, leading to inaccuracies in mask prediction for the flash
image and a deterioration in model performance.

For the kernel size for erosion-dilation, we observed that employing a kernel size smaller than 25 x 25 can
lead to slight improvements in model performance. Conversely, using a larger kernel size introduces more
unknown regions in the ground truth trimap, potentially covering the entire portrait area. This forces the
detailed branch to learn semantic information, ultimately resulting in a decrease in model performance.

We also explore the effect of adopting different kernel size of the medium filter and different number of
confidence points ¢ when generating the flash trimap ¢/. The corresponding quantative ablation results are
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presented in Tab. and Tab. [d¢] respectively. We found that using smaller or larger filter kernels has
minimal impact on performance. However, larger kernels increase computational cost due to higher sorting
complexity, leading us to adopt a median filter kernel size of 5 in this study. Regarding the number of points
q, smaller values may result in obvious performance degradation, as insufficient confident points may fail to
fully represent the foreground in the flash image, leading to incomplete or inaccurate flash cues. Conversely,
larger ¢ values have almost no impact on performance.

5.5.3 Pre-trained Segmentation Model

The flexible design of our method allows the pretrained segmentation model for generating flash trimap can be
replaced with any other more lightweight model to generate accurate flash cues. Such a substitution would not
impact the overall performance of our approach, ensuring robustness and adaptability across different model
choices. To further verify this, we conducted an ablation study by replacing current SAM
with InterFormer (Huang et al}[2023)), a lightweight, real-time interactive image segmentation method
that supports point-prompt inputs to generate segmentation masks, similar to SAM. The experimental
results (showed in Tab. demonstrate that our model’s performance remains largely unaffected by this
substitution. Moreover, the use of InterFormer (Huang et al| 2023|) accelerates the pre-processing stage,
further enhancing the practicality of our approach.

5.6 Environmental Robustness Evaluation

To assess the robustness of our model under varying light conditions, we conduct experiments in three specific
lighting environments, which included:

1. A strong light environment (illustrated in Fig. [11a)): Despite the significantly reduced difference
between the flash image and the no-flash image in this scenario, our model could still extract correct
flash cues and predict accurate alpha mattes for the no-flash image. This is attributed to the
preprocessing of the flash ratio map, which includes truncation and median filtering operations.

2. An environment with additional light sources in the background (shown in Fig. : Given that
the flash ratio map is calculated based on the difference between the flash image and the no-flash
image, it remains unaffected by background light sources under the flash photography assumption.
Consequently, our model could successfully predict the correct alpha matte.

3. An environment with specular objects (depicted in Fig. : When the light reflected by specular
objects is not overly strong, the truncation and median filtering operations effectively filter out their
impact, ensuring good model performance. However, in cases of excessively strong environmental
light, such as a person facing the sun, where the flash is ineffective, our model may struggle to handle
the situation. Additional discussions regarding this limitation can be found in Sec. [5.10}

In addition to assessing our model’s performance under various lighting conditions, we also conducted eval-
uations under different flash conditions, encompassing:

1. Foreground-to-camera distance (illustrated in Fig. : We ensured that the other two conditions
remained unchanged while varying the foreground-to-camera distance. Despite the resulting reduc-
tion in flash differences between the flash image and the no-flash image, our model effectively utilized
these differences as flash cues for prediction.

2. Flash intensities (shown in Fig. [I1€): Similar to the previous scenario, we kept the other two
conditions constant while adjusting flash intensities. Again, our model successfully harnessed the
flash differences for accurate alpha matte prediction.

3. Flash color temperature (depicted in Fig. [11f): We illuminated the foreground with three different
color temperatures (3,200K, 4,400K, and 5,600K from top to bottom) to acquire flash images. Despite
the differences in color temperature, influenced by the flash, most foreground pixels exhibited an
intensity increase. Since the flash ratio map is derived from pixel intensity enhancement, areas
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Figure 11: Evaluation in different light environment (a-c) and different flash conditions (d-f).
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Figure 12: Comparison With BGMV2 Lin et al.| (2021)) on real-world data captured by a smartphone. All the

background provided to BGMv2 |Lin et al.| (2021)) is dynamic.

with higher confidence in the flash ratio map continued to represent the foreground. Consequently,
our model accurately predicted the alpha matte of the no-flash image using flash images obtained
under varying color temperatures. This demonstrates the robustness of our model to flash color
temperature variations.

5.7 Evaluation on Real-world Data

We also capture some real-world videos using a smartphone containing flash and no-flash frames in dynamic
scenes, and perform comparisons with BGMv2 and the four trimap-free methods.

Fig. shows the comparison between our model and BGMv2. Since the basic assumption of BGMv2 is
all pixels in the background are aligned, pixels changed in background will be considered as foreground,
which causes the failure of BGMv2 in the dynamically changing regions. Moreover, the misjudgment of the
semantic information also causes poor performance of boundary details prediction (e.g., hands, eyeglasses)
for BGMv2.

Qualitative comparison with trimap-free methods on real-world data is also shown in Fig. Although
MODNet can predict alpha matte with clearer details (e.g., hair, eyeglasses), it usually
failed in the semantic prediction. For RVM , it can predict the semantic information of the
task well. However, since RVM up-samples the prediction results based on Deep Guided Filter (DGF) @
(2018)), resulting in unclear predictions for some regions such as glasses and fingers. SGHM [Chen et al.
(2022b)) and P3M-Net also suffer from semantic prediction errors in some challenge cases,

while our model is more robust and can produce alpha mattes with high-quality details.

21



Under review as submission to TMLR

..’_.’

(2022) RVM |Lin et al.| (2022) MAMLI et al.| (2024c)

Flash image  No-flash image MODth Ke et al.

A Bﬂ’ A 4

SGHM Chen et al. 2022b P3M-Net Ma et al.| (2023 SmartMatYe et al.| (2024) Ours
Flash image  No-flash image MODNet [Ke et al.| (2022) RVM [Lin et al.| (2022} MAMLI et al|(2024c)
SGHM |Chen et al.| (2022b)) P3M Net [Ma et al.| (2023) SmartM'}tYe et al.| (2024) Ours

Flash image  No-flash image MODNet [Ke et al.| (2022) RVM [Lin et al.| (2022) MAMLI et al.| (2024c)

3 H“H“H“H

SGHM |Chen et al.| (2022b) P3M-Net Ma et al.| (2023 SmartMatYe et al.| (2024) Ours

Figure 13: Comparison with trimap-free methods on real-world data captured by a smartphone.

Table 4: Quantitative comparison with baselines in the dark environment on our collected benchmark. Our
method outperforms all the baselines in such low-light conditions.
Evaluate metrics

MSE]| SADJ| Grad] Connl

BGMv2 [Lin et al] (2021)) 122.1 118376.4 19102.02 112306.5

MODNet [Ke et al/ (2022) 21.58 | 23307.67 14334.61 17390.03

RVM [Lin et al[(2022) 1.658 | 4388.372 | 3992.540 | 3562.170

SGHM |Chen et al.| (2022b) | 1.014 | 2547.016 2652.587 1940.017

P3M-Net [Ma et al] (2023 1.258 | 2943.804 3147.441 2241.799

Methods

MAM [Li et al{ (2024c) 2.157 | 5329.854 3131.071 4503.777
~ SmartMat [Ye et al. | (2024) 1.251 3048.106 5870.643 2322.956
Ours ‘ 0.863 | 1908.671 | 2174.382 | 1763.055

5.8 Experiemnts in Low-light Environment

To further evaluate the effectiveness of our model, we conduct following experiments in the low-light envi-
ronment. In such scenario, the contrast of foregrouds in the flash image and no-flash image will be very
strong, which is beneficial for extracting robust guidance for the foreground from the flash image.

To verify this, considering there is no existing dynamic flash matting test set in low-light environment for
evaluation, we collect a new benchmark by the following steps. We invited five participants to take the
totally ten video clips in low-light environment using a mobile phone as camera. All the clips was captured
in different outdoor scenes in evening. We also used a hand-held lamp to light the person intermittently
during video recording process for further acquiring flash frame. We also ensured the camera parameters
remain the same (e.g., ISO, shutter speed) during taking the video in a single scene. For each video, we
selected five representative frames from both the flash and no-flash sequences, and manually annotated GT
alpha matte for them using Adobe Photoshop. Finally, we build a benchmark with 50 flash /no-flash image
pairs for evaluation in low-light environment.
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Figure 14: Qualitative comparison with baselines in the low-light environment. Zoom in for better viewing.

We then tested both the baselines and our method on this benchmark. The corresponding quantitative
results are shown in Tab. We found that even without including low-light data during training, our
method still exhibited significant advantages over the baselines. This is because the stronger foreground
contrast in low-light conditions allows the flash image to provide more effective guidance for matting the
no-flash image. We also showcase the qualitative comparison in Fig. We can see that BGMv2 [Lin et al.
(2021) and MODNet [Ke et al.| (2022) failed to generalize to the low-light environment. Although other
trimap-free baselines show good performance in such scenarios, they tend to predict more blurred alpha in
the boundary regions, especially for SGHM |Chen et al.|(2022b)) and P3M-Net |Ma et al.| (2023)). SmartMat|Ye
et al.| (2024)) can produce more accurate alpha but with more artifacts and noise-like patterns in some cases
(e.g., the first sample in Fig. . In contrast, our method can generate more accurate alpha mattes even the
no-flash image is slightly degradated due to the low-light condition, which also demonstrates the robustness
of our model in real-world scenarios. In future work, we plan to collect more data in low-light environments
to further advance research on the flash matting problem.

5.9 Model Complexity Comparison

We conduct a model complexity comparison, which encompasses the number of parameters (M), compu-
tational complexity (GMac), and inference time (ms), as detailed in Tab. For the backbones, we use
MobileNetV2(Sandler et al., [2018) for MODNet (Ke et al. [2022), VITAE-S (Xu et all [2021)) for P3M-
Net (Ma et al. [2023), DINOv2-ViTS14 (Oquab et al., [2024; |Dosovitskiy et all 2021]) for SmartMat (Ye
et al [2024), SAM-B (Kirillov et al| [2023|) for MAM (Li et al 2024c|), and ResNet-50 (He et al., 2016
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Table 5: Comparison of number of model parameters (M), computational complexity (GMac), and inference
time (ms). For ours, (1%% frame) and (other frames) represent forwarding the first no-flash frame and the
flash image initially and forwarding other no-flash frames with given flash image features, respectively.

Method #P(?\I/Sms ((é?\rﬁi) Infer. (ms)
BGMv2 (Lin et al} 2021) 40.25 17.47 13.27
MODNet (Ke et al), 2022) 6.49 64.95 27.90
RVM (Lin et al | [2022) 26.89 11.49 8.89
SGHM (]Chen et al.L |2022b|) 40.25 25.81 25.96
P3M-Net (Ma et al.| |2023|> 39.48 300.39 36.79
MAM (Li et al; [2024c) 96.45 | 383.02 533.2
SmartMat (Ye et al} 2024) | 26.89 | 228.73 |  38.96
Preprocessing 93.74 370.47 122.32
Ours (1 frame) 20.09 60.29 34.06
Ours (other frames) ' 44.85 28.69

for the remaining models. To assess inference time, we resized the input image to 1280 x 720, and the
reported inference times were obtained using an NVIDIA RTX A5000. We also report the complexity of the
preprocessing stage of our model, which includes generating the flash ratio map and a segmentation process
(using SAM-B (Kirillov et all [2023)) to obtain ¢/.

We report the computational complexity and inference time for our model in two distinct cases. The first
case, denoted as 15t frame, involves the model taking I Cf , ]gf , t{ I/ as input and working end-to-end. In
the second case, denoted as other frames, the computation result of the flash image until T is given,
and only new no-flash frames are forwarded, significantly reducing computational costs. Comparatively,
BGMv2 and RVM exhibit lower computational complexity and inference
time. This can be attributed to several factors, such as BGMv2 using a single decoder for direct alpha
matte and foreground color prediction and RVM operating at lower resolutions and performing up-sampling
through DGF directly at the end of processing. Furthermore, SGHM (Chen et al [2022bj)
only predicts alpha matte without foreground color, resulting in a lower computational complexity compared
to our model. For MAM (Li et al [2024c)) and SmartMat , they have relatively higher GMac
since they adopt ViT (Dosovitskiy et al [2021)) as backbone. Even if we choose the lightest version of SAM
(SAM-B), MAM still suffers from high computational complexity and inference time.

Regarding our model, despite having a preprocessing stage with relatively higher complexity (since SAM
is used) at the beginning, we observed a significant reduction in computational complexity and inference
time when forwarding only new no-flash frames, while still maintaining competitive performance. This
optimization is especially noticeable in the “only-no-flash forwarding” scenario, where our model’s inference
time closely aligns with that of MODNet and SGHM (Chen et all [2022b)), despite our
model’s larger size. In practical application like video conference, since the preprocessing and “15* frame
forwarding” stages typically only need to be performed once at the beginning, the overall efficiency of our
model is comparable to other methods.

While it is true that our model boasts a larger number of parameters compared to other models, this is
primarily attributed to our use of two separate ResNet-50 encoders that do not share weights, as well as the
inclusion of the FCM module. Our ablation experiments, as detailed in Sec. [5.5] demonstrated the essential
roles played by these two modules in establishing the connection between the flash image and the no-flash
image foreground. These modules contributed significantly to the overall performance improvement of our
model. In future work, we will explore the development of more lightweight modules for flash image encoding
and foreground correction.
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Figure 15: Extreme cases. Our method is susceptible to the effects of flash photography assumptions that
are not met in such scenes with extreme light conditions, e.g.no enough flash contrast on the foreground
in the environment with very strong sunlight (a). Other challenge cases such as large motion variation (b)
or blurred image caused by extreme temporal conditions (e.g., fast movement) can also cause our model to
produce suboptimal results.

5.10 Extreme Cases Analysis

Our model performs reliably across a wide range of typical scenarios; however, failures may occur under
specific, extreme conditions, which we systematically categorize into two aspects as following.

First, the flash photography assumption may violate in some rare scenarios where the flash/no-flash con-
trast is severely disrupted. These conditions lead to inaccurate flash ratio map estimations, resulting in
unreliable matting outputs. For instance, when the foreground is outdoors under extremely strong sunlight
(see Fig. , the flash /no-flash photography assumption will be violated, since the flash difference between
the flash image and the no-flash image becomes so minimal that no flash cues can be reliably detected. A
potential solution to address this issue is the use of infrared light to illuminate the foreground, which will be
explored in our future research. However, it is important to note that such light-related challenging scenarios
are infrequent in typical environments, particularly indoors. These limitations do not compromise the per-
formance of our model in applications such as video conferencing, live boardcasting, and virtual /augmented
reality. Since modern imaging devices, including smartphones and webcams, are commonly equipped with
built-in flash modules or external lighting aids, which are routinely used in professional and semi-professional
setups to enhance visual quality. Our approach does not impose restrictive requirements such as continuous
flash triggering or user calibration. Capturing a flash image is a one-time, automatic process that does not
interfere with user experience. Compared to BGMv2 , which requires user intervention prior
to each capture, our method offers improved usability and flexibility, making it more suitable for practical
deployment.

Second, some extreme temporal conditions (e.g., fast movement), such as large motion variation or motion-
blurred images, can also make our model to produce suboptimal results (see Fig. - 15b| and [15¢ - This
limitation arises because our method processes frames independently, without explicit temporal modeling,
making it sensitive to significant motion or image degradation in such rare scenarios. To address them for
future research, we plan to integrate motion cues from flash/no-flash pairs and explore techniques such as
a memory bank to explicitly model temporal information, further enhancing robustness for extreme pose
variations while maintaining the model’s strong performance in typical scenarios.

6 Conclusion

To solve the matting problem with dynamic backgrounds, this paper proposes a portrait matting model based
on flash and no-flash images, which provides additional foreground priors to reveal the foreground objects.
Our model is insensitive to dynamically changing backgrounds, and does not require that the movements
of the foreground characters are exactly the same in the two images. Therefore, taking a flash image can
map out multiple no-flash images, which is very practical. This paper also presents the first high-quality
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matting dataset of flash and no-flash single-person images, which provides an effective resource for subsequent
research work on flash and no-flash matting work. Experiments show that our proposed method outperforms
existing matting methods that do not require a tripartite map as a prior in dynamic backgrounds, showing
the effectiveness of the model.

Future Works. Although our method shows strong generalization on both static and dynamic backgrounds,
it still has slightly weaker performance in static scenes comparing with BGMv2 . Apart
from the future work discussion in Sec. we also provide two possible future directions to improve
this. First, we can further integrate some pixel-flow estimation techniques, such as optical flow, into our
foreground correlation modeling based on current flash cues, which can better capture subtle spatial and
temporal relationships in static scenes. Optical flow can provide precise motion cues, enabling the model
to distinguish static background elements from foreground objects more effectively. Another direction is
to explicitly model static background information by introducing a background restoration subtask that
uses a generative inpainting prior, taking the flash cues as guidance. By training the model to reconstruct
background regions, it can learn a robust representation of static scene features, thereby reducing artifacts
and improving consistency in static matting tasks. Furthermore, considering the privacy-sensitive scenarios,
we can also adapt the method to operate with infrared illumination, which is invisible to the human eye.
We leave this promising direction for future research.
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