Under review as a conference paper at ICLR 2025

LOW-DISTORTION and GPU-COMPATIBLE
TREE EMBEDDINGS IN HYPERBOLIC SPACE

Anonymous authors
Paper under double-blind review

ABSTRACT

Embedding tree-like data, from hierarchies to ontologies and taxonomies, forms
a well-studied problem for representing knowledge across many domains. Hyper-
bolic geometry provides a natural solution for embedding trees, with vastly su-
perior performance over Euclidean embeddings. Recent literature has shown that
hyperbolic tree embeddings can even be placed on top of neural networks for hi-
erarchical knowledge integration in deep learning settings. For all applications, a
faithful embedding of trees is needed, with combinatorial constructions emerging
as the most effective direction. This paper identifies and solves two key limitations
of existing works. First, the combinatorial construction hinges on finding maxi-
mally separated points on a hypersphere, a notoriously difficult problem. Current
approaches lead to poor separation, which degrades the quality of the correspond-
ing hyperbolic embedding. As a solution, we propose maximally separated De-
launay tree embeddings (MS-DTE), where during placement, the children of a
node are maximally separated through optimization, which directly leads to lower
embedding distortion. Second, low-distortion requires additional precision. The
current approach for increasing precision is to use multiple precision arithmetic,
which renders the embeddings useless on GPUs in deep learning settings. We
reformulate the combinatorial construction using floating point expansion arith-
metic, leading to superior embedding quality while simultaneously retaining their
use on accelerated hardware.

1 INTRODUCTION

Tree-like structures such as hierarchies are key for knowledge representation, from biological tax-
onomies (Padial et al.|[2010) and phylogenetics (Kapli et al.,2020) to natural language (Miller,|1995;
Tifrea et al., 2018} Yang et al., [2016)), social networks (Freeman 2004)), visual understanding (Desai
et al.l2023)) and more. To obtain faithful embeddings of trees, Euclidean space is ill-equiped; even
simple trees lead to high distortion (Sonthalia & Gilbert, [2020). On the other hand, the exponential
nature of hyperbolic space makes it a natural geometry for embedding trees (Nickel & Kielal [2018).
This insight has resulted in rapid advances in hyperbolic machine learning, with vastly superior
embedding (Sala et al.| 2018)) and clustering (Chami et al., [2020) of tree-like data.

Recent literature has shown that hyperbolic tree embeddings are not only useful on their own, they
also form powerful target embeddings on top of deep networks to unlock hierarchical representation
learning (Peng et al., [2021; Mettes et al., 2024). Deep learning with hyperbolic tree embeddings
has made it possible to effectively perform action recognition (Long et al.,|2020), knowledge graph
completion (Kolyvakis et al.,2020), hypernymy detection (Tifrea et al.,|2018) and many other tasks
in hyperbolic space. These early adoptions of hyperbolic embeddings have shown a glimpse of the
powerful improvements that hierarchically aligned representations can bring to deep learning.

The rapid advances in hyperbolic deep learning underline the need for hyperbolic tree embeddings
compatible with GPU accelerated software. Current tree embedding algorithms can roughly be
divided in two categories; optimization-based and constructive methods. The optimization-based
methods, e.g. Poincaré embeddings (Nickel & Kiela, |2017), hyperbolic entailment cones (Ganea
et al, |2018)), and distortion optimization (Yu et al., 2022b)), train embeddings using some objective
function based on the tree. While these approaches are flexible due to minimal assumptions, the
optimization can be unstable, slow and result in heavily distorted embeddings. On the other hand,

Under review as a conference paper at ICLR 2025

the constructive methods traverse a tree once, placing the children of each node on a hypersphere
around the node’s embedding (Sarkar, 2011} Sala et al., [2018). These methods are fast, require no
hyperparameter tuning and have great error guarantees. However, they rely on hyperspherical sep-
aration, a notoriously difficult problem (Saff & Kuijlaars| |1997), and on multiple precision floating
point arithmetic, which is incompatible with GPUs and other accelerated hardware.

Our goal is to embed tree-like structures with minimal distortion yet with the ability to operate on
accelerated GPU hardware even when using higher precision. We do so in two steps. First, we
outline MS-DTE, a new generalization of Delaunay tree embeddings (Sarkar, 2011) to arbitrary di-
mensionality through hyperspherical energy minimization. Second, we propose HypFPE, a floating
point expansion arithmetic approach to enhance our constructive hyperbolic tree embeddings. We
develop new routines for computing hyperbolic distances on floating point expansions and outline
how to use these on hyperbolic embeddings. Furthermore, we provide theoretical results demonstrat-
ing the effectiveness of these floating point expansion routines. Floating point expansions allow for
higher precision similar to multiple precision arithmetic. However, our routines can be implemented
using standard floating point operations, making these compatible with GPUs. Experiments demon-
strate that MS-DTE generates higher fidelity embeddings than other hyperbolic tree embeddings and
that HypFPE can be used to further increase the embedding quality for MS-DTE and other methods.
We will make two software libraries publicly available, one for arbitrary-dimensional hyperbolic
tree embeddings and one for GPU-compatible floating point expansions.

2 PRELIMINARIES AND RELATED WORK

2.1 HYPERBOLIC GEOMETRY PRELIMINARIES

To help explain existing constructive hyperbolic embedding algorithms and our proposed approach,
we outline the most important hyperbolic functions here. For a more thorough overview, we refer
to (Cannon et al., [1997; |Anderson, [2005). Akin to (Nickel & Kielal [2017;|Ganea et al., 2018}, [Sala
et al.,|2018)), we focus on the Poincaré ball model of hyperbolic space. For n-dimensional hyperbolic
space, the Poincaré ball model is defined as the Riemannian manifold (D", g™), where the manifold
and Riemannian metric are defined as

2
D" = {X eR": HX||2 < 1}, gn =)\xln, Ax = W (1)
Using this model of hyperbolic space, we can compute distances between x,y € D" either as
dp(x,y) = cosh™* <1—|—2 [— y|I*) ()
’ A= IxIP)A=1lyl?) /)
or as
dp(x,y) = 2tanh ™" (|| - x @ yl|), 3)
where
14+ 2(x,y) + x4+ (1 —||x]|?
xay = LH206y) +llyl[F)x+ (- [[x]F)y @

1+ 20 y) + [Ix[]?[ly]]?

is the Mobius addition operation. These formulations are theoretically equivalent, but suffer from
different numerical errors. This distance represents the length of the straight line or geodesic be-
tween x and y with respect to the Riemannian metric g". Geodesics of the Poincaré ball are Eu-
clidean straight lines through the origin and circles perpendicular to the boundary of the ball.

In this paper, we will use some isometries of hyperbolic space. More specifically, we will use
reflections in geodesic hyperplanes. A geodesic hyperplane is an (n — 1)-dimensional manifold
consisting of all geodesics through some point x € D™ which are orthogonal to a normal geodesic
through x or, equivalenty, orthogonal to some normal tangent vector v € 7xID". For the Poincaré
ball these are the Euclidean hyperplanes through the origin and the (n—1)-dimensional hyperspheres
which are perpendicular to the boundary of the ball. We will denote a geodesic hyperplane by Hy ..
Reflection in a geodesic hyperplane Hy . through the origin can be defined as in Euclidean space,
so as a Householder transformation

Ru,,(y) = (I, — 2vvh)y, (5)

Under review as a conference paper at ICLR 2025

where ||v|| = 1. Reflection in the other type of geodesic hyperplane is a spherical inversion:

’I"2

Ry, ,(y) =m (y —m), (6)

+7
|ly — ml[?

with m € R™, r > 0 the center and radius of the hypersphere containing the geodesic hyperplane.
We will denote a reflection mapping some point x € D™ to another point y € D" by Rx_,,. The
specific formulations and derivations of the reflections that we use can be found in Appendix [A]

2.2 RELATED WORK

Hyperbolic tree embedding algorithms. Existing embedding methods can be divided into two
categories: optimization-based methods and constructive methods. The optimization methods typ-
ically use the tree to define some loss function and use a stochastic optimization method such as
SGD to directly optimize the embedding of each node, e.g. Poincaré embeddings (Nickel & Kielal
2017), hyperbolic entailment cones (Ganea et al., 2018) and distortion optimization (Sala et al.,
2018 |Yu et al., [2022b)). Poincaré embeddings use a contrastive loss where related nodes are pulled
together and unrelated nodes are pushed apart. Hyperbolic entailment cones attach an outwards ra-
diating cone to each node embedding and define a loss that forces children of nodes into the cone
of their parent. Distortion optimization directly optimizes for a distortion loss to embed node pairs.
Such approaches are flexible, but do not lead to arbitrarily low distortion and optimization is slow.
Constructive methods are either combinatorial methods (Sarkar, [201 1} [Sala et al.,[2018) or eigende-
composition methods (Sala et al.,|2018). Combinatorial methods first place the root of a tree at the
origin of the hyperbolic space and then traverse down the tree, iteratively placing nodes as uniformly
as possible on a hypersphere around their parent. (Sarkar, 201 1) proposes a 2-dimensional approach,
where the points have to be separated on a circle; a trivial task. For higher dimensions, (Sala et al.,
2018)) place points on a hypercube inscribed within a hypersphere, which leads to suboptimal dis-
tribution. We also follow a constructive approach, where we use an optimization method for the
hyperspherical separation, leading to significantly higher quality embeddings. The eigendecompo-
sition method h-MDS (Sala et al.,2018]) takes a graph or tree metric and uses an eigendecomposition
of this matrix to generate low-distortion embeddings. However, it collapses nodes within some sub-
trees to a single point, leading to massive local distortion.

Deep learning with hyperbolic tree embeddings. In computer vision, a wide range of works have
recently shown the potential and effectiveness of using a hyperbolic embedding space (Khrulkov
et al.| 2020). Specifically, hierarchical prior knowledge can be embedded in hyperbolic space, after
which visual representations can be mapped to the same space and optimized to match this hierarchi-
cal organization. (Long et al., 2020) show that such a setup improves hierarchical action recognition,
while (Liu et al.| 2020) use hierarchies with hyperbolic embeddings for zero-shot learning. Deep
visual learning with hyperbolic tree embeddings has furthermore shown to improve image segmen-
tation (Ghadimi Atigh et al.| 2022), skin lesion recognition (Yu et al., |2022b)), video understanding
(L1 et al.| [2024), hierarchical visual recognition (Ghadimi Atigh et al., [2021; Dhall et al., |2020),
hierarchical model interpretation (Gulshad et al., [2023)), open set recognition (Dengxiong & Kong}
2023)), continual learning (Gao et al., [2023)), few-shot learning (Zhang et al.,|2022)), and more. Since
such approaches require freedom in terms of embedding dimensionality, they commonly rely on
optimization-based approaches to embed the prior tree-like knowledge. Similar approaches have
also been investigated in other domains, from audio (Petermann et al., 2023) and text (Dhingra
et al} [2018; [Le et al.,|2019) to multimodal settings (Hong et al., [2023). In this work, we provide a
general-purpose and unconstrained approach for low-distortion embeddings with the option to scale
to higher precisions without losing GPU-compatibility.

Floating point expansions. The use of floating point expansions (FPEs) to increase precision in
hyperbolic space was recently proposed by (Yu & De Sal [2021)) and implemented in a PyTorch li-
brary (Yu et al., 2022a). However, their methodology is based on older FPE arithmetic definitions
and routines by (Priest, [1991}; [1992; Richard Shewchuk, [1997). In the field of FPEs, more effi-
cient and stable formulations have been proposed over the years with improved error guarantees
(Joldes et al.l 2014} 2015 [Muller et al., | 2016). In this paper, we build upon the most recent arith-
metic framework detailed in (Popescul 2017). We have implemented this framework for PyTorch
and extend its functionality to work with hyperbolic embeddings.

Under review as a conference paper at ICLR 2025

3 MS-DTE: MAXIMALLY SEPARATED DELAUNAY TREE EMBEDDINGS

Setting and objective. We are given a (possibly weighted) tree T' = (V, E), where the nodes in
V' contain the concepts of our hierarchy and the edges in E represent parent-child connections. The
goal is to find an embedding ¢ : V' — D" that accurately captures the semantics of the tree 7', so
where T can be accurately reconstructed from ¢(V'). An embedding ¢ is evaluated by first defining
the graph metric dr(u,v) on the tree as the length of the shortest path between the nodes u and v
and then checking how much ¢ distorts this metric. We will use two distortion based evaluation
metrics. The first one is the average relative distortion, given as

1 dp(o(u), p(v)) — dr(u,v
D“”e(¢):N(N1)§j| p(9()jT((l)Zv) 7()I’)

where N = |V is the number of nodes. A low value for this metric is a necessary, but not sufficient
condition for a high quality embedding, as it still allows for large local distortion. Therefore, we use
a second distortion based metric, the worst-case distortion, given by

-1
Do(6) — ma (0. 60) (min o (6(u) ¢<v>>) |
uFv dr (u, U) uFEv dr (u, 'U)

D, ranges from O to infinity and D,,. ranges from 1 to infinity, with smaller values indicating

strong embeddings. A large D, indicates a generally poor embedding, while a large D, indicates

that at least some part of the tree is poorly embedded. Both values should be close to their minimum

if an embedding is to be used for a downstream task. Lastly, another commonly used evaluation
metric for unweighted trees is the mean average precision, given by

1 1 A () 167! (Bo(wv))|
MAP(¢) = 1;/ deg(u) ex%:w) ‘Wl (BD(”’ ”)>

where deg(u) denotes the degree of u in T', Ny (u) denotes the nodes adjacent to v in V' and where
Bp(u,v) C D™ denotes the closed ball centered at ¢(u) with hyperbolic radius dp(¢(u), ¢(v)), so
which contains v itself. The MAP reflects how well we can reconstruct neighborhoods of nodes
while ignoring edge weights, making it less appropriate for various downstream tasks.

®)

; €))

Constructive solution for hyperbolic embeddings. The starting point of our method is the
Poincaré ball implementation of Sarkar’s combinatorial construction (Sarkar, [2011) as outlined by
(Sala et al.l 2018). A generalized formulation of this approach is outlined in Algorithm[I] The scal-
ing factor 7 > 0 is used to scale the tree metric dr. A larger 7 allows for a better use of the curvature
of hyperbolic space, theoretically making it easier to find strong embeddings. Lower values can help
avoid numerical issues that arise near the boundary of the Poincaré ball. When the dimension of the
embedding space satisfies n < log(deg,,,,...) + 1 and the scaling factor is set to

1 1
re log (4 degmaxﬁ), (10)
€

with deg_ .. the maximal degree of 7', then the construction leads to a worst-case distortion bounded
by 1 + €, given that the points on the hypersphere are sufficiently uniformly distributed (Sala et al.|
2018). When the dimension is n > log(deg, ..) + 1, the scaling factor should be 7 = (1), so
it can no longer be reduced by choosing a higher dimensional embedding space (Sala et al., [2018).
The number of bits required for the construction is O(2 £ log(deg,,,,,)) when n < log(deg,,,,) + 1
and O(f) when n > log(deg,..) + 1, where ¢ is the longest path in the tree.

T =

The difficulty of distributing points on a hypersphere. The construction in Algorithm [T] pro-
vides a nice way of constructing embeddings in n-dimensional hyperbolic space with arbitrarily low
distortion. However, the bound on the distortion for the 7 in Equation [I0]is dependent on our ability
to generate uniformly distributed points on the n-dimensional hypersphere. More specifically, given
generated points X, . .., Xgeg,__» the error bound relies on the assumption that

1
rr;éln sin Z(x;,x;) > deg, ..~ 1. (11)
i#j
Moreover, in practice it is important to keep the scaling factor 7 as small as possible, since the
required number of bits increases linearly with 7. Increasing the minimal angle beyond the condition

Under review as a conference paper at ICLR 2025

Algorithm 1 Generalized Sarkar’s Dalaunay tree embedding

1: Input: Tree T' = (V, E) and scaling factor 7 > 0.

2: forv € V do

3: p < parent(v)

41 Cly. .., Cheg(v)—1 ¢ children(v)

5. Reflect ¢(p) with Ry ()0

6: Generate X1, . . ., Xdeg(v) Uniformly distributed points on a hypersphere with radius 1

7: Get rotation matrix A such that Ry,)_0 (gb(p)) is aligned with Axyeg(,) and rotate

8: Scale points by ¥ = S}

9: Reflect rotated and scaled points back: ¢(c;) <= Rg)—o(vAX;), i=1,...,deg(v) —1
10: end for

in equation [IT] allows for the use of a smaller 7. In the general case, uniformly distributing points
on a hypersphere has no closed form solution (Saff & Kuijlaars, [1997; Kasarla et al., |2022). (Sala
et al., [2018) propose to generate points by placing them on the vertices of an inscribed hypercube.
However, this approach comes with three limitations. First, the maximum number of points that can
be generated with this method is 2", which is limited for small n. Second, for most configurations
this method results in a sub-optimal distribution, leading to an unnecessarily high requirement on
7. Third, this method depends on finding binary sequences of length n with maximal Hamming
distances (see Appendix [B), which is in general not an easy problem to solve. Their solution is to
use the Hadamard code. However, this can only be used when the dimension is a power of 2 and at
least deg, .., which is a severe restriction, often incompatible with downstream tasks.

Delaunay tree embeddings with maximal hyperspherical separation. We propose to improve
the construction by distributing the points on the hypersphere in step [6] of Algorithm [I] through
optimization. Specifically, we use projected gradient descent to find x1, ..., x; € S™ ! such that

X1,...,Xp = argmin L(wq,..., wg), (12)
Wi,.., W € S7—1

where L : (S"1)* — R is some objective function. Common choices for this objective are the
hyperspherical energy functions (Liu et al.| 2018)), given by

k —S
2221 Zj;éi |lwi —w;l[7, s >0,
Diz1 Zj;éi log (HWL - Wj‘|_1)7 s =0,

where s is a nonnegative integer parameterizing this set of functions. Minimizing these objective
functions pushes the hyperspherical points apart, leading to a more uniform distribution. However,
these objectives are aimed at finding a large mean pairwise angle, allowing for the possibility of
having a small minimum pairwise angle. Having a small minimum pairwise angle leads to the cor-
responding nodes and their descendants being placed too close together, leading to large distortion,
as shown in the experiments. Therefore, we propose the maximal hyperspherical separation (MHS)
objective, aimed at maximizing this minimal angle

Es(Wl,...,Wk):{ (]3)

k
E(wi,...,wg) =—) minZ(w;, w;), (14)
1 I
which pushes each w; away from its nearest neighbour. We find that this method leads to larger
minimum pairwise angles, allowing for the use of a smaller 7. Moreover, this optimization method
places no requirements on the dimension, making it a suitable choice for downstream tasks. We
refer to the resulting construction as the maximally separated Delaunay tree embedding (MS-DTE)
method. When performing the construction using MHS, the output of the optimization can be cached
and reused each time a node with the same degree is encountered. Using this approach, the worst-
case number of optimizations that has to be performed is O(\/ﬁ) as shown by Theorem

Theorem 1. The worst-case number of optimizations p that has to be performed when embedding
a tree with the combinatorial construction in Algorithm[I|with any objective using caching is

p< [%(1+\/16N— 15)]. (15)

Under review as a conference paper at ICLR 2025

Proof. See Appendix [C] O

MHS optimization details. In practice we find the number of optimizations to be lower due to fre-
quent occurrence of low degree nodes for which cached points can be used, as shown in Appendix
Furthermore, MHS is an easily optimizable objective, that we train using PGD for 450 iterations
with a learning rate of 0.01, reduced by a factor of 10 every 150 steps, for every configuration.
This optimization can generally be performed in mere seconds which, if necessary, can be further
optimized through hyperparameter configurations, early stopping, parallelization and hardware ac-
celeration. As a result, the increase in computation time of our method compared to (Sala et al.,
2018)) is minimal. Moreover, when compared to methods such as Poincaré embeddings (Nickel &
Kielal [20177) which use stochastic gradient descent to directly optimize the embeddings, we find that
our method is orders of magnitude faster, while avoiding the need for costly hyperparameter tuning.

4 HYPFPE: HIGH-PRECISION GPU-COMPATIBLE HYPERBOLIC EMBEDDINGS

While hyperbolic space enjoys numerous potential benefits, it is prone to numerical error when
using floating point arithmetic. Especially as points move away from the origin, floating point
arithmetic struggles to accurately represent or perform computations with these points. For larger
values of 7 or maximal path lengths ¢, the embeddings generated by the construction often end
up in this problematic region of the Poincaré ball. As such, the precision required for hyperbolic
embeddings is often larger than the precision provided by the floating point formats supported on
GPUs. Increased precision can be attained by switching to arbitrary precision arithmetic. However,
this makes the result incompatible with existing deep learning libraries.

Here, we propose HypFPE, a method to increase the precision of constructive hyperbolic approaches
through floating point expansion (FPE) arithmetic. In this framework, numbers are represented as
unevaluated sums of floating point numbers, typically of a fixed number of bits b. In other words, a
number f € R is represented by a floating point expansion f as

t
faf=Y 1 (16)
1=1

where the f; are floating point numbers with a fixed number of bits and where ¢ is the number of
terms that the floating point expansion f consists of. Each term f; is in the form of a GPU supported
float format, such as float16, float32 or float64. Moreover, to ensure that this representation is unique
and uses bits efficiently, it is constrained to be ulp-nonoverlapping (Popescul [2017).

Definition 4.1. A floating point expansion f=fi+...+fiis ulp-nonoverlapping if for all
2 <i <t |f;] <ulp(fi—1), where ulp(f;—1) is the unit in the last place of f;_;.

A ulp-nonoverlapping FPE consisting of ¢ terms each with b bits precision has at worst (b — 1) + 1
bits of precision, since exactly ¢ — 1 overlapping bits can occur. The corresponding arithmetic
requires completely different routines for computing basic operations, many of which have been
introduced by (Joldes et al., 2014;2015; Muller et al., 2016} |[Popescul, [2017). An overview of these
routines can be found in Appendix M| For an overview of the error guarantees we refer to (Popescul
2017). Each of these routines can be defined using ordinary floating point operations that exist for
tensors in standard tensor libraries such as PyTorch, which are completely GPU compatible. In this
work, we have generalized each of the routines to tensor operations and implement these in PyTorch
by adding an extra dimension to each tensor containing the terms of the floating point expansion.

Applying FPEs to the construction. In the constructive method the added precision is warranted
whenever numerical errors lead to large deviations with respect to the hyperbolic metric. In other
words, if we have some x € D" and its floating point representation X, then it makes sense to
increase the precision if

dp(x,%) > 0. 17

For the Poincaré ball, this is the case whenever x lies somewhere close to the boundary of the ball.
In our construction, this means that generation and rotation of points on the unit hypersphere can
be performed in normal floating point arithmetic, since the representation error in terms of dp will
be negligible. However, for large 7, the scaling of the hypersphere points and the hyperspherical

Under review as a conference paper at ICLR 2025

inversion require increased precision as these map points close to the boundary of D™. Specifically,
steps [3] [8] and [9] of Algorithm [T] may require increased precision. Note that these operations can be
performed using the basic operation routines shown in Appendix[M] From the basic operations, more
complicated nonlinear operations can be defined through the Taylor series approximations that are
typically used for floating point arithmetic. To compute the distortion of the resulting embeddings,
the distances between the embedded nodes must be computed either through the inverse hyperbolic
cosine formulation of Equation [2]or through the inverse hyperbolic tangent formulation of Equation
In this work, we show how to accurately compute distances using either formulation.

4.1 THE INVERSE HYPERBOLIC COSINE FORMULATION

For Equation [2] normal floating point arithmetic may cause the denominator inside the argument
of cosh™ to become 0 due to rounding. To solve this, we can use FPE arithmetic to compute the
argument of cosh ™" and then approximate the distance by applying cosh™* to the largest magnitude
term of the FPE. This allows accurate computation of distances even for points near the boundary of
the Poincaré ball, as shown by Theorem and Proposition

Theorem 2. Given x,y € D" with ||x|| < 1 — e~ and ||y|| < 1 — €=, an approximation d to
equation [2| can be computed with FPE representations with t terms and with a largest magnitude
approximation to cosh™" such that, for some small €* > 0,

2

d — cosh™! <1+2 [— Il >‘<e*. (18)
(1= =lyll?)

Proof. See Appendix D] O

Proposition 1. The range of the inverse hyperbolic tangent formulation increases linearly in the
number of terms t of the FPEs being used.

Proof. See Appendix [E] O

Theorem [2] shows that we can accurately compute distances on a larger domain than with normal
floating point arithmetic. Moreover, Proposition [I]shows that the effective radius of the Poincaré ball
in which we can represent points and compute distances increases linearly in the number of terms
of our FPE expansions. Therefore, this effective radius increases linearly with the number of bits.
The same holds when using arbitrary precision floating point arithmetic, so FPE expansions require
a similar number of bits for the constructive method as arbitrary precision floating point arithmetic.

4.2 THE INVERSE HYPERBOLIC TANGENT FORMULATION

For Equation [3 the difficulty lies in the computation of tanh~'. With normal floating point arith-
metic, due to rounding errors, this function can only be evaluated on [—1 + €, 1 — €], where € is the
machine precision. This severely limits the range of values, i.e., distances, that we can compute.
Therefore, we need to be able to compute the inverse hyperbolic tangent with FPEs. Inspired by
(Felker & musl Contributors, 2024, we propose a new routine for this computation, given in Algo-
rithm|13[of Appendix@ Here, we approximate the logarithm in steps|7|and |§I as log(f) = log(fl),
which is accurate enough for our purposes. This algorithm can be used to accurately approximate
tanh ™! while extending the range linearly in the number of terms ¢ as shown by Theorem 3| and
Proposition 2]

Theorem 3. Given a ulp-nonoverlapping FPE x© = 22:1 x; € [-1+ €711 — €71 consisting
of floating point numbers with a precision b > t, Algorithm[I3|leads to an approximation y of the
inverse hyperbolic tangent of x that, for small €* > 0, satisfies

ly — tanh ™! ()] < €*. (19)
Proof. See Appendix [F] O
Proposition 2. The range of algorithm|l3|increases linearly in the number of terms t.
Proof. See Appendix O

Based on these results, either formulation could be a good choice for computing distances with
FPEs. In practice, we find that the tanh ™' formulation leads to larger numerical errors, which is
likely due to catastrophic cancellation errors in the dot product that is performed in Equation [4]
Therefore, we use the cosh ™! formulation in our experiments.

Under review as a conference paper at ICLR 2025

w
wn

102 bFlogti6
kel --=-- Hadamard ‘ floaf16
[} 1<)
g 3.0 § Precomputed 5 \
> \ Eo p & floats2
25 \ Ey 2 A
c \ e \
c L E o \
o 2.0 . - MHS k] \
b . 0
2 e, S 10! }‘ floats4
Bus| wreridreeee, @ \
© tE O SRk ; it TP Sy
od bt =3¢ © \
—10 & \
© 0 \
€ 5 \
‘= 05 ~ \ 2*float64
§ : ; o —— 4 * float64 8 * float64
00 100 e Y
0 3 6 9 12 15 18 21 24 27 0 50 100 150 200 250 300 350 400
Number of points Precision (bits)
(a) Minimal hyperspherical energy ablation. (b) Floating point expansion ablation.

Figure 1: Ablation studies on our construction and floating point expansion. (a) Minimal pair-
wise angle (1) of the hyperspherical points generated in step [6] of Algorithm [I] using the various
generation methods. The dimension of the space is set to 8, so the Hadamard method cannot gener-
ate more than 8 points. The MHS objective consistently leads to a higher separation angle. (b) The
worst-case distortion ({, D,,.) of the constructed embedding of the phylogenetic tree with the max-
imal admissable 7 given the number of bits. The vertical dashed line shows the limit with standard
GPU floating point formats (float64). The horizontal dashed line is the best possible result D,,. = 1.
FPE representations are required to get high quality embeddings without losing GPU-compatibility.

5 EXPERIMENTS
5.1 ABLATIONS

Maximal hyperspherical separation. To test how well the proposed methods for hyperspherical
separation perform, we generate points w1, ..., W, on an 8-dimensional hypersphere for various
numbers of points k and compute the minimal pairwise angle min;.; Z(w;, w;). We compare to
the Hadamard generation method from (Sala et al, |2018) and the method that is used in their im-
plementation, which precomputes 1000 points using the method from (Lovisolo & Da Silva, 2001)
and samples from these precomputed points. Note that a power of 2 is chosen for the dimension to
be able to make a fair comparison to the Hadamard construction, since this method cannot be used
otherwise. The results are shown in Figure These results show that our MHS indeed leads to
maximal separation in terms of the minimal pairwise angle. Moreover, it shows that the precom-
puted approach leads to relatively poor separation and that the Hadamard method only performs
somewhat well when the number of points required is close to the dimension of the space.

To verify that this minimal pairwise angle is important for the quality of the construction, we perform
the construction on a binary tree with a depth of 8 edges using each of the hypersphere generation
methods. The construction is performed in 10 dimensions except for the Hadamard method, since
this cannot generate 10 dimensional points. Additional results for dimensions 4, 7 and 20 are shown
in Appendix [Hl Each method is applied using float32 representations and a scaling factor of 7 =
1.33. The results are shown in Table I} These findings support our hypothesis that the minimal

pairwise angle is important for generating high quality embeddings and that the MHS is an excellent
objective function for performing the separation.

FPEs versus standard floating points. To demonstrate the importance of using FPEs for increas-
ing precision, we perform the construction on a phylogenetic tree expressing the genetic heritage of
mosses in urban environments (Hofbauer et al., 2016), made available by (Sanderson et al.,|1994),
using various precisions. This tree has a maximum path length ¢ = 30, which imposes sharp re-
strictions on the value of 7 that we can choose before encountering numerical errors. We perform
the construction either with normal floating point arithmetic using the usual GPU-supported float
formats or with FPEs, using multiple float64 terms. The scaling factor 7 is chosen to be close to the
threshold where numerical problems appear in order to obtain optimal results for the given precision.

The results in terms of D,,. are shown in Figure @ As can be seen from these results, around
100 bits of precision are needed to obtain decent results, which can be achieved using FPEs with 2
float64 terms. Without FPE expansions, the largest GPU-compatible precision is 53 bits, obtained

Under review as a conference paper at ICLR 2025

Method dim Dgye Dye MAP

Sala et al.|(2018) 8 0734 1143 0.154
Salaetal.|(2018) x 10 0.361 18.42 0.998

Ey 10 0219 1.670 1.000
E 10 0.204 1.686 1.000
Es 10 0.190 1.642 1.000
MHS 10 0.188 1.635 1.000

Table 1: Comparing hyperspherical separa-
tion methods for the constructive hyperbolic
embedding of a binary tree with a depth of ‘ .
8 edges when using float32 representations in 00 0.2 0.4 0.6 0.8 10
10 dimensions. I uses Hadamard generated

hypersphere points and x uses precomputed Figure 2: Pairwise relative distortions of h-MDS
points from (Lovisolo & Da Silva, 2001). (left) and MS-DTE (right) applied to the 5-ary tree
Note that the Hadamard code cannot be ap- With a scaling factor 7 = 5.0. The axes are or-
plied in 10 dimensions, so 8 is used instead. dered using a breadth-first search of the tree.

by using float64. This precision yields a D,,. of 9.42, which is quite poor. These results illustrate
the importance of FPEs for high quality GPU-compatible embeddings.

5.2 EMBEDDING COMPLETE m-ARY TREES

To demonstrate the strong performance of the combinatorial constructions compared to other meth-
ods, we perform embeddings on several complete m-ary trees with a max path length of £ = 8 and
branching factors m = 3,5,7. Due to the small ¢, each experiment can be performed with nor-
mal floating point arithmetic using float64 representations. We compare our method with Poincaré
embeddings (PE) (Nickel & Kielal [2017), hyperbolic entailment cones (HEC) (Ganea et al.,|2018)),
distortion optimization (DO) (Sala et al., 2018} |Yu et al., |2022b), h-MDS (Sala et al.| |2018)) and
the combinatorial method with Hadamard (Sala et al., 2018)) or precomputed hyperspherical points
(Lovisolo & Da Silval [2001). For the constructive methods and for h-MDS, a larger scaling factor
improves performance, so we use 7 = 5. For DO we find that increasing the scaling factor does not
improve performance, so we use 7 = 1.0. PE and HEC are independent of the scaling factor.

The results on the various trees in 10 dimensions are shown in table 2] and additional results for
dimensions 4, 7 and 20 are shown in Appendix [I] These illustrate the strength of the combinatorial
constructions. The optimization methods PE, HEC and DO perform relatively poor for all evaluation
metrics. This performance could be increased through hyperparameter tuning and longer training.
However, the results will not come close to those of the other methods. The h-MDS method performs
well in terms of Dy, but very poorly on D,,. and MAP. This is because h-MDS collapses leaf
nodes, leading to massive local distortion within the affected subtrees. However, between subtrees
this distortion is much smaller, explaining the low D,.. Figure2]illustrates the issue with-h-MDS
and the superiority of our approach. Each of the white squares in the h-MDS plot corresponds to a
collapsed subtree, which renders the embeddings unusable for downstream tasks since nearby leaf
nodes cannot be distinguished. We conclude that MS-DTE obtains the strongest embeddings overall.

5.3 EMBEDDING PHYLOGENETIC TREES

For the final experiment, we compare MS-DTE to the other methods on phylogenetic trees. More-
over, we show how adding HypFPE to our method and the other combinatorial methods increases the
embedding quality when requiring GPU-compatibility. The phylogenetic trees that we use are trees
describing mosses (Hofbauer et al., 2016)), weevils (Marvaldi et al.l 2002), the European carnivora
(Roquet et al., [2014) and lichen (Zhao et al.| 2016), obtained from (McTavish et al., 2015). The
latter two trees are weighted trees which can be embedded by adjusting the scaling in step [8| of Al-
gorithm[T]according to the weights. Each of the embeddings is performed in 10-dimensional space,
with results for varying dimensions given in Appendix [J} The h-MDS method and the combinatorial
constructions are performed with the largest 7 that can be used with the given precision.

The results of the embeddings are shown in Table E} These results show that, when using float64,
MS-DTE outperforms each of the optimization-based methods and the other combinatorial ap-
proaches from (Sala et al., [2018)). While, the h-MDS method leads to a better average distortion, it
collapses entire subtrees, leading to massive local distortion. Therefore, the MS-DTE embeddings
are of the highest quality. Lastly, when adding HypFPE on top of the combinatorial approaches, all

Under review as a conference paper at ICLR 2025

3-tree 5-tree 7T-tree
Dyve Dwe MAP Dgve Dye MAP Dge Dye MAP

Nickel & Kiela|(2017) 0.17 169 0.8 0.31 NaN 0.58 0.84 NaN 0.24

Ganea et al.|(2018) 051 184 0..27 0.81 604 024 096 788 0.15
Yu et al.|[(2022b) 0.16 319 057 052 545 030 093 3230 0.05
Sala et al.|{(2018) t 0.03 NaN 0.52 0.04 NaN 0.1 0.03 NaN 0.05
Sala et al.|{(2018) § 011 114 100 012 1.14 1.00 0.12 1.14 1.00
Sala et al.|(2018) x 009 118 1.00 013 130 1.00 0.13 131 1.00
MS-DTE 006 1.07 100 0.09 1.09 1.00 0.10 112 1.00

Table 2: Comparison of hyperbolic embedding algorithms on m-ary trees with a maximum path
length of ¢ = 8. The h-MDS method is represented by {. The I method is the combinatorial con-
struction with the hyperspherical points being generated using the Hadamard construction, whereas
the * method samples hyperspherical points from the precomputed points generated with the hyper-
spherical separation method from (Lovisolo & Da Silva, 2001). The h-MDS method outperforms
the other methods in terms of D, but collapses nodes, leading to NaN values of the D,,. and
making the embeddings unusable. MS-DTE has the second best D, and outperforms all methods
in terms of D,,.. Each combinatorial construction has a perfect MAP.

Precision Mosses Weevils Carnivora Lichen

bits D()ﬂ)(i D?UC D(I?)C DU)C D(LUE DTUC DG,’UG D?UC
Nickel & Kiela|(2017) 53 0.68 44350 045 NaN 096 NaN 151 NaN
Ganea et al.|(2018) 53 0.90 1687 0.77 566 0.99 NaN 162 NaN
Yu et al.|(2022b) 53 0.83 163 0.57 79.8 099 NaN - -
Sala et al.|{(2018) T 53 0.04 NaN 0.06 NaN 0.11 NaN 0.13 NaN
Sala et al.|{(2018) I 53 - - 0.79 330 026 352 049 79.6
Sala et al.|(2018) 53 0.78 122 0.54 343 023 188 055 101
MS-DTE 53 0.40 9.42 027 203 0.12 11.7 030 235

HypFPE +|Sala et al.|(2018) 417 - - 007 109 005 676 0.12 434
HypFPE + |Sala et al.|(2018) x 417 0.08 1.14 005 111 003 487 011 642
HypFPE + MS-DTE 417 0.04 1.06 003 1.04 003 2.03 0.05 3.30

Table 3: Comparison of hyperbolic embedding algorithms on various trees. | represents h-
MDS, 1 the construction with Hadamard hyperspherical points and x the construction with points
sampled from a set precomputed with (Lovisolo & Da Silval 2001)). The best float64 performance
is underlined and the best FPE performance is in bold. All embeddings are performed in a 10-
dimensional space. Hadamard generation cannot be used for the mosses tree, since it has a deg,,, ...
greater than 8. Distortion optimization (Yu et al., [2022b)) does not converge for the lichen tree due
to large variation in edge weights. Overall, combining HypFPE and MS-DTE works best.

performances go up, with the combination of MS-DTE and HypFPE leading to the best performance
on both D, and D,,.. Additonal results on graphs are shown in Appendix@

6 CONCLUSION

In this paper we introduce MS-DTE, a novel way of constructively embedding trees in hyperbolic
space, which uses an optimization approach to maximally separate points on a hypersphere. Empir-
ically, we show that MS-DTE outperforms existing methods, while maintaining the computational
efficiency of the combinatorial approaches. Additionally, we introduce HypFPE, a framework for
floating point expansion arithmetic on tensors, which is adapted to extend the effective radius of
the Poincaré ball. This framework can be used to increase the precision of computations, without
losing the benefit of hardware acceleration, paving the way for highly accurate hyperbolic neural
networks. It can be added on top of any of the combinatorial methods, leading to low-distortion and
GPU-compatible hyperbolic tree embeddings.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Ittai Abraham, Mahesh Balakrishnan, Fabian Kuhn, Dahlia Malkhi, Venugopalan Ramasubrama-
nian, and Kunal Talwar. Reconstructing approximate tree metrics. In Proceedings of the twenty-
sixth annual ACM symposium on Principles of distributed computing, pp. 43-52, 2007.

James W. Anderson. Hyperbolic Geometry. Springer Undergraduate Mathematics Series. Springer,
London, 2nd edition, 2005. ISBN 978-1-85233-934-0.

James W Cannon, William J Floyd, Richard Kenyon, Walter R Parry, et al. Hyperbolic geometry.
Flavors of geometry, 31(59-115):2, 1997.

Ines Chami, Albert Gu, Vaggos Chatziafratis, and Christopher Ré. From trees to continuous embed-
dings and back: Hyperbolic hierarchical clustering. Advances in Neural Information Processing
Systems, 33:15065-15076, 2020.

Wouter De Nooy, Andrej Mrvar, and Vladimir Batagelj. Exploratory social network analysis with
FPajek: Revised and expanded edition for updated software, volume 46. Cambridge university
press, 2018.

Xiwen Dengxiong and Yu Kong. Ancestor search: Generalized open set recognition via hyperbolic
side information learning. In Proceedings of the IEEE/CVF Winter Conference on Applications
of Computer Vision, pp. 4003—-4012, 2023.

Karan Desai, Maximilian Nickel, Tanmay Rajpurohit, Justin Johnson, and Shanmukha Ramakr-
ishna Vedantam. Hyperbolic image-text representations. In International Conference on Machine
Learning, pp. 7694-7731. PMLR, 2023.

Ankit Dhall, Anastasia Makarova, Octavian Ganea, Dario Pavllo, Michael Greeff, and Andreas
Krause. Hierarchical image classification using entailment cone embeddings. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition workshops, pp. 836-837,
2020.

Bhuwan Dhingra, Christopher Shallue, Mohammad Norouzi, Andrew Dai, and George Dahl. Em-
bedding text in hyperbolic spaces. In Proceedings of the Twelfth Workshop on Graph-Based
Methods for Natural Language Processing, pp. 59-69, 2018.

Rich Felker and musl Contributors. musl libc: A lightweight implementation of the standard li-
brary for linux systems, 2024. URL https://musl.libc.org. Version 1.2.5, retrieved on
September 30, 2024.

Linton Freeman. The development of social network analysis. A Study in the Sociology of Science,
1(687):159-167, 2004.

Octavian Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic entailment cones for learn-
ing hierarchical embeddings. In International conference on machine learning, pp. 1646—1655.
PMLR, 2018.

Zhi Gao, Chen Xu, Feng Li, Yunde Jia, Mehrtash Harandi, and Yuwei Wu. Exploring data geometry
for continual learning. In Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, pp. 24325-24334, 2023.

Mina Ghadimi Atigh, Martin Keller-Ressel, and Pascal Mettes. Hyperbolic busemann learning with
ideal prototypes. Advances in neural information processing systems, 34:103—115, 2021.

Mina Ghadimi Atigh, Julian Schoep, Erman Acar, Nanne Van Noord, and Pascal Mettes. Hyperbolic
image segmentation. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 4453-4462, 2022.

Kwang-I1 Goh, Michael E Cusick, David Valle, Barton Childs, Marc Vidal, and Albert-Laszl6
Barabdsi. The human disease network. Proceedings of the National Academy of Sciences, 104
(21):8685-8690, 2007.

11

https://musl.libc.org

Under review as a conference paper at ICLR 2025

Sadaf Gulshad, Teng Long, and Nanne van Noord. Hierarchical explanations for video action recog-
nition. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 3703-3708, 2023.

Wolfgang Karl Hofbauer, Laura Lowe Forrest, Peter M Hollingsworth, and Michelle L Hart. Pre-
liminary insights from dna barcoding into the diversity of mosses colonising modern building
surfaces. Bryophyte Diversity and Evolution, 38(1):1-22, 2016.

Jie Hong, Zeeshan Hayder, Junlin Han, Pengfei Fang, Mehrtash Harandi, and Lars Petersson. Hyper-
bolic audio-visual zero-shot learning. In Proceedings of the IEEE/CVF international conference
on computer vision, pp. 7873-7883, 2023.

Mioara Joldes, Jean-Michel Muller, and Valentina Popescu. On the computation of the reciprocal
of floating point expansions using an adapted newton-raphson iteration. In 2014 IEEE 25th Inter-
national Conference on Application-Specific Systems, Architectures and Processors, pp. 63—67.
IEEE, 2014.

Mioara Joldes, Olivier Marty, Jean-Michel Muller, and Valentina Popescu. Arithmetic algorithms
for extended precision using floating-point expansions. IEEE Transactions on Computers, 65(4):
1197-1210, 2015.

Paschalia Kapli, Ziheng Yang, and Maximilian J Telford. Phylogenetic tree building in the genomic
age. Nature Reviews Genetics, 21(7):428—444, 2020.

Tejaswi Kasarla, Gertjan Burghouts, Max Van Spengler, Elise Van Der Pol, Rita Cucchiara, and
Pascal Mettes. Maximum class separation as inductive bias in one matrix. Advances in neural
information processing systems, 35:19553-19566, 2022.

Valentin Khrulkov, Leyla Mirvakhabova, Evgeniya Ustinova, Ivan Oseledets, and Victor Lempitsky.
Hyperbolic image embeddings. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pp. 6418-6428, 2020.

Prodromos Kolyvakis, Alexandros Kalousis, and Dimitris Kiritsis. Hyperbolic knowledge graph
embeddings for knowledge base completion. In The Semantic Web: 17th International Confer-
ence, ESWC 2020, Heraklion, Crete, Greece, May 31-June 4, 2020, Proceedings 17, pp. 199-214.
Springer, 2020.

Matt Le, Stephen Roller, Laetitia Papaxanthos, Douwe Kiela, and Maximilian Nickel. Inferring con-
cept hierarchies from text corpora via hyperbolic embeddings. arXiv preprint arXiv:1902.00913,
2019.

Yong-Lu Li, Xiaogian Wu, Xinpeng Liu, Zehao Wang, Yiming Dou, Yikun Ji, Junyi Zhang, Yixing
Li, Xudong Lu, Jingru Tan, et al. From isolated islands to pangea: Unifying semantic space for
human action understanding. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pp. 16582—-16592, 2024.

Shaoteng Liu, Jingjing Chen, Liangming Pan, Chong-Wah Ngo, Tat-Seng Chua, and Yu-Gang Jiang.
Hyperbolic visual embedding learning for zero-shot recognition. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 9273-9281, 2020.

Weiyang Liu, Rongmei Lin, Zhen Liu, Lixin Liu, Zhiding Yu, Bo Dai, and Le Song. Learning
towards minimum hyperspherical energy. Advances in neural information processing systems,
31, 2018.

Teng Long, Pascal Mettes, Heng Tao Shen, and Cees GM Snoek. Searching for actions on the hyper-
bole. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 1141-1150, 2020.

Lisandro Lovisolo and EAB Da Silva. Uniform distribution of points on a hyper-sphere with appli-
cations to vector bit-plane encoding. IEE Proceedings-Vision, Image and Signal Processing, 148
(3):187-193, 2001.

MacWilliams and Sloane. The theory of error-correcting codes. Elsevier Science Publishers BV
google schola, 2:39-47, 1977.

12

Under review as a conference paper at ICLR 2025

Adriana E Marvaldi, Andrea S Sequeira, Charles W O’Brien, and Brian D Farrell. Molecular and
morphological phylogenetics of weevils (coleoptera, curculionoidea): do niche shifts accompany
diversification? Systematic biology, 51(5):761-785, 2002.

Emily Jane McTavish, Cody E Hinchliff, James F Allman, Joseph W Brown, Karen A Cranston,
Mark T Holder, Jonathan A Rees, and Stephen A Smith. Phylesystem: a git-based data store for
community-curated phylogenetic estimates. Bioinformatics, 31(17):2794-2800, 2015.

Pascal Mettes, Mina Ghadimi Atigh, Martin Keller-Ressel, Jeffrey Gu, and Serena Yeung. Hyper-
bolic deep learning in computer vision: A survey. International Journal of Computer Vision, pp.
1-25, 2024.

George A Miller. Wordnet: a lexical database for english. Communications of the ACM, 38(11):
3941, 1995.

Jean-Michel Muller, Valentina Popescu, and Ping Tak Peter Tang. A new multiplication algorithm
for extended precision using floating-point expansions. In 2016 IEEE 23nd Symposium on Com-
puter Arithmetic (ARITH), pp. 39-46. IEEE, 2016.

Maximillian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representa-
tions. Advances in neural information processing systems, 30, 2017.

Maximillian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of
hyperbolic geometry. In International conference on machine learning, pp. 3779-3788. PMLR,
2018.

José M Padial, Aurélien Miralles, Ignacio De la Riva, and Miguel Vences. The integrative future of
taxonomy. Frontiers in zoology, 7:1-14, 2010.

Wei Peng, Tuomas Varanka, Abdelrahman Mostafa, Henglin Shi, and Guoying Zhao. Hyperbolic
deep neural networks: A survey. IEEE Transactions on pattern analysis and machine intelligence,
44(12):10023-10044, 2021.

Darius Petermann, Gordon Wichern, Aswin Subramanian, and Jonathan Le Roux. Hyperbolic audio
source separation. In ICASSP 2023-2023 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 1-5. IEEE, 2023.

Valentina Popescu. Towards fast and certified multiple-precision librairies. PhD thesis, Université
de Lyon, 2017.

Douglas M Priest. Algorithms for arbitrary precision floating point arithmetic. University of Cali-
fornia, Berkeley, 1991.

Douglas M Priest. On properties of floating point arithmetics: numerical stability and the cost of
accurate computations. University of California, Berkeley, 1992.

Jonathan Richard Shewchuk. Adaptive precision floating-point arithmetic and fast robust geometric
predicates. Discrete & Computational Geometry, 18:305-363, 1997.

Cristina Roquet, Sébastien Lavergne, and Wilfried Thuiller. One tree to link them all: a phylogenetic
dataset for the european tetrapoda. PLoS currents, 6, 2014.

Edward B Saff and Amo BJ Kuijlaars. Distributing many points on a sphere. The mathematical
intelligencer, 19:5-11, 1997.

Frederic Sala, Chris De Sa, Albert Gu, and Christopher Ré. Representation tradeoffs for hyperbolic
embeddings. In International Conference on Machine Learning, pp. 4460—4469. PMLR, 2018.

Michael J Sanderson, Michael J Donoghue, W Piel, and Torsten Eriksson. Treebase: a prototype
database of phylogenetic analyses and an interactive tool for browsing the phylogeny of life.
American Journal of Botany, 81(6):183, 1994.

Rik Sarkar. Low distortion delaunay embedding of trees in hyperbolic plane. In International
Symposium on Graph Drawing, pp. 355-366. Springer, 2011.

13

Under review as a conference paper at ICLR 2025

Rishi Sonthalia and Anna Gilbert. Tree! i am no tree! i am a low dimensional hyperbolic embedding.
Advances in Neural Information Processing Systems, 33:845-856, 2020.

Alexandru Tifrea, Gary Bécigneul, and Octavian-Eugen Ganea. Poincar\’e glove: Hyperbolic word
embeddings. arXiv preprint arXiv:1810.06546, 2018.

Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hierarchical
attention networks for document classification. In Proceedings of the 2016 conference of the North
American chapter of the association for computational linguistics: human language technologies,

pp. 14801489, 2016.

Tao Yu and Christopher M De Sa. Representing hyperbolic space accurately using multi-component
floats. Advances in Neural Information Processing Systems, 34:15570-15581, 2021.

Tao Yu, Wentao Guo, Jianan Canal Li, Tiancheng Yuan, and Christopher De Sa. Mctensor:
A high-precision deep learning library with multi-component floating-point. arXiv preprint
arXiv:2207.08867, 2022a.

Zhen Yu, Toan Nguyen, Yaniv Gal, Lie Ju, Shekhar S Chandra, Lei Zhang, Paul Bonnington, Vic-
toria Mar, Zhiyong Wang, and Zongyuan Ge. Skin lesion recognition with class-hierarchy reg-
ularized hyperbolic embeddings. In International conference on medical image computing and
computer-assisted intervention, pp. 594—603. Springer, 2022b.

Baoquan Zhang, Hao Jiang, Shanshan Feng, Xutao Li, Yunming Ye, and Rui Ye. Hyperbolic knowl-
edge transfer with class hierarchy for few-shot learning. In IJCAI, pp. 3723-3729, 2022.

Xin Zhao, Steven D Leavitt, Zun Tian Zhao, Lu Lu Zhang, Ulf Arup, Martin Grube, Sergio Pérez-
Ortega, Christian Printzen, Lucyna Sliwa, Ekaphan Kraichak, et al. Towards a revised generic

classification of lecanoroid lichens (lecanoraceae, ascomycota) based on molecular, morphologi-
cal and chemical evidence. Fungal Diversity, 78:293-304, 2016.

14

Under review as a conference paper at ICLR 2025

A GEODESIC HYPERPLANE REFLECTIONS

In this paper we will make use of reflections in geodesic hyperplanes through the origin to align
points on a hypersphere centered at the origin with some existing point on the hypersphere. More

specifically, if we have points w,z € D™ with ||w|| = ||z|| and we want to reflect w to z, then we
can use a Householder reflection with v = H::XH , SO
2z —w)(z —w)T
||z — wl|

To see that maps w to z, we can simply enter w into this map to see that

2(z — _w\T

fweal) = (I” - - _)<VZV|2W) >W @1

_ 2((z, w) — [|w|?)

= R = 20w + WP ™) (22)

= [12l1* — 2(z, w) + [Iw]|* + [[w]|* — [|z]|*

- [12ll2 = 2(z, w) + [|w]]? (z—w) (23)

= [[wl* —[lz]*

_W+(1+||Z|2_2<Z,W>—|—|W||2>(Z_W) (24)

=W+z—-WwW=2. 25)

We make use of reflections in geodesic hyperplanes not through the origin that reflect some given
point w € D" to the origin. This is given by reflection in the hyperplane contained in the hyper-
1

sphere with center m = W and radius r = — 1. We easily verify that this hyperspherical

w2
inversion maps w to the origin.
1
1
w Ik w
Ruso(w) = + (w - 7) (26)
w0 = e ¥ T — 1 Y T
w 1= JjwP? |
- ¥ (1 .)w 27
Wi Wl —2fwE+ 1\ w2 @D
W 1 lwl2 =1 o8
CwlP T w]2 [w]]?
A% w
- % _ Y _o 29
WIE WP @

To show that this is a reflection in a geodesic hyperplane and, therefore, an isometry, we need to
show that the hypersphere defined by m and 7 is orthogonal to the boundary of D™. This is the case
when all the triangles formed by the line segments between 0, m and any point v in the intersection
of the hypersphere and the boundary of D™ are right triangles. This is exactly the case when the
Pythagorean theorem holds for each of these triangles. For each v we have that ||v|| = 1 and
[[v—ml||=r,so

v =0l +[[v—ml[* =1+ (30)
1
= (31)
|[w][?
[|w][?
= (32)
[[w[*
= [lm — 0%, (33)

which shows that the Pythagorean theorem holds and, thus, that this hyperspherical inversion is a
geodesic hyperplane reflection, so an isometry.

B PLACING POINTS ON THE VERTICES OF A HYPERCUBE

The discussion here is heavily based on (Sala et al., [2018). We include it here for completeness.
When placing a point on the vertex of an n-dimensional hypercube, there are 2" options, so each

15

Under review as a conference paper at ICLR 2025

option can be represented by a binary sequence of length n. For example, on a hypercube where
each vertex v has ||v]|o = 1, each vertex is of the form (£1,...,41)%, so we can represent v as
some binary sequence s. The distance between two such vertices can then be expressed in terms of
the Hamming distance between the corresponding sequences as

d(’Ul,UQ) = 4dHamming(317 32)7

which shows that points placed on vertices of a hypercube are maximally separated if this Hamming
distance is maximized. This forms an interesting and well studied problem in coding theory where
the objective is to find &k binary sequences of length n which have maximal pairwise Hamming
distances. There are some specific combinations of n and k for which optimal solutions are known,
such as the Hadamard code. However, for most combinations of n and k, the solution is still an
open problem (MacWilliams & Sloane, |1977). Therefore, properly placing points on the vertices of
a hypercube currently relies on the solution to an unsolved problem, making it difficult in practice.

C PROOF OF THEOREMI]

Proof. Foratree T = (V, E) with N = |V|, we know that the degrees of the vertices satisfy

> deg(v) = 2|E| = 2(N - 1). (34)
veV

Suppose W1, ..., W, C S™~1 are the sets of points on the hypersphere generated by the p optimiza-
tions that need to be ran to perform the construction, then |W;| # |W;|, since we use the cached
result whenever nodes have the same degree. Moreover, |WW;| is equal to the degree of the node for
which the points are generated, so

D_IWi <D deg(v) = 2N —1). (35)

veV

Given this constraint, the largest possible value of p is when we can fit as many |W;|’s in this sum

as possible, which is when |[W1],...,|W,| =1,...,p. In that case
p p
. plp+1)
W, = PP o v). 36
ZI =) S <2AN-1) (36)

Solving for integer p yields
1
p< b(\/mzv 15— 1)1. (37)
O

Note that this bound can be sharpened slightly by observing that each node v with deg(v) > 1 forces
the existence of deg(v) — 1 leaf nodes with degree 1. However, the asymptotic behaviour remains

O(V/N).

D PROOF OF THEOREM 2]

Theorem. Given x,y € D" with ||x|| < 1 — €L and ||ly|| < 1 — €1, an approximation d to
equation [2| can be computed with FPE representations with t terms and with a largest magnitude
approximation to cosh™! such that

2
d— cosh™! <1+2 [x =])‘ “ 38
’ TEEEEEEAR 8

for some small €* > 0.

16

Under review as a conference paper at ICLR 2025

Proof. We begin by noting that the accuracy of the largest magnitude approximation to cosh™*
depends on the underlying floating point algorithm used for computing the inverse hyperbolic cosine.
While this function cannot be computed up to machine precision on its entire domain due to the large
derivative near the lower end of its domain, it can still be computed quite accurately, i.e. there exists
some small €] > 0 such that

cosh™(2) — cosh™(#)| < €7, (39)

where x € [1, R], where R is the greatest representable number and Z is the floating point approxi-
mation to x, so for which we have

|7 — |

< €. (40)
||

For example, in PyTorch when using float64, we have €} ~ 2.107 » 10~%. If we can approximate
the argument inside cosh™ sufficiently accurately, then the largest magnitude approximation will
be close enough to guarantee a small error. More specifically, let

Ix — ylI?
(= IRIP) @ = 1lyll?)

z=1+2 4D

andlet Z = Z; + ...+ Z; with |Z;| > |Z;| for each ¢ # j be the approximation to z obtained through
FPE arithmetic. If

~ t ~
ikl N VS (42)

2| |2l

where € is the machine precision of the corresponding floating point format, then

t
p-al<la-2+| Y5 43)
=2
< 2+ 263 (44)
< de|z| + 2¢|z — Z4], (45)

where we use that |Z3] < ulp(Z1) = €|Z], so that | ZE:Q Zi| < 2¢|Z;1|. Now, we can rewrite to see

that

|Z—21| 4e
. 46
2 g =5 (46)

Therefore, by repeatedly using equation we see that the largest magnitude approximation error
is bounded by 16¢}. Our ability to approximate the argument z as precisely as in equation [42]using
FPEs follows from the error bounds of the FPE arithmetic routines from (Popescu, |2017). This
shows that the statement holds for €* = 16¢7. O

E PROOF OF PROPOSITION(I]

Proposition. The range of the inverse hyperbolic tangent formulation increases linearly in the num-
ber of terms t of the FPEs being used.

17

Under review as a conference paper at ICLR 2025

Proof. When we use FPEs with ¢ terms, we can represent points x,y € D" such that ||x|| = 1—¢'~!

and [[y]| =1 — =1 I we set —y = x = (1—¢=1,0,...,0)7, then

—yl[? (1 —et=1)2
cosh™! (1 + 2 ||X y”) = cosh™ (1 +4) 47
(=[xl A = lyl*) 1— (1—e=1)2)?
2

1

2 cosh™ (1 + 4e2t—2 _ 4e3t—3 1 64t—4) (48)
_ 2
> cosh™! (1 + 76%72) 49)
1 1 2

=log (14 555+ (1+55) —1) 6O

1
> log (=) (5)
= (1 —1t)log(e) (52)
= (t = 1)[log(e)], (53)
which shows that we can compute a distance that is bounded from below by O(t). Similar steps can
be used to show that the distance is also bounded from above by a O(t) term. O

F PROOF OF THEOREM[3]

Theorem. Given a ulp-nonoverlapping FPE x = Zf L@ € [-1+ €711 — €71 consisting of

floating point numbers with a precision b > t, Algorithm [I3|leads to an appmmmatlon y of the
inverse hyperbolic tangent of x that satisfies

ly — tanh_l(x)\ < €*, (54)

for some small €* > 0.

Proof. The accuracy of the 2z € (—0.5,0.5) branch of the algorithm follows easily from the accuracy
of the algorithm for normal floating point numbers and the error bounds of the FPE routines from
Popescul (2017), similar to the proof in Appendix[D] The other branch can be a bit more problematlc
due to the large derivatives near the boundary of the domain. For 0.5 < |z| < 1 — , We use

“1/,N _ o 2|z|
tanh™ " (z) = 0.5 - sign(z) - log <1+1 m) (55)

Let z denote the argument of the logarithm, so
2|z|
1— x|’

and let Z = Z1 +. ..+ Z; denote that approximation of z obtained through FPE operations. Due to the
error bounds given in (Popescu, 2017), for FPEs with ¢ terms on the domain 0.5 < |z| < 1 — et=1
we can assume that

(56)

|2 - 2|

< 2, (57)

2|
where € is the machine precision of the floating point terms. Now, since |Z2| < ulp(Z1) = €|Z], we
can write

t
\2—21|§\z—2|+’22i (58)
i=2

< 2¢|z| + 2|Z2] (59)
< 2€|z| + 2€|z | (60)
< de|z| + 2¢|z1 — 2|, (61)

which can be rewritten as 4
Iz — 5| < 1_€2€|z| < 8¢lz|. (62)

18

Under review as a conference paper at ICLR 2025

This shows that we can write Z; = (1 + 0)z, with |§| < 8¢. Now, the error of the largest magnitude
term approximation of the logarithm is

y — 0.5 - sign(z) - log(z ‘ = ‘0 5 - sign() - log(z1) — 0.5 - sign(x) - log(2) (63)
=0.5- ‘ log (2)‘ (64)
=0.5- ‘ log (%)‘ (65)
=05- ‘10g<(1—25)‘ (66)
=0.5-|log(1l +9)| (67)
<0.5-19] (68)
< de. (69)

Lastly, we introduce some error through the approximation of the natural logarithm. However, as
long as no overflow occurs, this error is typically bounded by the machine precision. Therefore, if
we can approximate z well enough, then we can guarantee an accurate computation of tanh™*. So
combining this result with the error bounds from (Popescu, |2017)concludes the proof. O

G PROOF OF PROPOSITION [2]
Proposition. The range of algorithm[I3|increases linearly in the number of terms t.

Proof. The maximal values that we can encounter occur near the boundary of the domain, so set
xz=1—¢€"1 Then,

2 2 — 2¢t 1
0.5 - sign(z) - log (1+ 2) = 0.5 log (1 + 7_6) (70)
1— |z et—1
t—1 2

<05-log (1) (1)

€

(&
<0.5-log (5) (72)
=0.5-(1—(t—1)log(e)) (73)
=0.5- (14 (¢t —1)|log(e)]), (74)
which shows that the range is bounded from above by O(¢). A similar argument leads to a O(t)
lower bound, showing that the range indeed increases linearly in the number of terms ¢. O

H BINARY TREE EMBEDDING RESULTS FOR VARYING DIMENSIONS

Table [4] shows results of the embedding of a binary tree with float32 representations in 4, 7, 10 or
20 dimensions. Here, we have also tested an additional objective similar to MHS, where we use the
cosines of the angles instead of the angles. We find that MHS generally leads to the best or close to
the best results for each choice of dimensions.

I EMBEDDING m-ARY TREES IN VARYING DIMENSIONS

TablesE] and@] show results of the embedding of various m-ary trees in dimensions 4, 7, 10 and 20,
similar to Table[2} We find that MS-DTE gives the best results overall.

19

Under review as a conference paper at ICLR 2025

D(LU€ D’ll)C
4 7 10 20 4 7 10 20

Salaetal|(2018) 1 0.734 0.734 0.734 0.734 1143 1143 1143 1143
Salaetal. (2018) x 0.235 0.502 0.361 0.726 1051 132 1842 280.5

Ey 0.192 0.188 0.219 0.189 1.655 1.625 1.670 1.640
Ey 0.190 0.196 0204 0.190 1.619 1.664 1.686 1.698
Ey 0.194 0.198 0.190 0.198 1.666 1.687 1.642 1.680
Cosine similarity 0.189 0.189 0.188 0.188 1.636 1.637 1.635 1.633
MHS 0.188 0.188 0.188 0.189 1.632 1.623 1.635 1.631

Table 4: Comparing hyperspherical separation methods for the constructive hyperbolic embed-
ding of a binary tree with a depth of 8 edges using float32 representations in 4, 7, 10 or 20 dimen-
sions. { uses Hadamard generated hypersphere points and * uses precomputed points from (Lovisolo
& Da Silval 200T)).

D 3-tree 5-tree 7-tree
ave 4 7 10 20 4 7 10 20 4 7 10 20

Salaetal.|(2018) 1 0.09 0.07 0.03 001 0.18 0.05 0.04 003 0.16 0.13 0.03 0.02

Salaetal.((2018)f 0.11 0.11 0.11 0.11 - - 0.12 0.12 - - 0.12 0.12
Salaetal.[(2018)» 0.08 0.08 0.09 0.14 0.10 0.12 0.13 0.18 0.12 0.12 0.13 0.17
MS-DTE 0.06 0.06 006 006 0.09 009 009 009 010 0.10 0.10 0.10

Table 5: Comparison of average distortion of hyperbolic embedding algorithms on m-ary trees
with a maximum path length of / = 8. The h-MDS method is represented by {. The I method is
the combinatorial construction with the hyperspherical points being generated using the Hadamard
construction, whereas the x method samples hyperspherical points from the precomputed points
generated with the hyperspherical separation method from (Lovisolo & Da Silva, 2001)). The h-
MDS method outperforms the other methods for higher dimensions, but collapses nodes, making
the embeddings unusable. MS-DTE has the best performance for smaller dimensions and second
best performance for larger dimensions.

J EMBEDDING PHYLOGENETIC TREES IN VARYING DIMENSIONS

Additional experiments involving the phylogenetic trees with embedding dimensions 4, 7, 10 and
20 are shown in Tables[7] [8] [0]and [I0] We observe that the precomputed points method struggles to
separate points for higher dimensions, leading to higher distortion. Moreover, we find that MS-DTE
gives the best results overall in every setting.

20

Under review as a conference paper at ICLR 2025

D 3-tree 5-tree T-tree
we 4 7 10 20 4 7 10 20 4 7 10 20

Salaetal.[(2018) 1 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

Salaetal.|(2018) 1 1.14 1.14 1.14 1.14 - - 1.14 1.14 - - 1.14 1.14
Salaetal.|(2018) x 1.32 122 1.18 123 128 130 130 134 153 125 131 1.26
MS-DTE 1.07 1.07 107 107 114 110 110 110 114 113 112 1.12

Table 6: Comparison of worst-case distortion of hyperbolic embedding algorithms on m-ary
trees with a maximum path length of / = 8. The h-MDS method is represented by t. The
method is the combinatorial construction with the hyperspherical points being generated using the
Hadamard construction, whereas the x method samples hyperspherical points from the precomputed
points generated with the hyperspherical separation method from (Lovisolo & Da Silval [2001). MS-
DTE has the best performance in all settings.

D Mosses Weevils

ave 4 7 10 20 4 7 10 20
HypFPE +|Sala et al.|(2018) & - - - 0.09 - - 0.07 0.07
HypFPE +|Sala et al.|(2018) x 0.06 0.10 0.08 0.10 0.03 0.05 0.05 0.10
HypFPE + MS-DTE 0.04 0.04 0.04 004 0.03 0.03 0.03 0.03

Table 7: Comparison of average distortion of hyperbolic embedding algorithms on the mosses
and weevils trees. I represents the construction with Hadamard hyperspherical points and * the
construction with points sampled from a set precomputed with (Lovisolo & Da Silva, 2001). The
best performance is in bold. The embeddings are performed in a 4, 7, 10 or 20-dimensional space.
Overall, we find that MS-DTE works best.

D Carnivora Lichen
ave 4 7 10 20 4 7 10 20

HypFPE +|[Salaet al.[(2018) ¥ 0.04 0.04 0.04 0.04 0.12 0.12 0.12 0.12
HypFPE +|[Sala et al.|(2018) « 0.01 0.03 0.03 0.06 0.05 0.10 0.11 0.19
HypFPE + MS-DTE 0.02 0.02 0.03 0.02 0.06 0.06 0.05 0.05

Table 8: Comparison of average distortion of hyperbolic embedding algorithms on the car-
nivora and lichen trees. I represents the construction with Hadamard hyperspherical points and %
the construction with points sampled from a set precomputed with (Lovisolo & Da Silva,|2001). The
best performance is in bold. The embeddings are performed in a 4, 7, 10 or 20-dimensional space.
Overall, we find that MS-DTE works best.

K STATISTICS OF THE TREES USED IN THE EXPERIMENTS

Some statistics of the trees that are used in the experiments are shown in Table[TT} Most notably,
these statistics show that the true number of optimizations that has to be performed is significantly
lower than the worst-case number of optimizations given by Theorem (I} To see this, note that an
optimization step using MHS has to be performed each time a node is encountered with a degree
that did not appear before. The result of this optimization step can then be cached and used for each
node with the same degree.

L GRAPH AND TREE-LIKE GRAPH EMBEDDING RESULTS

The graphs that we test our method on are a graph detailing relations between diseases (Goh et al.}
2007) and a graph describing PhD advisor-advisee relations (De Nooy et al.l 2018). In order to
embed graphs with the combinatorial constructions, the graphs need to be embedded into trees first.
Following (Sala et al.| 2018)), we use (Abraham et al., 2007) for the graph-to-tree embedding. The

21

Under review as a conference paper at ICLR 2025

D Mosses Weevils

we 4 7 10 20 4 7 10 20
HypFPE +|Sala et al.|(2018) 1 - - - 1.10 - - 1.09 1.09
HypFPE +[Sala et al.|(2018) x 1.36 1.21 1.14 1.16 125 1.12 1.11 1.13
HypFPE + MS-DTE 1.09 1.07 1.06 1.07 1.05 1.05 1.04 1.04

Table 9: Comparison of worst-case distortion of hyperbolic embedding algorithms on the
mosses and weevils trees. | represents the construction with Hadamard hyperspherical points and
* the construction with points sampled from a set precomputed with (Lovisolo & Da Silva, 2001).
The best performance is in bold. The embeddings are performed in a 4, 7, 10 or 20-dimensional
space. Overall, we find that MS-DTE works best.

Carnivora Lichen
4 7 10 20 4 7 10 20

HypFPE +[Salaetal.|(2018) 1 6.76 6.76 6.76 6.76 434 434 434 434
HypFPE +|[Sala et al.|(2018) x 3.50 4.06 4.87 13.0 473 544 643 36.0
HypFPE + MS-DTE 246 245 2.03 235 4.07 463 330 7.17

D’U}C

Table 10: Comparison of worst-case distortion of hyperbolic embedding algorithms on the
carnivora and lichen trees. I represents the construction with Hadamard hyperspherical points and
* the construction with points sampled from a set precomputed with (Lovisolo & Da Silva, 2001).
The best performance is in bold. The embeddings are performed in a 4, 7, 10 or 20-dimensional
space. Overall, we find that MS-DTE works best.

results of the subsequent tree embeddings are shown in Table[I2] These distortions are with respect
to the tree metric of the embedded tree instead of with respect to the original graph. This is to avoid
mixing the influence of the tree-to-hyperbolic space embedding method with that of the graph-to-tree
embedding.

From these results we again see that HypFPE + MS-DTE outperforms all other methods. However,
it should be noted that graphs cannot generally be embedded with arbitrarily low distortion in hy-
perbolic space and that the graph to tree embedding method will introduce significant distortion.
Hyperbolic space is not a suitable target for embedding a graph that is not tree-like. Therefore, we
define our method as a tree embedding method and not as a graph embedding method.

M FPE ARITHMETIC

Algorithm 2 FPEAddition

1: Input: FPEsx =21 + ...+ Z,, ¥y = y1 + . . . + Ym and number of output terms r.
2: f < MergeFPEs(z, y)

3: s + FPERenormalize(f,r)

4: return s =51+ ...+ S,

22

Under review as a conference paper at ICLR 2025

Algorithm 3 MergeFPEs

I: Input: FPEsz =21+ ...+ Zn, y=9y1+ ... + Ym.-

2: z + Concatenate(z, y)

3: Sort terms in z in ascending order with respect to absolute value.
4: return Sorted z = {z1,..., Zntm}-

Algorithm 4 FPERenormalize

1: Input: List of floating point numbers x = 1, . .., x,, and number of output terms 7.
2: e + VecSum(z)
3: y « VecSumErrBranch(e, r)
4: return y =y +... +y,
Algorithm 5 VecSum
1: Input: List of floating point numbers z1, .. ., Z,.
2: STy
3:foric{n—1,...,1} do
4: (s,e441) < 2Sum(zy, s)
5: end for
6: e1 < s
7: return eq,...,e,

Algorithm 6 VecSumErrBranch

1: Input: List of floating point numbers ey, . . ., e, and number of output terms m.
20 j+1

3: e4—e

4: fori € {1,n—1} do

50 (rj,€) < 2Sum(e, €;41)
6: if e # 0 then

7: if 5 > m then

8: return 7q,...,7y,
9: end if
10: j—i+1
11: else
12: €T
13: endif
14: end for

15: if € # 0 and j < m then
16: T <— €

17: end if

18: return rqg,..., 7,

Algorithm 7 2Sum

Input: floating point numbers x and y.

s < RN(z+y) where RN is rounding to nearest
x’ < RN(s — y)

Yy« RN(s —z')

0z < RN(z — 2')

by < RN(y —3/)

e < RN(d; + dy)

return (s,e)

A o

23

Under review as a conference paper at ICLR 2025

Algorithm 8 Fast2Sum

Input: Floating point numbers z and y with |log, |z|| > [log, |y|]
s + RN(z +y)

z + RN(s — x)

e+ RN(y — 2)

return (s,e)

A

Algorithm 9 FPEMultiplication

1: Input: FPEsz =2, + ...+ z,,y = y1 + . .. + ym, number of output terms r, bin size b and
precision p (for float64: b = 45, p = 53).

2 ty, < [logy |1

3: ty, < |logy |y

4 bty + 1y,

5:foriec {1,...,[r-p/b] + 2} do

6.

7

8

B+ 1.5.2t7bdp-l
: end for
: forie {1,... , min(n,r + 1)} do
9: forje{l,...,min(m,r+1—4)}do
10 (7', e) < 2Prod(z;, y;)
11: Ot —t,, —ty,
12: sh + |¢/b]
13: £+ L —sh-b

14: B « Accumulate(n’, e, B, sh, {)
15: end for

16: if 5 < m then

17: -z -y

18 Lt —t,, —ty,

19: sh< [£/b]
20: <+ ¥¢—sh-b

21: B + Accumulate(n’, 0, B, sh, £)
22: endif
23: end for

24: fori e {1,...,|r-p/b] +2} do
25: B; <+ B; —1.5.2t~wtr-1
26: end for

27: 7 < VecSumErrBranch(B, 1)
28: return 7w + ...+ T,

24

Under review as a conference paper at ICLR 2025

Algorithm 10 Accumulate

1: Input: Floating point numbers 7/, e, list of floating point numbers B and integers sh, £.
2:c+p—-0b-—-1

3: if £ < b—2c— 1 then

4: (Bsp, ") + Fast2Sum(Bg, ')

5: Bspy1 < Bepyr + 7'

6: (Bsht1,€) < Fast2Sum(Bgp, 41, €)
7 Bsh+2 — Bsh+2 +e

8: elseif / < b — c then

9: (Bsp, ') «+ Fast2Sum(Bgp, 1)
10: Bgpy1 ¢ Bspy1 + 7
11: (Bsht1,€) < Fast2Sum(Bgp 41, €)
12: (Bspy2,e) < Fast2Sum(Bgj,42, €)
13: Bsh+3 «— Bsh+3 +e
14: else

15 (Bsh,p) + Fas2Sum(Bgp,, ')

16: (Bsht1,) « Fast2Sum(Bgp 41, 7)
17: lem+2 < Bsh+2 + '

18: (Bspy2,e) < Fast2Sum(Bgj, 42, €)
19: Bsh+3 — Bsh+3 +e

20: end if

21: return B

Algorithm 11 FPEReciprocal

1: Input: FPE z = 1 + ... + 29 an number of output terms 29.
1 =RN(5-)

»

3: forie {1,...,q} do

4: v < FPEMultiplication(r, x, 2¢*1)

5w + FPERenormalize(—vy, ..., —vgit1,2.0,2F1)
6: 1 < FPEMultiplication(r, w, 2¢1)

7: end for

8: return r; + ...+ 7T9q

Algorithm 12 FPEDivision

1: Input: FPEsz =21 + ... + 2,y = y1 + . . . + ¥ and number of output terms 7.
2: z < FPEReciprocal(y, m)

3: 7 + FPEMultiplication(z, z,r)

4: return 7

Algorithm 13 FPEtanh "

1: Input: FPE f=fi+...+ f.

2: if |f| > 1 then

3: return NaN

4: elseif |f| = 1 then

5: return oo

6: elseif | f| < 0.5 then o
7. return 0.5 -sign(f) - log(1 + 2|f| + 21‘7||‘f3‘8|)
8: else) i ‘

9: return 0.5 -sign(f) - log(1 + 12_“(}‘)

10: end if

25

Under review as a conference paper at ICLR 2025

Tree Nodes Unique degrees Theoretical worst-case deg, .. Longest path length
m-ary trees Varying 2 Varying m+1 varying
Mosses 344 11 38 16 51
Weevils 195 5 29 8 29
Carnivora 548 3 45 4 192.4
Lichen 481 3 48 4 0.972

Table 11: Statistics for the trees used in the experiments. The number of unique degrees is
excluding nodes with a degree of 1. This number is equal to the total number of optimizations that
has to be performed when embedding the tree using MS-DTE. The theoretical worst-case shows the
worst-case number of optimizations that has to be performed according to Theorem |[I] Note that the
true number of optimizations is often significantly lower than this worst-case number.

Precision Diseases CS PhDs
Dave D’U}C Da've 'D’LUC
Nickel & Kiela|(2017) 53 040 NaN 0.72 NaN
Ganea et al.|(2018) 53 0.85 4831 094 803
Yu et al.|(2022b) 53 0.72 1014 091 1220
Sala et al.|(2018) } 53 0.06 NaN 0.08 NaN
Sala et al.|(2018) 1 53 - - - -
Sala et al.|(2018) % 53 0.364 5.07 033 3.84
MS-DTE 53 028 228 029 2.76
HypFPE + Sala et al.|(2018) t 417 - - - -
HypFPE + Sala et al.|(2018) % 417 005 116 0.04 1.14
HypFPE + MS-DTE 417 0.04 114 0.04 1.09

Table 12: Comparison of hyperbolic embedding algorithms on graphs. | represents the h-MDS
method, } the construction with Hadamard hyperspherical points and x the construction with points
sampled from a set precomputed with (Lovisolo & Da Silval 2001)). The best float64 performance
is underlined and the best FPE performance is in bold. All embeddings are performed in a 10-
dimensional space. Hadamard generation cannot be used, since each embedded graph has a deg,,, ..
greater than 8. HypFPE + MS-DTE outperforms all methods.

26

	Introduction
	Preliminaries and related work
	Hyperbolic geometry preliminaries
	Related work

	MS-DTE: maximally separated Delaunay tree embeddings
	HypFPE: High-precision GPU-compatible hyperbolic embeddings
	The inverse hyperbolic cosine formulation
	The inverse hyperbolic tangent formulation

	Experiments
	Ablations
	Embedding complete m-ary trees
	Embedding phylogenetic trees

	Conclusion
	Geodesic hyperplane reflections
	Placing points on the vertices of a hypercube
	Proof of Theorem 1
	Proof of Theorem 2
	Proof of Proposition 1
	Proof of Theorem 3
	Proof of Proposition 2
	Binary tree embedding results for varying dimensions
	Embedding m-ary trees in varying dimensions
	Embedding phylogenetic trees in varying dimensions
	Statistics of the trees used in the experiments
	Graph and tree-like graph embedding results
	FPE arithmetic

