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ABSTRACT

Embedding tree-like data, from hierarchies to ontologies and taxonomies, forms
a well-studied problem for representing knowledge across many domains. Hyper-
bolic geometry provides a natural solution for embedding trees, with vastly su-
perior performance over Euclidean embeddings. Recent literature has shown that
hyperbolic tree embeddings can even be placed on top of neural networks for hi-
erarchical knowledge integration in deep learning settings. For all applications, a
faithful embedding of trees is needed, with combinatorial constructions emerging
as the most effective direction. This paper identifies and solves two key limitations
of existing works. First, the combinatorial construction hinges on finding maxi-
mally separated points on a hypersphere, a notoriously difficult problem. Current
approaches lead to poor separation, which degrades the quality of the correspond-
ing hyperbolic embedding. As a solution, we propose maximally separated De-
launay tree embeddings (MS-DTE), where during placement, the children of a
node are maximally separated through optimization, which directly leads to lower
embedding distortion. Second, low-distortion requires additional precision. The
current approach for increasing precision is to use multiple precision arithmetic,
which renders the embeddings useless on GPUs in deep learning settings. We
reformulate the combinatorial construction using floating point expansion arith-
metic, leading to superior embedding quality while simultaneously retaining their
use on accelerated hardware.

1 INTRODUCTION

Tree-like structures such as hierarchies are key for knowledge representation, from biological tax-
onomies (Padial et al., 2010) and phylogenetics (Kapli et al., 2020) to natural language (Miller, 1995;
Tifrea et al., 2018; Yang et al., 2016), social networks (Freeman, 2004), visual understanding (Desai
et al., 2023) and more. To obtain faithful embeddings of trees, Euclidean space is ill-equiped; even
simple trees lead to high distortion (Sonthalia & Gilbert, 2020). On the other hand, the exponential
nature of hyperbolic space makes it a natural geometry for embedding trees (Nickel & Kiela, 2018).
This insight has resulted in rapid advances in hyperbolic machine learning, with vastly superior
embedding (Sala et al., 2018) and clustering (Chami et al., 2020) of tree-like data.

Recent literature has shown that hyperbolic tree embeddings are not only useful on their own, they
also form powerful target embeddings on top of deep networks to unlock hierarchical representation
learning (Peng et al., 2021; Mettes et al., 2024). Deep learning with hyperbolic tree embeddings
has made it possible to effectively perform action recognition (Long et al., 2020), knowledge graph
completion (Kolyvakis et al., 2020), hypernymy detection (Tifrea et al., 2018) and many other tasks
in hyperbolic space. These early adoptions of hyperbolic embeddings have shown a glimpse of the
powerful improvements that hierarchically aligned representations can bring to deep learning.

The rapid advances in hyperbolic deep learning underline the need for hyperbolic tree embeddings
compatible with GPU accelerated software. Current tree embedding algorithms can roughly be
divided in two categories; optimization-based and constructive methods. The optimization-based
methods, e.g. Poincaré embeddings (Nickel & Kiela, 2017), hyperbolic entailment cones (Ganea
et al., 2018), and distortion optimization (Yu et al., 2022b), train embeddings using some objective
function based on the tree. While these approaches are flexible due to minimal assumptions, the
optimization can be unstable, slow and result in heavily distorted embeddings. On the other hand,
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the constructive methods traverse a tree once, placing the children of each node on a hypersphere
around the node’s embedding (Sarkar, 2011; Sala et al., 2018). These methods are fast, require no
hyperparameter tuning and have great error guarantees. However, they rely on hyperspherical sep-
aration, a notoriously difficult problem (Saff & Kuijlaars, 1997), and on multiple precision floating
point arithmetic, which is incompatible with GPUs and other accelerated hardware.

Our goal is to embed tree-like structures with minimal distortion yet with the ability to operate on
accelerated GPU hardware even when using higher precision. We do so in two steps. First, we
outline MS-DTE, a new generalization of Delaunay tree embeddings (Sarkar, 2011) to arbitrary di-
mensionality through hyperspherical energy minimization. Second, we propose HypFPE, a floating
point expansion arithmetic approach to enhance our constructive hyperbolic tree embeddings. We
develop new routines for computing hyperbolic distances on floating point expansions and outline
how to use these on hyperbolic embeddings. Furthermore, we provide theoretical results demonstrat-
ing the effectiveness of these floating point expansion routines. Floating point expansions allow for
higher precision similar to multiple precision arithmetic. However, our routines can be implemented
using standard floating point operations, making these compatible with GPUs. Experiments demon-
strate that MS-DTE generates higher fidelity embeddings than other hyperbolic tree embeddings and
that HypFPE can be used to further increase the embedding quality for MS-DTE and other methods.
We will make two software libraries publicly available, one for arbitrary-dimensional hyperbolic
tree embeddings and one for GPU-compatible floating point expansions.

2 PRELIMINARIES AND RELATED WORK

2.1 HYPERBOLIC GEOMETRY PRELIMINARIES

To help explain existing constructive hyperbolic embedding algorithms and our proposed approach,
we outline the most important hyperbolic functions here. For a more thorough overview, we refer
to (Cannon et al., 1997; Anderson, 2005). Akin to (Nickel & Kiela, 2017; Ganea et al., 2018; Sala
et al., 2018), we focus on the Poincaré ball model of hyperbolic space. For n-dimensional hyperbolic
space, the Poincaré ball model is defined as the Riemannian manifold (Dn, gn), where the manifold
and Riemannian metric are defined as

Dn =
{
x ∈ Rn : ||x||2 < 1

}
, gn = λxIn, λx =

2

1− ||x||2
. (1)

Using this model of hyperbolic space, we can compute distances between x,y ∈ Dn either as

dD(x,y) = cosh−1

(
1 + 2

||x− y||2

(1− ||x||2)(1− ||y||2)

)
, (2)

or as
dD(x,y) = 2 tanh−1

(
|| − x⊕ y||

)
, (3)

where

x⊕ y =
(1 + 2⟨x,y⟩+ ||y||2)x+ (1− ||x||2)y

1 + 2⟨x,y⟩+ ||x||2||y||2
, (4)

is the Möbius addition operation. These formulations are theoretically equivalent, but suffer from
different numerical errors. This distance represents the length of the straight line or geodesic be-
tween x and y with respect to the Riemannian metric gn. Geodesics of the Poincaré ball are Eu-
clidean straight lines through the origin and circles perpendicular to the boundary of the ball.

In this paper, we will use some isometries of hyperbolic space. More specifically, we will use
reflections in geodesic hyperplanes. A geodesic hyperplane is an (n − 1)-dimensional manifold
consisting of all geodesics through some point x ∈ Dn which are orthogonal to a normal geodesic
through x or, equivalenty, orthogonal to some normal tangent vector v ∈ TxDn. For the Poincaré
ball these are the Euclidean hyperplanes through the origin and the (n−1)-dimensional hyperspheres
which are perpendicular to the boundary of the ball. We will denote a geodesic hyperplane by Hx,v.
Reflection in a geodesic hyperplane H0,v through the origin can be defined as in Euclidean space,
so as a Householder transformation

RH0,v(y) = (In − 2vvT )y, (5)
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where ||v|| = 1. Reflection in the other type of geodesic hyperplane is a spherical inversion:

RHx,v(y) = m+
r2

||y −m||2
(y −m), (6)

with m ∈ Rn, r > 0 the center and radius of the hypersphere containing the geodesic hyperplane.
We will denote a reflection mapping some point x ∈ Dn to another point y ∈ Dn by Rx→y. The
specific formulations and derivations of the reflections that we use can be found in Appendix A.

2.2 RELATED WORK

Hyperbolic tree embedding algorithms. Existing embedding methods can be divided into two
categories: optimization-based methods and constructive methods. The optimization methods typ-
ically use the tree to define some loss function and use a stochastic optimization method such as
SGD to directly optimize the embedding of each node, e.g. Poincaré embeddings (Nickel & Kiela,
2017), hyperbolic entailment cones (Ganea et al., 2018) and distortion optimization (Sala et al.,
2018; Yu et al., 2022b). Poincaré embeddings use a contrastive loss where related nodes are pulled
together and unrelated nodes are pushed apart. Hyperbolic entailment cones attach an outwards ra-
diating cone to each node embedding and define a loss that forces children of nodes into the cone
of their parent. Distortion optimization directly optimizes for a distortion loss to embed node pairs.
Such approaches are flexible, but do not lead to arbitrarily low distortion and optimization is slow.
Constructive methods are either combinatorial methods (Sarkar, 2011; Sala et al., 2018) or eigende-
composition methods (Sala et al., 2018). Combinatorial methods first place the root of a tree at the
origin of the hyperbolic space and then traverse down the tree, iteratively placing nodes as uniformly
as possible on a hypersphere around their parent. (Sarkar, 2011) proposes a 2-dimensional approach,
where the points have to be separated on a circle; a trivial task. For higher dimensions, (Sala et al.,
2018) place points on a hypercube inscribed within a hypersphere, which leads to suboptimal dis-
tribution. We also follow a constructive approach, where we use an optimization method for the
hyperspherical separation, leading to significantly higher quality embeddings. The eigendecompo-
sition method h-MDS (Sala et al., 2018) takes a graph or tree metric and uses an eigendecomposition
of this matrix to generate low-distortion embeddings. However, it collapses nodes within some sub-
trees to a single point, leading to massive local distortion.

Deep learning with hyperbolic tree embeddings. In computer vision, a wide range of works have
recently shown the potential and effectiveness of using a hyperbolic embedding space (Khrulkov
et al., 2020). Specifically, hierarchical prior knowledge can be embedded in hyperbolic space, after
which visual representations can be mapped to the same space and optimized to match this hierarchi-
cal organization. (Long et al., 2020) show that such a setup improves hierarchical action recognition,
while (Liu et al., 2020) use hierarchies with hyperbolic embeddings for zero-shot learning. Deep
visual learning with hyperbolic tree embeddings has furthermore shown to improve image segmen-
tation (Ghadimi Atigh et al., 2022), skin lesion recognition (Yu et al., 2022b), video understanding
(Li et al., 2024), hierarchical visual recognition (Ghadimi Atigh et al., 2021; Dhall et al., 2020),
hierarchical model interpretation (Gulshad et al., 2023), open set recognition (Dengxiong & Kong,
2023), continual learning (Gao et al., 2023), few-shot learning (Zhang et al., 2022), and more. Since
such approaches require freedom in terms of embedding dimensionality, they commonly rely on
optimization-based approaches to embed the prior tree-like knowledge. Similar approaches have
also been investigated in other domains, from audio (Petermann et al., 2023) and text (Dhingra
et al., 2018; Le et al., 2019) to multimodal settings (Hong et al., 2023). In this work, we provide a
general-purpose and unconstrained approach for low-distortion embeddings with the option to scale
to higher precisions without losing GPU-compatibility.

Floating point expansions. The use of floating point expansions (FPEs) to increase precision in
hyperbolic space was recently proposed by (Yu & De Sa, 2021) and implemented in a PyTorch li-
brary (Yu et al., 2022a). However, their methodology is based on older FPE arithmetic definitions
and routines by (Priest, 1991; 1992; Richard Shewchuk, 1997). In the field of FPEs, more effi-
cient and stable formulations have been proposed over the years with improved error guarantees
(Joldes et al., 2014; 2015; Muller et al., 2016). In this paper, we build upon the most recent arith-
metic framework detailed in (Popescu, 2017). We have implemented this framework for PyTorch
and extend its functionality to work with hyperbolic embeddings.
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3 MS-DTE: MAXIMALLY SEPARATED DELAUNAY TREE EMBEDDINGS

Setting and objective. We are given a (possibly weighted) tree T = (V,E), where the nodes in
V contain the concepts of our hierarchy and the edges in E represent parent-child connections. The
goal is to find an embedding ϕ : V → Dn that accurately captures the semantics of the tree T , so
where T can be accurately reconstructed from ϕ(V ). An embedding ϕ is evaluated by first defining
the graph metric dT (u, v) on the tree as the length of the shortest path between the nodes u and v
and then checking how much ϕ distorts this metric. We will use two distortion based evaluation
metrics. The first one is the average relative distortion, given as

Dave(ϕ) =
1

N(N − 1)

∑
u̸=v

|dD(ϕ(u), ϕ(v))− dT (u, v)|
dT (u, v)

, (7)

where N = |V | is the number of nodes. A low value for this metric is a necessary, but not sufficient
condition for a high quality embedding, as it still allows for large local distortion. Therefore, we use
a second distortion based metric, the worst-case distortion, given by

Dwc(ϕ) = max
u̸=v

dD(ϕ(u), ϕ(v))

dT (u, v)

(
min
u ̸=v

dD(ϕ(u), ϕ(v))

dT (u, v)

)−1

. (8)

Dave ranges from 0 to infinity and Dwc ranges from 1 to infinity, with smaller values indicating
strong embeddings. A large Dave indicates a generally poor embedding, while a large Dwc indicates
that at least some part of the tree is poorly embedded. Both values should be close to their minimum
if an embedding is to be used for a downstream task. Lastly, another commonly used evaluation
metric for unweighted trees is the mean average precision, given by

MAP(ϕ) =
1

N

∑
u∈V

1

deg(u)

∑
v∈NV (u)

∣∣∣NV (u) ∩ ϕ−1
(
BD(u, v)

)∣∣∣∣∣∣ϕ−1
(
BD(u, v)

)∣∣∣ , (9)

where deg(u) denotes the degree of u in T , NV (u) denotes the nodes adjacent to u in V and where
BD(u, v) ⊂ Dn denotes the closed ball centered at ϕ(u) with hyperbolic radius dD(ϕ(u), ϕ(v)), so
which contains v itself. The MAP reflects how well we can reconstruct neighborhoods of nodes
while ignoring edge weights, making it less appropriate for various downstream tasks.

Constructive solution for hyperbolic embeddings. The starting point of our method is the
Poincaré ball implementation of Sarkar’s combinatorial construction (Sarkar, 2011) as outlined by
(Sala et al., 2018). A generalized formulation of this approach is outlined in Algorithm 1. The scal-
ing factor τ > 0 is used to scale the tree metric dT . A larger τ allows for a better use of the curvature
of hyperbolic space, theoretically making it easier to find strong embeddings. Lower values can help
avoid numerical issues that arise near the boundary of the Poincaré ball. When the dimension of the
embedding space satisfies n ≤ log(degmax) + 1 and the scaling factor is set to

τ =
1 + ϵ

ϵ
log

(
4 degmax

1
n−1

)
, (10)

with degmax the maximal degree of T , then the construction leads to a worst-case distortion bounded
by 1 + ϵ, given that the points on the hypersphere are sufficiently uniformly distributed (Sala et al.,
2018). When the dimension is n > log(degmax) + 1, the scaling factor should be τ = Ω(1), so
it can no longer be reduced by choosing a higher dimensional embedding space (Sala et al., 2018).
The number of bits required for the construction isO( 1ϵ

ℓ
n log(degmax)) when n ≤ log(degmax) + 1

and O( ℓϵ ) when n > log(degmax) + 1, where ℓ is the longest path in the tree.

The difficulty of distributing points on a hypersphere. The construction in Algorithm 1 pro-
vides a nice way of constructing embeddings in n-dimensional hyperbolic space with arbitrarily low
distortion. However, the bound on the distortion for the τ in Equation 10 is dependent on our ability
to generate uniformly distributed points on the n-dimensional hypersphere. More specifically, given
generated points x1, . . . ,xdegmax

, the error bound relies on the assumption that

min
i ̸=j

sin∠(xi,xj) ≥ degmax
− 1

n−1 . (11)

Moreover, in practice it is important to keep the scaling factor τ as small as possible, since the
required number of bits increases linearly with τ . Increasing the minimal angle beyond the condition
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Algorithm 1 Generalized Sarkar’s Dalaunay tree embedding

1: Input: Tree T = (V,E) and scaling factor τ > 0.
2: for v ∈ V do
3: p← parent(v)
4: c1, . . . , cdeg(v)−1 ← children(v)
5: Reflect ϕ(p) with Rϕ(v)→0

6: Generate x1, . . . ,xdeg(v) uniformly distributed points on a hypersphere with radius 1
7: Get rotation matrix A such that Rϕ(v)→0

(
ϕ(p)

)
is aligned with Axdeg(v) and rotate

8: Scale points by γ = eτ−1
eτ+1

9: Reflect rotated and scaled points back: ϕ(ci)← Rϕ(v)→0(γAxi), i = 1, . . . , deg(v)− 1
10: end for

in equation 11 allows for the use of a smaller τ . In the general case, uniformly distributing points
on a hypersphere has no closed form solution (Saff & Kuijlaars, 1997; Kasarla et al., 2022). (Sala
et al., 2018) propose to generate points by placing them on the vertices of an inscribed hypercube.
However, this approach comes with three limitations. First, the maximum number of points that can
be generated with this method is 2n, which is limited for small n. Second, for most configurations
this method results in a sub-optimal distribution, leading to an unnecessarily high requirement on
τ . Third, this method depends on finding binary sequences of length n with maximal Hamming
distances (see Appendix B), which is in general not an easy problem to solve. Their solution is to
use the Hadamard code. However, this can only be used when the dimension is a power of 2 and at
least degmax, which is a severe restriction, often incompatible with downstream tasks.

Delaunay tree embeddings with maximal hyperspherical separation. We propose to improve
the construction by distributing the points on the hypersphere in step 6 of Algorithm 1 through
optimization. Specifically, we use projected gradient descent to find x1, . . . ,xk ∈ Sn−1 such that

x1, . . . ,xk = argmin
w1,...,wk ∈ Sn−1

L(w1, . . . ,wk), (12)

where L : (Sn−1)k → R is some objective function. Common choices for this objective are the
hyperspherical energy functions (Liu et al., 2018), given by

Es(w1, . . . ,wk) =

{∑k
i=1

∑
j ̸=i ||wi −wj ||−s, s > 0,∑k

i=1

∑
j ̸=i log

(
||wi −wj ||−1

)
, s = 0,

(13)

where s is a nonnegative integer parameterizing this set of functions. Minimizing these objective
functions pushes the hyperspherical points apart, leading to a more uniform distribution. However,
these objectives are aimed at finding a large mean pairwise angle, allowing for the possibility of
having a small minimum pairwise angle. Having a small minimum pairwise angle leads to the cor-
responding nodes and their descendants being placed too close together, leading to large distortion,
as shown in the experiments. Therefore, we propose the maximal hyperspherical separation (MHS)
objective, aimed at maximizing this minimal angle

E(w1, . . . ,wk) = −
k∑

i=1

min
j ̸=i

∠(wi,wj), (14)

which pushes each wi away from its nearest neighbour. We find that this method leads to larger
minimum pairwise angles, allowing for the use of a smaller τ . Moreover, this optimization method
places no requirements on the dimension, making it a suitable choice for downstream tasks. We
refer to the resulting construction as the maximally separated Delaunay tree embedding (MS-DTE)
method. When performing the construction using MHS, the output of the optimization can be cached
and reused each time a node with the same degree is encountered. Using this approach, the worst-
case number of optimizations that has to be performed is O(

√
N) as shown by Theorem 1.

Theorem 1. The worst-case number of optimizations p that has to be performed when embedding
a tree with the combinatorial construction in Algorithm 1 with any objective using caching is

p ≤
⌈1
2
(1 +

√
16N − 15)

⌉
. (15)
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Proof. See Appendix C.
MHS optimization details. In practice we find the number of optimizations to be lower due to fre-
quent occurrence of low degree nodes for which cached points can be used, as shown in Appendix
K. Furthermore, MHS is an easily optimizable objective, that we train using PGD for 450 iterations
with a learning rate of 0.01, reduced by a factor of 10 every 150 steps, for every configuration.
This optimization can generally be performed in mere seconds which, if necessary, can be further
optimized through hyperparameter configurations, early stopping, parallelization and hardware ac-
celeration. As a result, the increase in computation time of our method compared to (Sala et al.,
2018) is minimal. Moreover, when compared to methods such as Poincaré embeddings (Nickel &
Kiela, 2017) which use stochastic gradient descent to directly optimize the embeddings, we find that
our method is orders of magnitude faster, while avoiding the need for costly hyperparameter tuning.

4 HYPFPE: HIGH-PRECISION GPU-COMPATIBLE HYPERBOLIC EMBEDDINGS

While hyperbolic space enjoys numerous potential benefits, it is prone to numerical error when
using floating point arithmetic. Especially as points move away from the origin, floating point
arithmetic struggles to accurately represent or perform computations with these points. For larger
values of τ or maximal path lengths ℓ, the embeddings generated by the construction often end
up in this problematic region of the Poincaré ball. As such, the precision required for hyperbolic
embeddings is often larger than the precision provided by the floating point formats supported on
GPUs. Increased precision can be attained by switching to arbitrary precision arithmetic. However,
this makes the result incompatible with existing deep learning libraries.

Here, we propose HypFPE, a method to increase the precision of constructive hyperbolic approaches
through floating point expansion (FPE) arithmetic. In this framework, numbers are represented as
unevaluated sums of floating point numbers, typically of a fixed number of bits b. In other words, a
number f ∈ R is represented by a floating point expansion f̃ as

f ≈ f̃ =

t∑
i=1

f̃i, (16)

where the f̃i are floating point numbers with a fixed number of bits and where t is the number of
terms that the floating point expansion f̃ consists of. Each term f̃i is in the form of a GPU supported
float format, such as float16, float32 or float64. Moreover, to ensure that this representation is unique
and uses bits efficiently, it is constrained to be ulp-nonoverlapping (Popescu, 2017).

Definition 4.1. A floating point expansion f̃ = f̃1 + . . . + f̃t is ulp-nonoverlapping if for all
2 ≤ i ≤ t, |f̃i| ≤ ulp(f̃i−1), where ulp(f̃i−1) is the unit in the last place of f̃i−1.

A ulp-nonoverlapping FPE consisting of t terms each with b bits precision has at worst t(b− 1) + 1
bits of precision, since exactly t − 1 overlapping bits can occur. The corresponding arithmetic
requires completely different routines for computing basic operations, many of which have been
introduced by (Joldes et al., 2014; 2015; Muller et al., 2016; Popescu, 2017). An overview of these
routines can be found in Appendix M. For an overview of the error guarantees we refer to (Popescu,
2017). Each of these routines can be defined using ordinary floating point operations that exist for
tensors in standard tensor libraries such as PyTorch, which are completely GPU compatible. In this
work, we have generalized each of the routines to tensor operations and implement these in PyTorch
by adding an extra dimension to each tensor containing the terms of the floating point expansion.

Applying FPEs to the construction. In the constructive method the added precision is warranted
whenever numerical errors lead to large deviations with respect to the hyperbolic metric. In other
words, if we have some x ∈ Dn and its floating point representation x̃, then it makes sense to
increase the precision if

dD(x, x̃)≫ 0. (17)

For the Poincaré ball, this is the case whenever x lies somewhere close to the boundary of the ball.
In our construction, this means that generation and rotation of points on the unit hypersphere can
be performed in normal floating point arithmetic, since the representation error in terms of dD will
be negligible. However, for large τ , the scaling of the hypersphere points and the hyperspherical
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inversion require increased precision as these map points close to the boundary of Dn. Specifically,
steps 5, 8 and 9 of Algorithm 1 may require increased precision. Note that these operations can be
performed using the basic operation routines shown in Appendix M. From the basic operations, more
complicated nonlinear operations can be defined through the Taylor series approximations that are
typically used for floating point arithmetic. To compute the distortion of the resulting embeddings,
the distances between the embedded nodes must be computed either through the inverse hyperbolic
cosine formulation of Equation 2 or through the inverse hyperbolic tangent formulation of Equation
3. In this work, we show how to accurately compute distances using either formulation.

4.1 THE INVERSE HYPERBOLIC COSINE FORMULATION

For Equation 2, normal floating point arithmetic may cause the denominator inside the argument
of cosh−1 to become 0 due to rounding. To solve this, we can use FPE arithmetic to compute the
argument of cosh−1 and then approximate the distance by applying cosh−1 to the largest magnitude
term of the FPE. This allows accurate computation of distances even for points near the boundary of
the Poincaré ball, as shown by Theorem 2 and Proposition 1.
Theorem 2. Given x,y ∈ Dn with ||x|| < 1 − ϵt−1 and ||y|| < 1 − ϵt−1, an approximation d to
equation 2 can be computed with FPE representations with t terms and with a largest magnitude
approximation to cosh−1 such that, for some small ϵ∗ > 0,∣∣∣∣d− cosh−1

(
1 + 2

||x− y||2

(1− ||x||2)(1− ||y||2)

)∣∣∣∣ < ϵ∗. (18)

Proof. See Appendix D.
Proposition 1. The range of the inverse hyperbolic tangent formulation increases linearly in the
number of terms t of the FPEs being used.
Proof. See Appendix E.

Theorem 2 shows that we can accurately compute distances on a larger domain than with normal
floating point arithmetic. Moreover, Proposition 1 shows that the effective radius of the Poincaré ball
in which we can represent points and compute distances increases linearly in the number of terms
of our FPE expansions. Therefore, this effective radius increases linearly with the number of bits.
The same holds when using arbitrary precision floating point arithmetic, so FPE expansions require
a similar number of bits for the constructive method as arbitrary precision floating point arithmetic.

4.2 THE INVERSE HYPERBOLIC TANGENT FORMULATION

For Equation 3, the difficulty lies in the computation of tanh−1. With normal floating point arith-
metic, due to rounding errors, this function can only be evaluated on [−1 + ϵ, 1− ϵ], where ϵ is the
machine precision. This severely limits the range of values, i.e., distances, that we can compute.
Therefore, we need to be able to compute the inverse hyperbolic tangent with FPEs. Inspired by
(Felker & musl Contributors, 2024), we propose a new routine for this computation, given in Algo-
rithm 13 of Appendix M. Here, we approximate the logarithm in steps 7 and 9 as log(f̃) ≈ log(f̃1),
which is accurate enough for our purposes. This algorithm can be used to accurately approximate
tanh−1 while extending the range linearly in the number of terms t as shown by Theorem 3 and
Proposition 2.
Theorem 3. Given a ulp-nonoverlapping FPE x =

∑t
i=1 xi ∈ [−1 + ϵt−1, 1 − ϵt−1] consisting

of floating point numbers with a precision b > t, Algorithm 13 leads to an approximation y of the
inverse hyperbolic tangent of x that, for small ϵ∗ > 0, satisfies

|y − tanh−1(x)| ≤ ϵ∗. (19)
Proof. See Appendix F.
Proposition 2. The range of algorithm 13 increases linearly in the number of terms t.
Proof. See Appendix G.

Based on these results, either formulation could be a good choice for computing distances with
FPEs. In practice, we find that the tanh−1 formulation leads to larger numerical errors, which is
likely due to catastrophic cancellation errors in the dot product that is performed in Equation 4.
Therefore, we use the cosh−1 formulation in our experiments.
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(a) Minimal hyperspherical energy ablation. (b) Floating point expansion ablation.

Figure 1: Ablation studies on our construction and floating point expansion. (a) Minimal pair-
wise angle (↑) of the hyperspherical points generated in step 6 of Algorithm 1 using the various
generation methods. The dimension of the space is set to 8, so the Hadamard method cannot gener-
ate more than 8 points. The MHS objective consistently leads to a higher separation angle. (b) The
worst-case distortion (↓, Dwc) of the constructed embedding of the phylogenetic tree with the max-
imal admissable τ given the number of bits. The vertical dashed line shows the limit with standard
GPU floating point formats (float64). The horizontal dashed line is the best possible result Dwc = 1.
FPE representations are required to get high quality embeddings without losing GPU-compatibility.

5 EXPERIMENTS

5.1 ABLATIONS

Maximal hyperspherical separation. To test how well the proposed methods for hyperspherical
separation perform, we generate points w1, . . . ,wk on an 8-dimensional hypersphere for various
numbers of points k and compute the minimal pairwise angle mini ̸=j ∠(wi,wj). We compare to
the Hadamard generation method from (Sala et al., 2018) and the method that is used in their im-
plementation, which precomputes 1000 points using the method from (Lovisolo & Da Silva, 2001)
and samples from these precomputed points. Note that a power of 2 is chosen for the dimension to
be able to make a fair comparison to the Hadamard construction, since this method cannot be used
otherwise. The results are shown in Figure 1a. These results show that our MHS indeed leads to
maximal separation in terms of the minimal pairwise angle. Moreover, it shows that the precom-
puted approach leads to relatively poor separation and that the Hadamard method only performs
somewhat well when the number of points required is close to the dimension of the space.

To verify that this minimal pairwise angle is important for the quality of the construction, we perform
the construction on a binary tree with a depth of 8 edges using each of the hypersphere generation
methods. The construction is performed in 10 dimensions except for the Hadamard method, since
this cannot generate 10 dimensional points. Additional results for dimensions 4, 7 and 20 are shown
in Appendix H. Each method is applied using float32 representations and a scaling factor of τ =
1.33. The results are shown in Table 1. These findings support our hypothesis that the minimal
pairwise angle is important for generating high quality embeddings and that the MHS is an excellent
objective function for performing the separation.

FPEs versus standard floating points. To demonstrate the importance of using FPEs for increas-
ing precision, we perform the construction on a phylogenetic tree expressing the genetic heritage of
mosses in urban environments (Hofbauer et al., 2016), made available by (Sanderson et al., 1994),
using various precisions. This tree has a maximum path length ℓ = 30, which imposes sharp re-
strictions on the value of τ that we can choose before encountering numerical errors. We perform
the construction either with normal floating point arithmetic using the usual GPU-supported float
formats or with FPEs, using multiple float64 terms. The scaling factor τ is chosen to be close to the
threshold where numerical problems appear in order to obtain optimal results for the given precision.

The results in terms of Dwc are shown in Figure 1b. As can be seen from these results, around
100 bits of precision are needed to obtain decent results, which can be achieved using FPEs with 2
float64 terms. Without FPE expansions, the largest GPU-compatible precision is 53 bits, obtained
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Method dim Dave Dwc MAP

Sala et al. (2018) ‡ 8 0.734 1143 0.154
Sala et al. (2018) ⋆ 10 0.361 18.42 0.998
E0 10 0.219 1.670 1.000
E1 10 0.204 1.686 1.000
E2 10 0.190 1.642 1.000
MHS 10 0.188 1.635 1.000

Table 1: Comparing hyperspherical separa-
tion methods for the constructive hyperbolic
embedding of a binary tree with a depth of
8 edges when using float32 representations in
10 dimensions. ‡ uses Hadamard generated
hypersphere points and ⋆ uses precomputed
points from (Lovisolo & Da Silva, 2001).
Note that the Hadamard code cannot be ap-
plied in 10 dimensions, so 8 is used instead.

Figure 2: Pairwise relative distortions of h-MDS
(left) and MS-DTE (right) applied to the 5-ary tree
with a scaling factor τ = 5.0. The axes are or-
dered using a breadth-first search of the tree.

by using float64. This precision yields a Dwc of 9.42, which is quite poor. These results illustrate
the importance of FPEs for high quality GPU-compatible embeddings.

5.2 EMBEDDING COMPLETE m-ARY TREES

To demonstrate the strong performance of the combinatorial constructions compared to other meth-
ods, we perform embeddings on several complete m-ary trees with a max path length of ℓ = 8 and
branching factors m = 3, 5, 7. Due to the small ℓ, each experiment can be performed with nor-
mal floating point arithmetic using float64 representations. We compare our method with Poincaré
embeddings (PE) (Nickel & Kiela, 2017), hyperbolic entailment cones (HEC) (Ganea et al., 2018),
distortion optimization (DO) (Sala et al., 2018; Yu et al., 2022b), h-MDS (Sala et al., 2018) and
the combinatorial method with Hadamard (Sala et al., 2018) or precomputed hyperspherical points
(Lovisolo & Da Silva, 2001). For the constructive methods and for h-MDS, a larger scaling factor
improves performance, so we use τ = 5. For DO we find that increasing the scaling factor does not
improve performance, so we use τ = 1.0. PE and HEC are independent of the scaling factor.

The results on the various trees in 10 dimensions are shown in table 2 and additional results for
dimensions 4, 7 and 20 are shown in Appendix I. These illustrate the strength of the combinatorial
constructions. The optimization methods PE, HEC and DO perform relatively poor for all evaluation
metrics. This performance could be increased through hyperparameter tuning and longer training.
However, the results will not come close to those of the other methods. The h-MDS method performs
well in terms of Dave, but very poorly on Dwc and MAP. This is because h-MDS collapses leaf
nodes, leading to massive local distortion within the affected subtrees. However, between subtrees
this distortion is much smaller, explaining the low Dave. Figure 2 illustrates the issue with-h-MDS
and the superiority of our approach. Each of the white squares in the h-MDS plot corresponds to a
collapsed subtree, which renders the embeddings unusable for downstream tasks since nearby leaf
nodes cannot be distinguished. We conclude that MS-DTE obtains the strongest embeddings overall.

5.3 EMBEDDING PHYLOGENETIC TREES

For the final experiment, we compare MS-DTE to the other methods on phylogenetic trees. More-
over, we show how adding HypFPE to our method and the other combinatorial methods increases the
embedding quality when requiring GPU-compatibility. The phylogenetic trees that we use are trees
describing mosses (Hofbauer et al., 2016), weevils (Marvaldi et al., 2002), the European carnivora
(Roquet et al., 2014) and lichen (Zhao et al., 2016), obtained from (McTavish et al., 2015). The
latter two trees are weighted trees which can be embedded by adjusting the scaling in step 8 of Al-
gorithm 1 according to the weights. Each of the embeddings is performed in 10-dimensional space,
with results for varying dimensions given in Appendix J. The h-MDS method and the combinatorial
constructions are performed with the largest τ that can be used with the given precision.

The results of the embeddings are shown in Table 3. These results show that, when using float64,
MS-DTE outperforms each of the optimization-based methods and the other combinatorial ap-
proaches from (Sala et al., 2018). While, the h-MDS method leads to a better average distortion, it
collapses entire subtrees, leading to massive local distortion. Therefore, the MS-DTE embeddings
are of the highest quality. Lastly, when adding HypFPE on top of the combinatorial approaches, all
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3-tree 5-tree 7-tree
Dave Dwc MAP Dave Dwc MAP Dave Dwc MAP

Nickel & Kiela (2017) 0.17 169 0.8 0.31 NaN 0.58 0.84 NaN 0.24
Ganea et al. (2018) 0.51 184 0.27 0.81 604 0.24 0.96 788 0.15
Yu et al. (2022b) 0.16 31.9 0.57 0.52 545 0.30 0.93 3230 0.05

Sala et al. (2018) † 0.03 NaN 0.52 0.04 NaN 0.1 0.03 NaN 0.05

Sala et al. (2018) ‡ 0.11 1.14 1.00 0.12 1.14 1.00 0.12 1.14 1.00
Sala et al. (2018) ⋆ 0.09 1.18 1.00 0.13 1.30 1.00 0.13 1.31 1.00
MS-DTE 0.06 1.07 1.00 0.09 1.09 1.00 0.10 1.12 1.00

Table 2: Comparison of hyperbolic embedding algorithms on m-ary trees with a maximum path
length of ℓ = 8. The h-MDS method is represented by †. The ‡ method is the combinatorial con-
struction with the hyperspherical points being generated using the Hadamard construction, whereas
the ⋆ method samples hyperspherical points from the precomputed points generated with the hyper-
spherical separation method from (Lovisolo & Da Silva, 2001). The h-MDS method outperforms
the other methods in terms of Dave, but collapses nodes, leading to NaN values of the Dwc and
making the embeddings unusable. MS-DTE has the second best Dave and outperforms all methods
in terms of Dwc. Each combinatorial construction has a perfect MAP.

Precision Mosses Weevils Carnivora Lichen
bits Dave Dwc Dave Dwc Dave Dwc Dave Dwc

Nickel & Kiela (2017) 53 0.68 44350 0.45 NaN 0.96 NaN 151 NaN
Ganea et al. (2018) 53 0.90 1687 0.77 566 0.99 NaN 162 NaN
Yu et al. (2022b) 53 0.83 163 0.57 79.8 0.99 NaN - -

Sala et al. (2018) † 53 0.04 NaN 0.06 NaN 0.11 NaN 0.13 NaN

Sala et al. (2018) ‡ 53 - - 0.79 330 0.26 35.2 0.49 79.6
Sala et al. (2018) ⋆ 53 0.78 122 0.54 34.3 0.23 18.8 0.55 101
MS-DTE 53 0.40 9.42 0.27 2.03 0.12 11.7 0.30 23.5

HypFPE + Sala et al. (2018) ‡ 417 - - 0.07 1.09 0.05 6.76 0.12 43.4
HypFPE + Sala et al. (2018) ⋆ 417 0.08 1.14 0.05 1.11 0.03 4.87 0.11 6.42
HypFPE + MS-DTE 417 0.04 1.06 0.03 1.04 0.03 2.03 0.05 3.30

Table 3: Comparison of hyperbolic embedding algorithms on various trees. † represents h-
MDS, ‡ the construction with Hadamard hyperspherical points and ⋆ the construction with points
sampled from a set precomputed with (Lovisolo & Da Silva, 2001). The best float64 performance
is underlined and the best FPE performance is in bold. All embeddings are performed in a 10-
dimensional space. Hadamard generation cannot be used for the mosses tree, since it has a degmax
greater than 8. Distortion optimization (Yu et al., 2022b) does not converge for the lichen tree due
to large variation in edge weights. Overall, combining HypFPE and MS-DTE works best.

performances go up, with the combination of MS-DTE and HypFPE leading to the best performance
on both Dave and Dwc. Additonal results on graphs are shown in Appendix L.

6 CONCLUSION

In this paper we introduce MS-DTE, a novel way of constructively embedding trees in hyperbolic
space, which uses an optimization approach to maximally separate points on a hypersphere. Empir-
ically, we show that MS-DTE outperforms existing methods, while maintaining the computational
efficiency of the combinatorial approaches. Additionally, we introduce HypFPE, a framework for
floating point expansion arithmetic on tensors, which is adapted to extend the effective radius of
the Poincaré ball. This framework can be used to increase the precision of computations, without
losing the benefit of hardware acceleration, paving the way for highly accurate hyperbolic neural
networks. It can be added on top of any of the combinatorial methods, leading to low-distortion and
GPU-compatible hyperbolic tree embeddings.
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A GEODESIC HYPERPLANE REFLECTIONS

In this paper we will make use of reflections in geodesic hyperplanes through the origin to align
points on a hypersphere centered at the origin with some existing point on the hypersphere. More
specifically, if we have points w, z ∈ Dn with ||w|| = ||z|| and we want to reflect w to z, then we
can use a Householder reflection with v = (z−w)

||z−w|| , so

Rw→z(y) =

(
In −

2(z−w)(z−w)T

||z−w||2

)
y. (20)

To see that maps w to z, we can simply enter w into this map to see that

Rw→z(w) =

(
In −

2(z−w)(z−w)T

||z−w||2

)
w (21)

= w − 2(⟨z,w⟩ − ||w||2)
||z||2 − 2⟨z,w⟩+ ||w||2

(z−w) (22)

= w +
||z||2 − 2⟨z,w⟩+ ||w||2 + ||w||2 − ||z||2

||z||2 − 2⟨z,w⟩+ ||w||2
(z−w) (23)

= w +

(
1 +

||w||2 − ||z||2

||z||2 − 2⟨z,w⟩+ ||w||2

)
(z−w) (24)

= w + z−w = z. (25)
We make use of reflections in geodesic hyperplanes not through the origin that reflect some given
point w ∈ Dn to the origin. This is given by reflection in the hyperplane contained in the hyper-
sphere with center m = w

||w||2 and radius r =
√

1
||w||2 − 1. We easily verify that this hyperspherical

inversion maps w to the origin.

Rw→0(w) =
w

||w||2
+

1
||w||2 − 1

||w − w
||w||2 ||

(
w − w

||w||2
)

(26)

=
w

||w||2
+

1− ||w||2

||w||4 − 2||w||2 + 1

(
1− 1

||w||2
)
w (27)

=
w

||w||2
+

1

1− ||w||2
· ||w||

2 − 1

||w||2
w (28)

=
w

||w||2
− w

||w||2
= 0. (29)

To show that this is a reflection in a geodesic hyperplane and, therefore, an isometry, we need to
show that the hypersphere defined by m and r is orthogonal to the boundary of Dn. This is the case
when all the triangles formed by the line segments between 0, m and any point v in the intersection
of the hypersphere and the boundary of Dn are right triangles. This is exactly the case when the
Pythagorean theorem holds for each of these triangles. For each v we have that ||v|| = 1 and
||v −m|| = r, so

||v − 0||2 + ||v −m||2 = 1 + r2 (30)

=
1

||w||2
(31)

=
||w||2

||w||4
(32)

= ||m− 0||2, (33)
which shows that the Pythagorean theorem holds and, thus, that this hyperspherical inversion is a
geodesic hyperplane reflection, so an isometry.

B PLACING POINTS ON THE VERTICES OF A HYPERCUBE

The discussion here is heavily based on (Sala et al., 2018). We include it here for completeness.
When placing a point on the vertex of an n-dimensional hypercube, there are 2n options, so each
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option can be represented by a binary sequence of length n. For example, on a hypercube where
each vertex v has ||v||∞ = 1, each vertex is of the form (±1, . . . ,±1)T , so we can represent v as
some binary sequence s. The distance between two such vertices can then be expressed in terms of
the Hamming distance between the corresponding sequences as

d(v1, v2) =
√
4dHamming(s1, s2),

which shows that points placed on vertices of a hypercube are maximally separated if this Hamming
distance is maximized. This forms an interesting and well studied problem in coding theory where
the objective is to find k binary sequences of length n which have maximal pairwise Hamming
distances. There are some specific combinations of n and k for which optimal solutions are known,
such as the Hadamard code. However, for most combinations of n and k, the solution is still an
open problem (MacWilliams & Sloane, 1977). Therefore, properly placing points on the vertices of
a hypercube currently relies on the solution to an unsolved problem, making it difficult in practice.

C PROOF OF THEOREM 1

Proof. For a tree T = (V,E) with N = |V |, we know that the degrees of the vertices satisfy∑
v∈V

deg(v) = 2|E| = 2(N − 1). (34)

Suppose W1, . . . ,Wp ⊂ Sn−1 are the sets of points on the hypersphere generated by the p optimiza-
tions that need to be ran to perform the construction, then |Wi| ̸= |Wj |, since we use the cached
result whenever nodes have the same degree. Moreover, |Wi| is equal to the degree of the node for
which the points are generated, so

p∑
i=1

|Wi| ≤
∑
v∈V

deg(v) = 2(N − 1). (35)

Given this constraint, the largest possible value of p is when we can fit as many |Wi|’s in this sum
as possible, which is when |W1|, . . . , |Wp| = 1, . . . , p. In that case

p∑
i=1

|Wi| =
p∑

i=1

i =
p(p+ 1)

2
≤ 2(N − 1). (36)

Solving for integer p yields

p ≤
⌈1
2
(
√
16N − 15− 1)

⌉
. (37)

Note that this bound can be sharpened slightly by observing that each node v with deg(v) > 1 forces
the existence of deg(v) − 1 leaf nodes with degree 1. However, the asymptotic behaviour remains
O(
√
N).

D PROOF OF THEOREM 2

Theorem. Given x,y ∈ Dn with ||x|| < 1 − ϵt−1 and ||y|| < 1 − ϵt−1, an approximation d to
equation 2 can be computed with FPE representations with t terms and with a largest magnitude
approximation to cosh−1 such that∣∣∣∣d− cosh−1

(
1 + 2

||x− y||2

(1− ||x||2)(1− ||y||2)

)∣∣∣∣ < ϵ∗, (38)

for some small ϵ∗ > 0.
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Proof. We begin by noting that the accuracy of the largest magnitude approximation to cosh−1

depends on the underlying floating point algorithm used for computing the inverse hyperbolic cosine.
While this function cannot be computed up to machine precision on its entire domain due to the large
derivative near the lower end of its domain, it can still be computed quite accurately, i.e. there exists
some small ϵ∗1 > 0 such that

∣∣∣ cosh−1(x)− cosh−1(x̃)
∣∣∣ < ϵ∗1, (39)

where x ∈ [1, R], where R is the greatest representable number and x̃ is the floating point approxi-
mation to x, so for which we have

|x̃− x|
|x|

< ϵ. (40)

For example, in PyTorch when using float64, we have ϵ∗1 ≈ 2.107 ∗ 10−8. If we can approximate
the argument inside cosh−1 sufficiently accurately, then the largest magnitude approximation will
be close enough to guarantee a small error. More specifically, let

z = 1 + 2
||x− y||2

(1− ||x||2)(1− ||y||2)
, (41)

and let z̃ = z̃1 + . . .+ z̃t with |z̃i| > |z̃j | for each i ̸= j be the approximation to z obtained through
FPE arithmetic. If

|z − z̃|
|z|

=
|z −

∑t
i=1 z̃i|
|z|

< 2ϵ, (42)

where ϵ is the machine precision of the corresponding floating point format, then

|z − z̃1| ≤ |z − z̃|+
∣∣∣ t∑
i=2

z̃i

∣∣∣ (43)

< 2ϵ+ 2ϵ|z̃1| (44)
≤ 4ϵ|z|+ 2ϵ|z − z̃1|, (45)

where we use that |z̃2| ≤ ulp(z̃1) = ϵ|z̃1|, so that |
∑t

i=2 z̃i| < 2ϵ|z̃1|. Now, we can rewrite to see
that

|z − z̃1|
|z|

<
4ϵ

1− 2ϵ
< 8ϵ. (46)

Therefore, by repeatedly using equation 39, we see that the largest magnitude approximation error
is bounded by 16ϵ∗1. Our ability to approximate the argument z as precisely as in equation 42 using
FPEs follows from the error bounds of the FPE arithmetic routines from (Popescu, 2017). This
shows that the statement holds for ϵ∗ = 16ϵ∗1.

E PROOF OF PROPOSITION 1

Proposition. The range of the inverse hyperbolic tangent formulation increases linearly in the num-
ber of terms t of the FPEs being used.
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Proof. When we use FPEs with t terms, we can represent points x,y ∈ Dn such that ||x|| = 1−ϵt−1

and ||y|| = 1− ϵt−1. If we set −y = x = (1− ϵt−1, 0, . . . , 0)T , then

cosh−1
(
1 + 2

||x− y||2

(1− ||x||2)(1− ||y||2)

)
= cosh−1

(
1 + 4

(1− ϵt−1)2

(1− (1− ϵt−1)2)2

)
(47)

≥ cosh−1
(
1 +

2

4ϵ2t−2 − 4ϵ3t−3 + ϵ4t−4

)
(48)

≥ cosh−1

(
1 +

2

ϵ2t−2

)
(49)

= log
(
1 +

1

2ϵ2t−2
+

√(
1 +

1

2ϵ2t−2

)2

− 1

)
(50)

≥ log
( 1

ϵt−1

)
(51)

= (1− t) log(ϵ) (52)
= (t− 1)| log(ϵ)|, (53)

which shows that we can compute a distance that is bounded from below byO(t). Similar steps can
be used to show that the distance is also bounded from above by a O(t) term.

F PROOF OF THEOREM 3

Theorem. Given a ulp-nonoverlapping FPE x =
∑t

i=1 xi ∈ [−1 + ϵt−1, 1 − ϵt−1] consisting of
floating point numbers with a precision b > t, Algorithm 13 leads to an approximation y of the
inverse hyperbolic tangent of x that satisfies

|y − tanh−1(x)| ≤ ϵ∗, (54)

for some small ϵ∗ > 0.

Proof. The accuracy of the x ∈ (−0.5, 0.5) branch of the algorithm follows easily from the accuracy
of the algorithm for normal floating point numbers and the error bounds of the FPE routines from
Popescu (2017), similar to the proof in Appendix D. The other branch can be a bit more problematic,
due to the large derivatives near the boundary of the domain. For 0.5 ≤ |x| < 1− ϵt−1, we use

tanh−1(x) = 0.5 · sign(x) · log
(
1 +

2|x|
1− |x|

)
. (55)

Let z denote the argument of the logarithm, so

z = 1 +
2|x|

1− |x|
, (56)

and let z̃ = z̃1+. . .+ z̃t denote that approximation of z obtained through FPE operations. Due to the
error bounds given in (Popescu, 2017), for FPEs with t terms on the domain 0.5 ≤ |x| < 1 − ϵt−1

we can assume that
|z − z̃|
|z|

< 2ϵ, (57)

where ϵ is the machine precision of the floating point terms. Now, since |z̃2| ≤ ulp(z̃1) = ϵ|z̃1|, we
can write

|z − z̃1| ≤ |z − z̃|+
∣∣∣ t∑
i=2

z̃i

∣∣∣ (58)

≤ 2ϵ|z|+ 2|z̃2| (59)
≤ 2ϵ|z|+ 2ϵ|z̃1| (60)
≤ 4ϵ|z|+ 2ϵ|z̃1 − z|, (61)

which can be rewritten as
|z − z̃1| ≤

4ϵ

1− 2ϵ
|z| ≤ 8ϵ|z|. (62)
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This shows that we can write z̃1 = (1 + δ)z, with |δ| < 8ϵ. Now, the error of the largest magnitude
term approximation of the logarithm is∣∣∣y − 0.5 · sign(x) · log(z)

∣∣∣ = ∣∣∣0.5 · sign(x̃) · log(z̃1)− 0.5 · sign(x) · log(z)
∣∣∣ (63)

= 0.5 ·
∣∣∣ log (z

z̃

)∣∣∣ (64)

= 0.5 ·
∣∣∣ log ( z̃1

z

)∣∣∣ (65)

= 0.5 ·
∣∣∣ log ( (1 + δ)z

z

)∣∣∣ (66)

= 0.5 · | log(1 + δ)| (67)
≤ 0.5 · |δ| (68)
≤ 4ϵ. (69)

Lastly, we introduce some error through the approximation of the natural logarithm. However, as
long as no overflow occurs, this error is typically bounded by the machine precision. Therefore, if
we can approximate z well enough, then we can guarantee an accurate computation of tanh−1. So
combining this result with the error bounds from (Popescu, 2017)concludes the proof.

G PROOF OF PROPOSITION 2

Proposition. The range of algorithm 13 increases linearly in the number of terms t.

Proof. The maximal values that we can encounter occur near the boundary of the domain, so set
x = 1− ϵt−1. Then,

0.5 · sign(x) · log
(
1 +

2|x|
1− |x|

)
= 0.5 · log

(
1 +

2− 2ϵt−1

ϵt−1

)
(70)

≤ 0.5 · log
(ϵt−1 + 2

ϵt−1

)
(71)

≤ 0.5 · log
( e

ϵt−1

)
(72)

= 0.5 · (1− (t− 1) log(ϵ)) (73)
= 0.5 · (1 + (t− 1)| log(ϵ)|), (74)

which shows that the range is bounded from above by O(t). A similar argument leads to a O(t)
lower bound, showing that the range indeed increases linearly in the number of terms t.

H BINARY TREE EMBEDDING RESULTS FOR VARYING DIMENSIONS

Table 4 shows results of the embedding of a binary tree with float32 representations in 4, 7, 10 or
20 dimensions. Here, we have also tested an additional objective similar to MHS, where we use the
cosines of the angles instead of the angles. We find that MHS generally leads to the best or close to
the best results for each choice of dimensions.

I EMBEDDING m-ARY TREES IN VARYING DIMENSIONS

Tables 5 and 6 show results of the embedding of various m-ary trees in dimensions 4, 7, 10 and 20,
similar to Table 2. We find that MS-DTE gives the best results overall.
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Dave Dwc

4 7 10 20 4 7 10 20

Sala et al. (2018) ‡ 0.734 0.734 0.734 0.734 1143 1143 1143 1143
Sala et al. (2018) ⋆ 0.235 0.502 0.361 0.726 10.51 132 18.42 280.5
E0 0.192 0.188 0.219 0.189 1.655 1.625 1.670 1.640
E1 0.190 0.196 0.204 0.190 1.619 1.664 1.686 1.698
E2 0.194 0.198 0.190 0.198 1.666 1.687 1.642 1.680
Cosine similarity 0.189 0.189 0.188 0.188 1.636 1.637 1.635 1.633
MHS 0.188 0.188 0.188 0.189 1.632 1.623 1.635 1.631

Table 4: Comparing hyperspherical separation methods for the constructive hyperbolic embed-
ding of a binary tree with a depth of 8 edges using float32 representations in 4, 7, 10 or 20 dimen-
sions. ‡ uses Hadamard generated hypersphere points and ⋆ uses precomputed points from (Lovisolo
& Da Silva, 2001).

Dave
3-tree 5-tree 7-tree

4 7 10 20 4 7 10 20 4 7 10 20

Sala et al. (2018) † 0.09 0.07 0.03 0.01 0.18 0.05 0.04 0.03 0.16 0.13 0.03 0.02
Sala et al. (2018) ‡ 0.11 0.11 0.11 0.11 - - 0.12 0.12 - - 0.12 0.12
Sala et al. (2018) ⋆ 0.08 0.08 0.09 0.14 0.10 0.12 0.13 0.18 0.12 0.12 0.13 0.17
MS-DTE 0.06 0.06 0.06 0.06 0.09 0.09 0.09 0.09 0.10 0.10 0.10 0.10

Table 5: Comparison of average distortion of hyperbolic embedding algorithms on m-ary trees
with a maximum path length of ℓ = 8. The h-MDS method is represented by †. The ‡ method is
the combinatorial construction with the hyperspherical points being generated using the Hadamard
construction, whereas the ⋆ method samples hyperspherical points from the precomputed points
generated with the hyperspherical separation method from (Lovisolo & Da Silva, 2001). The h-
MDS method outperforms the other methods for higher dimensions, but collapses nodes, making
the embeddings unusable. MS-DTE has the best performance for smaller dimensions and second
best performance for larger dimensions.

J EMBEDDING PHYLOGENETIC TREES IN VARYING DIMENSIONS

Additional experiments involving the phylogenetic trees with embedding dimensions 4, 7, 10 and
20 are shown in Tables 7, 8, 9 and 10. We observe that the precomputed points method struggles to
separate points for higher dimensions, leading to higher distortion. Moreover, we find that MS-DTE
gives the best results overall in every setting.

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Dwc
3-tree 5-tree 7-tree

4 7 10 20 4 7 10 20 4 7 10 20

Sala et al. (2018) † NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN

Sala et al. (2018) ‡ 1.14 1.14 1.14 1.14 - - 1.14 1.14 - - 1.14 1.14
Sala et al. (2018) ⋆ 1.32 1.22 1.18 1.23 1.28 1.30 1.30 1.34 1.53 1.25 1.31 1.26
MS-DTE 1.07 1.07 1.07 1.07 1.14 1.10 1.10 1.10 1.14 1.13 1.12 1.12

Table 6: Comparison of worst-case distortion of hyperbolic embedding algorithms on m-ary
trees with a maximum path length of ℓ = 8. The h-MDS method is represented by †. The ‡
method is the combinatorial construction with the hyperspherical points being generated using the
Hadamard construction, whereas the ⋆ method samples hyperspherical points from the precomputed
points generated with the hyperspherical separation method from (Lovisolo & Da Silva, 2001). MS-
DTE has the best performance in all settings.

Dave
Mosses Weevils

4 7 10 20 4 7 10 20

HypFPE + Sala et al. (2018) ‡ - - - 0.09 - - 0.07 0.07
HypFPE + Sala et al. (2018) ⋆ 0.06 0.10 0.08 0.10 0.03 0.05 0.05 0.10
HypFPE + MS-DTE 0.04 0.04 0.04 0.04 0.03 0.03 0.03 0.03

Table 7: Comparison of average distortion of hyperbolic embedding algorithms on the mosses
and weevils trees. ‡ represents the construction with Hadamard hyperspherical points and ⋆ the
construction with points sampled from a set precomputed with (Lovisolo & Da Silva, 2001). The
best performance is in bold. The embeddings are performed in a 4, 7, 10 or 20-dimensional space.
Overall, we find that MS-DTE works best.

Dave
Carnivora Lichen

4 7 10 20 4 7 10 20

HypFPE + Sala et al. (2018) ‡ 0.04 0.04 0.04 0.04 0.12 0.12 0.12 0.12
HypFPE + Sala et al. (2018) ⋆ 0.01 0.03 0.03 0.06 0.05 0.10 0.11 0.19
HypFPE + MS-DTE 0.02 0.02 0.03 0.02 0.06 0.06 0.05 0.05

Table 8: Comparison of average distortion of hyperbolic embedding algorithms on the car-
nivora and lichen trees. ‡ represents the construction with Hadamard hyperspherical points and ⋆
the construction with points sampled from a set precomputed with (Lovisolo & Da Silva, 2001). The
best performance is in bold. The embeddings are performed in a 4, 7, 10 or 20-dimensional space.
Overall, we find that MS-DTE works best.

K STATISTICS OF THE TREES USED IN THE EXPERIMENTS

Some statistics of the trees that are used in the experiments are shown in Table 11. Most notably,
these statistics show that the true number of optimizations that has to be performed is significantly
lower than the worst-case number of optimizations given by Theorem 1. To see this, note that an
optimization step using MHS has to be performed each time a node is encountered with a degree
that did not appear before. The result of this optimization step can then be cached and used for each
node with the same degree.

L GRAPH AND TREE-LIKE GRAPH EMBEDDING RESULTS

The graphs that we test our method on are a graph detailing relations between diseases (Goh et al.,
2007) and a graph describing PhD advisor-advisee relations (De Nooy et al., 2018). In order to
embed graphs with the combinatorial constructions, the graphs need to be embedded into trees first.
Following (Sala et al., 2018), we use (Abraham et al., 2007) for the graph-to-tree embedding. The
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Dwc
Mosses Weevils

4 7 10 20 4 7 10 20

HypFPE + Sala et al. (2018) ‡ - - - 1.10 - - 1.09 1.09
HypFPE + Sala et al. (2018) ⋆ 1.36 1.21 1.14 1.16 1.25 1.12 1.11 1.13
HypFPE + MS-DTE 1.09 1.07 1.06 1.07 1.05 1.05 1.04 1.04

Table 9: Comparison of worst-case distortion of hyperbolic embedding algorithms on the
mosses and weevils trees. ‡ represents the construction with Hadamard hyperspherical points and
⋆ the construction with points sampled from a set precomputed with (Lovisolo & Da Silva, 2001).
The best performance is in bold. The embeddings are performed in a 4, 7, 10 or 20-dimensional
space. Overall, we find that MS-DTE works best.

Dwc
Carnivora Lichen

4 7 10 20 4 7 10 20

HypFPE + Sala et al. (2018) ‡ 6.76 6.76 6.76 6.76 43.4 43.4 43.4 43.4
HypFPE + Sala et al. (2018) ⋆ 3.50 4.06 4.87 13.0 4.73 5.44 6.43 36.0
HypFPE + MS-DTE 2.46 2.45 2.03 2.35 4.07 4.63 3.30 7.17

Table 10: Comparison of worst-case distortion of hyperbolic embedding algorithms on the
carnivora and lichen trees. ‡ represents the construction with Hadamard hyperspherical points and
⋆ the construction with points sampled from a set precomputed with (Lovisolo & Da Silva, 2001).
The best performance is in bold. The embeddings are performed in a 4, 7, 10 or 20-dimensional
space. Overall, we find that MS-DTE works best.

results of the subsequent tree embeddings are shown in Table 12. These distortions are with respect
to the tree metric of the embedded tree instead of with respect to the original graph. This is to avoid
mixing the influence of the tree-to-hyperbolic space embedding method with that of the graph-to-tree
embedding.

From these results we again see that HypFPE + MS-DTE outperforms all other methods. However,
it should be noted that graphs cannot generally be embedded with arbitrarily low distortion in hy-
perbolic space and that the graph to tree embedding method will introduce significant distortion.
Hyperbolic space is not a suitable target for embedding a graph that is not tree-like. Therefore, we
define our method as a tree embedding method and not as a graph embedding method.

M FPE ARITHMETIC

Algorithm 2 FPEAddition

1: Input: FPEs x = x1 + . . .+ xn, y = y1 + . . .+ ym and number of output terms r.
2: f ← MergeFPEs(x, y)
3: s← FPERenormalize(f, r)
4: return s = s1 + . . .+ sr
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Algorithm 3 MergeFPEs

1: Input: FPEs x = x1 + . . .+ xn, y = y1 + . . .+ ym.
2: z ← Concatenate(x, y)
3: Sort terms in z in ascending order with respect to absolute value.
4: return Sorted z = {z1, . . . , zn+m}.

Algorithm 4 FPERenormalize

1: Input: List of floating point numbers x = x1, . . . , xn and number of output terms r.
2: e← VecSum(x)
3: y ← VecSumErrBranch(e, r)
4: return y = y1 + . . .+ yr

Algorithm 5 VecSum

1: Input: List of floating point numbers x1, . . . , xn.
2: s← xn

3: for i ∈ {n− 1, . . . , 1} do
4: (s, ei+1)← 2Sum(xi, s)
5: end for
6: e1 ← s
7: return e1, . . . , en

Algorithm 6 VecSumErrBranch

1: Input: List of floating point numbers e1, . . . , en and number of output terms m.
2: j ← 1
3: ϵ← e1
4: for i ∈ {1, n− 1} do
5: (rj , ϵ)← 2Sum(ϵ, ei+1)
6: if ϵ ̸= 0 then
7: if j ≥ m then
8: return r1, . . . , rm
9: end if

10: j ← j + 1
11: else
12: ϵ← rj
13: end if
14: end for
15: if ϵ ̸= 0 and j ≤ m then
16: rj ← ϵ
17: end if
18: return r0, . . . , rm

Algorithm 7 2Sum

1: Input: floating point numbers x and y.
2: s← RN(x+ y) where RN is rounding to nearest
3: x′ ← RN(s− y)
4: y′ ← RN(s− x′)
5: δx ← RN(x− x′)
6: δy ← RN(y − y′)
7: e← RN(δx + δy)
8: return (s, e)
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Algorithm 8 Fast2Sum

1: Input: Floating point numbers x and y with ⌊log2 |x|⌋ ≥ ⌊log2 |y|⌋
2: s← RN(x+ y)
3: z ← RN(s− x)
4: e← RN(y − z)
5: return (s, e)

Algorithm 9 FPEMultiplication

1: Input: FPEs x = x1 + . . .+ xn, y = y1 + . . .+ ym, number of output terms r, bin size b and
precision p (for float64: b = 45, p = 53).

2: tx1 ← ⌊log2 |x1|⌋
3: ty1 ← ⌊log2 |y1|⌋
4: t← tx1 + ty1

5: for i ∈ {1, . . . , ⌊r · p/b⌋+ 2} do
6: Bi ← 1.5 · 2t−ib+p−1

7: end for
8: for i ∈ {1, . . . ,min(n, r + 1)} do
9: for j ∈ {1, . . . ,min(m, r + 1− i)} do

10: (π′, e)← 2Prod(xi, yj)
11: ℓ← t− txi

− tyi

12: sh← ⌊ℓ/b⌋
13: ℓ← ℓ− sh · b
14: B ← Accumulate(π′, e, B, sh, ℓ)
15: end for
16: if j < m then
17: π′ ← xi · yj
18: ℓ← t− txi

− tyj

19: sh← ⌊ℓ/b⌋
20: ℓ← ℓ− sh · b
21: B ← Accumulate(π′, 0, B, sh, ℓ)
22: end if
23: end for
24: for i ∈ {1, . . . , ⌊r · p/b⌋+ 2} do
25: Bi ← Bi − 1.5 · 2t−ib+p−1

26: end for
27: π ← VecSumErrBranch(B, r)
28: return π1 + . . .+ πr
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Algorithm 10 Accumulate

1: Input: Floating point numbers π′, e, list of floating point numbers B and integers sh, ℓ.
2: c← p− b− 1
3: if ℓ < b− 2c− 1 then
4: (Bsh, π

′)← Fast2Sum(Bsh, π
′)

5: Bsh+1 ← Bsh+1 + π′

6: (Bsh+1, e)← Fast2Sum(Bsh+1, e)
7: Bsh+2 ← Bsh+2 + e
8: else if ℓ < b− c then
9: (Bsh, π

′)← Fast2Sum(Bsh, π
′)

10: Bsh+1 ← Bsh+1 + π′

11: (Bsh+1, e)← Fast2Sum(Bsh+1, e)
12: (Bsh+2, e)← Fast2Sum(Bsh+2, e)
13: Bsh+3 ← Bsh+3 + e
14: else
15: (Bsh, p)← Fast2Sum(Bsh, π

′)
16: (Bsh+1, π

′)← Fast2Sum(Bsh+1, π
′)

17: Bsh+2 ← Bsh+2 + π′

18: (Bsh+2, e)← Fast2Sum(Bsh+2, e)
19: Bsh+3 ← Bsh+3 + e
20: end if
21: return B

Algorithm 11 FPEReciprocal

1: Input: FPE x = x1 + . . .+ x2k an number of output terms 2q .
2: r1 = RN( 1

x1
)

3: for i ∈ {1, . . . , q} do
4: v ← FPEMultiplication(r, x, 2i+1)
5: w ← FPERenormalize(−v1, . . . ,−v2i+1 , 2.0, 2i+1)
6: r ← FPEMultiplication(r, w, 2i+1)
7: end for
8: return r1 + . . .+ r2q

Algorithm 12 FPEDivision

1: Input: FPEs x = x1 + . . .+ xn, y = y1 + . . .+ ym and number of output terms r.
2: z ← FPEReciprocal(y,m)
3: π ← FPEMultiplication(x, z, r)
4: return π

Algorithm 13 FPEtanh−1

1: Input: FPE f̃ = f̃1 + . . .+ f̃t.
2: if |f̃ | > 1 then
3: return NaN
4: else if |f̃ | = 1 then
5: return ∞
6: else if |f̃ | < 0.5 then
7: return 0.5 · sign(f̃) · log(1 + 2|f̃ |+ 2|f̃ |·|f̃ |

1−|f̃ | )

8: else
9: return 0.5 · sign(f̃) · log(1 + 2|f̃ |

1−|f̃ | )

10: end if
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Tree Nodes Unique degrees Theoretical worst-case degmax Longest path length

m-ary trees Varying 2 Varying m+ 1 varying
Mosses 344 11 38 16 51
Weevils 195 5 29 8 29
Carnivora 548 3 45 4 192.4
Lichen 481 3 48 4 0.972

Table 11: Statistics for the trees used in the experiments. The number of unique degrees is
excluding nodes with a degree of 1. This number is equal to the total number of optimizations that
has to be performed when embedding the tree using MS-DTE. The theoretical worst-case shows the
worst-case number of optimizations that has to be performed according to Theorem 1. Note that the
true number of optimizations is often significantly lower than this worst-case number.

Precision Diseases CS PhDs
Dave Dwc Dave Dwc

Nickel & Kiela (2017) 53 0.40 NaN 0.72 NaN
Ganea et al. (2018) 53 0.85 4831 0.94 803
Yu et al. (2022b) 53 0.72 1014 0.91 1220

Sala et al. (2018) † 53 0.06 NaN 0.08 NaN

Sala et al. (2018) ‡ 53 - - - -
Sala et al. (2018) ⋆ 53 0.364 5.07 0.33 3.84
MS-DTE 53 0.28 2.28 0.29 2.76

HypFPE + Sala et al. (2018) ‡ 417 - - - -
HypFPE + Sala et al. (2018) ⋆ 417 0.05 1.16 0.04 1.14
HypFPE + MS-DTE 417 0.04 1.14 0.04 1.09

Table 12: Comparison of hyperbolic embedding algorithms on graphs. † represents the h-MDS
method, ‡ the construction with Hadamard hyperspherical points and ⋆ the construction with points
sampled from a set precomputed with (Lovisolo & Da Silva, 2001). The best float64 performance
is underlined and the best FPE performance is in bold. All embeddings are performed in a 10-
dimensional space. Hadamard generation cannot be used, since each embedded graph has a degmax
greater than 8. HypFPE + MS-DTE outperforms all methods.
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