
minimax:
Efficient Baselines for Autocurricula in JAX

Minqi Jiang
FAIR at Meta AI
msj@meta.com

Michael Dennis
UC Berkeley

Edward Grefenstette
UCL

Tim Rocktäschel
UCL

Abstract

Unsupervised environment design (UED) is a form of automatic curriculum
learning for training robust decision-making agents to zero-shot transfer into
unseen environments. Such autocurricula have received much interest from the RL
community. However, UED experiments, based on CPU rollouts and GPU model
updates, have often required several weeks of training. This compute requirement is
a major obstacle to rapid innovation for the field. This work introduces the minimax
library for UED training on accelerated hardware. Using JAX to implement fully-
tensorized environments and autocurriculum algorithms, minimax allows the entire
training loop to be compiled for hardware acceleration. To provide a petri dish
for rapid experimentation, minimax includes a tensorized grid-world based on
MiniGrid, in addition to reusable abstractions for conducting autocurricula in
procedurally-generated environments. With these components, minimax provides
strong UED baselines, including new parallelized variants, which achieve over
120× speedups in wall time compared to previous implementations when training
with equal batch sizes. The minimax library is available under the Apache 2.0
license at https://github.com/facebookresearch/minimax.

1 Introduction and Motivating Work

DR PAIRED PLR ACCEL
0×

50×

100×

S
pe

ed
-u

p
fa

ct
or

 (w
al

l t
im

e)

JAX +S5 +P +S5+P

Figure 1: Wall time speed-up factors achieved by minimax relative to PyTorch reference implementations with
equal batch sizes (mean and std of 10 runs). Experiments that took 100+ hours now finish in < 3 hours on a
single GPU. Here, +S5 indicates the use of an S5 policy, and +P, parallel DCD. (See Section 4 for details.)

Autocurricula have proven highly effective in producing powerful deep reinforcement learning (RL)
agents in complex multi-agent settings [54, 61, 2, 17, 58, 46]. Here, a self-organizing curriculum
across co-players emerges as agents compete with one another over billions of iterations [28]. The
burgeoning field of Unsupervised Environment Design [UED, 10] recently extends these ideas to
the design of the training task itself. In UED, the learning agent or the student, plays against a
teacher in a curriculum game. In each episode of this game, the teacher chooses training tasks or
environments in order to maximize some metric based on the student’s behavior. A principled choice

2nd Agent Learning in Open-Endedness Workshop (ALOE 2023).

https://github.com/facebookresearch/minimax

Training iteration

Updated PLR
buffer

Updated device
PLR buffer

D | D

all_gather

Updated model
parameters

pmean

Gradient
D | D

REPEAT

Environment

N | D

Trial K

M

N·K | DRollout

Initialize ExperimentRunner

Logging & checkpointing configuration

TrainRunner

Env

Agent

Model

checkpointlog

Iterate training

REPEAT

train.py

Parse structured args

training runner args

env args

agent args

model args

Init. ExperimentRunner

Run training loop

To dependent

Repeat contents
N times in parallel

N

Repeat contents
N times in parallel
over D shards

N | D

Zoom in

Figure 2: A high-level overview of the minimax library. The training iteration logic is fully-jitted.

for the teacher’s objective is the student’s regret [48, 10], leading to minimax-regret optimal students
should the curriculum game reach an equilibrium.

Many works have demonstrated that UED produces more robust agents in terms of zero-shot transfer
to out-of-distribution (OOD) tasks [10, 20, 36, 21, 57]. While empirically effective, this class of
autocurriculum methods can be computationally expensive. Results on a common maze navigation
benchmark, featured in the majority of works on UED, can require on the order of 108 – 109 steps to
reproduce. Such experiments can take up to one week to complete, when using the standard UED
baselines from the open-source, PyTorch-based dcd codebase [20] with a V100 GPU—a considerable
outlay of compute that is especially taxing for more GPU-poor academic labs. In this technical report,
we present minimax, a fast and modular library for accelerating the pace of research in UED, as
well as other forms of autocurricula [32, 39, 40, 12]. Crucially, minimax derives its speed from the
powerful JAX library [14] for vector transforms on top of XLA [27]. In addition to a modular library
of components for assembling, extending, and evaluating new autocurriculum methods, minimax
features fully-tensorized implementations of the maze benchmark and standard UED baselines, as
well as new parallelized and multi-device variants, achieving over 120× speed-ups in wall time
compared to those from dcd, as reported in Figure 1.

The main contributions of this work are presented in Sections 2 – 4:

• A detailed discussion of the design philosophy and high-level structure of the minimax
library is provided in Section 2.

• AMaze, a fully-tensorized procedurally-generated, partially-observable maze navigation
benchmark for use as a rapid petri dish for evaluating autocurricula is presented in Section 3.

• All minimax baselines, including novel parallelized and multi-device variants of PLR⊥ and
ACCEL, are presented and benchmarked in Section 4.

2 The minimax Library

A foundational principle behind minimax is that modularity is crucial for rapid experimentation.
Thus, from an architectural standpoint, minimax centers around strongly decoupled and broadly
interoperable atomic building blocks, consisting of training runners, environments, agents, and
models. Each of these building block categories exists as its own submodule. Any component can
be easily accessed via a registry interface (similar to the environment registry in OpenAI Gym [7]),
which allows necessary dependencies to be explicitly stated and retrieved, e.g. setting and getting a
policy model for a specific environment. In general, dependent components are made generic via
dependency injection [51] where possible. An overview of minimax is presented in Figure 2.

In order to model the diverse world of autocurriculum methods in a modular way, minimax adopts
the conceptual structure of Dual Curriculum Design [DCD, 20]. DCD describes many autocurricula,

2

including common UED baselines, as unfolding as a game between a student and two kinds of
teachers: a generator that can adaptively design tasks and a curator that selectively curates those
generated. For example, domain randomization [DR, 60, 45] corresponds to a random generator
(i.e. no adaptation) with no curator; PAIRED [10], to an adaptive generator with no curator; and
PLR [22, 20] to a curator with a random generator. Each high-level combination of DCD teachers
can describe many subsets of UED methods. Thus, minimax structures autocurricula as curriculum
games and supports extensions to multi-student or multi-teacher games. In the sections that follow,
we discuss the role of each of minimax’s building blocks in constructing such autocurricula.

2.1 Runners

Each runner orchestrates a specific kind of curriculum game by coordinating agent and environment
components through the registry system. Many autocurricula methods can already be implemented
as simple extensions of the runners in the initial release of minimax: DRRunner, PAIREDRunner,
and PLRRunner, corresponding to DCD autocurricula based on a random teacher, learned generator,
and curator respectively. We refer to each algorithmic runner as a training runner. A separate
EvalRunner performs evaluation of model checkpoints on a prespecified set of test environments.

To minimize configuration overhead, minimax follows a highly-declarative approach: A small bundle
of logic in a single train.py file executes all algorithms. This design is enabled by a custom
argument parser that defines how command-line arguments are packaged into initialization arguments
for training runners, agents, models, and evaluators. In practice, this approach pays further dividends
in simplifying the addition of new components by removing low-level argument passing from mind.
Moreover, the final argument schema serves as a legible blueprint of the corresponding experiment.

Parsed argument groups are passed to their destinations by ExperimentRunner. In addition to
managing logging, checkpointing, and periodic calls to EvalRunner, this higher-level runner
progresses training by stepping the run method of the training runner, which executes one iteration of
the autocurriculum (i.e. one rollout and update cycle for each participating agent). Each run method
is fully jittable and can thus be vmap transformed to conduct parallel, independent training runs.1

2.2 Environments

The minimax library environment interface is based on that from the Gymnax [25] framework, but
departs in several ways: First, minimax supports environment wrappers, which carry their own
state. This state, is passed across timesteps via an additional extra dictionary in the tuple returned
by environments’ step and reset methods. This design shields wrapper-specific metadata from
environment-specific metadata, typically conveyed within the info component of the tuple. Second,
to measure how distributions of environment metrics evolve over time, minimax environments can
optionally implement the get_env_metrics method, which returns a dictionary of environment
attributes, e.g. number of walls in a maze. We now describe two more consequential design choices
in how minimax handles environments.

Hierarchical parallelism Usefully, minimax directly supports environment parallelism across a
hierarchy via the BatchEnv decorator class: agents (i.e. the population batch), evaluations, and
environments. Specifically, the last two environment batch dimensions are flattened inside BatchEnv
instances. This grouping allows tidy implementations of multi-student or multi-teacher training logic,
as well as parallelizing environment logic across not only multiple environment instances, but also
evaluations of each instance, e.g. to obtain a denoised estimate per instance. Crucially, environment
logic is specified, as normally, for a single instance, and all parallelism is abstracted into BatchEnv.

UPOMDP as a first-class citizen Prior RL libraries are designed to support standard (partially-
observable) Markov decision processes [MDPs, 41]. However, autocurriculum methods typically
operate over an extension, called an Underspecified POMDP [UPOMDP, 10], which explicitly
considers the set of configurable free parameters of the environment, which these prior libraries
ignore. In minimax, environment parameters are separated into static parameters, which define fixed
aspects set at initialization, e.g. maze size, and free parameters, which vary per instance and are

1However this should be avoided for some algorithms to allow lax.cond to perform efficient branching, e.g.
as used in PLR⊥ updates, that is currently foregone by XLA once inside vmap.

3

stored in the environment state. Thus, to fully exploit free parameters in generating autocurricula,
minimax environments implement getter and setter methods for the environment state.

UED with a learned adversary, e.g. PAIRED, requires the teacher to make a sequence of design
decisions in a separate MDP that results in producing a specific environment instance. To directly
model such teacher MDPs, minimax provides the UEDEnvironment class, which mirrors the
student’s Environment interface for the teacher. Each UEDEnvironment class is directly registered
to match with its corresponding Environment class. The BatchUEDEnv decorator class then takes
the pair of environments and implements vectorized environment logic via a shared student and
teacher interface: Once the teacher steps through its rollout, calling BatchUEDEnv’s reset_student
method sets the student’s UPOMDP to the final instance designed by the teacher. This approach
allows for cleaner, modular development of student and teacher decision processes, while allowing
for a simple, shared environment abstraction for use in training runners.

2.3 Agents and Models

In minimax, an agent corresponds to a specific algorithm for optimizing a sequential-decision making
policy, while a model corresponds to a module implementing the underlying policy. Following a
common pattern in minimax, models are dependency-injected into Agent instances. This design
allows the same implementation of a PPOAgent to perform PPO over any policy model for any
environment. In general, training runners operate over populations of agents, and any individual
Agent can be transformed into a population via the AgentPop decorator class. Combined with the
batch environment classes, these abstractions make it simple to extend future releases of minimax to
support more complex multi-agent settings [19, 24, 61, 47].

3 Maze as an Accelerated Petri Dish

Mazes are a simple and effective setting for studying autocurricula: Mazes exhibit interpretable
difficulty gradients (in terms of initial distance to the goal and number of obstacles) and agent
behavior. Moreover, the combinatorial design space of potential obstacle configurations serves as
a rich and easily extensible domain for UED. Importantly, many difficult problems in RL, such
as decision-making under partial observability and generalization to unseen task instances can be
directly studied in this domain. A large share of prior works on autocurricula have thus used 2D
mazes to initially vet algorithmic ideas and other hypotheses [18, 42, 8, 63, 10, 22].

Table 1: Speed comparison of AMaze and MiniGrid
mazes for varying degrees of parallelism.

Environments 1 32 256 1024

Steps-per-second (SPS)
MiniGrid 2k 12k 16k 16k
AMaze 3k 76k 582k 2M

Speedup 1.6× 6.5× 37× 136×

Thus, we include a procedurally-generated
2D maze environment in minimax. This
environment, which we call AMaze, is a fully-
tensorized implementation of goal-reaching
mazes based on MiniGrid [9]. In its basic
form, AMaze provides a challenging, partially-
observable navigation task for RL agents. It
can be configured to any rectangular grid layout
with randomly sampled wall, goal, and agent
positions (see Figure 3). Further, AMaze is fully
compatible with the UEDEnvironment abstraction in minimax, allowing full support for UED with
learned teachers and directly setting free parameters (i.e. the tile map). Most importantly, AMaze is
fast. As seen in Table 1, even with an environment batch size of 1, AMaze runs 60% faster in terms
of steps per second (SPS). As environment parallelism increases, AMaze takes greater advantage of
XLA parallelism, achieving speedup factors of 136× at 1024 parallel environments.

In order to compute shortest paths within a fully-jitted run method, AMaze makes use of Seidel’s
Algorithm [52], a matrix-based all pairs shortest path algorithm with time complexity O(V ω log V).
Here, V is the number of vertices and ω < 2.373 is the exponent in the computational complexity
of matrix multiplication. This all-pairs approach further enables efficiently computing more exotic
complexity metrics such as shortest-paths distributions [59] or resistance distance distributions [43].

Importantly, AMaze exactly replicates the MiniGrid-based mazes in prior works, including the full
OOD benchmark [20], enabling direct comparisons with minimax implementations.

4

Figure 3: Example training and test environments in AMaze, a fully-tensorized maze environment in JAX.

Table 2: Comparison of wall time and task performance (mean and std of 10 runs) between minimax and dcd,
based on training for 30k PPO updates. Corresponding runs use equal PLR replay rate and PPO minibatch and
epoch settings. PLR∥ and ACCEL∥ compare to PLR⊥ and ACCEL in dcd respectively.

DR PAIRED PLR⊥ PLR∥ ACCEL ACCEL∥

Wall time (hours)
dcd 63± 2 426± 47 119± 0 – 104± 8 –

minimax 3± 0 7± 0 5± 0 3± 0 4± 0 3± 0

Speedup 20× 62× 26× 36× 24× 32×
Solved rate

dcd 0.62± 0.05 0.52± 0.13 0.71± 0.04 – 0.75± 0.03 –
minimax 0.55± 0.05 0.63± 0.04 0.70± 0.03 0.74× 0.04 0.73± 0.05 0.74± 0.04

Relative solved rate 0.88× 1.22× 0.99× 1.04× 0.99× 1.00×

4 Efficient Baselines

The central aim of minimax is to provide fast open-source implementations of strong autocurriculum
baselines. In this way, we seek to remove the computational overhead for researchers to collectively
innovate on this exciting algorithmic frontier. Table 3 summarizes the current baselines in
minimax. Notably, we introduce new parallelized variants of PLR⊥ and ACCEL that, as described
later in this section, achieve additional wall-time gains compared to the PyTorch [37] reference
implementations [20, 36]. All evaluations used V100 GPUs and Intel Xeon E5-2698 v4 CPUs.

Table 3: Baselines currently implemented in minimax.

Algorithm Reference Runner

DR Tobin et al, 2019 [60] dr
Minimax UED Dennis et al, 2020 [10] paired
PAIRED Dennis et al, 2020 [10] paired
Pop. PAIRED Dennis et al, 2020 [10] paired
PLR Jiang et al, 2021 [22] plr
Robust PLR Jiang et al, 2021 [20] plr
ACCEL Parker-Holder et al, 2022 [36] plr
Parallel PLR Introduced in this work plr
Parallel ACCEL Introduced in this work plr

UED baselines Currently minimax contains
baselines that are variants on three core
algorithms: domain randomization (DR),
PAIRED, and Prioritized Level Replay (PLR).
Important variants of these include Robust
PLR (PLR⊥), which only updates the agent
after replay episodes; ACCEL, which replaces
PLR⊥’s random search with evolutionary search
over the level buffer; and Population PAIRED,
which uses a learned teacher to maximize
relative population regret, as defined by the
maximum return achieved by any individual minus the mean performance across the population of
N ≥ 2 students. Our PAIRED evaluations compare to the stronger “high-entropy” baseline [34]. In
minimax, the main rollout and update loop of each algorithm is fully jitted via JAX, and environment
parallelism is accomplished via the vectorizing decorator classes described in Section 2. Importantly,
minimax avoids the computational overhead of the multiple student rollouts required by PAIRED
variants by parallelizing all student rollouts. Under equal batch sizes, these optimizations result in
consistent wall time speedups of at least 20× or higher across all baselines, in comparison to the dcd
library, the previous reference implementation in PyTorch (see Tables 2 and 4), while maintaining
comparable test performance on the full OOD maze benchmark (see Figure 7). Practically speaking,
these speedups mean that experiments that once took hundreds of hours to finish can now be done in
just a few hours on a single GPU. Figure 9 in Appendix A compares the absolute solved rate of each
method. Appendix B details the choice of hyperparameters and model architectures.

5

New envs

Rollout

Update PLR

Replay envs

Rollout

Update PLR Update model

Mutate envs

Rollout

Update PLR

p

1-p

Replay? New envs

Rollout

Update PLR

Mutate envs

Rollout

Update PLR

Replay envs

Rollout

Update PLR Update model

Standard Parallel

Figure 5: Left: The sequence of operations in standard implementations of PLR⊥ and ACCEL. Right: PLR∥

and ACCEL∥ reduce wall time by executing rollouts for new levels, replay levels, and mutated levels in parallel.

PLR|| ACCEL||0.0

0.2

0.4

0.6

0.8

S
ol

ve
d

ra
te

1 GPU 2 GPUs

DR PAIRED PLR|| ACCEL||0.0

0.2

0.4

0.6

0.8
S

ol
ve

d
ra

te

32 2048

Figure 6: Solved rate over the full OOD maze benchmark for PLR∥ and ACCEL∥ using 32 parallel environments
split across either one or two GPUs (left) and for each method for 32 vs. 2048 parallel environments (right). The
plots show means and std across 10 training runs.

0 30K
PPO updates

5

10

15

S
ho

rte
st

 p
at

h
le

ng
th DR

PAIRED
PLR
ACCEL
PLR||

ACCEL||

Figure 4: Shortest path lengths of training
mazes per method (mean and std of 10 runs).

Parallel DCD Next, we seek to push speedups even
higher by introducing Parallel PLR (PLR∥) and Parallel
ACCEL (ACCEL∥). The key insight behind these two
methods is that both search and replay steps of PLR⊥-
based methods can be run fully in parallel, allowing these
methods to take full advantage of hardware-accelerated
parallelism. Specifically, PLR∥ doubles the environment
batch size, filling the first half with newly-sampled
environment instances and the second, with replay levels.
PLR∥ then evaluates and updates its level buffer with this
full batch. ACCEL∥ follows exactly the same approach
with a tripled environment batch size. The first two thirds of the buffer are evenly split between
newly sampled and replay levels, while the last third consists of mutations of replay levels from the
same batch (see Figure 5). We find that PLR∥ and ACCEL∥ show wall time speedups compared to
their standard counterparts of 38% and 33% respectively (see Table 2). This boost results in these
replay-based UED matching simple DR in wall time. Figure 4 shows that the parallel variants also
ratchet up the shortest path length as training progresses, with PLR∥ notably overtaking PLR⊥.

S5 policies We replace the LSTM in the student policy with a stack of S5 layers [55]. S5 is a
variant of the structured state-space sequence model [15], which is O(logL) in the backward pass
for a sequence of length L. S5 has been shown to significantly outperform LSTMs in both wall-time
efficiency during training and performance on RL tasks requiring conditioning on a long history [31].
We report the wall-time speedups and performance on the full OOD maze benchmark in Figure 1

6

Table 4: Comparison of wall time and task performance (mean and std of 10 runs) between minimax and dcd
with S5 policies, based on training for 30k PPO updates. Corresponding runs use equal PLR replay rate and PPO
minibatch and epoch settings. PLR∥+S5 and ACCEL∥+S5 compare to PLR⊥ and ACCEL in dcd respectively.

DR PAIRED PLR⊥ PLR∥ ACCEL ACCEL∥

Wall time (hours)
dcd 63± 2 426± 47 119± 0 – 104± 8 –

minimax + S5 policy 2± 0 3± 0 4± 0 3± 0 4± 0 3± 0

Speedup 28× 125× 27× 47× 25× 40×
Solved rate

dcd 0.62± 0.05 0.52± 0.13 0.71± 0.04 – 0.75± 0.03 –
minimax + S5 policy 0.58± 0.05 0.58± 0.06 0.66± 0.04 0.73× 0.04 0.72± 0.06 0.74± 0.04

Relative solved rate 0.94× 1.12× 0.93× 1.02× 0.98× 0.99×

and Table 4. The performance of minimax baselines, for both S5 and LSTM policies, relative to the
corresponding LSTM-based PyTorch reference implementation in dcd, is shown in Figure 7.

DR PAIRED PLR ACCEL
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

R
el

at
iv

e
so

lv
ed

 ra
te

PyTorch JAX +S5 +P +S5+P

Figure 7: Relative solved rates across AMaze test mazes
compared to PyTorch dcd (mean and std of 10 runs).
The label +P indicates parallel DCD.

While S5 policies match the test performance
of LSTM policies, they tend to exhibit greater
sensitivity to hyperparameters, like learning
rate, and higher variance across training runs.
We find that, unlike in Lu et al, 2022 [31],
which focuses on continuous-control tasks,
applying layer normalization [1] to either the
input or output of each S5 layer is essential
for matching LSTM test performance in the
maze domain. (Maze navigation episodes are
limited 250 time steps, which can explain
why S5 fails to outperform LSTM in test
performance.) Likely, other design choices
in the S5 architecture will lead to further
improvements in generalization performance
and reduced sensitivity to hyperparameters. Given the wall-time speedups at training when switching
to policies based on structured state-space models, principled modifications of this architectural
family for the RL setting is a promising area for future research.

Multi-device training All training runners in minimax support sharding environment rollouts
and gradient computation across multiple devices. A high-level diagram of how each step of the
training runner’s update cycle is sharded along the environment batch dimension across devices is
shown in Figure 2. Notably, the standard implementations of PLR-based methods like PLR⊥ and
ACCEL entail an all_gather bottleneck when updating the PLR buffer. We avoid this issue by
introducing a new variant of these methods, whereby separate PLR buffers are maintained per device
throughout training, effectively sharding the buffer across devices, such that the sum of all individual
buffer sizes equals the original, unsharded buffer size. For D devices and an unsharded PLR buffer
of size B, this approach results in D independent PLR buffers, each of size B/D and updated
with only the environment instances run on its own shard. Figure 6 shows that these synchronous
data-parallel (SDP) variants and the standard PLR-based methods result in comparable zero-shot
transfer performance on the full OOD maze benchmark.

Batch-size scaling The multi-device baselines in minimax allow straightforward scaling to much
larger environment batch sizes via the shmap (shard map) transform in JAX. We investigate the
zero-shot transfer performance of DR, PAIRED, PLR∥, and ACCEL∥ on OOD test mazes with
increasing training batch sizes. Figure 6 shows that increasing the environment batch size to 2048
parallel environments leads to significant improvements in zero-shot solved rates over the full OOD
maze benchmark. This phenomenon aligns with previous theoretical and empirical observations of
how increasing training batch size results in improved signal-to-noise ratio in the stochastic gradient
estimates [33]. This results in a general trend in which larger batch sizes tend to require fewer updates
to achieve the same degree of performance, while requiring more total number of samples (in this

7

1K

108

109

1010

ACCEL||
Solved rate

0.2
0.4
0.6
0.8

100 1K

107

108

DR
Solved rate

0.1
0.2
0.3
0.4

100 1K
107

108

109

PLR||
Solved rate

0.2
0.4
0.6
0.8

1K

107

108

PAIRED
Solved rate

0.2
0.2
0.3
0.4
0.5

en

vi
ro

nm
en

t t
ra

ns
iti

on
s

PPO updates

Figure 8: Minimum number of environment transitions and PPO updates needed to achieve a specific mean
solved rate on validation mazes. All axes are in log scale. Each point is a mean across 10 training runs.

case, environment transitions). Figure 8 visualizes this trade-off by plotting the empirical relationship
between the minimum number of environment transitions and minimum number of PPO updates
required to reach a fixed degree of performance on three fixed OOD validation mazes, based on
training with 32, 64, 128, 256, 512, 1024, and 2048 parallel environments per rollout. Here, each
fixed performance curve tends to move from upper left to lower right, reflecting how larger batch
sizes tend to be more update efficient, but less sample efficient. These results show that, independent
of more sophisticated methodological changes, simply scaling the training batch size can result in
significant improvements in OOD test performance when training with autocurriculum methods.

5 Related Work

Many recent works implement fast, GPU-accelerated RL algorithms and environments in JAX [6].
They include Brax [13], a differentiable physics environment; Jumanji [5], a collection of
combinatorial optimization problems; gymnax [25], a JAX library for single-agent RL training
with ports of the popular MinAtar suite [62] and BSuite [35]; JaxMARL [44], a collection of JAX-
based multi-agent RL environments; evosax [26], a collection of evolutionary optimization methods;
and PureJAXRL [29, 30], a minimalist framework for both evolutionary optimization and RL. Several
previous works have also considered optimizing the speed of experience collection by implementing
fast, asynchronous rollout workers [56, 4, 11, 23, 16]. This approach has been combined with highly
GPU-optimized environment implementations to achieve impressive throughput [3, 38, 53].

6 Discussion

We introduced minimax, a fast JAX-based library that enables rapid experimentation in
autocurriculum research for RL. By driving down computational costs, we hope our work can
accelerate further progress in this exciting field. We highlighted key features of minimax, namely its
modular structure and its associated experimental playground for rapid iteration—a fully-tensorized,
hardware-accelerated procedural maze environment. Building on these components, our JAX-based
autocurriculum baselines, including new parallelized and multi-device variants, resulted in training
runs that were up to 120× faster in wall time than the PyTorch reference implementations under the
same training batch size. Experiments that once required hundreds of hours of compute can now finish
in just a couple of hours on a single GPU. Crucially, our evaluations demonstrated that the minimax
baselines either match or exceed the test performance of previous reference implementations, while
drastically shrinking the timescale of autocurriculum research.

8

Author Contributions

MJ led the project from conception. He designed and implemented the library, formulated the new
parallel variants of PLR⊥ and ACCEL, conducted the experiments, and led paper writing. MD, EG,
and TR provided invaluable feedback and suggestions. MD also assisted with the design of the
example notebooks. EG first broached the idea of parallelizing the new and replay level evaluation
branches in PLR. TR strongly encouraged writing this manuscript to accompany the code release.

Acknowledgments and Disclosure of Funding

We thank Chris Lu and Robert Lange for their work on scaling up JAX-based RL, which greatly
influenced minimax. We further thank Chris Lu and Ben Ellis for conversations that benefited this
work. Releasing minimax under the Apache 2.0 license would not be possible without the support of
Leon Bottou, Naila Murray, and Kerry Andken at Meta AI. MJ is funded by Meta AI.

References
[1] J. L. Ba, J. R. Kiros, and G. E. Hinton. Layer normalization. arXiv preprint arXiv:1607.06450,

2016.

[2] B. Baker, I. Kanitscheider, T. Markov, Y. Wu, G. Powell, B. McGrew, and I. Mordatch.
Emergent tool use from multi-agent autocurricula. In International Conference on Learning
Representations, 2019.

[3] C. Bamford. Griddly: A platform for ai research in games. Software Impacts, 8:100066, 2021.

[4] C. Berner, G. Brockman, B. Chan, V. Cheung, P. Dębiak, C. Dennison, D. Farhi, Q. Fischer,
S. Hashme, C. Hesse, et al. Dota 2 with large scale deep reinforcement learning. arXiv preprint
arXiv:1912.06680, 2019.

[5] C. Bonnet, D. Luo, D. Byrne, S. Surana, V. Coyette, P. Duckworth, L. I. Midgley, T. Kalloniatis,
S. Abramowitz, C. N. Waters, et al. Jumanji: a diverse suite of scalable reinforcement learning
environments in jax. arXiv preprint arXiv:2306.09884, 2023.

[6] J. Bradbury, R. Frostig, P. Hawkins, M. J. Johnson, C. Leary, D. Maclaurin, G. Necula, A. Paszke,
J. VanderPlas, S. Wanderman-Milne, et al. Jax: Autograd and xla. Astrophysics Source Code
Library, pages ascl–2111, 2021.

[7] G. Brockman, V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang, and W. Zaremba.
Openai gym. arXiv preprint arXiv:1606.01540, 2016.

[8] A. Campero, R. Raileanu, H. Kuttler, J. B. Tenenbaum, T. Rocktäschel, and E. Grefenstette.
Learning with AMIGo: Adversarially motivated intrinsic goals. In International Conference on
Learning Representations, 2021.

[9] M. Chevalier-Boisvert, L. Willems, and S. Pal. Minimalistic gridworld environment for openai
gym (2018). URL https://github. com/maximecb/gym-minigrid, 6, 2021.

[10] M. Dennis, N. Jaques, E. Vinitsky, A. Bayen, S. Russell, A. Critch, and S. Levine. Emergent
complexity and zero-shot transfer via unsupervised environment design. Advances in neural
information processing systems, 33:13049–13061, 2020.

[11] L. Espeholt, H. Soyer, R. Munos, K. Simonyan, V. Mnih, T. Ward, Y. Doron, V. Firoiu, T. Harley,
I. Dunning, et al. Impala: Scalable distributed deep-rl with importance weighted actor-learner
architectures. In International conference on machine learning, pages 1407–1416. PMLR,
2018.

[12] S. Forestier, R. Portelas, Y. Mollard, and P.-Y. Oudeyer. Intrinsically motivated goal exploration
processes with automatic curriculum learning. The Journal of Machine Learning Research,
23(1):6818–6858, 2022.

[13] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and O. Bachem. Brax–
a differentiable physics engine for large scale rigid body simulation. arXiv preprint
arXiv:2106.13281, 2021.

9

[14] S. Frey, K. Li, P. Nagy, S. Sapora, C. Lu, S. Zohren, J. Foerster, and A. Calinescu. Jax-lob:
A gpu-accelerated limit order book simulator to unlock large scale reinforcement learning for
trading. arXiv preprint arXiv:2308.13289, 2023.

[15] A. Gu, K. Goel, and C. Re. Efficiently modeling long sequences with structured state spaces. In
International Conference on Learning Representations, 2021.

[16] M. Hessel, M. Kroiss, A. Clark, I. Kemaev, J. Quan, T. Keck, F. Viola, and H. van Hasselt.
Podracer architectures for scalable reinforcement learning. arXiv preprint arXiv:2104.06272,
2021.

[17] H. Hu, A. Lerer, B. Cui, L. Pineda, N. Brown, and J. Foerster. Off-belief learning. In
International Conference on Machine Learning, pages 4369–4379. PMLR, 2021.

[18] M. Igl, K. Ciosek, Y. Li, S. Tschiatschek, C. Zhang, S. Devlin, and K. Hofmann. Generalization
in reinforcement learning with selective noise injection and information bottleneck. Advances
in neural information processing systems, 32, 2019.

[19] M. Jaderberg, V. Dalibard, S. Osindero, W. M. Czarnecki, J. Donahue, A. Razavi, O. Vinyals,
T. Green, I. Dunning, K. Simonyan, C. Fernando, and K. Kavukcuoglu. Population based
training of neural networks. CoRR, abs/1711.09846, 2017.

[20] M. Jiang, M. Dennis, J. Parker-Holder, J. Foerster, E. Grefenstette, and T. Rocktäschel. Replay-
guided adversarial environment design. Advances in Neural Information Processing Systems,
34:1884–1897, 2021.

[21] M. Jiang, M. Dennis, J. Parker-Holder, A. Lupu, H. Küttler, E. Grefenstette, T. Rocktäschel, and
J. Foerster. Grounding aleatoric uncertainty for unsupervised environment design. Advances in
Neural Information Processing Systems, 35:32868–32881, 2022.

[22] M. Jiang, E. Grefenstette, and T. Rocktäschel. Prioritized level replay. In International
Conference on Machine Learning, pages 4940–4950. PMLR, 2021.

[23] H. Küttler, N. Nardelli, T. Lavril, M. Selvatici, V. Sivakumar, T. Rocktäschel, and E. Grefenstette.
Torchbeast: A pytorch platform for distributed rl. arXiv preprint arXiv:1910.03552, 2019.

[24] M. Lanctot, V. Zambaldi, A. Gruslys, A. Lazaridou, K. Tuyls, J. Pérolat, D. Silver, and
T. Graepel. A unified game-theoretic approach to multiagent reinforcement learning. Advances
in neural information processing systems, 30, 2017.

[25] R. T. Lange. Reinforcement learning environments in jax. https://github.com/RobertT
Lange/gymnax, 2022.

[26] R. T. Lange. evosax: Jax-based evolution strategies. In Proceedings of the Companion
Conference on Genetic and Evolutionary Computation, pages 659–662, 2023.

[27] C. Leary and T. Wang. Xla: Tensorflow, compiled. TensorFlow Dev Summit, 2(3), 2017.

[28] J. Z. Leibo, E. Hughes, M. Lanctot, and T. Graepel. Autocurricula and the emergence of
innovation from social interaction: A manifesto for multi-agent intelligence research. arXiv
preprint arXiv:1903.00742, 2019.

[29] C. Lu. Achieving 4000x speedups and meta-evolving discoveries with purejaxrl. https:
//chrislu.page/blog/meta-disco/, 2023.

[30] C. Lu, J. Kuba, A. Letcher, L. Metz, C. Schroeder de Witt, and J. Foerster. Discovered policy
optimisation. Advances in Neural Information Processing Systems, 35:16455–16468, 2022.

[31] C. Lu, Y. Schroecker, A. Gu, E. Parisotto, J. Foerster, S. Singh, and F. Behbahani. Structured
state space models for in-context reinforcement learning. arXiv preprint arXiv:2303.03982,
2023.

[32] T. Matiisen, A. Oliver, T. Cohen, and J. Schulman. Teacher–student curriculum learning. IEEE
transactions on neural networks and learning systems, 31(9):3732–3740, 2019.

[33] S. McCandlish, J. Kaplan, D. Amodei, and O. D. Team. An empirical model of large-batch
training. arXiv preprint arXiv:1812.06162, 2018.

[34] I. Mediratta, M. Jiang, J. Parker-Holder, M. Dennis, E. Vinitsky, and T. Rocktäschel. Stabilizing
unsupervised environment design with a learned adversary. arXiv preprint arXiv:2308.10797,
2023.

10

https://github.com/RobertTLange/gymnax
https://github.com/RobertTLange/gymnax
https://chrislu.page/blog/meta-disco/
https://chrislu.page/blog/meta-disco/

[35] I. Osband, Y. Doron, M. Hessel, J. Aslanides, E. Sezener, A. Saraiva, K. McKinney, T. Lattimore,
C. Szepesvari, S. Singh, et al. Behaviour suite for reinforcement learning. arXiv preprint
arXiv:1908.03568, 2019.

[36] J. Parker-Holder, M. Jiang, M. Dennis, M. Samvelyan, J. Foerster, E. Grefenstette, and
T. Rocktäschel. Evolving curricula with regret-based environment design. In International
Conference on Machine Learning, pages 17473–17498. PMLR, 2022.

[37] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep learning
library. Advances in neural information processing systems, 32, 2019.

[38] A. Petrenko, E. Wijmans, B. Shacklett, and V. Koltun. Megaverse: Simulating embodied agents
at one million experiences per second. In International Conference on Machine Learning, pages
8556–8566. PMLR, 2021.

[39] R. Portelas, C. Colas, K. Hofmann, and P.-Y. Oudeyer. Teacher algorithms for curriculum
learning of deep rl in continuously parameterized environments. In Conference on Robot
Learning, pages 835–853. PMLR, 2020.

[40] R. Portelas, C. Colas, L. Weng, K. Hofmann, and P.-Y. Oudeyer. Automatic curriculum learning
for deep rl: a short survey. In Proceedings of the Twenty-Ninth International Conference on
International Joint Conferences on Artificial Intelligence, pages 4819–4825, 2021.

[41] M. L. Puterman. Markov decision processes: Discrete stochastic dynamic programming, 1994.

[42] R. Raileanu and T. Rocktäschel. RIDE: rewarding impact-driven exploration for procedurally-
generated environments. In 8th International Conference on Learning Representations, ICLR
2020, Addis Ababa, Ethiopia, April 26-30, 2020. OpenReview.net, 2020.

[43] M. Randić and D. Klein. Resistance distance. J. Math. Chem, 12:81–95, 1993.

[44] A. Rutherford, B. Ellis, M. Gallici, J. Cook, A. Lupu, G. Ingvarsson, T. Willi, A. Khan, C. S.
de Witt, A. Souly, S. Bandyopadhyay, M. Samvelyan, M. Jiang, R. T. Lange, S. Whiteson,
B. Lacerda, N. Hawes, T. Rocktaschel, C. Lu, and J. N. Foerster. JaxMARL: Multi-Agent RL
Environments in JAX. In Agent Learning in Open-Endedness Workshop at NeurIPS, 2023.

[45] F. Sadeghi and S. Levine. CAD2RL: real single-image flight without a single real image. In
N. M. Amato, S. S. Srinivasa, N. Ayanian, and S. Kuindersma, editors, Robotics: Science and
Systems XIII, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA, July
12-16, 2017, 2017.

[46] M. Samvelyan, A. Khan, M. Dennis, M. Jiang, J. Parker-Holder, J. Foerster, R. Raileanu,
and T. Rocktäschel. Maestro: Open-ended environment design for multi-agent reinforcement
learning. arXiv preprint arXiv:2303.03376, 2023.

[47] M. Samvelyan, A. Khan, M. D. Dennis, M. Jiang, J. Parker-Holder, J. N. Foerster, R. Raileanu,
and T. Rocktäschel. Maestro: Open-ended environment design for multi-agent reinforcement
learning. In The Eleventh International Conference on Learning Representations, 2022.

[48] L. J. Savage. The theory of statistical decision. Journal of the American Statistical association,
1951.

[49] J. Schulman, P. Moritz, S. Levine, M. Jordan, and P. Abbeel. High-dimensional continuous
control using generalized advantage estimation. arXiv preprint arXiv:1506.02438, 2015.

[50] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov. Proximal policy optimization
algorithms. arXiv preprint arXiv:1707.06347, 2017.

[51] M. Seemann. Dependency injection is loose coupling. Ploeh blog [online], 7, 2010.

[52] R. Seidel. On the all-pairs-shortest-path problem in unweighted undirected graphs. Journal of
computer and system sciences, 51(3):400–403, 1995.

[53] B. Shacklett, L. G. Rosenzweig, Z. Xie, B. Sarkar, A. Szot, E. Wijmans, V. Koltun, D. Batra,
and K. Fatahalian. An extensible, data-oriented architecture for high-performance, many-world
simulation. ACM Trans. Graph., 42(4), 2023.

[54] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez, T. Hubert, L. Baker,
M. Lai, A. Bolton, et al. Mastering the game of go without human knowledge. nature,
550(7676):354–359, 2017.

11

[55] J. T. Smith, A. Warrington, and S. W. Linderman. Simplified state space layers for sequence
modeling. arXiv preprint arXiv:2208.04933, 2022.

[56] A. Stooke and P. Abbeel. Accelerated methods for deep reinforcement learning. arXiv preprint
arXiv:1803.02811, 2018.

[57] A. A. Team, J. Bauer, K. Baumli, S. Baveja, F. Behbahani, A. Bhoopchand, N. Bradley-Schmieg,
M. Chang, N. Clay, A. Collister, et al. Human-timescale adaptation in an open-ended task space.
2023.

[58] O. E. L. Team, A. Stooke, A. Mahajan, C. Barros, C. Deck, J. Bauer, J. Sygnowski, M. Trebacz,
M. Jaderberg, M. Mathieu, et al. Open-ended learning leads to generally capable agents. arXiv
preprint arXiv:2107.12808, 2021.

[59] O. E. L. Team, A. Stooke, A. Mahajan, C. Barros, C. Deck, J. Bauer, J. Sygnowski, M. Trebacz,
M. Jaderberg, M. Mathieu, et al. Open-ended learning leads to generally capable agents. arXiv
preprint arXiv:2107.12808, 2021.

[60] J. Tobin, R. Fong, A. Ray, J. Schneider, W. Zaremba, and P. Abbeel. Domain randomization
for transferring deep neural networks from simulation to the real world. In 2017 IEEE/RSJ
international conference on intelligent robots and systems (IROS), pages 23–30. IEEE, 2017.

[61] O. Vinyals, I. Babuschkin, W. M. Czarnecki, M. Mathieu, A. Dudzik, J. Chung, D. H. Choi,
R. Powell, T. Ewalds, P. Georgiev, et al. Grandmaster level in starcraft ii using multi-agent
reinforcement learning. Nature, 575(7782):350–354, 2019.

[62] K. Young and T. Tian. Minatar: An atari-inspired testbed for thorough and reproducible
reinforcement learning experiments. arXiv preprint arXiv:1903.03176, 2019.

[63] T. Zhang, H. Xu, X. Wang, Y. Wu, K. Keutzer, J. E. Gonzalez, and Y. Tian. Bebold: Exploration
beyond the boundary of explored regions. CoRR, abs/2012.08621, 2020.

12

A Additional Experiment Results

DR PAIRED PLR ACCEL
0.0

0.2

0.4

0.6

0.8

S
ol

ve
d

ra
te

JAX +S5 +P +S5+P

Figure 9: Zero-shot transfer solved rate of agents trained via each minimax baseline method averaged across all
OOD test mazes (mean and std of 10 runs). This plot shows the absolute performances corresponding to the
relative performances reported in Figure 7.

B Choice of Architecture and Hyperparameters

For all experiments, we use PPO [50] with generalized advantage estimation [GAE; 49] as the base
RL optimization algorithm. Our student and teacher policies use the same architecture as described
in Jiang et al, 2021 [20]. We report the best hyperparameter settings found for each method with
an LSTM policy in Table 5 and with an S5 policy in Table 6. Unless otherwise specified, the
teacher and student hyperparameters are equal. For each method we swept subsets of the following
hyperparameter values (where applicable) using 5× runs per inspected setting and selected the
configuration with the highest mean solved rate over a set of three validation mazes (SixteenRooms,
Labyrinth, and StandardMaze—the same used in prior works [20, 36]) after 30k PPO updates:

• learning rate in {5e-5, 1e-5, 1e-4, 3e-4}
• discount factor γ in {0.999, 0.995, 0.9}
• GAE λ discount factor in {0.95, 0.98, 0.99}
• student entropy coefficient in {0, 0.0001, 0.001, 0.01}
• teacher entropy coefficient in {0, 0.001, 0.01, 0.05}
• replay rate in {0.5, 0.8, 0.9}
• PLR scoring function in {MaxMC,PVL}
• PLR prioritization in {proportional, rank}
• PLR staleness coefficient in {0.3, 0.5}
• PLR temperature in {0.1, 0.3, 0.5}
• ACCEL number of mutations in {5, 10, 20}

Here, MaxMC refers to the maximum Monte Carlo regret estimator, and PVL, the positive value loss
regret estimator [20].

S5 experiments For S5 policies, we additionally swept over the number of S5 blocks in {1, 2, 4}.
We set the number of S5 layers to 2, which results in an approximately equal number of model
parameters as the LSTM policy used in prior works. Table 6 reports the best hyperparameters found
in combination with an S5 policy.

Batch-size experiments For batch size, we swept over the learning rate in {1e-5, 3e-5, 1e-4} while
setting the remaining hyperparameters to the best-performing values for 32 parallel environments.

13

Table 5: Hyperparameters used for training each method with an LSTM policy.

Parameter DR PAIRED PLR⊥ PLR∥ ACCEL ACCEL∥

PPO
γ 0.995 0.995 0.995 0.999 0.995 0.995
λGAE 0.98
PPO rollout length 256
PPO epochs 5
PPO minibatches per epoch 1
PPO clip range 0.2
PPO # parallel environments 32
Adam learning rate 1e-4 1e-4 5e-5 1e-4 1e-4 1e-4
Adam ϵ 1e-5
PPO max gradient norm 0.5
PPO value clipping yes
return normalization no
value loss coefficient 0.5
student entropy coefficient 1e-3 1e-3 0.0 0.0 0.0 0.0
generator entropy coefficient – 0.05 – – – –

PLR⊥

Replay rate, p – – 0.5 0.5 0.8 0.8
Buffer size, K – – 4000 4000 4000 4000
Scoring function – – MaxMC MaxMC MaxMC MaxMC
Prioritization – – rank rank rank rank
Temperature, β – – 0.1 0.3 0.1 0.1
Staleness coefficient – – 0.3 0.3 0.3 0.3

ACCEL
Mutation subsample size, q – – – – 4 4
Mutation selection – – – – batch batch
of mutations – – – – 20 10

Table 6: Hyperparameters used for training each method with an S5 policy.

Parameter DR PAIRED PLR⊥ PLR∥ ACCEL ACCEL∥

PPO
γ 0.995 0.995 0.999 0.995 0.999 0.999
λGAE 0.98
PPO rollout length 256
PPO epochs 5
PPO minibatches per epoch 1
PPO clip range 0.2
PPO # parallel environments 32
Adam learning rate 3e-5 1e-4 3e-5 3e-5 3e-5 1e-5
Adam ϵ 1e-5
PPO max gradient norm 0.5
PPO value clipping yes
return normalization no
value loss coefficient 0.5
student entropy coefficient 1e-3 1e-3 1e-3 1e-3 1e-3 0.0
generator entropy coefficient – 1e-3 – – – –

PLR⊥

Replay rate, p – – 0.5 0.5 0.8 0.8
Buffer size, K – – 4000 4000 4000 4000
Scoring function – – MaxMC MaxMC MaxMC MaxMC
Prioritization – – rank rank rank rank
Temperature, β – – 0.3 0.3 0.3 0.3
Staleness coefficient – – 0.3 0.3 0.3 0.3

ACCEL
Mutation subsample size, q – – – – 4 4
Mutation selection – – – – batch batch
of mutations – – – – 10 20

S5
layers 2
blocks, p 2
LayerNorm position post post pre post post post

14

	Introduction and Motivating Work
	The minimax Library
	Runners
	Environments
	Agents and Models

	Maze as an Accelerated Petri Dish
	Efficient Baselines
	Related Work
	Discussion
	Additional Experiment Results
	Choice of Architecture and Hyperparameters

