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Abstract

Supervised dimensionality reduction seeks to map class-conditional data to a low-dimensional
feature space while maximizing class discriminability. Although differences in class-conditional
second-order statistics can often aid discriminability, most supervised dimensionality reduc-
tion methods focus on first-order statistics. Here, we present Supervised Quadratic Feature
Analysis (SQFA), a dimensionality reduction technique that finds a set of features that pre-
serves second-order differences between classes. For this, we exploit a relation between class
discriminability and the Information geometry of second-moment (or covariance) matrices
as points on the symmetric positive definite (SPD) manifold. We discuss the reasoning
behind the approach, and demonstrate its utility in a simple vision task.
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1. Introduction

Consider the random variable x ∈ Rn. The aim of dimensionality reduction is to find some
mapping σ : Rn → Rm, with m < n such that the mapped variable z = σ(x) retains the
maximum amount of information in x for the relevant purpose. In supervised dimensionality
reduction, x has a corresponding class label y ∈ {1, ..., q}, the dataset is composed of pairs
{xt, yt}pt=1, and the goal is to find the mapping σ such that z supports the best possible
estimation or discrimination of y.

In many real world problems, class-conditional second-order statisticsCi = E
[
xxT |y = i

]
can support class discriminability. Few dimensionality reduction techniques, however, ex-
ploit second-order class differences for feature learning. Generalized eigenvectors have
previously been used as feature sets for second-order discrimination (Karampatziakis and

Mineiro, 2014). The generalized eigenvectors v
{i,j}
k for a pair of matrices (Ci,Cj) are the

local maximizers of the ratio of the expected class-conditional squared feature outputs

Rij(w) =
E[(wTx)2|y = i]

E[(wTx)2|y = j]
=

wTCiw

wTCjw
(1)

The ratio Rij(v
{i,j}
k ) equals the generalized eigenvalue λ

{i,j}
k associated with v

{i,j}
k . The

farther log(λ
{i,j}
k ) is from 0, the more different the expected squared feature outputs of v

{i,j}
k

are for classes i, j, and the more discriminable the classes will be in the direction specified

by v
{i,j}
k . For each pair (Ci,Cj), Karampatziakis and Mineiro (2014) use as features the

m vectors v
{i,j}
k with log-eigenvalues farthest from 0. However, because a different set of

features is obtained for every pair of classes, the number of feature sets scales quadratically
with the number of classes. Across these multiple sets, features are often redundant.

Here, we introduce Supervised Quadratic Feature Analysis (SQFA), a method for learn-
ing a single low-dimensional feature set that maximizes second-order discriminability across
classes. Its loss function exploits a relation between class discriminability and the Informa-
tion geometry of the symmetric positive definite (SPD) manifold (see Appendix A).
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2. Model

2.1. Setup of the problem

Our goal is to find the linear function σf : Rn → Rm given by σf (x) = fTx = z that
maximizes class discriminability by the feature second-order statistics Ψi = E

[
zzT |y = i

]
.

Given a set of q class conditional matrices {Ci}qi=1, and noting that Ψi = fTCif , the
general problem can be expressed as

argmax
f∈Rn×m

L
({

fTCif
}q

i=1

)
(2)

where L
({

fTCif
}q

i=1

)
measures second-order discriminability in the feature space. Intu-

itively, classes i, j are more discriminable if their matrices (Ψi,Ψj) are more different from
one another, or, in geometric terms: more ”far apart”. This motivates a geometric loss
using squared pairwise distances between matrices

L
(
{Ψi}i=q

i=1

)
=

q∑
i=1

i∑
j=1

d(Ψi,Ψj)
2 (3)

Second moment matrices Ψ belong to the m×m SPD manifold Sm
+ , which has a well studied

geometry and many distances that could be used in Equation (3) (Atkinson and Mitchell,
1981; Thanwerdas and Pennec, 2023). However, our goal requires a distance that relates to
discriminability, as discussed next.

2.2. Affine Invariant distance and discriminability

The most commonly used distance in Sm
+ is the Affine Invariant distance

dAI(Ψi,Ψj) =
∥∥∥log(Ψ−1/2

i ΨjΨ
−1/2
i )

∥∥∥
F
=

√√√√ m∑
k=1

(
log λ

{i,j}
k

)2
(4)

where log is the matrix logarithm, ∥·∥F is the Frobenius norm, and λ
{i,j}
k are the generalized

eigenvalues of (Ψi,Ψj). Some properties of dAI make it a sensible distance for learning
discriminative features.

First, Equation (4) summarizes, for an individual pair of class feature statistics (Ψi,Ψj),

how different the log generalized eigenvalues log(λ
{i,j}
k ) are from 0. As the value of Equa-

tion (4) increases, so should the discriminability of the two classes (see Section 1, Equa-
tion (1)). Note that, unlike Karampatziakis and Mineiro (2014), we do not use a different

set of m generalized eigenvectors v
{i,j}
k for each pair of class statistics (Ci,Cj) as features.

Rather, we find the single set of m features f that simultaneously discriminate between all
pairs of classes. This set of features maximizes the sum of squared Affine Invariant distances
between statistics of all pairs of classes in the feature space. The specific objective

argmax
f∈Rn×m

q∑
i=1

i∑
j=1

dAI(Ψi,Ψj)
2 = argmax

f∈Rn×m

q∑
i=1

i∑
j=1

m∑
k=1

(log λ
{i,j}
k )2 (5)
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uses the generalized eigenvalues λ
{i,j}
k of all pairwise statistics (Ψi,Ψj) in the feature space,

and is obtained by combining equations Equations (2), (3) and (4).
Second, the Affine Invariant metric that induces this distance is very closely related to

the Fisher Information in zero-mean Gaussians (Atkinson and Mitchell, 1981). Specifically,
the squared norm under this metric for a vector (i.e. symmetric matrix) A in the tangent
space of point Ψ, TΨSm

+ is ∥A∥2Ψ = ⟨A,A⟩Ψ = Tr(Ψ−1AΨ−1A) which is twice the Fisher
Information of N (0,Ψ) with respect to covariance matrix Ψ along direction A. The distance
dAI(Ψi,Ψj) is obtained by taking the geodesic (i.e. shortest) curve from Ψi to Ψj and
integrating the norm of the velocity of the curve at each point. The norm at point Ψ along
the geodesic is given by ∥Ψ′∥Ψ, where Ψ′ ∈ TΨSm

+ is the differential of the geodesic at
point Ψ. Thus, the Affine Invariant distance can be thought of as the accumulated Fisher
Information (i.e. discriminability) of the infinitesimal perturbations that convert N (0,Ψi)
into N (0,Ψj) along the geodesic. For the interested reader, the geometry of probability
distribution manifolds is the subject of information geometry (Amari, 2016).

2.3. Relation to gaPCA

SQFA bears similarities to geometry-aware PCA (gaPCA), a method for unsupervised di-
mensionality reduction in Sn

+ (Harandi et al., 2014). gaPCA transforms data Σ ∈ Sn
+ using

the function σf : Sn
+ → Sm

+ of the form σf (Σ) = fTΣf , with m < n. Analogous to PCA,
gaPCA maximizes the Fréchet variance of the transformed data. Like SQFA, gaPCA trans-
forms a set of matrices Sn

+ → Sm
+ and uses a geometric loss on Sm

+ . However, there are
important differences between the methods. Conceptually, SQFA performs supervised di-
mensionality reduction of data in Rn, whereas gaPCA performs unsupervised dimensionality
reduction of data in Sn

+. This conceptual difference has methodological consequences. First,
SQFA maximizes squared distances between classes, which are related to discriminability,
while gaPCA maximizes Fréchet variance. These two objectives are the same in Euclidean
space but not in Sm

+ . Second, gaPCA does not require the distance between matrices to
reflect discriminability in the underlying feature space, while SQFA does (Section 2.2).

3. Results

We tested SQFA on a dataset of naturalistic contrast video patches (1 deg) of moving
surfaces that has previously been used to study the human visual system (Burge and Geisler,
2015; Chin and Burge, 2020). Each video patch x ∈ R450 has 30 pixels (in space) and 15
frames (in time), and moves at one of 41 different speeds y ∈ {s1, ..., s41|si ∈ Rn}. The
vertical axis is averaged over, resulting in XT frames, rather than XYT frames. The task
is to estimate the speed y of each video. We learn f by Equation (5) with gradient ascent
using NAdam. The columns of f (features) are constrained to have unit norm.

This dataset is appealing for three reasons. First, finding features (receptive fields) that
are useful for solving visual tasks is fundamental to systems neuroscience and perception
science (Burge, 2020). Second, because x are contrast videos, the means E[x|y = si] are zero
(or nearly so), so that discrimination must rely on higher-order statistics. Third, an existing
approach called AMA-Gauss that learns features from class-conditional random samples to
optimize a probabilistic decoder, has been applied to the same task, and provides a useful
benchmark for comparison (Jaini and Burge, 2017).
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Table 1: Probabilistic decoder loss. MAP estimates are used to compute MSE and MAE.

Features E [− logP (y = yt|zt)] MSE MAE

PCA 2.21 1.60 0.72
FA 2.22 1.59 0.73
AMA-Gauss 2.00 1.46 0.61
SQFA 2.12 1.30 0.64

Table 1 shows the performance of a probabilistic decoder (see Jaini and Burge (2017)
for details) that uses the features learned with PCA, Factor Analysis (FA) (both performed
over the whole pooled dataset), AMA-Gauss, and SQFA. SQFA features outperform PCA
and FA features for all the performance metrics analyzed. SQFA features are on par with
AMA-Gauss features, despite the fact that AMA-Gauss learns features that optimize the
decoder performance using as a loss the negative log posterior of the true class yt (column 2
of Table 1). Furthermore, SQFA and AMA-Gauss features share some similarities, although
there are also clear differences between the two (Figure 1). Importantly, SQFA features are
learned 30 times faster than AMA-Gauss features for this dataset. Our model performs
similarly well when tested on related datasets of disparity estimation (Jaini and Burge,
2017), 3D-motion estimation (Herrera-Esposito and Burge, 2024), and when using a K-
nearest neighbors classifier (Appendix B).

Figure 1: Features learned with different methods.

4. Conclusion

We present SQFA, a supervised dimensionality reduction method for learning features
that maximize second-order differences between classes, using an information geometric
approach. SQFA may be applied on its own or in combination with methods based on
first-order statistics (e.g. LDA) to find a linear feature space where class distributions are
most different. SQFA is also a principled approach to finding features when there is access
to the data statistics but not to the data itself (e.g when statistics of unobserved classes are
obtained through interpolation (Nejatbakhsh et al., 2023)). Future work will further de-
velop the theoretical relationship between the Affine Invariant distance and discriminability,
examine other distances in Sm

+ , and test SQFA on a wider range of datasets.
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Appendix A. Graphical illustration of SQFA

Figure 2 provides a graphical illustration of the geometric perspective of SQFA, and how
the class-conditional statistics in the SQFA feature space might compare to those of the
features obtained from Linear Discriminant Analysis (LDA).

In the left column, the second moment matrices of the data for the different classes
Ci are shown as points in Sn

+ (which is a cone in the vector space of symmetric matrices
Thanwerdas and Pennec (2023)). In the center column of Figure 2 we see how these matrices
are mapped to class-conditional second moment matrices of features Ψi ∈ Sm

+ . This mapping
is shown for features learned with SQFA (top) and LDA (bottom). The objective maximized
by SQFA is the squared distances between the Ψi, and thus, the points are farther apart
for SQFA features than for the LDA features. This is because SQFA features explicitly
maximize squared distances.

On the right column, we see how the distributions of the features learned by the two
methods for a same dataset may differ. LDA maximizes the distances between class means
normalized by within class variability. Thus, we see that the class means for LDA are farther
away from one another, and within-class variance is also smaller than for SQFA. However,
SQFA classes have very different second-order structures, which result from maximizing the
distances between the class second moments. In this illustrative case, the classes are better
separated by SQFA than by LDA.

Appendix B. Performance with KNN decoder

To verify that our results are not dependent on the decoder used, we tested the performance
of a k-nearest neighbors (KNN) classifier using the same sets of features as in the main text.
We also used features extracted with Kernel PCA (KPCA) with RBF kernel and default
parameters from scikit-learn (Pedregosa et al.) (which we omitted for the probabilistic
decoder because KPCA does not produce linear filters). Like for the probabilistic decoder,
SQFA features outperform PCA and FA features for the speed estimation task.
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Figure 2: Illustration of SQFA as compared to LDA. The left column shows the second
moment matrices Ci of the data for the different classes, as points in Sn

+ (different
classes are different points). The center column shows second moment matrices
Ψi for the outputs of filters learned with two methods: SQFA (top) and LDA
(bottom). The right column shows the class-conditional distributions in a feature
space of reduced dimension. Crosses indicate the class means. Ellipses indicate
the class covariances (color matched to the points on the maniflold).

Table 2: KNN classifier loss with k = 5. KNN outputs are used to compute MSE and MAE.

Features % Correct MSE MAE

PCA 22.0 1.45 0.68
FA 19.7 1.71 0.77
KPCA 22.0 1.45 0.68
AMA-Gauss 33.4 0.96 0.45
SQFA 30.0 0.99 0.51
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