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ABSTRACT

Spectral clustering is a representative graph clustering technique with strong in-
terpretability and theoretical guarantees. Recently, degree-corrected spectral clus-
tering (DCSC) has emerged as the state-of-the-art for this technique. While prior
studies have provided several theoretical results for DCSC, their analysis relies
on some random graph models (e.g., stochastic block models). In this study, we
explore an alternative analysis of DCSC from a pure spectral view. It gives rig-
orous bounds for the mis-clustered volume and conductance w.r.t. the optimal
solution while involving quantities that indicate impacts of (i) high degree hetero-
geneity and (ii) weak clustering structures to DCSC. Inspired by recent advances
in graph neural networks (GNNs) and the associated over-smoothing issue, we
propose ASCENT (Adaptive Spectral ClustEring with Node-wise correcTion), a
simple yet effective extension of DCSC. Different from most DCSC methods with
a constant degree correction for all nodes, ASCENT follows a node-wise correc-
tion scheme. It can assign different corrections for nodes via the mean aggrega-
tion of GNNs. We further demonstrate that (i) ASCENT reduces to conventional
DCSC methods when encountering over-smoothing and (ii) some early stages be-
fore over-smoothing can potentially obtain better clustering quality.

1 INTRODUCTION

Graph clustering (a.k.a. disjoint community detection) is a classic inference task that partitions
nodes of a graph into densely connected groups (a.k.a. clusters or communities). Since the extracted
clusters have been validated to correspond to some substructures of real-world systems (e.g., func-
tional groups in protein interactions (Berahmand et al.| 2021)), many network applications (e.g.,
protein complex detection (Qin & Gaol [2010), cellular network decomposition (Dai & Bai, [2017)),
and Internet traffic profiling (Qin et al.,|2019)) are formulated as graph clustering.

Spectral clustering is one of the representative techniques for this task. As summarized in Table[T} a
typical spectral clustering algorithm includes the (I) eigen-decomposition (ED) on graph Laplacian,
(II) arrangement of spectral embedding, (III) normalization of the arranged embedding, and (IV)
KMeans clustering. In Table[I] A and D are the adjacency matrix and corresponding degree diag-
onal matrix of a graph; K is a pre-set number of clusters; A, denotes the r-th largest eigenvalue of
graph Laplacian L (e.g., L := D™'/2AD~ /2 and L := A for NJW (Ng et al.l 2001) and SCORE
(Jin, 2015)) with u,. € R¥ as the corresponding eigenvector. Different spectral clustering algo-
rithms usually differ in terms of the four steps. For instance, NJW, SCORE, and RSC (Qin & Rohe,
2013) only consider eigenvectors (uy,--- ,ux) w.r.t. the leading K eigenvalues. Whereas, step
(I) of SCORE+ (Jin et al., 2021) and ISC (Qing & Wang, 2020a) involves (uy, - , Uk, Uk t1),
which are further reweighted by corresponding (/+1) eigenvalues (A1, - - - , Ak, Ax+1). Moreover,
NJW, RSC, and ISC adopt the row-wise lo-normalization in step (III), while SCORE and SCORE+
use (reweighted) u; to conduct column-wise normalization.

Recently, degree-corrected spectral clustering (DCSC), a.k.a. regularized spectral clustering in some
literature (Qin & Rohel 2013} Zhang & Rohe, 2018), has emerged as a state-of-the-art class of
spectral clustering methods, due to their effectiveness in handling the high degree heterogeneity of
graphs. These approaches usually incorporate an additional degree correction term 7 in their graph
Laplacian for ED (e.g., RSC, SCORE+, and ISC with different settings of 7 in Table .
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Table 1: Summary of some spectral clustering algorithms, where D := D + 7Iy; 7 is the degree
correction term in DCSC, with 7 = d, ddmax, and §(dmin + dmax)/2 for RSC, SCORE+, and ISC
(e.g., 0 =0.1); d, dmin, and dp,ax are the average, minimum, and maximum node degrees.

Step (I) Step (II) Step (III) Step (IV)
NJW EDonD /2AD /2 | F:=[uy, - ,ug i€[L,N,F;. < F;./|F;.|>
SCORE EDon A F:=[ug, - ,ug re[l,K—1LF., « F. ./u; KMeans
RSC F:=[uy, - ,ux 1 €E[1,NLF;. < F,; . /[F; ]2 on rows
SCORE+ | EDon D7 '/2AD;Y/2 [[F:= MUz, -, Axjiuky1] | 7 €E[LKLF., <« F.,/(Q1u1) | of F
1SC F:=[A\juy, - ,>\K+1UK+1] 1€ [1,N],F7‘,,: HF«L,: |F7‘,):‘2

Table 2: Summary of representative theoretical analysis among DCSC, where most related studies
rely on the assumption of a random graph model and give bounds w.r.t. such a model.

Analysis Rand Model | Theoretical Bounds Analysis Rand Model | Theoretical Bounds
" (Chaudhuri et al[[2012) | EPP model | EPP’s optimal separation | (Qing & Wang][2020a) | DCSBM Hamming error w.r.
(Qin & Rohe, 2013) DCSBM Misclustered rate w.r.t. (Qing & Wang}|2020b) DCSBM DCSBM’s gnd o
(Amini et al.||2013) DCSBM DCSBM’s groundtruth (Jm et al.[[2021) DCSBM
7(Zhang & Rohe![2018) DCSBM Conductance Ours B N/A Misclustered vol. &

conductance ~ W.r.t.
optimal solution

Related Theoretical Analysis on DCSC. In the past few decades, a series of spectral clustering
methods have been proposed. |Ding et al.| (2024) provided a comprehensive overview of related
research. Table[2summarizes some representative theoretical results regarding DCSC. We introduce
more related work about recent advances in deep graph clustering in Appendix [A]

As in Table 2} Chaudhuri et al.| (2012) proposed a DCSC method for graphs drawn from an extended
planted partition (EPP) model (Condon & Karpl 2001 and examined the performance guarantees.
Qin & Rohe| (2013)) analyzed the potential of RSC to handle the high degree heterogeneity of graphs
using the degree-corrected stochastic blockmodel (DCSBM) (Karrer & Newman, [2011) and pro-
vided guidance on the choice of 7. (Zhang & Rohel |2018) theoretically studied the (i) failures of
spectral clustering and (ii) benefits of degree correction based on the relationship between graph
conductance and spectral clustering. /Amini et al.|(2013) introduced a fast pseudo-likelihood method
for fitting DCSBM with theoretical guarantees, where a DCSC algorithm with perturbations was
used for initialization. |Qing & Wang| (2020a)) and Jin et al.| (2021) proposed ISC and SCORE+,
which were further validated to be effective in handling the (i) high degree heterogeneity and (ii)
weak clustering structures (a.k.a. weak signals in (Qing & Wang, 2020bja}; |Jin et al., 2021)) via the
theoretical analysis based on DCSBM.

In summary, most existing theoretical studies of DCSC rely on some assumptions of random graph
models (e.g., EPP model and DCSBM). They usually fit the adjacency matrix or graph Laplacian
using a certain random graph model (e.g., A := @ZBZT® (Qin & Rohe, 2013) with {©, Z, B}
as notations defined in DCSBM) and further give theoretical bounds related to such a model (e.g.,
mis-clustered rate and Hamming error w.r.t. the ground-truth given by DCSBM).

Present Analysis on DCSC & Extension. Spectral clustering is a typical approximated algorithm
for the NP-hard combinatorial optimization problem of conductance minimization (Von Luxburg}
2007). Based on this nature, some early studies (Peng et al.| 2015} Mizutanil |2021) analyzed vanilla
spectral clustering (e.g., NJW) using the spectral graph theory. Motivated by these studies, we
consider an alternative analysis for DCSC from a pure spectral view, instead of using random graph
models. Different from existing analysis on DCSC with bounds related to a random graph model,
we provide theoretical bounds for the mis-clustered volume and conductance w.r.t. the optimal
solution to conductance minimization. In contrast to early spectral-based studies on vanilla spectral
clustering (Peng et al.| 2015} Mizutani, 2021}, our analysis involves additional quantities about (i)
degree heterogeneity and (ii) weakness of clustering structures, which can help reveal impacts of (i)
high degree heterogeneity and (ii) weak clustering structures to DCSC.

Inspired by recent advances in graph neural networks (GNNs) and the associated over-smoothing
issue (Rusch et al., 2023), we propose ASCENT (Adaptive Spectral ClustEring with Node-wise
correcTion), a simple yet effective extension of DCSC. Instead of using a constant correction term
7 for all nodes (e.g., RSC, SCORE+, and ISC in Table E]), ASCENT follows a node-wise correction
scheme, where nodes {v; } are allowed to be assigned with different corrections {7; }. Such a scheme
iteratively updates {7;} via the mean aggregation of GNNs, where nodes {v;} with more common
high-order neighbors (e.g., in the same cluster) are more likely to have close {7;}. Consistent with
the over-smoothing issue of GNNs, {7;} will finally converge to a constant. In this case, ASCENT
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reduces to conventional DCSC methods. Our experiments demonstrate that some early stages of this
updating procedure (i.e., before over-smoothing) can potentially result in better clustering quality.

2 PROBLEM STATEMENTS & PRELIMINARIES

In general, an undirected and unweighted simple graph can be represented as a 2-tuple G := (V| E),
where V' := {vy,--- ,on} and E := {(v;,v;)|vs, v; € V'} are the sets of nodes and edges. One can
use an adjacency matrix A € {0, 1}V*¥ (o describe the topology of G, where A;; = Aj; = 1 if
(vi,v;) € Eand A;; = Aj; = 0 otherwise. Let D := diag(d,ds, - - - , dn) be the degree diagonal
matrix of G, with d; := > y A;; as the degree of node v;.

Given a graph G and a pre-set number of clusters K, graph clustering (a.k.a. disjoint community
detection) aims to partition V into K disjoint subsets (C1, - - - , Cx ), which are defined as clusters
or communities, with | J,, C, =V and C, N C; = 0 (Vr # t) s.t. (i) within each cluster the edge
connections between nodes are dense but (ii) between clusters the connections are relatively loose.

Note that we follow the classic problem statement of spectral clustering, where graph topology is
the only available information source. Different from most deep graph clustering methods (Nazi
et al.,[2019;[Bo et al., [2020; [Bianchi et al., [2020; [Tsitsulin et al., [ 2023; [Bhowmick et al., [2024), our
analysis does not consider graph attributes, due to the complicated correlations between topology
and attributes validated by prior studies (Newman & Clauset, 2016} (Qin et al.| [2018; [Wang et al.,
2020; |Qin & Lei, [2021). Concretely, the simple integration of attributes may bring inconsistent
features or noise that lead to quality decline compared with the case only considering topology,
although attributes may sometimes provide complementary information for better clustering quality.

Graph clustering is an approximated algorithm for the combinatorial optimization objective of con-
ductance minimization (Von Luxburg, [2007). For a subset S C V, let E(S, V\S) := {(v;,v;) €
E :v; € S,v; € V\S} be the set of edges across S and V\S. Let pu(S) := d; be the
volume of S. The conductance of S is defined as ¢(S) := |E(S, V\S)|/u(S).

v; €S

Definition 1 (Conductance Minimization) Let U be the collection of all possible K-way parti-
tions of the node set V' in graph G. The conductance minimization objective is defined as

1
— : 2 . _ 1
ox(G)i= o min (@) + e+ 0(Sk)) (1)
It aims to find a partition (S1,--- ,Sk) of V that can achieve the minimal average conductance
¢ (G). We define that a partition (S1,--- ,Sk) is ¢x(G)-optimal if its average conductance
(¢(S1) + -+ &(Sk))/K achieves ¢ (G).

For the ED on graph Laplacian (i.e., step (I) of Table , let A, and u, € R¥ denote the r-th
largest eigenvalue and corresponding eigenvector. When considering the normalized graph Lapla-
clan D"/2AD Y2 wehave 1 = A\; > --- > Ay > —IE]and ulu; = 0 (Vr # t). Moreover, we
have 1 > Ay > Ay > --- > Ay for the regularized graph Laplacian D, Y 2AD: Y2 In step (IT) of
Table 1} we arrange the (reweighted) eigenvectors as a matrix F € RV *K (or RNV*(K+1)) yia the
column-wise concatenation. We define the i-th row F; . of F as the spectral embedding of node v;.
Most spectral clustering algorithms apply normalization to F (i.e., step (IIT) in Table[I). We denote
the corresponding normalized spectral embedding as F.

Definition 2 (Clustering Cost) Given a set of vectors (w1, - , W), we follow (Peng et al., 2015)
to define the distance between a partition (S1,--- ,Sk) of V and (w1, ,Wk) as
K ~
Si,  SKIW, = d; ||F;. —w.|| . 2
9(S1 K W1 Wk) ;1%; oWl (2)

It maps each node v; to d; identical points in the embedding space. As claimed in (Peng et al.|
2015|), this definition allows us to bound the overlap between (i) feasible clustering results and (ii)

'Some literature (Von Luxburg, 2007; [Qin et al., [2023} |Gao et all [2023) defines the normalized graph
Laplacian as Iy —D~/2WD~!/2, which equivalently has the eigenvalues of 0 = 1—X; < --- < 1—Ay < 2.
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Figure 1: The high-level overview of our pure spectral analysis on DCSC.

optimal ones, which is further used in our analysis (cf. Lemma M and Lemma ). By assuming that
for each node v; € V, all the d; copies of ;. are contained in one of {S1,--- , Sk}, reduces to

the standard cost of K Means. The clustering cost of a partition (Sy,- - - , Sk ) is then defined as
COST(Sh?SK) = min )g(Sly"',SK;Cl,""CK)’ (3)
1 e
which finds a set of centers (c1,--- ,Cr) with the minimum distance to (Si,--- ,Sk). Based on
COST(Sy, -, Sk), we define the optimal clustering cost as
OPT := min  COST(Sy,---,Sk). 4)
(81,+,SK)EV

3 PROPOSED ANALYSIS: A PURE SPECTRAL VIEW

Inspired by early spectral-based studies (Peng et al., 2015} [Mizutanil 2021)) on vanilla spectral clus-
tering (e.g., NJW), we give an alternative analysis for DCSC from a pure spectral view, without using
random graph models. We adopt ISC (see Table[T)) as an example for analysis because it has a more
generic format involving the reweighted (K + 1) leading eigenvectors [A\quy, -, Ax iUk 41]-
Whereas, other DCSC methods usually have simpler formats (e.g., only [uy,--- ,ug] without
reweighting for RSC). Fig. [T]illustrates the overall sketch of our analysis. In Appendix [F} we fur-
ther reduce this generic analysis on ISC to other DCSC algorithms (e.g., SCORE+ and RSC), which
extends our analysis to a unified framework involving a series of spectral clustering approaches.

In contrast to early work (Peng et al. 2015; Mizutani, 2021) on vanilla spectral clustering, our
analysis aims to reveal impacts of (i) degree heterogeneity and (ii) weakness of clustering structures
to the clustering quality of DCSC. We first introduce a quantity measuring both aspects:

1 dmin

TEp eyl Ul sl Ul T ()G

Uisc =mg' 1 —h-(1-¢x(G))] =

where my =1 — Agq9 and h := dyin/(dmax + 7). In , h measures the degree heterogeneity,
where a small h (i.e., a large difference between d,in, and dy.x) indicates high degree heterogeneity.
Since ¢k (G) < 1, higher degree heterogeneity (i.e., a smaller h) will lead to a larger ¥1sc.

As validated in (Jin et al. 2021)), when clustering structures of a graph (with K clusters) are weak,
mg = 1 — Ag41/Ak is small, which is consistent with a small |\ — Ak 1| by the eigen-gap
property of graph Laplacian (Von Luxburg, 2007). Since 1 > Ag > Axy1 > Ax 12, we have

my > g and Wise = my 1 — h(l — ¢ (G))] < mg [l — h(1l — ¢ox(Q))]. (6)

Therefore, weaker clustering structures (i.e., a smaller m ) indicates a larger upper bound of V1gc.

Theorem 3 Let (5’1, .8 k) be a ¢ (G)-optimal partition, with the partition membership en-
coded by G € RN*E where G, = \/di/,u(gr) if v, € S, and G;. = 0 otherwise.
F = [\Mug, -, Agpugy1] € RYVXEHD s the spectral embedding of ISC (i.e., step (II) of
Table|l)). If KVisc < 1, there exists an orthogonal matrix O := [0y, --- ,0x] € REFDXE ¢ ¢

[FO — Gllr < (14+ M)V EKVisc. (7)
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As in Fig.[I] one can prove Theorem 3|by reformulating G via the linear combination of orthogonal
eigenvectors {u;} (see Appendix for the full proof). The first term in (7)) can be rewritten as

d; 2

M(Sr)or

By using the same strategy as the proof of Lemma 2 in (Mizutani, 2021)), which connects (8) with
([2), we can derive the following upper bound of clustering cost (see Appendix [C]for the full proof).

K
IFO - G||% = |F -~ GO” ||z = |F" —OG"|F =) >

r=1v;€S,

F,. - )

2

Lemma 4 Let (5‘1, w8 i) be a ¢ (G)-optimal partition and F be the normalized spectral em-
bedding of ISC. {0,.} are with the same definitions as those in Theorem EI The followings hold:

¢« [lo, —oa=2,Vrte{1,2,-- K} andr #t;

« g(S1,-,Ski01,0k) <AL+ A1) pmax K Uisc,
With fimax = maxg_ 1(S,) as the maximum volume.

Obviously, we have OPT < COST(Cy,---,Ck) < g(S‘l, e ,SK; 01, -+ ,0f). Assume that
KMeans has an approximation ratio of « (i.e., COST(C1,- - ,Ck) < «OPT), which depends on
the concrete K’ Means algorithm we used (e.g., « = O(log K) for KMeans++ (Arthur & Vassilvit-
skiil 2007)). One can directly derive the following Theorem [5|based on Lemma[d]

Theorem 5 Let (C1,--- ,Ck) be a feasible clustering result given by ISC. When the KMeans
clustering algorithm has an approximation ratio of o, we have

COST(C1, -+ ,Cx) < 4(1+ A1)’ pimaz K Vise. )
Furthermore, the lower bound of COST(C4, - - - , Ck ) can be obtained via the following Lemma@

Lemma 6 (Mizutani, |2021) For every permutation 7 : {1,--- | K} — {1,--- , K}, assume that
there is an index [ s.t. u(ClASﬂ(l)) > 26~u(5}(l)), with AAB := (A\B)U(B\A) as the symmetric
difference between two sets and 0 < € < 1/2. Let (., and w be the lower bound of ||o,. — o4||3 and
the upper bound ofg(gl, ceey SK; 01, -+ ,0f) In Lemma Then, the following inequality holds:

1 .
COST(Cr . Ci) = 5 7, 16:Gramin{u(S,). w(S0)}] — (10)
where H is a subset of {1,--- \K}; t € {1,--- ,K}; & > 0is a real number s.t. ) & > €.

v; €Sy
>vics nc, dil [Fi: — w,[[3 to (2) and utilize properties of 11(C1ASx ) (see the proof of Lemma
4 in (Mizutani, 2021)). By setting ¢,+ = 2 and w = 4(1 + A\1)?aK fimax P1sc according to the
corresponding bounds in Lemma [d] we can derive the following Theorem 7| based on Lemma [§]

As highlighted in Fig. |1} the key idea to prove Lemma |§| is to apply 3, _a di||Fi — w||2 >

Theorem 7 Suppose that the assumption of Lemma 6| holds. Then, we have

1
COST(Cla o aCK) Z Zeumin - 4(1 + Al)QaumaxK\I/ISC7 (1 1)

With fimin := min{p(S,)} and fimax := max{u(S,)}.

Finally, we obtain our main theoretical results based on Theorems 5|and|[7}

Theorem 8 (Main Theoretical Results) Given a graph G and a pre-set number of clusters K,
let (S1,---,Sk) be a ¢ (G)-optimal partition of conductance minimization and (C1,--- ,Ck)
be a feasible clustering result given by ISC. Assume that KMeans has an approximation ratio

of a. If Visc < 1/[132(1 4+ A\1)2iK] with fi := fimax/lmin, after a suitable renumbering of
(C1,- -+ ,Ck), the following inequalities hold forr € {1,...,K}:

M(CrAgr) < [66(1 + )\1)QQ,FLK\IJISC],u(Sr)7 and
(b(C,) < [1 + 132(1 + /\1)2(1[1,}(\11150](15(5'7-) + 132(1 + /\1)2(1[~I,K\Iflsc.
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As depicted in Fig.[I] one can prove Theorem [§|by contradiction using the upper and lower bounds
in Theorems [5] and [7] (see Appendix D] for the full proof). Theorem [§] provides upper bounds
for the mis-clustered volume ;(C,AS,) and conductance ¢(C,) w.r.t. the optimal solution

(5'1, S S k) to conductance minimization. These bounds are directly proportional to ¥igc. A
graph with (i) higher degree heterogeneity and (ii) weaker clustering structures will cause a larger
Uisc and thus lead to higher upper bounds. Since u(CTAST) and ¢(C,.) can be used to measure
the clustering quality, higher upper bounds indicate that ISC is more likely to achieve a low-quality
result. In this way, our analysis can quantitatively reveal impacts of (i) degree heterogeneity and (ii)
weakness of clustering structures to the quality of DCSC.

To ensure that the condition in Theorem [§ holds, one needs small ¢ (G)/(1 — Ag12) and large
diin/[(dmax +7)(1 — Ax+2)]. In some early studies on vanilla spectral clustering (Ng et al., 2001}
Mizutanil 2021), a graph is defined to be well-clustered, if ¢x(G)/(1 — Ax41) is sufficiently
small, consistent with that ¢ (G)/(1 — Agy2) is small (Ax42 > Ag41). The well-clustered as-
sumption adopted by early work (Ng et al.,[2001; Mizutanil |2021) indicates that the optimal solution
(5‘1, cee S i) describes an explicit clustering structure of G. Moreover, large din /[(dmax ++)] in-
dicates that the degree heterogeneity should not be very high. Therefore, the condition in Theorem|8]
implies an assumption that (i) G is well-clustered and (ii) the degree heterogeneity is not so high.
In particular, the adjustment of 7 can also help resist the impacts of these two aspects. For instance,
a larger 7 can result in smaller eigenvalues \; and Ax o, which further lead to smaller Wgc and
larger 1/[132(1 + A1 )?aiK]. The condition is more likely to satisfy.

4 EXTENSION OF DCSC: ASCENT

Inspired by recent advances in GNNs and the associated over-smoothing issue, we introduce AS-
CENT, a simple yet effective extension of DCSC. Different from most DCSC methods with a con-
stant correction 7 for all nodes (e.g., RSC, SCORE+, and ISC in Table |I[), ASCENT adopts a node-
wise correction scheme. It can adaptively determine different corrections {7;} for nodes {v;} via
an iterative aggregation mechanism that computes ‘local’ average degrees w.r.t. graph topology.
Whereas, 7 is usually set to be a ‘global” average degree for existing DCSC algorithms (e.g., 7 = d
for RSC). To the best of our knowledge, we are the first to explore an extension of DCSC with
node-wise corrections.

Let ) e }Rf be the vector of node-wise corrections in the [-th iteration, with Ti(l) as the correction

of node v;. Suppose there are in total L iterations, we obtain the node-wise corrections T € ]Rj\_f of
ASCENT via

7O =d, 7O =D AV (1< < L), and T := o), (12)

where A := A + Iy is the adjacency matrix with self-edges; D is the degree diagonal matrix
wrt. A; 0 > 0isa hyper-parameter. Concretely, we first let 7'1-(0) = d; for initialization. Then,
we iteratively update () using a typical mean aggregation operation of GNN (Kipf & Welling,
2016;Hamilton et al.,2017)). Different from existing GNN-based graph clustering methods (Bianchi
et al., 20205 Tsitsulin et al., |2023; Bhowmick et al., 2024), ASCENT does not rely on any graph
attribute inputs and training procedures. Instead, it directly uses {‘r(l) € Rf } as special features for
aggregation. In each iteration, it computes the average correction value w.r.t. the one-hop neighbors

for each node. We use 7; = OTi(L) as the final correction value of node v;. Similar to the role of § in
RSC, SCORE+, and ISC as summarized in Table[T] 6 adjusts the scale of 7;. Furthermore, ASCENT
adopts the same strategies of spectral embedding arrangement and normalization (i.e., steps (I) and
(IIT) in Table[T) as ISC. Algorithm T]summarizes the overall procedure of ASCENT.

Fig. [2] demonstrates our node-wise correction scheme on the Karate Club graph (Zachary, [1977)
with 34 nodes and 2 clusters, where we visualize {-r(l)} in different iterations; each color denotes
a cluster. Although different nodes have various initial values (i.e., node degrees) in 7(°), the ag-
gregation operation in (I2) forces nodes in the same cluster (i.e., with more common high-order
neighbors) to have close correction values. For instance, in 7(9), 719 and +(11) nodes in the first
cluster tend to have larger corrections than those in the second cluster. It is well-known that most
GNN:gs, especially those with a mean aggregator, suffer from the over-smoothing issue (Rusch et al.,
2023)), where node features converge to a constant as the number of layers increases. Similarly, the
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Figure 2: Case study of {T(l)} on the Karate Club graph, where each color denotes a cluster.
node-wise corrections of ASCENT also converge to a constant for a large number of iterations [

@

(e.g., 7(9), due to the over-smoothing effect s.t. hm 7,7 = ¢,Yv; € V, with ¢ as a constant. In

this case, ASCENT reduces to existing DCSC methods with a constant correction T, corresponding
to a ‘global’ average of node degrees. Our experiments further indicate that ASCENT can potentially
achieve better clustering quality in some early stages before over-smoothing (e.g., with L < 10). It
corresponds to a special ‘local’ average of node degrees.

We extend our analysis to the following Proposition[9|regarding ASCENT (see Appendix [E] for the

full proof). For each cluster S,., we introduce a cluster-wise correction 7, := max{r;|v; € S’T}.

Since different nodes {v; } may have different {7, }, different clusters {5, } may have different {7, },
which can be used to demonstrate the advantages of node-wise corrections {7;} beyond conven-
tional methods with a constant 7. Based on Proposition [9] we further explore when can ASCENT
potentially outperform ISC in Appendix [F

Proposition 9 Let ¢ (G) = Zf;l dr¢(S,)/K be a reweighted conductance w.rt. the opti-

mal partition (Sl, e ,S’K), with d, := dmin/(dmax + 7). By replacing Uisc with Wagr =
-1 i~ ;. NK g o

(14 Akero) (1 = (d — ¢x(G))], where d := ' d,/ K, Theorems[3|and[g|hold for ASCENT.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Table 3: Statistic det 3.118 of datasets. Table 4 Summary of baselines.
Datasets N [E] min  max avg d B Venues
LFR-1 2,000 7,693-12,057 2 15 1-2 286-1,000 7-12 NIW NIPS 2001
LFR-2 2,000 8,489-32,202 4-14 | 2-6 375-1,000 8-32 SCORE Ann. Stat. 2015
SBM-1 1,000 18,911-20,354 | 11 13-24 57-74 37-40 RSC NIPS 2013
SBM-2 1,000 16,368-20,202 | 11 12-24 51-72 32-40 SCORE+ SankhyaA 2021
Caltech 590 12,822 8 1 179 435 1SC arXiv 2020
Simmons 1, 137 24,257 4 1 293 42.7 GraphEncoder (GE) AAAI 2014
PolBlogs 1,222 16,714 2 1 351 27.4 GAP arXiv 2019
BioGrid 5,640 59,748 81 1 2570 21.2 SDCN WWW 2020
Airport 3,158 18,605 N/A 1 246 11.8 MinCutPool (MCP) ICML 2020
Wiki 4771 92,295 N/A | 2 3,644 38 DMoN JMLR 2023
BlogCatalog | 10,312 | 333,983 N/A 1 3,992 64 DGCluster (DGC) AAAI 2024
ogbn-Protein | 132,534 | 39,561,252 N/A 1 7,750 597

Datasets. We used 4 settings of synthetic benchmarks and 8 real graphs for evaluation. Table [3]
summarizes statistics of these datasets, where N, |E|, and K are the numbers of nodes, edges, and
clusters (if available); d denotes node degree.



Under review as a conference paper at ICLR 2025

(a) NMIt (b) ACT

05 1 Figure 3: Parameter analysis of L on Caltech

- in terms of NMIT, ACT, and conductancel,

0.48 R —=% »where ASCENT achieves the best clustering
0

bz 34 s 6789 Nquality with a small setting of L (i.e., L = 3)
before it reduces to conventional DCSC meth-
ods due to the over-smoothing issue.

(c) Conductance]

Table 5: Synthetic graph analysis on LFR-net in terms of NMIT, ACt, and conductance.

LFR-1 LFR-2
n=0.1 0.3 0.5 d=10 20 30

NMI AC Cond NMI AC Cond NMI AC Cond NMI AC Cond NMI AC Cond NMI AC Cond

%) (0% (%) | %) (1% (%) | (1.%) (1% (L% | (1.%) (1% (L% | (1.%) (1.%) (L%) | (1.%) (1.%) (,%)
NIwW 87.64 96.90 10.04 56.90 77.06 34.89 2491 4393 57.12 26.27 44.32 57.10 66.58 79.15 53.18 81.47 90.33 51.37
SCORE 77.15 86.90 21.68 59.77 80.17 39.64 30.19 48.60 66.10 30.09 47.74 66.48 65.19 77.27 57.22 83.54 89.17 53.55
RSC 80.73 94.98 10.11 54.43 78.65 32.17 39.18 60.59 52.82 39.75 61.22 53.94 61.86 77.19 52.60 76.63 87.41 51.66
SCORE+ 78.99 91.88 12.75 60.19 84.03 32.32 43.66 65.38 53.94 44.72 66.30 53.49 71.81 85.38 52.22 85.64 93.61 50.99
ISC 88.01 97.23 10.00 | 6527 86.59 31.79 | 44.16 65.73 52.31 | 44.77 66.59 5287 | 72.62 8559 5221 | 86.88 9391 5097
GE 61.70 81.73 73.49 38.94 60.69 79.02 20.60 34.98 87.18 21.37 36.21 87.59 38.89 54.09 86.13 5424 68.11 84.22
GAP 293 4130 66.69 2.02 3503 73.87 0.79 2436 84.01 023 23.68 85.02 036 25.27 83.05 035 2598 81.85
SDCN 1.66  40.64 70.92 037 33.74 76.78 1.56 2423 86.65 1.61 24.00 87.10 0.88 25.29 85.09 125 2627 83.45
MCP 63.34 84.18 19.60 11.66 42.72 65.46 0.56  24.12 84.20 029 23.86 85.03 0.00 25.16 83.21 0.00 2590 81.91
DMoN 80.64 93.41 11.92 55.36 76.08 36.38 30.29 47.46 57.45 29.70 46.06 59.16 49.43 61.52 60.48 56.68 67.24 59.51
DGC 88.47 97.15 10.02 67.79 85.82 31.82 45.12 64.44 52.66 44.67 63.90 53.06 72.33 85.56 51.69 85.92 89.48 52.12
ASCENT 89.38 97.60 9.95 68.83 88.73 31.74 46.42 67.80 52.01 46.45 68.51 51.72 77.53 88.84 51.14 89.81 95.44 50.57
Improv.(%) | +1.03 +0.38 +0.5 +1.53 +2.47 +0.16 +2.88 +3.15 +0.57 +3.75 +2.88 +2.18 +6.76 +3.80 +1.06 +3.37 +1.63 +0.78

LFR-net (Lancichinetti et al., 2008)) is a synthetic benchmark that can simulate various properties
of real-world graphs. It uses (d, dmax, Cmin, Cmax, 7) t0 generate a graph, where d and dy,.x are the
average and maximum degree; cpin and cyax are the minimum and maximum cluster size; 7 is the
ratio between the external degree and total degree of a node v; w.r.t. the cluster that v; belongs
to. To test the ability to handle (i) weak clustering structures and (ii) high degree heterogeneity,
we used LFR-net to generate two sets of graphs, denoted as LFR-1 and LFR-2. For LFR-1, we
fixed (N, d, dmax, Cmins Cmax) = (2000, 50,1000, 50, 500) and adjusted € {0.1,0.3,0.5}. With
the increase of 1), clustering structures are increasingly difficult to identify (i.e., weaker clustering
structures). For LFR-2, we fixed (N, dmax, Cmin, Cmax,1) = (2000, 1000, 50,500,0.5) and set
d € {10, 20, 30}, where lower d indicates higher degree heterogeneity.

We also used the SBM generator (Kao et al., [2017) implemented by graph—toolﬂ to simulate
the two cases about (i) weak clustering structures and (ii) high degree heterogeneity, which are
denoted as SBM-1 and SBM-2. The generator uses (v, 3, p) to generate a graph, where ~ is the
ratio of between the number of within- and between-cluster edges; /3 controls the power-law dis-
tribution of node degrees; p adjusts the heterogeneity of community size. For SBM-1, we fixed
(N, p,8) = (1000, 1,2.5) and set v € {0.5,0.6,0.7}. With the increase of , the clustering struc-
tures are increasingly easy to identify. For SBM-2, we fixed (N, p,v) = (1000, 1,0.5) and set
B € {2.5,2.75,3}, where larger (3 implies higher degree heterogeneity.

Caltech (Red et al., [2011)), Simmons (Red et al.| [2011)), PolBlogs (Adamic & Glance, 2005), and
BioGrid (Stark et al., [2000) are real datasets with explicit ground-truth for graph clustering. In
contrast, Airport (Chami et al., [2019), Wiki (Grover & Leskovec, [2016), BlogCatalog (Grover
& Leskovec, |2016), and obgn-Protein (Szklarczyk et al.l [2019) are real datasets that do not pro-
vide ground-truth w.r.t. our problem statements in Section [2] Due to space limit, we leave details
regarding these real datasets in Appendix

Baselines. As summarized in Table 4] we compare ASCENT over 11 baselines published from
2001 to 2024, which can be divided into two categories. First, (i) NJW (Ng et al.,[2001)), (ii) SCORE
(Jin, 2015), (iii) RSC (Qin & Rohel 2013), (iv) SCORE+ (Jin et al., [2021)), and (v) ISC (Qing &
Wang] [2020a) are representative spectral clustering methods. Second, (vi) GraphEncoder (Tian
et al., 2014), (vii) GAP (Nazi et al., 2019), (viii) SDCN (Bo et al., [2020), (ix) MinCutPool (Bianchi

*https://graph-tool.skewed.de/
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Table 6: Synthetic graph analysis on SBM in terms of NMIf, ACt, and conductance.

SBM-1 SBM-2
~=0.5 0.6 0.7 B=25 2.75 3

NMI AC  Cond NMI AC Cond NMI AC Cond NMI AC Cond NMI AC Cond NMI AC Cond

%) (1.%) (L.%) | (1% (1% L% | (1% (%) %) | (1% (%) (%) | (1% (1% (L%) | (1.%) (1.%) (%)
NIW 79.94 87.74 70.54 91.81 95.35 66.21 96.48 98.16 62.80 80.20 87.82 70.59 76.16 85.23 70.59 73.34 83.36 70.56
SCORE 72.03 78.86 71.60 85.58 88.55 67.11 91.04 92.62 63.73 72.39 79.27 71.63 68.46 75.77 71.60 65.02 73.66 71.65
RSC 76.89 84.03 70.97 89.76 92.98 66.52 94.47 96.14 63.18 77.09 83.75 71.01 73.35 80.70 71.00 70.38 79.66 71.02
SCORE+ 82.08 89.18 70.33 92.99 96.10 66.08 97.02 98.53 62.72 82.06 89.10 70.39 78.29 86.61 70.42 75.36 84.54 70.35
ISC 8233 89.62 70.32 | 93.18 96.18 66.06 | 97.32 98.66 62.70 | 82.46 89.54 7038 | 78.80 87.05 7039 | 75.70 85.21 70.35
GE 66.79 76.28 74.70 86.12 90.70 67.80 93.42 95.41 63.77 67.68 77.03 74.61 62.61 73.19 75.42 57.20 68.68 76.39
GAP 1.27 15.47 90.72 1.65 15.60 90.66 1.76  15.50 90.66 1.37 15.11 90.69 1.18 15.29 90.71 1.10  15.07 90.71
SDCN 26.01 35.09 85.54 39.13 47.31 81.20 48.02 54.58 77.74 26.29 36.80 85.40 2226 32.87 86.32 18.99 29.62 87.16
MCP 0.00 14.81 9091 0.00 14.81 9091 0.00 14.81 9091 0.00 14.81 9091 0.00 14.81 9091 0.00 14.81 90.91
DMoN 76.25 79.33 72.14 84.96 85.07 68.93 88.84 87.52 65.99 7594 79.17 72.21 73.42 77.81 71.86 69.55 74.98 71.75
DGC 68.02 67.92 7791 80.19 76.14 73.44 87.21 81.50 69.57 68.23 69.30 77.59 66.94 68.42 77.61 64.90 67.89 77.45
ASCENT 82.52 90.08 70.27 93.41 96.51 66.02 97.38 98.68 62.68 | 82.74 89.87 70.32 79.00 87.51 70.33 76.05 85.79 70.29
Improv.(%) | +0.23 +0.51 +0.02 +0.24 +0.34 +0.06 +0.06 +0.02 +0.03 +0.34 +0.37 +0.09 +0.25 +0.53 +0.09 +0.46 +0.68 +0.09

Table 7: Evaluation results on datasets with ground-truth in terms of NMIt, ACt, & conductance].

Caltech Simmons PolBlogs BioGrid

NMI AC Cond NMI AC Cond NMI AC Cond NMI AC Cond

%) %) %) | 0% 0% %) | (%) %) %) | (1% (0.%) (%)
NIW 62.13 7539 50.76 67.96 73.44 33.87 0.06 51.88 2694 | 41.83 12.84 66.20
SCORE 56.39 69.05 50.12 58.53 7639 29.92 7250 9525 7.67 13.93 737 90.90
RSC 58.58 71.05 49.86 61.52 78.61 28.88 7133 9476 7.34 43.64 13.52 66.07
SCORE+ 69.14 82.85 48.44 7295 88.81 27.41 73.08 95.33 7.53 2436 9.44  82.02
ISC 70.28 83.73 4832 | 73.57 89.36 27.35 | 72.67 95.09 7.35 4321 1326 66.07
GE 36.75 44.44 6897 49.19 58.86 438.13 6.15 51.88 50.13 31.74 11.28 98.51
GAP 65.80 75.59 49.94 48.69 57.96 40.84 | 42.89 77.82 244 4418 1340 80.40
SDCN 28.50 34.03 74.79 38.28 5391 51.39 1496 6293 28.48 20.77 8.44  95.833
MCP 50.57 6332 58.16 64.66 8290 29.80 58.15 86.56 1626 | 0.00 443 98.77
DMoN 66.29 7247 53.97 63.64 81.20 28.00 71.16 9491 7.47 41.73 1291 79.74
DGC 66.75 7532 51.92 70.53  79.74 33.18 7121 9491 742 21.63 774  91.04
ASCENT 7120 84.41 48.28 74.06 89.62 27.34 7348 9534 7.31 4328 13.59 64.88
Improvement +1.31% +0.81% +0.08% +0.67% +0.29% +0.04% +0.55% +0.01% +0.41% - +0.52% +1.80%

et al., [2020), (x) DMoN (Tsitsulin et al., 2023), and (xi) DGCluster (Bhowmick et al., [2024) are
deep graph clustering approaches.

RSC, SCORE+, and ISC are DCSC baselines as summarized in Table[I] Note that we consider graph
clustering without attributes in this study, while GAP, SDCN, MinCutPool, DMoN, and DGCluster
are GNN-based methods originally designed for attributed graphs. We tried several widely-used
strategies of (i) SVD on the adjacency matrix and (ii) one-hot encoding of node degrees to derive
feature inputs for GAP, MinCutPool, DMoN, and DGCluster, with the best quality metrics reported.
Moreover, we directly used the adjacency matrix as input of the auto-encoder in SDCN.

Evaluation Metrics. For datasets with ground-truth, we used normalized mutual information
(NMI) and accuracy (AC) as quality metrics. We also adopted the conductance achieved by each
method as an unsupervised metric for all the datasets. For datasets without ground-truth, we set
K € {2,8,32} and recorded the corresponding conductance values. Usually, smaller conductance
as well as larger NMI and AC indicate better clustering quality. We tuned hyper-parameters of all
the methods based on the unsupervised conductance metric. Due to space limit, we detail other
experiment setups (e.g., experiment environment and parameter settings) in Appendix

5.2 PARAMETER ANALYSIS

We first tested the effect of L for ASCENT. Example analysis results on Caltech are visualized
in Fig. [3] where we adjusted L € {0,1,---,10}. When L = 0, ASCENT suffers from poor
clustering quality, which can be significantly improved as L increases. It validates the effectiveness
of the iterative aggregation in ASCENT. With the increase of L, the clustering quality of ASCENT
gradually converges due to over-smoothing, which is consistent with our case study in Fig. [2| In
particular, ASCENT achieves the best clustering quality with a small L (i.e., L = 3) before it reduces
to conventional DCSC methods with a constant correction 7. ASCENT also achieves the best quality
with a small L in the following evaluation. We leave further analysis of 6 in Appendix [I}

5.3 SYNTHETIC GRAPH ANALYSIS

For each setting of a synthetic benchmark, we independently generated 100 graphs and recorded
the mean as well as standard derivation of all the quality metrics over these graphs. The average
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Table 8: Evaluation results on datasets without ground-truth in terms of conductance (%)

Airport Wiki BlogCatalog ogbn-Protein

K=2 8 32 K=2 8 32 K=2 8 32 K=2 8 32
NJW 1.67 10.16 19.48 | 40.16 7432 8532 | 2935 67.83 8279 | 634 11.92 41.36
SCORE 10.95 7498 85.82 | 40.29 8273 92.08 29.65 77.84 93.67 2238 44.69 8242
RSC 6.09 2344 37.11 37775 73.06 8532 | 29.24 66.56 81.74 12.03 15.87 36.63
SCORE+ 5.19 5248 7147 39.06 75.69 86.87 29.33 69.95 86.19 7.09 2192 6433
ISC 424 2170 35.04 3791 7331 8578 | 2926 65.02 8143 | 6.93 14.88 34.64
GE 48.14 84.27 9258 52.08 89.02 9723 | 49.59 87.49 96.78 OOM
GAP 32.00 87.50 96.88 44.66 87.50 96.88 | 41.81 87.50 96.88 ooT
SDCN 17.83 86.06 92.73 50.00 87.30 96.41 49.87 85.44 95.80 OOM
MCP 8.80 23.80 54.33 50.00 87.50 96.88 34.15 86.97 96.82 OOM
DMoN 6.44 2040 51.00 37.09 77.25 91.59 | 4289 7595 90.28 OOM
DGC 575 13.54 69.80 37.45 83.53 9596 | 29.89 77.73 94.34 OOM
ASCENT 1.67 997 1885 | 3743 72.00 84.77 | 29.23 6422 80.68 | 347 11.06 33.20
Improvement - +1.87% +3.23% +0.85% +1.45% +0.64% +0.10% +1.23% +0.92% +45.27% +7.21% +4.16%

evaluation results on LFR-1, LFR-2, SBM-1, and SBM-2 are depicted in Tables [5| and E] (see the
corresponding standard derivations in Appendix|[I), where a metric is in bold or underlined if it per-
forms the best or second-best. In most cases, spectral clustering methods have significantly better
quality than deep clustering baselines. It indicates that some GNN-based approaches, with standard
strategies to extract auxiliary feature inputs from topology, may fail to handle the high degree het-
erogeneity and weak clustering structures, although some of them are claimed to be effective in the
clustering on attributed graphs. Moreover, DCSC methods (i.e., SCORE+, ISC, and ASCENT) are
always in groups with the best quality, which validates the robustness of DCSC over vanilla spectral
clustering. In particular, ASCENT performs the best in most cases. In summary, ASCENT, which
serves as a simple yet effective extension of DCSC, is more powerful in handling the high degree
heterogeneity and weak clustering structures of graphs.

5.4 REAL GRAPH EVALUATION

On each real dataset, we repeated the evaluation procedure over 5 random seeds and recorded the
mean as well as standard derivation of each metric. The average evaluation results on real datasets
are reported in Tables [7] and [§] (see corresponding standard derivations in Appendix [[), where a
metric is in bold or underlined if it performs the best or second-best; OOM denotes the out-of-
memory exception. We define that a method encounters the out-of-time (OOT) exception if it cannot
derive a feasible result within 10* seconds. Consistent with our synthetic graph analysis, spectral
clustering methods significantly outperform deep clustering baselines in most cases. In particular,
some deep clustering approaches encounter OOM or OOT exceptions on large-scale graphs (e.g.,
ogbn-Protein), due to the reconstruction of an N X N matrix (e.g., normalized adjacency matrices
in GraphEncoder) or time/space-consuming training procedures. In contrast, spectral clustering
methods can derive feasible clustering results on all the datasets. In most cases, ASCENT performs
the best and can achieve much better quality than other DCSC baselines (i.e., RSC, SCORE+, and
ISC). It further validates the effectiveness of ASCENT as an extension of DCSC.

6 CONCLUSION

In this paper, we provided an alternative analysis of DCSC from a pure spectral view. Different from
most existing studies on DCSC that gave theoretical results associated with random graph models
(e.g., DCSBM), our analysis gives bounds for the mis-clustered volume and conductance w.r.t. the
optimal solution to conductance minimization objective without using random graph models. In
contrast to early studies on vanilla spectral clustering, the presented analysis also includes quantities
that indicate impacts of (i) degree heterogeneity and (ii) weakness of clustering structures to the clus-
tering quality of DCSC. Inspired by recent advances in GNNs and the associated over-smoothing
issue, we proposed ASCENT, a simple yet effective extension of DCSC. It follows a novel node-
wise correction scheme that assigns nodes {v;} with different correction terms {7;} via the mean
aggregation of GNNs. We further demonstrated that ASCENT reduces to conventional DCSC meth-
ods when encountering the over-smoothing issue. Experiments also validated that some early stages
before over-smoothing can potentially obtain better clustering quality for ASCENT. Due to space
limit, we discuss limitations and possible future directions of this study in Appendix [J|

10
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Algorithm 1: Proposed ASCENT Algorithm

Input: graph G = (V, E)), number of clusters K, hyper-parameters {6, L}
Output: a feasible clustering result (C1, - -+ ,Ck)
for each node v; € V do

L Ti(o) < d; //Initialize node-wise corrections
for [ from 1 to L do
L 7O DALY //Tteratively update node-wise corrections

7 + 07 //Final node-wise corrections
L.« (D+ diag(‘r))fl/QA(D + diag(r))*l/2
Find the leading (K + 1) eigenvalues (A1, -+ , Ax+1) and eigenvectors (u1, -+ ,ux41) of L~
F « [)\1111, o ,)\K+1UK+1}
for each node v; € V do
L Fi. < Fi./|Fi.|2

apply K Means to rows of Fto get the clustering result (C1,- -+ ,Ck)

Yilin Zhang and Karl Rohe. Understanding regularized spectral clustering via graph conductance.
Advances in Neural Information Processing Systems, 31, 2018.

David Zhuzhunashvili and Andrew Knyazev. Preconditioned spectral clustering for stochastic block
partition streaming graph challenge (preliminary version at arxiv.). In Proceedings of the 2017
IEEE High Performance Extreme Computing Conference (HPEC), pp. 1-6. IEEE, 2017.

A  RELATED WORK OF DEEP GRAPH CLUSTERING METHODS

In recent years, several deep graph clustering methods have been proposed based on different model
architectures and training objectives as reviewed in (Yue et al.,|2022; Su et al.} 2022).

GraphEncoder (Tian et all 2014) and DNR (Yang et al., [2016) are early studies that learn low-
dimensional community-preserving representations (a.k.a. embeddings) by reconstructing topology-
related features (e.g., normalized adjacency matrices and modularity matrices) via a deep auto-
encoder. A downstream clustering algorithm (e.g., K’ Means) is then applied to the learned em-
bedding to derive a feasible clustering result. SDCN (Bo et al., [2020) further combines deep auto-
encoder with GNN and uses a dual self-supervised mechanism to unify these two deep architectures.
Moreover, GAP (Nazi et al., [2019), ClusterNet (Wilder et al., [2019), MinCutPool (Bianchi et al.,
2020), and DMoN (Tsitsulin et al., [2023)) adopt a deep end-to-end structure, which contains a GNN
and an output module (e.g., a multi-layer perceptron for the derivation of clustering results), to fit
some classic graph clustering objectives (e.g., normalized cut minimization (Von Luxburg} 2007)
and modularity maximization (Newman, |2006)). DGCluster (Bhowmick et al.,|2024) also uses the
modularity maximization objective to optimize GNN, which outputs community-preserving embed-
ding but derives final clustering results using BIRCH (Zhang et al., [1996)).

Most of the aforementioned methods, especially those based on GNNs, were originally designed
for attributed graphs. We argue that most of them do not consider the complicated correlations
between graph topology and attributes as discussed in Section [2] Our empirical experiments (see
Section[3) also demonstrated that when attributes are unavailable, these deep graph clustering (with
standard strategies to extract auxiliary feature inputs from topology) cannot effectively handle the
(1) high degree heterogeneity and (ii) weak clustering structures of graphs. Different from spectral
clustering methods, most existing studies about deep graph clustering also lack interpretability and
theoretical guarantees.

B PROOF OF THEOREM 3]

Recall that we have F := [A\uy, -+, Axt1uk41] as the rearranged spectral embedding of ISC;
G e RV*X encodes membership of the optimal partition (51, - - - , Sk ), where Gy, = \/d; /(S
ifv; € 5‘,. and G, = 0 otherwise. For simplicity, we let U := [uy, - -+ , ux 1] be the arrangement
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of eigenvectors without reweighting and F = UA, where A := diag(A1, -+, Ax+1) is a diagonal
matrix w.r.t the leading (K + 1) eigenvalues.

For each r € {1,---, K}, it is obvious that |G. |2 = 1. In particular, one can derive G., via the
linear combination of eigenvectors {uy,--- ,uy} w.r.t. eigenvalues {\1,--- , Ay} of regularized

graph Laplacian L, of ISC. Namely, we have G. , = Zf\;l hi-Asu; with {h;,.} as corresponding

weights for the linear combination. We further let @, := Zf:{l hi-Aiu;. Then, we have the
following derivation:

N
GG,
Gl Iy -L,)G., =) G2 -2 _ Sy
kG =2 2 JiEeJjiTe

(viyv; )EE
2 2
B Z ( 1 Gi) — 2G; Gy, 1 G |
= ir jr
(010 € E Vd; Vdi + 74/d; +T \/dj

= > L . > 2 (1- v did; )

(v1,0;)EE (8, V\Gy) #(Sr) (vi,0;)EE(Sy) w(Sr) Vdi+Ty/dj+7
E(S,,V\S,)|  2|E(S, dinin
B NS)] | 2AES)] )
M(S'r) (S ) drnax + 7
& ST —|E ST,V Sr dmin
IS ICAR AT :
/J,(ST) dmax + T
& dmin
=1—-(1- _—
( d)(Sr))dmax + T
Note that we also have
N
Gl (Iy - L,) thr)\ w) (Iy = L)Y hirdiwy)
=1

N
= on - zhm

z I

=D hIA(1-\)
1
N

i=K+2

7

> (1 — Ag42) Z h2 A2,
i=K-+2

By combining the aforementioned two inequalities, one can have

1 A i
a, — G..||2 = E BRX< —— [1—(1-¢(S,))—=22
||u H2 i e — 1_/\K+2[ ( d)( ))dmax'f'T]’

foreach S, (r € {1,--- ,K}). Let F := [y, - - - , {ig]. For the whole graph G, we have

K
. K _ d.
F_qgl2 = i, -G, |2<——[1-(1- — ] = K¥ge. (13
B = Glff = D11 Gl < gy — 1= (1= dx(G)) ] = Kise. (13)

This inequality can be rewritten as
IF — G| = [[UAH - G|[3 < K¥gc, (14)

where H € RUSHD*K jg a matrix rearranging weights {h;,.} in the linear combination.
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Claim. LetZ = F - G = [Z1,--- ,znN]. Then, ZT7 =1, — HTATAH.
Proof. First, we have
zlz, = (4, - G.,) (&, — G.,) =0} 4, — 0] G., — G0, + G .G,

Consider each term in (T5). We further have

K+1 K+1 K+1
AT A 2
11 us = Z hrt/\tut (Z hst)\tut) = Z hrthst)\t;
t=1 t=1
K+1 N K+1

0/ G. o = (O hehiu) " O hadw)” =D hetha A
t=1 t=1 t=1
K+1 K+1

N
= (Z hrt)\tut)T(Z h,st)\tUt)T = Z hrthst)\?;
t=1 t=1 t=1

T ] 0,r=s
GHTG”S - { 1,r#s

Therefore, one can rewrite (15)) as
K+1
erZs = { - =it hrihsi Ay, 7 =5 )
- t=1 hrthst)‘gv r 7é S
which corresponds to the following matrix form:
277 =1x —H"ATAH.
This completes the proof of Claim.

15)

Consider the singular value decomposition of H € RK+DxK denoted as H = XXY7, where
X € REHDX(E+D) and Y € RE*K are orthogonal matrices; X is a (K + 1) x K matrix, with

only the (4, 7)-th entries as non-zero values {c;}. One can rewrite as
KWisc > ||F - Gl[f. = 12| > ||Z"Z]|r
= |Ix —HTA’H||p
= |Ix - YEXTA’XZY"||p
= |[Y(Ix — EXTA2XD)Y T |5
= |1k — EXTA’XZ||p.
Note that (AXX);; = X\;0,X;;, which can lead to

(EXTA2X2)U _ { )\Zgza 7 :j

0, i#J
We further have
K
KWisc > ||[Ix — EXTA’XS||p = Z —X262)2)1/2
r=1
K K
>D (=X =D 21/2
r=1 r=1
= [ Ik+1yxx — Zl|F,
where Lix 1)« x = Mr,0xx1]7. Let O := XI(K+1)><KYT, which is an orthogonal matrix. One

can derive the following inequalities:
IFO - Gl|r = [[UAO — G|
= ||[UAO-F +F —G||p
< [[UAO — F[|; + [F - G|
— |U(AO — AH)|[; +|[F - G|
< ||AO — AH|| + [ - GlIr
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For the first term, one can derive the following inequality:
IAO — AH||p = [[AX(X(x41)xx = Z)Y T ||r

= [[AI(x+1)xx = B)llF
= \/)\12(1 —(71)2 +"‘+)\K2(1 — 0'[{)2
< VM =00 4+ (1= k)]
gAnﬂ1—gg%1+ag?+~441—aKfu+aKf
= A=)+ (1 a3’
= MJ|T— 2| = AT - HTH| |
< M|I-H'AH||p = M| Z7Z)| 7
= M[|(F - G)"(F - G)llr < MK Vise.

By combining (T3), we finally have

IFO — G||r < ||[AO — AH|[p +[|F — G||r < MKV + /K V5.
If KVigsc < 1, then

||FO — G”F < (1 + /\1)\/ K.
This completes the proof of Theorem

C PROOF OF LEMMA [

Since o, and o; (Vr # t) are orthogonal, we have
lo, — 0t|§ = (o, — Ot)T(Or —o0y) = |0T|§ + |0r|§ - 0?07' - O?Ot =2.

According to Lemma 1 in 2021)), one can have

a < 2la —bls,
2

for vectors a, b € RE*!. By , , and Theorem we have the following derivation:

K
9(~§17"’ ,SK;OL"' ,OK) :Z Z d; ﬁv — Oy
T':luieé'r
K

F'L,:
Z Z d; IF..| —Or

r=1y,e8,

a2

2

2

2

2

Fi.\/p(S,)/d;

i D dif|———— o

r=1y,e8, |F7?-,: /l(sr)/di‘
K — 2
1(Sr)

S 42 Z di Fi,: Tl — Op

r=1 Uieg'r 9

K ) 2
=4> > wS)|[Fi AN

r=1 Di€§7~ por 2

K 7 2
S 42 Z Nmax Fi,: ﬁor

r=1 1)7‘,63 plor 2

This completes the proof of Lemma 4]
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D PROOF OF THEOREM 8]

One can prove Theorem [8]by contradiction. We first choose a real number
e =33(1+ \)?apK¥sc < 1/4,

where [i := fimax/tmin- For every permutation 7 : {1,--- , K} — {1,---, K}, assume that there

is an index [ s.t. u(C’ZAS}(l)) > 2¢ - pu(Sr(1)) for a real number € (i.e., the assumption of Lemma@
and Theorem[7). For the lower bound given by Theorem[7, we have

1
COST(Ch o 7CK) > 16 * Mmin — 4(1 + )\1)2CVK,U/max\IJISC

33
Z Z(l + Al)QaKﬂmax\I/ISC - 4(1 + Al)QaKMmax\IJISCh
> 4<1 + )\l)gaKMmax\I/ISC

which contracts to the upper bound given by Theorem It indicates that the assumption
w(C1ASzqy) > 2€ - u(Srqy) is false. Namely, after a suitable renumbering of (Cy,---, Ck),
we can derive

w(CrAS,) < 2e- u(S,) = [66(1 + A1) 2ainK Uigc]u(S,),
forr € {1,---, K}. Note that for any sets A, B C V, we have
|E(A, VANA)| < |[E(B,VA\B)| + u(AAB).

For 11(C).), we further have

w(Cr) > p(CrN Sy) = U(Sr) = u(S\Cr) > pu(Sy) — U(CTAS’I') > (1 —2€)p(Sr).
For ¢)(C), we have

[E(C, VAC _ [E(Co, V\C)

PO S G 20uB)
B8, V\C)| +2eu(S,) 1, 2
=T acae@) 1T

< (144€)¢(S,) + 4e = [1+ 132(1 4 A1) 20K Wrsc]d(S,) + 132(1 + A1) 20K Uisce.
This completes the proof of Theorem [§]

E PROOF OF PROPOSITION

Similar to the derivation of the first inequality in Appendix [B] (i.e., the proof of Theorem [3), we
have the following derivations for ASCENT:

N
G G;
GTT(IN_LT)G,T:ZG’ZQT_2 Z eI )
1 2 2G;,.G; 1 2
- (=) = e e 4+ [(—=Gyy) |
2\ VI TVt g

(viyv;)EE
1 2 d;d;
= — + —(1-—
Z w(Sy) Z u(Sy) Vdi + Ti\/dj + T

(vi,0;)EE(S,,V\5,) (vi,vi)EE(Sy)

).
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Let 7 := max{7;|v; € Sr}, i.e., the maximum corrections among nodes in cluster 5}. Then, we
have the following derivations:

GL(Iy —L,)G., < 3 L 3 2 _ Jad |

(vi,0;)EE(Sr,V\Sy) M(ST) (vi,v;)EE(S) (S ) di +7r v dj+ 7
- |E(S,, V\S,)| 2\E(§ )I( imin )
- N(Sr) (S ) dmax + 7A-r
ey, #E) — 1B VAS)] L du
=05+ w(S,) (1 dmax4-%r)
R & dmin
= ¢(Sr) + (1 —&(S))(1 — m)

A dmin
=1-(1- ¢(Sr))ﬁ-

Following the same definitions of {hir} {@,}, and F in Appendix we further have

A dmin
o, — G, |3 = @ﬁ_———ﬂ%ﬂ—dw%——fL
2 i ;2 1- >\K+2 dmax + 7,
for each cluster S,.. For the whole graph, we have
K
|[F — GH% = Z [, — G:,r”%
r=1
K
K 1 dmin dmin &
< - — - —¢(5r))
1-— )\K+2 1-— AK-‘,—2 r—1 dmax + Tr dmax + Tr
K A
1 1 dmin 1- T
K . 3 dain(1 = 6(5,)
1 _)\K+2 K<1 _)\K+2) —1 dmax+Tr
= KW¥agT.

By following the same strategy of the proof of Theorems[3] 5] [7] and[8] we can complete the proof
of Proposition 9}

F FURTHER ANALYSIS OF DCSC

Our analysis of ISC (cf. Section[3)) can be easily reduced to other DCSC algorithms. As a demon-
stration, we summarize the corresponding theoretical results for NJW, RSC, SCORE+, ISC, and
ASCENT in Table[9] For simplicity, we use the subscripts (or superscripts) of ‘NJW”, ‘RSC”, ‘SC+’,
‘ISC’, and ‘AST’ to denote corresponding variables of NJW, RSC, SCORE+, ISC, and ASCENT,
respectively. Based on Table[9] we try to answer the following questions.

* Q1: Why can ISC potentially outperform RSC?

* Q2: When can a DCSC algorithm (e.g., RSC) potentially outperform vanilla spectral clus-
tering (i.e., NJW)?

* Q3: When can ASCENT potentially outperform ISC?

F.1 Q1: WHY CAN ISC POTENTIALLY OUTPERFORM RSC?

Suppose RSC and ISC have almost the same approximation ratio « of K Means. Usually, o may
be related to the dimensionality m of input data (i.e., m = K and m = (K + 1) for RSC and
ISC as summarized in Table , depending on the concrete K’ Means algorithm (e.g., & = O(log K)
for KMeans++ (Arthur & Vassilvitskii, [2007)). Moreover, suppose RSC and ISC use the same
correction term 7. Then, we have

RSC 1SC ISC
ARF1 = Ak11 = Aikt2 = Yrse > Yisc.
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Table 9: Further theoretical results of DCSC.

NJW Ungw = (1= A¥Y) " 6x(Q)

. RSC Wpso = (1 - AB9) ™" [1 —d(1— qSK(G))]
SCORE+ | Wsoy = (1—A3H)~" [ —d(1— &K(G))}
ISC Wise = (1—AEG,) ! [1 —d(1— J)K(G))]
ASCENT | Wagr := (1—A355) ™ [1 —(d— @K(G))}
NJW Unsw < 1/(60001K)
RSC Ursc < 1/(528aiK)

Assumptions | SCORE+ | Wsc; < 1/[132(1 4+ A\ )ajiK]
ISC Uisc < 1/[132(1 + AP9)%aiK]
ASCENT | Wast < 1/[132(1 + A1) afK]
NJW [SOOQﬂK\PNJw]M(ST)

. RSC (2640 K Wrsc]pu(Sy)

w(CrAS,) < ["SCORE+ | [66(1+ ASCT ) 2ok sy |u(Sy)
ISC [66(1 + A°°) 2 i K Wisc]u(Sr)
ASCENT | [66(1 + AT 2aiK W ast|p(S,)
NJW [1 + GOOOtﬁK\I’NJw](b(ST) + 300&[LK\I/NJW
RSC [1 4 528ajiK Ursc|d(S,) + 528K Ursc

¢(Cr) < SCORE+ | [1+ 132(1 + XN i K Uscy o(Sr) + 132(1 + A5CT)afiK Uscy
ISC [1+132(1 + NP2 0K Uisc]o(S,) + 132(1 + AP) i K Wrsc
ASCENT | [1+ 132(1 + M2 0K U ast]p(Sr) + 132(1 + A1) iKW ast

Note that IS¢ < 1. For the upper bond of mis-clustered volume H(C’TAS',.), we further have
66(1 + A\O) 2K Uisepu(S,) < 264afiK Urscp(S,),

which indicates that ISC has a tighter upper bound for u(CTAST) than that of RSC. One can also
reach the same conclusion for conductance ¢(C'.). Therefore, ISC can potentially achieve better

clustering quality (measured by M(C’TAST) or ¢(C,.)) than RSC.

F.2 Q2: WHEN CAN A DCSC ALGORITHM POTENTIALLY OUTPERFORM VANILLA SPECTRAL
CLUSTERING?

We first compare the upper bound of ,u(CTAS',«) for NJW and RSC, which is equivalent to comparing
values of 300¥y w and 264VRrsc. When RSC outperforms NJW, RSC is more likely to have a

tighter upper bound of u(CTAST), which indicates that 300U N w > 264Ugsc = (300¥ N w —
264¥Rrsc) > 0. For simplicity, let d := dpin/(dmax + 7). We further have

300 - 264 264d 264d -
300U N w — 264V Rsc = ——7w 0K (G) — + - ¢ (G) >0,
T3 TS TS TR
300 264d - 264 -
= ( - VoK (G) > ——(1—d),
TN TN TN

SR £t
K+1

75 1-ANES dmatT dinin
66 1— A dmax — dmin + 7 dmax — dmin + T

—dl$x(G) = (1 - d),

> ¢ (G).

Let ¢ := (1 — AR59)/(1 = ARW). Usually, we have ASE < AW and thus ¢ > 1. Assume RSC
adopts its default setting of 7 (i.e., 7 = d). One can rewrite the aforementioned inequality as
1.14¢(dmax + 7) — dmin _ 1.14qdmax — dinin + 1.14qd
dmax - dmin +7 B dmax - dmin + (Z

> ¢ (G).
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To ensure that the aforementioned inequality holds, one may first ensure that the right part (;_5;(1 (G)
is small enough (i.e., ¢ (G) is large). It implies that the graph G is not so well-clustered, in contrast
to the well-clustered condition (Ng et all 2001} Mizutanil 202T) interpreted in Section[3} Moreover,
one may also ensure that the left part is large enough. With the increase of degree heterogeneity, the
value of numerator increases faster than that of denominator. Therefore, higher degree heterogeneity
results in a larger value of the left part. In summary, a graph G (i) has a high degree heterogeneity
and (ii) is not so well-clustered, RSC has a tighter upper bound of mis-clustered volume ,u(CTAS’T)
than that of NJW, indicating that RSC may potentially outperform NJW. One can also reach a similar
conclusion by comparing the upper bounds of conductance ¢(C,.), because the upper bound of

$(C,) is derived based on that of 1:(C-AS,).

F.3 Q3: WHEN CAN ASCENT POTENTIALLY OUTPERFORM ISC?

V\ihenﬁ%?% > N we have Urse = (1 - ARG,) 7! [1 - (d—dox(G))] > (1 - A\85) 71 -
(d—dor(Q))], with d := din/(dmax + 7). We further have
1 .- -

Uisc — WasT > m[(d d) + (dox (G) — o (G))]
K+2
S dmin dmin )
Ti- A;ﬁ% K 2 et 7~ G+ 77 ‘“S’“))}
KT dmin(T - 727) &
zl—Aﬁi Z:«mm+7wmu+ﬂ%1‘“&”]
- éi'Tﬁawm>
N uA/,ﬁEK | diax + 7 "

To ensure Wigc > Yagr = VYisc — Yagr > 0, which indicates that ASCENT can potentially
outperform ISC, one needs to ensure

Z%ﬁﬁ—wmm

Therefore, it is possible for ASCENT to satisfy the aforementioned conditions.

G COMPLEXITY ANALYSIS

Given a large-scale graph, we usually have K, L < N < |E|. Assume that the graph to be par-
titioned is sparse. For ASCENT, the time complexity of deriving node-wise corrections {7;} (i.e.,
lines 1-5 in Algorithm [I)) is no more than O(|E|L) = O(|E|) by fully utilizing the sparsity of a
graph and the sparse-dense matrix multiplication operation. ASCENT follows the same steps of (i)
ED, (ii) spectral embedding arrangement, (iii) embedding normalization, and (iv) K Means cluster-
ing with ISC, which have complexities of (i) O((N +|E|)K) = O(|E|) (using the efficient Lanczos
algorithm (Lehoucq et al., [1998) for ED), (ii) O(NK) = O(N), (iii) O(NK) = O(N), and (iv)
O(NK?t) = O(N) (with t < N as the number of iterations in & Means), respectively. In sum-
mary, the overall time complexity of ASCENT is about O(|E|). It has the same complexity with
most existing DCSC algorithms. Therefore, the additional step of deriving node-wise corrections
{7;} will not increase the complexity of ASCENT.

H DETAILED EXPERIMENT SETUP

Datasets. Caltech and Simmons (Red et al., 2011) are two graphs regarding
friendships of two online social networks. PolBlogs (Adamic & Glance},|2005)) is a graph constructed
based on the links between blogs with different political leaning. Airport (Chami et al, 2019) is a
graph describing the real-world airline routes as from OpenFlights.org. Wiki (Grover & Leskovec,
is a cooccurrence graph of words that appear in the first million bytes of the Wikipedia dump.
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Table 10: Recommended parameter settings of ASCENT.

LFR-1 LFR-2 SBM-1 SBM-2 | Caltech Si PolBlogs BioGrid | Airport Wiki BlogCatalog ogbn-Protein
0 1.0 1.0 0.01 0.01 0.1 0.2 0.05 0.1 0.01 0.1 0.1 0.1
L | 4 2 1 1 3 3 1 5 1 4 7 2

Table 11: Detailed evaluation results on LFR-1 in terms of NMIT.

n=0.1 0.3 0.5

NJW 0.8764 (0.0230)  0.5690 (0.1018) ~ 0.2491 (0.1397)
SCORE 0.7715 (0.1217)  0.5977 (0.1322)  0.3019 (0.0835)
RSC 0.8073 (0.0419)  0.5443 (0.0906)  0.3918 (0.0901)
SCORE+ 0.7899 (0.0598)  0.6019 (0.0802)  0.4366 (0.1048)
ISC 0.8801 (0.0278)  0.6527 (0.0827)  0.4416 (0.0947)
GE 0.6170 (0.1227)  0.3894 (0.0998)  0.2060 (0.0548)
GAP 0.0293 (0.1445)  0.0202 (0.1063)  0.0079 (0.0377)
SDCN 0.0166 (0.0628)  0.0037 (0.0067)  0.0156 (0.0207)
MCP 0.6334 (0.1967)  0.1166 (0.1849)  0.0056 (0.0200)
DMoN 0.8064 (0.0532)  0.5536(0.1224)  0.3029 (0.1115)
DGC 0.8847 (0.0275)  0.6779 (0.0775)  0.4512 (0.0844)
ASCENT 0.8938 (0.0270)  0.6883 (0.0735)  0.4642 (0.0954)
Improvement | +1.03% +1.53% +2.88%

BlogCatalog (Grover & Leskovec) 2016)) is extracted from social relationships provided by blogger
authors. BioGrid (Stark et al., 2006) and ogbn-Protein (Szklarczyk et al.,|2019) are two protein-
protein interaction graphs

During preprocessing, we followed (Qin & Gaol2010) to extract clustering ground-truth of BioGrid,
where the complex set CYC2008 (Pu et al., 2009) with 231 protein complexes was used as the
reference set. For the rest datasets, we directly used their original formats in our experiments.

Note that we could not use the ground-truth of Wiki and BlogCatalog, which describes overlapping
community structures, since we focus on disjoint graph clustering in this study. As highlighted in
Section [2, we assume that graph attributes are unavailable. The ground-truth of Airport describes
the structural role that each node plays in the graph topology (a.k.a. node identity), which may
preserve information contradicting with clustering structures (Qin & Yeung,2024;|Yan et al.l|2024),
so we could also not use its ground-truth for the evaluation of graph clustering. ogbn-Protein is
an attributed graph for the evaluation of node classification. Our evaluation only utilized the graph
topology of this dataset. In particular, we did not use the ground-truth of ogbn-Protein, because it
is unclear that such ground-truth is dominated by graph topology or attributes.

Experiment Environment. All the experiments were conducted on a server with one Intel Xeon
CPU (4214R @2.40GHz), one 24GB memory GPU, 512GB main memory, and Ubuntu Linux OS.
We implemented each spectral clustering method (i.e., NJW, SCORE, RSC, SCORE+, ISC, and
ASCENT) using Python, including the sparse ED supported by SciPy. Moreover, we adopted the
official open-source implementations of all the deep learning baselines (i.e., GraphEncoder, GAP,
SDCN, MinCutPool, DMoN, and DGCluster), which are based on PyTorch or TensorF1low and
thus were ran on the GPU.

Parameter Settings. The details parameter settings of {6, L} in ASCENT on all the datasets are
depicted in Table

Table 12: Detailed evaluation results on LFR-1 in terms of AC1.

n=0.1 0.3 0.5

NJW 0.9690 (0.0051)  0.7706 (0.0854)  0.2491 (0.1397)
SCORE 0.8690 (0.1403)  0.8017 (0.1122)  0.3019 (0.0835)
RSC 0.9498 (0.0109)  0.7865 (0.0700)  0.3918 (0.0901)
SCORE+ 0.9188 (0.0861)  0.8403 (0.0407)  0.4366 (0.1048)
ISC 0.9723 (0.0086)  0.8659 (0.0489)  0.4416 (0.0947)
GE 0.8173 (0.0895)  0.6069 (0.1156)  0.2060 (0.0548)
GAP 0.4130(0.1182)  0.3503 (0.1088)  0.0079 (0.0377)
SDCN 0.4064 (0.1046)  0.3374 (0.0712)  0.0156 (0.0207)
MCP 0.8418 (0.1359)  0.4272(0.1694)  0.0056 (0.0200)
DMoN 0.9341 (0.0370)  0.7608 (0.0839)  0.3029 (0.1115)
DGC 0.9715 (0.0078)  0.8582(0.0814)  0.4512 (0.0844)
ASCENT 0.9760 (0.0074)  0.8873 (0.0357)  0.4642 (0.0954)
Improvement | +0.38% +2.47% +2.88%
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Table 13: Detailed evaluation results on LFR-1 in terms of conductance.

n=0.1 0.3 0.5

NIW 0.1004 (0.0068)  0.3489 (0.0465)  0.5712 (0.0356)
SCORE 0.2168 (0.1307)  0.3964 (0.0982)  0.6610 (0.0953)
RSC 0.1011 (0.0076)  0.3217 (0.0192)  0.5282 (0.0160)
SCORE+ 0.1275 (0.0620)  0.3232(0.0369)  0.5394 (0.0344)
ISC 0.1000 (0.0098)  0.3179 (0.0145)  0.5231 (0.0144)
GE 0.7349 (0.0919)  0.7902 (0.0663)  0.8718 (0.0473)
GAP 0.6669 (0.1271)  0.7387 (0.1069)  0.8401 (0.0681)
SDCN 0.7092 (0.0822)  0.7678 (0.0722)  0.8665 (0.0503)
MCP 0.1960 (0.1491)  0.6546 (0.1746)  0.8420 (0.0626)
DMoN 0.1192 (0.0491)  0.3638 (0.0583)  0.5745 (0.0392)
DGC 0.1002 (0.0087)  0.3182(0.0127)  0.5266 (0.0260)
ASCENT 0.0995 (0.0082)  0.3174 (0.0161)  0.5201 (0.0212)
Improvement | +0.5% +0.16% +0.57%

Table 14: Detailed evaluation results on LFR-2 in terms of NMIt.

d=10 20 30

NJW 0.2627 (0.1517)  0.6658 (0.0955)  0.8147 (0.1124)
SCORE 0.3009 (0.0917)  0.6519 (0.1125)  0.8354 (0.0906)
RSC 0.3975(0.0933)  0.6186 (0.0981)  0.7663 (0.0867)
SCORE+ 0.4472 (0.1021)  0.7181 (0.1177)  0.8564 (0.0690)
ISC 0.4477 (0.0942)  0.7262 (0.0913)  0.8688 (0.0679)
GE 0.2137 (0.0588)  0.3889 (0.0887)  0.5424 (0.0856)
GAP 0.0023 (0.0115) ~ 0.0036 (0.0291)  0.0035 (0.0228)
SDCN 0.0161 (0.0194)  0.0088 (0.0157)  0.0125 (0.0233)
MCP 0.0029 (0.0173) ~ 0.0000 (0.0002)  0.0000 (0.0000)
DMoN 0.2970 (0.1166)  0.4943 (0.1230)  0.5668 (0.1371)
DGC 0.4467 (0.0918)  0.7233 (0.0886)  0.8592 (0.1173)
ASCENT 0.4645 (0.0943)  0.7753 (0.0845)  0.8981 (0.0593)
Improvement | +3.75% +6.76% +3.37%

Table 15: Detailed evaluation results on LFR-2 in terms of AC1.

d=10 20 30

NIW 0.4432 (0.1154)  0.7915 (0.0800)  0.9033 (0.0779)
SCORE 0.4774 (0.1070)  0.7727 (0.1119)  0.8917 (0.0881)
RSC 0.6122 (0.0474)  0.7719 (0.0751)  0.8741 (0.0669)
SCORE+ 0.6630 (0.0573)  0.8538 (0.0738)  0.9361 (0.0429)
ISC 0.6659 (0.0519)  0.8559 (0.0672)  0.9391 (0.0463)
GE 0.3621 (0.0635)  0.5409 (0.1017)  0.6811 (0.0947)
GAP 0.2368 (0.0396)  0.2527 (0.0329)  0.2598 (0.0341)
SDCN 0.2400 (0.0384)  0.2529 (0.0302)  0.2627 (0.0347)
MCP 0.2386 (0.0403)  0.2516 (0.0316)  0.2590 (0.0342)
DMoN 0.4606 (0.0565)  0.6152(0.0738)  0.6724 (0.1022)
DGC 0.6390 (0.0680)  0.8556 (0.0887)  0.8948 (0.1092)
ASCENT 0.6851 (0.0540)  0.8884 (0.0569)  0.9544 (0.0389)
Improvement | +2.88% +3.80% +1.63%

Table 16: Detailed evaluation results on LFR-2 in terms of conductance) .

d=10 20 30

NJW 0.5710 (0.0368)  0.5318 (0.0214)  0.5137 (0.0119)
SCORE 0.6648 (0.1052)  0.5722(0.0578)  0.5355 (0.0392)
RSC 0.5394 (0.0154)  0.5260 (0.0148)  0.5166 (0.0133)
SCORE+ 0.5349 (0.0283)  0.5222(0.0089)  0.5099 (0.0052)
ISC 0.5287 (0.0128)  0.5221 (0.0070)  0.5097 (0.0050)
GE 0.8759 (0.0476)  0.8613 (0.0416)  0.8422 (0.0339)
GAP 0.8502 (0.0592)  0.8305 (0.0502)  0.8185 (0.0450)
SDCN 0.8710 (0.0466)  0.8509 (0.0456)  0.8345 (0.0466)
MCP 0.8503 (0.0600)  0.8321 (0.0493)  0.8191 (0.0458)
DMoN 0.5916 (0.0374)  0.6048 (0.0379)  0.5951 (0.0450)
DGC 0.5306 (0.0356)  0.5169 (0.0263)  0.5212 (0.0297)
ASCENT 0.5172 (0.0147)  0.5114 (0.0089)  0.5057 (0.0064)
Improvement | +2.18% +1.06% +0.78%

Table 17: Detailed evaluation results on SBM-1 in terms of NMIT.

~v=0.5 0.6 0.7

NIW 0.7994 (0.0374)  0.9181 (0.0329)  0.9648 (0.0172)
SCORE 0.7203 (0.0567)  0.8558 (0.0571)  0.9104 (0.0514)
RSC 0.7689 (0.0455)  0.8976 (0.0417)  0.9447 (0.0328)
SCORE+ 0.8208 (0.0331)  0.9299 (0.0246)  0.9702 (0.0127)
ISC 0.8233 (0.0336)  0.9318 (0.0251)  0.9732 (0.0111)
GE 0.6679 (0.0672)  0.8612 (0.0431)  0.9342 (0.0311)
GAP 0.0127 (0.0342)  0.0165 (0.0410)  0.0176 (0.0455)
SDCN 0.2601 (0.0491)  0.3913 (0.0739)  0.4802 (0.0869)
MCP 0.0000 (0.0000)  0.1481 (0.0197)  0.9091 (0.0000)
DMoN 0.7625 (0.0420)  0.8496 (0.0310)  0.8884 (0.0344)
DGC 0.6802 (0.0536)  0.8019 (0.0546)  0.8721 (0.0490)
ASCENT 0.8252 (0.0318)  0.9341 (0.0228)  0.9738 (0.0109)
Improvement | +0.23% +0.24% +0.06%
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Table 18: Detailed evaluation results on SBM-1 in terms of ACt.

~v=0.5 0.6 0.7

NIW 0.8774 (0.0360)  0.9535(0.0312)  0.9816 (0.0143)
SCORE 0.7886 (0.0668)  0.8855 (0.0716)  0.9262 (0.0625)
RSC 0.8403 (0.0516)  0.9298 (0.0517)  0.9614 (0.0372)
SCORE+ 0.8918 (0.0315)  0.9610 (0.0229)  0.9853 (0.0076)
ISC 0.8962 (0.0318)  0.9618 (0.0255)  0.9866 (0.0084)
GE 0.7628 (0.0742)  0.9070 (0.0516)  0.9541 (0.0387)
GAP 0.1547 (0.0264)  0.1560 (0.0277)  0.1550 (0.0307)
SDCN 0.3509 (0.0632)  0.4731(0.0912)  0.5458 (0.0985)
MCP 0.0000 (0.0000)  0.1481 (0.0197)  0.9091 (0.0000)
DMoN 0.7933 (0.0596)  0.8507 (0.0457)  0.8752 (0.0591)
DGC 0.6792 (0.0674)  0.7614 (0.0715)  0.8150 (0.0670)
ASCENT 0.9008 (0.0258)  0.9651 (0.0200)  0.9868 (0.0089)
Improvement | +0.51% +0.34% +0.02%

Table 19: Detailed evaluation results on SBM-1 in terms of conductance).

v=0.5 0.6 0.7

NJW 0.7054 (0.0063)  0.6621 (0.0075)  0.6280 (0.0055)
SCORE 0.7160 (0.0086)  0.6711 (0.0108)  0.6373 (0.0118)
RSC 0.7097 (0.0073)  0.6652 (0.0086)  0.6318 (0.0085)
SCORE+ 0.7033 (0.0060)  0.6608 (0.0068)  0.6272 (0.0050)
ISC 0.7032 (0.0061)  0.6606 (0.0068)  0.6270 (0.0048)
GE 0.7470 (0.0209)  0.6780 (0.0161)  0.6377 (0.0145)
GAP 0.9072 (0.0049)  0.9066 (0.0061)  0.9066 (0.0065)
SDCN 0.8554 (0.0133) ~ 0.8120(0.0227)  0.7774 (0.0292)
MCP 0.0000 (0.0000)  0.1481 (0.0197)  0.9091 (0.0000)
DMoN 0.7214 (0.0087)  0.6893 (0.0115)  0.6599 (0.0160)
DGC 0.7791 (0.0198)  0.7344 (0.0244)  0.6957 (0.0271)
ASCENT 0.7027 (0.0058)  0.6602 (0.0065)  0.6268 (0.0047)
Improvement | +0.02% +0.06% +0.03%

Table 20: Detailed evaluation results on SBM-2 in terms of NMIT.

£=2.5 2.75 3

NIW 0.8020 (0.0384)  0.7616 (0.0361)  0.7334 (0.0370)
SCORE 0.7239 (0.0609)  0.6846 (0.0540)  0.6502 (0.0521)
RSC 0.7709 (0.0485)  0.7335(0.0425)  0.7038 (0.0404)
SCORE+ 0.8206 (0.0347)  0.7829 (0.0308)  0.7536 (0.0338)
ISC 0.8246 (0.0336)  0.7880 (0.0324)  0.7570 (0.0347)
GE 0.6768 (0.0587)  0.6261 (0.0523)  0.5720 (0.0632)
GAP 0.0137 (0.0380)  0.0118 (0.0311)  0.0110 (0.0303)
SDCN 0.2629 (0.0529)  0.2226 (0.0571)  0.1899 (0.0502)
MCP 0.0000 (0.0000)  0.0000 (0.0000)  0.0000 (0.0000)
DMoN 0.7594 (0.0375)  0.7342(0.0471)  0.6955 (0.0509)
DGC 0.6823 (0.0562)  0.6694 (0.0499)  0.6490 (0.0578)
ASCENT 0.8274 (0.0320)  0.7900 (0.0309)  0.7605 (0.0319)
Improvement | +0.34% +0.25% +0.34%

Table 21: Detaile

d evaluation results on SBM-2 in terms of ACT.

5 =2.5 2.75 3

NJW 0.8782 (0.0354)  0.8523(0.0351)  0.8336 (0.0376)
SCORE 0.7927 (0.0704)  0.7577 (0.0637)  0.7366 (0.0597)
RSC 0.8375 (0.0568)  0.8070 (0.0560)  0.7966 (0.0475)
SCORE+ 0.8910 (0.0326)  0.8661 (0.0279)  0.8454 (0.0340)
ISC 0.8954 (0.0315)  0.8705 (0.0319)  0.8521 (0.0334)
GE 0.7703 (0.0634)  0.7319 (0.0530)  0.6868 (0.0674)
GAP 0.1511(0.0307)  0.1529 (0.0271)  0.1507 (0.0261)
SDCN 0.3680 (0.0660)  0.3287 (0.0630)  0.2962 (0.0588)
MCP 0.1481 (0.0197)  0.1481 (0.0197)  0.1481 (0.0197)
DMoN 0.7917 (0.0511) ~ 0.7781 (0.0631) ~ 0.7498 (0.0658)
DGC 0.6930 (0.0666)  0.6842 (0.0630)  0.6789 (0.0676)
ASCENT 0.8987 (0.0295)  0.8751(0.0279)  0.8579 (0.0269)
Improvement | +0.37% +0.53% +0.68%

Table 22: Detailed evaluation results on SBM-2 in terms of conductance).

B =2.5 2.75 3

NIW 0.7059 (0.0069)  0.7059 (0.0065)  0.7056 (0.0060)
SCORE 0.7163 (0.0092)  0.7160 (0.0085)  0.7165 (0.0072)
RSC 0.7101 (0.0078)  0.7100 (0.0070)  0.7102 (0.0062)
SCORE+ 0.7039 (0.0065)  0.7042 (0.0064)  0.7035 (0.0059)
ISC 0.7038 (0.0066)  0.7039 (0.0065)  0.7035 (0.0060)
GE 0.7461 (0.0193)  0.7542 (0.0181)  0.7639 (0.0196)
GAP 0.9069 (0.0058)  0.9071 (0.0050)  0.9071 (0.0050)
SDCN 0.8540 (0.0153)  0.8632(0.0149)  0.8716 (0.0147)
MCP 0.9091 (0.0000)  0.9091 (0.0000)  0.9091 (0.0000)
DMoN 0.7221 (0.0078)  0.7186 (0.0086)  0.7175 (0.0072)
DGC 0.7759 (0.0207)  0.7761 (0.0174)  0.7745 (0.0195)
ASCENT 0.7032 (0.0064)  0.7033 (0.0064)  0.7029 (0.0056)
Improvement | +0.09% +0.09% +0.09%
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Table 23: Detailed evaluation results on Caltech and Simmons.

Caltech Simmons

NMIT ACT Cond] NMIT ACT Cond]
NIW 0.6213 (0.0032)  0.7539 (0.0043) _ 0.5076 (0.0007) | 0.6796 (0.0000)  0.7344 (0.0000)  0.3387 (0.0000)
SCORE 0.5639 (0.0035)  0.6905 (0.0028)  0.5012 (0.0004) | 0.5853 (0.0002)  0.7639 (0.0004)  0.2992 (0.0001)
RSC 0.5858 (0.0011)  0.7105 (0.0007)  0.4986 (0.0002) | 0.6152(0.0011)  0.7861 (0.0009)  0.2888 (0.0001)
SCORE+ 0.6914 (0.0063)  0.8285 (0.0047)  0.4844 (0.0017) | 0.7295 (0.0000)  0.8881 (0.0004)  0.2741 (0.0002)
ISC 0.7028 (0.0021)  0.8373 (0.0019)  0.4832(0.0002) | 0.7357(0.0000)  0.8936 (0.0000)  0.2735 (0.0000)
GE 03675 (0.0811)  0.4444 (0.0803)  0.6897 (0.0417) | 0.4919 (0.0337)  0.5886 (0.0876)  0.4813 (0.0570)
GAP 0.6580 (0.0366)  0.7559 (0.0699)  0.4994 (0.0124) | 0.4869 (0.2484)  0.5796 (0.1529)  0.4084 (0.1778)
SDCN 0.2850 (0.0746)  0.3403 (0.0610) ~ 0.7479 (0.0403 | 0.3828 (0.0856)  0.5391 (0.0767)  0.5139 (0.0870)
MCP 0.5057 (0.2537)  0.6332(0.2387)  0.5816 (0.1468) | 0.6466 (0.0231)  0.8290 (0.0100)  0.2980 (0.0035)
DMoN 0.6629 (0.0011)  0.7247 (0.0014)  0.5397 (0.0063) | 0.6364 (0.0035)  0.8120 (0.0064)  0.2800 (0.0003)
DGC 0.6675 (0.0159)  0.7532(0.0298)  0.5192(0.0263) | 0.7053 (0.0200)  0.7974 (0.0437)  0.3318 (0.0432)
ASCENT 0.7120 (0.0105)  0.8441 (0.0056) _ 0.4828 (0.0002) | 0.7406 (0.0000)  0.8962 (0.0000)  0.2734 (0.0000)
Improvement | +1.31% +0.81% +0.08% +0.67% +0.29% +0.04%

Table 24: Detailed evaluation results on PolBlogs and BioGrid.
PolBlogs BioGrid

NMIT ACT Cond] NMIT ACT Cond]
NIW 0.0006 (0.0000)  0.5188 (0.0000) _ 0.2694 (0.0000) | 0.4183 (0.0034)  0.1284 (0.0020)  0.6620 (0.0048)
SCORE 0.7250 (0.0000)  0.9525 (0.0000)  0.0767 (0.0000) | 0.1393 (0.0072)  0.0737 (0.0034)  0.9090 (0.0083)
RSC 0.7133 (0.0000)  0.9476 (0.0000)  0.0734 (0.0000) | 0.4364 (0.0012)  0.1352 (0.0010)  0.6607 (0.0038)
SCORE+ 0.7308 (0.0000)  0.9533 (0.0000)  0.0753 (0.0000) | 0.2436 (0.0099)  0.0944 (0.0034)  0.8202 (0.0053)
ISC 0.7267 (0.0000)  0.9509 (0.0000)  0.0735 (0.0000) | 0.4321(0.0016)  0.1326 (0.0021)  0.6607 (0.0036)
GE 0.0615 (0.0063)  0.5188 (0.0046)  0.5013 (0.0003) | 03174 (0.0027)  0.1128 (0.0041)  0.9851 (0.0014)
GAP 04289 (0.3502)  0.7782(0.2105)  0.2440 (0.2090) | 0.4418 (0.0058)  0.1340 (0.0029)  0.8040 (0.0169)
SDCN 0.1496 (0.0767)  0.6293 (0.0560)  0.2848 (0.1107) | 0.2077 (0.0225)  0.0844 (0.0052)  0.9583 (0.0044)
MCP 0.5815 (0.2908)  0.8656 (0.1726)  0.1626 (0.1687) | 0.0000 (0.0000)  0.0443 (0.0000)  0.9877 (0.0000)
DMoN 0.7116 (0.0053)  0.9491 (0.0013)  0.0747 (0.0001) | 0.4173 (0.0048)  0.1291 (0.0038)  0.7974 (0.0162)
DGC 07121 (0.0098)  0.9491 (0.0014)  0.0742 (0.0006) | 0.2163 (0.0229)  0.0774 (0.0066)  0.9104 (0.0023)
ASCENT 0.7348 (0.0000)  0.9534 (0.0000) _ 0.0731 (0.0000) | 0.4328 (0.0027)  0.1359 (0.0020)  0.6488 (0.0041)
Improvement | +0.55% +0.01% +0.41% - +0.52% +1.80%

Table 25: Detailed evaluation results on Airport and Wiki in terms of conductance.

Airport Wiki
K=2 [ 32 K=2 3 32

NIW 0.0167 (0.0000)  0.1016 (0.0057)  0.1948 (0.0103) | 0.4016 (0.0000)  0.7432 (0.0007)  0.8532 (0.0013)
SCORE 0.1095 (0.0000)  0.7498 (0.0233)  0.8582 (0.0056) | 0.4029 (0.0001)  0.8273 (0.0036)  0.9208 (0.0032)
RSC 0.0609 (0.0000)  0.2344 (0.0002)  0.3711 (0.0040) | 0.3775(0.0000)  0.7306 (0.0002)  0.8532 (0.0005)
SCORE+ 0.0519 (0.0008)  0.5248 (0.0173)  0.7147 (0.0179) | 0.3906 (0.0001)  0.7569 (0.0002)  0.8687 (0.0023)
ISC 0.0424 (0.0000)  0.2170 (0.0049)  0.3504 (0.0047) | 0.3791(0.0001)  0.7331 (0.0002)  0.8578 (0.0011)
GE 0.4814 (0.0272)  0.8427 (0.0179)  0.9258 (0.0169) | 0.5208 (0.0024)  0.8902 (0.0010)  0.9723 (0.0005)
GAP 0.3200 (0.2205)  0.8750 (0.0000)  0.9688 (0.0000) | 0.4466 (0.0655)  0.8750 (0.0000)  0.9688 (0.0000)
SDCN 0.1783 (0.0335)  0.8606 (0.0087)  0.9273 (0.0141) | 0.5000 (0.0000)  0.8730 (0.0050)  0.9641 (0.0012)
MCP 0.0880 (0.0365)  0.2380 (0.0179)  0.5433 (0.1725) | 0.5000 (0.0000)  0.8750 (0.0000)  0.9688 (0.0000)
DMoN 0.0644 (0.0105)  0.2040 (0.0123)  0.5100 (0.0200) | 0.3709 (0.0021)  0.7725 (0.0091)  0.9159 (0.0036)
DGC 0.0575 (0.0124)  0.1354 (0.0155)  0.6980 (0.0196) | 0.3745(0.0045)  0.8353 (0.0099)  0.9596 (0.0023)
ASCENT 0.0167 (0.0000)  0.0997 (0.0046)  0.1885 (0.0068) | 0.3743 (0.0001)  0.7200 (0.0002)  0.8477 (0.0014)
Improvement | — +1.87% +3.23% +0.85% +1.45% +0.64%

Table 26: Detailed evaluation results on BlogCatalog and ogbn-Protein in terms of conductance.

ogbn-Protein

BlogCatalog
8

K=2 32 K=2 3 KY)
NIW 0.2935 (0.0000) _ 0.6783 (0.0003) _ 0.8279 (0.0011) | 0.0634 (0.0000) _ 0.1192 (0.0009) _ 0.4136 (0.0032)
SCORE 0.2965 (0.0000)  0.7784 (0.0027)  0.9367 (0.0064) | 0.2238 (0.0001)  0.4469 (0.0224)  0.8242 (0.0049)
RSC 0.2924 (0.0000)  0.6656 (0.0028)  0.8174 (0.0018) | 0.1203 (0.0006)  0.1587 (0.0038)  0.3663 (0.0054)
SCORE+ 0.2933 (0.0000)  0.6995 (0.0003)  0.8619 (0.0025) | 0.0709 (0.0000)  0.2192 (0.0113)  0.6433 (0.0143)
ISC 0.2926 (0.0000)  0.6502 (0.0001)  0.8143 (0.0017) | 0.0693 (0.0000)  0.1488 (0.0001)  0.3464 (0.0071)
GE 0.4959 (0.0000) _ 0.8749 (0.0016) _ 0.9678 (0.0003) OOM

GAP 0.4181(0.1003)  0.8750 (0.0000)  0.9688 (0.0000) 00T

SDCN 0.4987 (0.0404)  0.8544 (0.0185)  0.9580 (0.0063) OOM

MCP 0.3415 (0.0793)  0.8697 (0.0063)  0.9682 (0.0011) 0OM

DMoN 0.4289 (0.0188)  0.7595 (0.0147)  0.9028 (0.0045) 0OM

DGC 0.2989 (0.0022)  0.7773 (0.0244)  0.9434 (0.0041) 0OM

ASCENT 0.2923 (0.0000) _ 0.6422 (0.0034) _ 0.8068 (0.0010) | 0.0347 (0.0000) _ 0.1106 (0.0050) __ 0.3320 (0.0043)
Improvement | +0.10% +1.23% +0.92% +45.27% +7.21% +4.16%
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Table 27: Evaluation of runtime/ (sec) on datasets with ground-truth.

Caltech Simmons PolBlogs BioGrid

Total T ED KM | Total 7 ED KM | Total 7 ED KM | Total 7 ED KM
NJW 0.13 N/A 0.10 0.03 023 N/A 021 0.03 0.17  N/A 0.14 0.03 1.00 N/A 0.84 0.16
SCORE 0.10 N/A 0.07 0.03 020 N/A 0.17 0.03 0.15 N/A 0.13 0.02 0.80 N/A 0.63 0.17
RSC 0.13  N/A 0.10 0.03 0.19 N/A 0.16 0.03 0.15 N/A 0.13 0.02 0.86 N/A 0.76 0.10
SCORE+ 0.13  N/A 0.11 0.02 031 N/A 0.28 0.03 0.16 N/A 0.13 0.02 0.74 N/A 0.64 0.10
ISC 0.17 N/A 0.14 0.03 0.23  N/A 020 0.03 0.21  N/A 0.19 0.02 093 N/A 082 0.11
GE 436 N/A N/A N/A 4.85 N/A N/A N/A 412 N/A N/A N/A 122.01 N/A N/A N/A
GAP 2192 N/A N/A N/A 32.85 N/A N/A N/A 429 N/A N/A N/A 648.30 N/A N/A N/A
SDCN 097 N/A N/A N/A 099 N/A N/A N/A 323 N/A N/A N/A 218.64 N/A N/A N/A
MCP 91.31 N/A N/A N/A 163.51 N/A N/A N/A 54.15 N/A N/A N/A 350.96 N/A N/A N/A
DMoN 101.79 N/A N/A N/A 174.15 N/A N/A N/A 257.95 N/A N/A N/A 579.64 N/A N/A N/A
DGC 81.26 N/A N/A N/A 131.59 N/A N/A N/A 164.26 N/A N/A N/A 559.25 N/A N/A N/A
ASCENT | 0.15 0.01 0.11 0.03 024 0.03 0.18 0.03 0.17  0.02 0.13 0.02 1.02 0.07 081 0.14

I DETAILED EXPERIMENT RESULTS

Quantitative Evaluation Results. On each dataset, we recorded the mean m and standard deriva-
tion s of each quality metric. Detailed evaluation results in the format of ‘m (s)’ are depicted in

Tables [TT} [12] T3] T4} [13} [T6} [T7} [18] [19] 20} 21} 221 23] 24] 23] and 26] where each quality metric is

in bold or underlined if it performs the best or second-best.

Further Parameter Analysis. Example analysis results of 6 on Caltech are visualized in Fig. ]
where we adjusted 6 € {0.01,0.05,0.1,0.2,--- ,1,2,5,10}. In summary, we recommend adjusting
Le{1,2,---,10} and 0 € {0.01,0.05,0.1,0.5,1.0} for ASCENT.,

Efficiency Analysis. In addition to the clustering quality, we further evaluated the efficiency of each
method in terms of its overall runtime (sec) to get a feasible clustering result. In particular, we also
recorded the runtime of different steps for each spectral clustering method. Results of the efficiency
analysis on all the real datasets are depicted in Tables 27} 28] 29] and 30 where (i) 7, (ii) ED, and
(iii) KM denote the runtime of (i) deriving node-wise corrections {7;} (only for ASCENT), (ii)
eigen-decomposition of the corresponding graph Laplacian, and (iii) A Means clustering (including
the arrangement and normalization of corresponding spectral embeddings), respectively.

Compared with deep graph clustering approaches (e.g., GE and GAP) which involve a time-
consuming learning procedure (e.g., gradient descent to iteratively update model parameters), all
the spectral clustering methods can achieve significantly better efficiency. Moreover, ED is the ma-
jor bottleneck for all the spectral clustering algorithms. For ASCENT, the derivation of node-wise
corrections {7;} would not significantly increase the overall runtime compared with other spectral
clustering baselines. In summary, ASCENT can still achieve high inference efficiency close to that
of other conventional spectral clustering methods.

J  LIMITATIONS AND FUTURE DIRECTIONS

Clustering on Attributed Graphs. As described in Section 2] we followed the conventional prob-
lem statement of graph clustering where topology is the only available information source (without
any attributes), due to the complicated corrections between graph topology and attributes. In our
future work, we will analyze DCSC on attributed graphs with the consideration of the possible in-
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Table 28: Evaluation of runtime] (sec) with K = 2 on datasets without ground-truth.

Airport Wiki BlogCatalog ogbn-Protein

Total 7 ED KM | Total T ED KM | Total 7 ED KM | Total 7 ED KM
NJW 023 N/A 020 0.03 0.88 N/A 0.84 0.04 1.63  N/A 1.61 0.03 201.94 N/A 201.77 0.17
SCORE 0.18 N/A 0.16 0.02 035 N/A 032 0.03 0.88 N/A 0.85 0.03 80.42 N/A 80.16 0.27
RSC 022 N/A 0.18 0.03 076 N/A 0.73 0.03 1.89  N/A 1.86 0.03 189.30 N/A 189.07 0.23
SCORE+ 021 N/A 0.18 0.03 0.78 N/A 0.74 0.03 192 N/A 1.89 0.03 182.00 N/A 181.79 0.21
ISC 021 N/A 0.19 0.02 0.60 N/A 0.57 0.03 1.86 N/A 1.82 0.04 172.51 N/A 17227 0.24
GE 840 N/A N/A N/A 1680 N/A N/A N/A 128.60 N/A N/A N/A OOM N/A N/A N/A
GAP 3874 N/A N/A N/A 116.62 N/A N/A N/A 241.89 N/A N/A N/A OOT N/A N/A N/A
SDCN 1633 N/A N/A N/A 321.51 N/A N/A N/A 133.26 N/A N/A N/A OOM N/A N/A N/A
MCP 12590 N/A N/A N/A 116.98 N/A N/A N/A 113.26 N/A N/A N/A OOM N/A N/A N/A
DMoN 105.39 N/A N/A N/A 790.42 N/A N/A N/A 682.02 N/A N/A N/A OOM N/A N/A N/A
DGC 60.47 N/A N/A N/A 63426 N/A N/A N/A 642.09 N/A N/A N/A OOM N/A N/A N/A

ASCENT | 026 0.02 021 0.02 0.76  0.10 0.62 0.04 236 036 1.93 0.07 242.29 41.41198.24 2.64

Table 29: Evaluation of runtime| (sec) with K = 8 on datasets without ground-truth.

Airport Wiki BlogCatalog ogbn-Protein

Total 7 ED KM Total T ED KM Total 7 ED KM Total 7 ED KM
NJW 029 N/A 027 0.02 082 N/A 0.78 0.03 1.85 N/A 1.81 0.04 200.58 N/A 200.50 0.08
SCORE 025 N/A 024 0.01 0.37 N/A 0.33 0.04 097 N/A 096 0.01 86.48 N/A 86.40 0.07
RSC 026 N/A 0.25 0.01 0.76 N/A 0.74 0.02 2.02 N/A 2.00 0.02 194.82 N/A 194.74 0.08
SCORE+ 026 N/A 025 0.01 0.77 N/A 0.75 0.02 1.82  N/A 1.80 0.02 188.81 N/A 188.74 0.07
ISC 028 N/A 0.27 0.01 0.61 N/A 0.59 0.02 1.88 N/A 1.86 0.02 202.37 N/A 202.25 0.12
GE 925 N/A N/A N/A 20.98 N/A N/A N/A 133.09 N/A N/A N/A OOM N/A N/A N/A
GAP 58.85 N/A N/A N/A 134.81 N/A N/A N/A 301.02 N/A N/A N/A OOT N/A N/A N/A
SDCN 13.46 N/A N/A N/A 333.90 N/A N/A N/A 139.26 N/A N/A N/A OOM N/A N/A N/A
MCP 125.84 N/A N/A N/A 112.09 N/A N/A N/A 11571 N/A N/A N/A OOM N/A N/A N/A
DMoN 105.27 N/A N/A N/A 792.56 N/A N/A N/A 625.64 N/A N/A N/A OOM N/A N/A N/A
DGC 59.54 N/A N/A N/A 63421 N/A N/A N/A 634.890 N/A N/A N/A OOM N/A N/A N/A

ASCENT | 030 0.02 0.27 0.01 093 0.16 0.73 0.04 249 043 2.04 0.02 240.83 45.56 195.18 0.09

consistency between the two sources (Newman & Clauset,[2016}[Qin et al., 2018} [Wang et al., 2020}
Qin & Let, 2021).

Learnable Node-wise Corrections {7;}. In ASCENT, we still manually set the node-wise correc-
tions {7;} by adjusting hyper-parameters {6, L}. We plan to extend it to a more advanced setting
with learnable node-wise corrections {7;} and provide theoretical analysis combined with recent
advances in GNNs

Better Efficiency and Scalability. As demonstrated in our efficiency analysis (cf. Appendix [I),
ED is the major bottleneck of ASCENT. We intend to further improve the efficiency and scalability
of this bottleneck using the advanced Locally Optimal Block Preconditioned Conjugate Gradient
(LOBPCG) solver (Knyazev, [Zhuzhunashvili & Knyazev, [2017) and consider its parallel im-
plementations (Yamada et al., 2022).

Other Graph Clustering Objectives. In this study, we only considered the conductance mini-
mization objective (or equivalently normalized cut minimization) as defined in Definition[I] Spec-
tral clustering can be considered as an approximated algorithm for a relaxed version of this objec-
tive. Some graph clustering algorithms may consider other objectives (e.g., ratio-cut minimization
and modularity maximization (Newman| 2006} [Yu & Ding}, 2010; [Qin et al.}
[2024)) that have relations close to conductance minimization. We also plan to further extend our
analysis to these objectives.

Improved Analysis with Looser Conditions. As discussed in Section [3] the condition in Theo-
rem [§]implies an assumption that (i) G is well-clustered and (ii) the degree heterogeneity is not so
high. It is possible for a given graph G that this condition may not hold. In our future work, we
intend to further improve this condition by extending some new theoretical results on the combinato-
rial optimization problem of graph-cut minimization (e.g., conductance minimization in this paper)
to DCSC.
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Table 30: Evaluation of runtime (sec) with K = 32 on datasets without ground-truth.

Airport Wiki BlogCatalog ogbn-Protein

Total 7 ED KM Total 7 ED KM Total T ED KM Total 7 ED KM
NJW 038 N/A 037 0.01 1.00  N/A 096 0.04 2.10  N/A 2.04 0.07 201.61 N/A 201.21 0.40
SCORE 0.31 N/A 030 0.01 042 N/A 0.39 0.03 1.18 N/A 1.15 0.03 98.87 N/A 98.61 0.26
RSC 0.34  N/A 033 0.01 0.82 N/A 0.79 0.03 231  N/A 220 0.11 189.30 N/A 189.07 0.23
SCORE+ 032 N/A 031 0.01 098 N/A 091 0.07 217 N/A 211 0.07 204.08 N/A 203.70 0.38
ISC 031 N/A 030 0.01 0.73  N/A 0.68 0.05 2.07 N/A 2.02 0.05 257.38 N/A 256.94 0.44
GE 1292 N/A N/A N/A 20.19 N/A N/A N/A 135.09 N/A N/A N/A OOM N/A N/A N/A
GAP 74.08 N/A N/A N/A 178.94 N/A N/A N/A 450.36 N/A N/A N/A OOT N/A N/A N/A
SDCN 1892 N/A N/A N/A 343.42 N/A N/A N/A 161.03 N/A N/A N/A OOM N/A N/A N/A
MCP 126.05 N/A N/A N/A 109.82 N/A N/A N/A 112.79 N/A N/A N/A OOM N/A N/A N/A
DMoN 105.31 N/A N/A N/A 798.33 N/A N/A N/A 763.28 N/A N/A N/A OOM N/A N/A N/A
DGC 60.29 N/A N/A N/A 633.89 N/A N/A N/A 638.75 N/A N/A N/A OOM N/A N/A N/A
ASCENT | 038 0.02 0.35 0.01 1.10  0.16 0.90 0.04 278 040 2.34 0.04 246.39 44.02 202.04 0.33
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