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ABSTRACT

Spectral clustering is a representative graph clustering technique with strong in-
terpretability and theoretical guarantees. Recently, degree-corrected spectral clus-
tering (DCSC) has emerged as the state-of-the-art for this technique. While prior
studies have provided several theoretical results for DCSC, their analysis relies
on some random graph models (e.g., stochastic block models). In this study, we
explore an alternative analysis of DCSC from a pure spectral view. It gives rig-
orous bounds for the mis-clustered volume and conductance w.r.t. the optimal
solution while involving quantities that indicate impacts of (i) high degree hetero-
geneity and (ii) weak clustering structures to DCSC. Inspired by recent advances
in graph neural networks (GNNs) and the associated over-smoothing issue, we
propose ASCENT (Adaptive Spectral ClustEring with Node-wise correcTion), a
simple yet effective extension of DCSC. Different from most DCSC methods with
a constant degree correction for all nodes, ASCENT follows a node-wise correc-
tion scheme. It can assign different corrections for nodes via the mean aggrega-
tion of GNNs. We further demonstrate that (i) ASCENT reduces to conventional
DCSC methods when encountering over-smoothing and (ii) some early stages be-
fore over-smoothing can potentially obtain better clustering quality.

1 INTRODUCTION

Graph clustering (a.k.a. disjoint community detection) is a classic inference task that partitions
nodes of a graph into densely connected groups (a.k.a. clusters or communities). Since the extracted
clusters have been validated to correspond to some substructures of real-world systems (e.g., func-
tional groups in protein interactions (Berahmand et al., 2021)), many network applications (e.g.,
protein complex detection (Qin & Gao, 2010), cellular network decomposition (Dai & Bai, 2017),
and Internet traffic profiling (Qin et al., 2019)) are formulated as graph clustering.

Spectral clustering is one of the representative techniques for this task. As summarized in Table 1, a
typical spectral clustering algorithm includes the (I) eigen-decomposition (ED) on graph Laplacian,
(II) arrangement of spectral embedding, (III) normalization of the arranged embedding, and (IV)
KMeans clustering. In Table 1, A and D are the adjacency matrix and corresponding degree diag-
onal matrix of a graph; K is a pre-set number of clusters; λr denotes the r-th largest eigenvalue of
graph Laplacian L (e.g., L := D−1/2AD−1/2 and L := A for NJW (Ng et al., 2001) and SCORE
(Jin, 2015)) with ur ∈ RN as the corresponding eigenvector. Different spectral clustering algo-
rithms usually differ in terms of the four steps. For instance, NJW, SCORE, and RSC (Qin & Rohe,
2013) only consider eigenvectors (u1, · · · ,uK) w.r.t. the leading K eigenvalues. Whereas, step
(II) of SCORE+ (Jin et al., 2021) and ISC (Qing & Wang, 2020a) involves (u1, · · · ,uK ,uK+1),
which are further reweighted by corresponding (K+1) eigenvalues (λ1, · · · , λK , λK+1). Moreover,
NJW, RSC, and ISC adopt the row-wise l2-normalization in step (III), while SCORE and SCORE+
use (reweighted) u1 to conduct column-wise normalization.

Recently, degree-corrected spectral clustering (DCSC), a.k.a. regularized spectral clustering in some
literature (Qin & Rohe, 2013; Zhang & Rohe, 2018), has emerged as a state-of-the-art class of
spectral clustering methods, due to their effectiveness in handling the high degree heterogeneity of
graphs. These approaches usually incorporate an additional degree correction term τ in their graph
Laplacian for ED (e.g., RSC, SCORE+, and ISC with different settings of τ in Table 1).
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Table 1: Summary of some spectral clustering algorithms, where Dτ := D + τIN ; τ is the degree
correction term in DCSC, with τ = d̄, δdmax, and δ(dmin + dmax)/2 for RSC, SCORE+, and ISC
(e.g., δ = 0.1); d̄, dmin, and dmax are the average, minimum, and maximum node degrees.

Step (I) Step (II) Step (III) Step (IV)
NJW ED on D−1/2AD−1/2 F := [u1, · · · ,uK ] i ∈ [1, N ], Fi,: ← Fi,:/|Fi,:|2

KMeans
on rows
of F

SCORE ED on A F := [u2, · · · ,uK ] r ∈ [1, K − 1], F:,r ← F:,r/u1

RSC
ED on D−1/2

τ AD−1/2
τ

F := [u1, · · · ,uK ] i ∈ [1, N ], Fi,: ← Fi,:/|Fi,:|2
SCORE+ F := [λ2u2, · · · , λK+1uK+1] r ∈ [1, K], F:,r ← F:,r/(λ1u1)
ISC F := [λ1u1, · · · , λK+1uK+1] i ∈ [1, N ], Fi,: ← Fi,:/|Fi,:|2

Table 2: Summary of representative theoretical analysis among DCSC, where most related studies
rely on the assumption of a random graph model and give bounds w.r.t. such a model.

Analysis Rand Model Theoretical Bounds Analysis Rand Model Theoretical Bounds
(Chaudhuri et al., 2012) EPP model EPP’s optimal separation (Qing & Wang, 2020a) DCSBM Hamming error w.r.t.

DCSBM’s gnd(Qin & Rohe, 2013) DCSBM Misclustered rate w.r.t.
DCSBM’s groundtruth

(Qing & Wang, 2020b) DCSBM
(Amini et al., 2013) DCSBM (Jin et al., 2021) DCSBM
(Zhang & Rohe, 2018) DCSBM Conductance Ours N/A Misclustered vol. &

conductance w.r.t.
optimal solution

Related Theoretical Analysis on DCSC. In the past few decades, a series of spectral clustering
methods have been proposed. Ding et al. (2024) provided a comprehensive overview of related
research. Table 2 summarizes some representative theoretical results regarding DCSC. We introduce
more related work about recent advances in deep graph clustering in Appendix A.

As in Table 2, Chaudhuri et al. (2012) proposed a DCSC method for graphs drawn from an extended
planted partition (EPP) model (Condon & Karp, 2001) and examined the performance guarantees.
Qin & Rohe (2013) analyzed the potential of RSC to handle the high degree heterogeneity of graphs
using the degree-corrected stochastic blockmodel (DCSBM) (Karrer & Newman, 2011) and pro-
vided guidance on the choice of τ . (Zhang & Rohe, 2018) theoretically studied the (i) failures of
spectral clustering and (ii) benefits of degree correction based on the relationship between graph
conductance and spectral clustering. Amini et al. (2013) introduced a fast pseudo-likelihood method
for fitting DCSBM with theoretical guarantees, where a DCSC algorithm with perturbations was
used for initialization. Qing & Wang (2020a) and Jin et al. (2021) proposed ISC and SCORE+,
which were further validated to be effective in handling the (i) high degree heterogeneity and (ii)
weak clustering structures (a.k.a. weak signals in (Qing & Wang, 2020b;a; Jin et al., 2021)) via the
theoretical analysis based on DCSBM.

In summary, most existing theoretical studies of DCSC rely on some assumptions of random graph
models (e.g., EPP model and DCSBM). They usually fit the adjacency matrix or graph Laplacian
using a certain random graph model (e.g., A := ΘZBZTΘ (Qin & Rohe, 2013) with {Θ,Z,B}
as notations defined in DCSBM) and further give theoretical bounds related to such a model (e.g.,
mis-clustered rate and Hamming error w.r.t. the ground-truth given by DCSBM).

Present Analysis on DCSC & Extension. Spectral clustering is a typical approximated algorithm
for the NP-hard combinatorial optimization problem of conductance minimization (Von Luxburg,
2007). Based on this nature, some early studies (Peng et al., 2015; Mizutani, 2021) analyzed vanilla
spectral clustering (e.g., NJW) using the spectral graph theory. Motivated by these studies, we
consider an alternative analysis for DCSC from a pure spectral view, instead of using random graph
models. Different from existing analysis on DCSC with bounds related to a random graph model,
we provide theoretical bounds for the mis-clustered volume and conductance w.r.t. the optimal
solution to conductance minimization. In contrast to early spectral-based studies on vanilla spectral
clustering (Peng et al., 2015; Mizutani, 2021), our analysis involves additional quantities about (i)
degree heterogeneity and (ii) weakness of clustering structures, which can help reveal impacts of (i)
high degree heterogeneity and (ii) weak clustering structures to DCSC.

Inspired by recent advances in graph neural networks (GNNs) and the associated over-smoothing
issue (Rusch et al., 2023), we propose ASCENT (Adaptive Spectral ClustEring with Node-wise
correcTion), a simple yet effective extension of DCSC. Instead of using a constant correction term
τ for all nodes (e.g., RSC, SCORE+, and ISC in Table 1), ASCENT follows a node-wise correction
scheme, where nodes {vi} are allowed to be assigned with different corrections {τi}. Such a scheme
iteratively updates {τi} via the mean aggregation of GNNs, where nodes {vi} with more common
high-order neighbors (e.g., in the same cluster) are more likely to have close {τi}. Consistent with
the over-smoothing issue of GNNs, {τi} will finally converge to a constant. In this case, ASCENT
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reduces to conventional DCSC methods. Our experiments demonstrate that some early stages of this
updating procedure (i.e., before over-smoothing) can potentially result in better clustering quality.

2 PROBLEM STATEMENTS & PRELIMINARIES

In general, an undirected and unweighted simple graph can be represented as a 2-tupleG := (V,E),
where V := {v1, · · · , vN} and E := {(vi, vj)|vi, vj ∈ V } are the sets of nodes and edges. One can
use an adjacency matrix A ∈ {0, 1}N×N to describe the topology of G, where Aij = Aji = 1 if
(vi, vj) ∈ E and Aij = Aji = 0 otherwise. Let D := diag(d1, d2, · · · , dN ) be the degree diagonal
matrix of G, with di :=

∑
j Aij as the degree of node vi.

Given a graph G and a pre-set number of clusters K, graph clustering (a.k.a. disjoint community
detection) aims to partition V into K disjoint subsets (C1, · · · , CK), which are defined as clusters
or communities, with

⋃
r Cr = V and Cr ∩ Ct = ∅ (∀r ̸= t) s.t. (i) within each cluster the edge

connections between nodes are dense but (ii) between clusters the connections are relatively loose.

Note that we follow the classic problem statement of spectral clustering, where graph topology is
the only available information source. Different from most deep graph clustering methods (Nazi
et al., 2019; Bo et al., 2020; Bianchi et al., 2020; Tsitsulin et al., 2023; Bhowmick et al., 2024), our
analysis does not consider graph attributes, due to the complicated correlations between topology
and attributes validated by prior studies (Newman & Clauset, 2016; Qin et al., 2018; Wang et al.,
2020; Qin & Lei, 2021). Concretely, the simple integration of attributes may bring inconsistent
features or noise that lead to quality decline compared with the case only considering topology,
although attributes may sometimes provide complementary information for better clustering quality.

Graph clustering is an approximated algorithm for the combinatorial optimization objective of con-
ductance minimization (Von Luxburg, 2007). For a subset S ⊆ V , let E(S, V \S) := {(vi, vj) ∈
E : vi ∈ S, vj ∈ V \S} be the set of edges across S and V \S. Let µ(S) :=

∑
vi∈S di be the

volume of S. The conductance of S is defined as ϕ(S) := |E(S, V \S)|/µ(S).

Definition 1 (Conductance Minimization) Let U be the collection of all possible K-way parti-
tions of the node set V in graph G. The conductance minimization objective is defined as

ϕ̄K(G) := min
(S1,··· ,SK)∈U

1

K
(ϕ(S1) + · · ·+ ϕ(SK)). (1)

It aims to find a partition (S1, · · · , SK) of V that can achieve the minimal average conductance
ϕ̄K(G). We define that a partition (S1, · · · , SK) is ϕ̄K(G)-optimal if its average conductance
(ϕ(S1) + · · ·+ ϕ(SK))/K achieves ϕ̄K(G).

For the ED on graph Laplacian (i.e., step (I) of Table 1), let λr and ur ∈ RN denote the r-th
largest eigenvalue and corresponding eigenvector. When considering the normalized graph Lapla-
cian D−1/2AD−1/2, we have 1 = λ1 ≥ · · · ≥ λN ≥ −11 and uT

r ut = 0 (∀r ̸= t). Moreover, we
have 1 > λ1 ≥ λ2 ≥ · · · ≥ λN for the regularized graph Laplacian D

−1/2
τ AD

−1/2
τ . In step (II) of

Table 1, we arrange the (reweighted) eigenvectors as a matrix F ∈ RN×K (or RN×(K+1)) via the
column-wise concatenation. We define the i-th row Fi,: of F as the spectral embedding of node vi.
Most spectral clustering algorithms apply normalization to F (i.e., step (III) in Table 1). We denote
the corresponding normalized spectral embedding as F̃.

Definition 2 (Clustering Cost) Given a set of vectors (w1, · · · ,wK), we follow (Peng et al., 2015)
to define the distance between a partition (S1, · · · , SK) of V and (w1, · · · ,wK) as

g(S1, · · · , SK ;w1, · · · ,wK) :=

K∑
r=1

∑
vi∈Sr

di

∥∥∥F̃i,: −wr

∥∥∥2
2
. (2)

It maps each node vi to di identical points in the embedding space. As claimed in (Peng et al.,
2015), this definition allows us to bound the overlap between (i) feasible clustering results and (ii)

1Some literature (Von Luxburg, 2007; Qin et al., 2023; Gao et al., 2023) defines the normalized graph
Laplacian as IN−D−1/2WD−1/2, which equivalently has the eigenvalues of 0 = 1−λ1 ≤ · · · ≤ 1−λN ≤ 2.
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Figure 1: The high-level overview of our pure spectral analysis on DCSC.

optimal ones, which is further used in our analysis (cf. Lemma 4 and Lemma 6). By assuming that
for each node vi ∈ V , all the di copies of F̃i,: are contained in one of {S1, · · · , SK}, (2) reduces to
the standard cost of KMeans. The clustering cost of a partition (S1, · · · , SK) is then defined as

COST(S1, · · · , SK) := min
(c1,··· ,cK)

g(S1, · · · , SK ; c1, · · · , cK), (3)

which finds a set of centers (c1, · · · , cK) with the minimum distance to (S1, · · · , SK). Based on
COST(S1, · · · , SK), we define the optimal clustering cost as

OPT := min
(S1,··· ,SK)∈U

COST(S1, · · · , SK). (4)

3 PROPOSED ANALYSIS: A PURE SPECTRAL VIEW

Inspired by early spectral-based studies (Peng et al., 2015; Mizutani, 2021) on vanilla spectral clus-
tering (e.g., NJW), we give an alternative analysis for DCSC from a pure spectral view, without using
random graph models. We adopt ISC (see Table 1) as an example for analysis because it has a more
generic format involving the reweighted (K + 1) leading eigenvectors [λ1u1, · · · , λK+1uK+1].
Whereas, other DCSC methods usually have simpler formats (e.g., only [u1, · · · ,uK ] without
reweighting for RSC). Fig. 1 illustrates the overall sketch of our analysis. In Appendix F, we fur-
ther reduce this generic analysis on ISC to other DCSC algorithms (e.g., SCORE+ and RSC), which
extends our analysis to a unified framework involving a series of spectral clustering approaches.

In contrast to early work (Peng et al., 2015; Mizutani, 2021) on vanilla spectral clustering, our
analysis aims to reveal impacts of (i) degree heterogeneity and (ii) weakness of clustering structures
to the clustering quality of DCSC. We first introduce a quantity measuring both aspects:

ΨISC := m−1K [1− h · (1− ϕ̄K(G))] =
1

(1− λK+2)
[1− dmin

dmax + τ
(1− ϕ̄K(G))], (5)

where mK := 1 − λK+2 and h := dmin/(dmax + τ). In (5), h measures the degree heterogeneity,
where a small h (i.e., a large difference between dmin and dmax) indicates high degree heterogeneity.
Since ϕ̄K(G) ≤ 1, higher degree heterogeneity (i.e., a smaller h) will lead to a larger ΨISC.

As validated in (Jin et al., 2021), when clustering structures of a graph (with K clusters) are weak,
m̃K := 1 − λK+1/λK is small, which is consistent with a small |λK − λK+1| by the eigen-gap
property of graph Laplacian (Von Luxburg, 2007). Since 1 > λK ≥ λK+1 ≥ λK+2, we have

mK ≥ m̃K and ΨISC = mK
−1[1− h(1− ϕ̄K(G))] ≤ m̃−1K [1− h(1− ϕ̄K(G))]. (6)

Therefore, weaker clustering structures (i.e., a smaller m̃K) indicates a larger upper bound of ΨISC.

Theorem 3 Let (Ŝ1, · · · , ŜK) be a ϕ̄K(G)-optimal partition, with the partition membership en-

coded by G ∈ RN×K , where Gir =

√
di/µ(Ŝr) if vi ∈ Ŝr and Gir = 0 otherwise.

F := [λ1u1, · · · , λK+1uK+1] ∈ RN×(K+1) is the spectral embedding of ISC (i.e., step (II) of
Table 1). If KΨISC ≤ 1, there exists an orthogonal matrix O := [o1, · · · ,oK ] ∈ R(K+1)×K s.t.

∥FO−G||F ≤ (1 + λ1)
√
KΨISC. (7)
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As in Fig. 1, one can prove Theorem 3 by reformulating G via the linear combination of orthogonal
eigenvectors {ui} (see Appendix B for the full proof). The first term in (7) can be rewritten as

∥FO−G∥2F = ∥F−GOT ∥2F = ∥FT −OGT ∥2F =

K∑
r=1

∑
vi∈Sr

∥∥∥∥Fi,: −

√
di

µ(Sr)
or

∥∥∥∥2
2

. (8)

By using the same strategy as the proof of Lemma 2 in (Mizutani, 2021), which connects (8) with
(2), we can derive the following upper bound of clustering cost (see Appendix C for the full proof).

Lemma 4 Let (Ŝ1, · · · , ŜK) be a ϕ̄K(G)-optimal partition and F̃ be the normalized spectral em-
bedding of ISC. {or} are with the same definitions as those in Theorem 3. The followings hold:

• ∥or − ot∥22 = 2 , ∀r, t ∈ {1, 2, · · · ,K} and r ̸= t;

• g(Ŝ1, · · · , ŜK ;o1, · · · ,oK) ≤ 4(1 + λ1)
2µmaxKΨISC,

with µmax := maxŜr
µ(Ŝr) as the maximum volume.

Obviously, we have OPT ≤ COST(C1, · · · , CK) ≤ g(Ŝ1, · · · , ŜK ;o1, · · · ,oK). Assume that
KMeans has an approximation ratio of α (i.e., COST(C1, · · · , CK) ≤ αOPT), which depends on
the concrete KMeans algorithm we used (e.g., α = O(logK) for KMeans++ (Arthur & Vassilvit-
skii, 2007)). One can directly derive the following Theorem 5 based on Lemma 4.

Theorem 5 Let (C1, · · · , CK) be a feasible clustering result given by ISC. When the KMeans
clustering algorithm has an approximation ratio of α, we have

COST(C1, · · · , CK) ≤ 4(1 + λ1)
2αµmaxKΨISC. (9)

Furthermore, the lower bound of COST(C1, · · · , CK) can be obtained via the following Lemma 6.

Lemma 6 (Mizutani, 2021) For every permutation π : {1, · · · ,K} → {1, · · · ,K}, assume that
there is an index l s.t. µ(Cl∆Ŝπ(l)) ≥ 2ϵ·µ(Ŝπ(l)), withA∆B := (A\B)∪(B\A) as the symmetric
difference between two sets and 0 ≤ ϵ ≤ 1/2. Let ζr,t and ω be the lower bound of ||or − ot||22 and
the upper bound of g(Ŝ1, · · · , ŜK ;o1, · · · ,oK) in Lemma 4. Then, the following inequality holds:

COST(C1, · · · , CK) ≥ 1

8

∑
r∈H

[ξrζr,t min{µ(Ŝr), µ(Ŝt)}]− ω, (10)

where H is a subset of {1, · · · ,K}; t ∈ {1, · · · ,K}; ξr ≥ 0 is a real number s.t.
∑

r∈H ξr ≥ ϵ.

As highlighted in Fig. 1, the key idea to prove Lemma 6 is to apply
∑

vi∈Ŝr
di||F̃i: −wr||22 ≥∑

vi∈Ŝr∩Cl
di||F̃i: −wr||22 to (2) and utilize properties of µ(Cl∆Ŝπ(l)) (see the proof of Lemma

4 in (Mizutani, 2021)). By setting ζr,t = 2 and ω = 4(1 + λ1)
2αKµmaxΨISC according to the

corresponding bounds in Lemma 4, we can derive the following Theorem 7 based on Lemma 6.

Theorem 7 Suppose that the assumption of Lemma 6 holds. Then, we have

COST(C1, · · · , CK) ≥ 1

4
ϵµmin − 4(1 + λ1)

2αµmaxKΨISC, (11)

with µmin := min{µ(Ŝr)} and µmax := max{µ(Ŝr)}.

Finally, we obtain our main theoretical results based on Theorems 5 and 7.

Theorem 8 (Main Theoretical Results) Given a graph G and a pre-set number of clusters K,
let (Ŝ1, · · · , ŜK) be a ϕ̄K(G)-optimal partition of conductance minimization and (C1, · · · , CK)
be a feasible clustering result given by ISC. Assume that KMeans has an approximation ratio
of α. If ΨISC ≤ 1/[132(1 + λ1)

2αµ̃K] with µ̃ := µmax/µmin, after a suitable renumbering of
(C1, · · · , CK), the following inequalities hold for r ∈ {1, . . . ,K}:

µ(Cr∆Ŝr) ≤ [66(1 + λ1)
2αµ̃KΨISC]µ(Ŝr), and

ϕ(Cr) ≤ [1 + 132(1 + λ1)
2αµ̃KΨISC]ϕ(Ŝr) + 132(1 + λ1)

2αµ̃KΨISC.
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As depicted in Fig. 1, one can prove Theorem 8 by contradiction using the upper and lower bounds
in Theorems 5 and 7 (see Appendix D for the full proof). Theorem 8 provides upper bounds
for the mis-clustered volume µ(Cr∆Ŝr) and conductance ϕ(Cr) w.r.t. the optimal solution
(Ŝ1, · · · , ŜK) to conductance minimization. These bounds are directly proportional to ΨISC. A
graph with (i) higher degree heterogeneity and (ii) weaker clustering structures will cause a larger
ΨISC and thus lead to higher upper bounds. Since µ(Cr∆Ŝr) and ϕ(Cr) can be used to measure
the clustering quality, higher upper bounds indicate that ISC is more likely to achieve a low-quality
result. In this way, our analysis can quantitatively reveal impacts of (i) degree heterogeneity and (ii)
weakness of clustering structures to the quality of DCSC.

To ensure that the condition in Theorem 8 holds, one needs small ϕ̄K(G)/(1 − λK+2) and large
dmin/[(dmax+τ )(1 − λK+2)]. In some early studies on vanilla spectral clustering (Ng et al., 2001;
Mizutani, 2021), a graph is defined to be well-clustered, if ϕ̄K(G)/(1 − λK+1) is sufficiently
small, consistent with that ϕ̄K(G)/(1 − λK+2) is small (λK+2 ≥ λK+1). The well-clustered as-
sumption adopted by early work (Ng et al., 2001; Mizutani, 2021) indicates that the optimal solution
(Ŝ1, · · · , ŜK) describes an explicit clustering structure of G. Moreover, large dmin/[(dmax+τ )] in-
dicates that the degree heterogeneity should not be very high. Therefore, the condition in Theorem 8
implies an assumption that (i) G is well-clustered and (ii) the degree heterogeneity is not so high.
In particular, the adjustment of τ can also help resist the impacts of these two aspects. For instance,
a larger τ can result in smaller eigenvalues λ1 and λK+2, which further lead to smaller ΨISC and
larger 1/[132(1 + λ1)

2αµ̃K]. The condition is more likely to satisfy.

4 EXTENSION OF DCSC: ASCENT

Inspired by recent advances in GNNs and the associated over-smoothing issue, we introduce AS-
CENT, a simple yet effective extension of DCSC. Different from most DCSC methods with a con-
stant correction τ for all nodes (e.g., RSC, SCORE+, and ISC in Table 1), ASCENT adopts a node-
wise correction scheme. It can adaptively determine different corrections {τi} for nodes {vi} via
an iterative aggregation mechanism that computes ‘local’ average degrees w.r.t. graph topology.
Whereas, τ is usually set to be a ‘global’ average degree for existing DCSC algorithms (e.g., τ = d̄
for RSC). To the best of our knowledge, we are the first to explore an extension of DCSC with
node-wise corrections.

Let τ (l) ∈ RN
+ be the vector of node-wise corrections in the l-th iteration, with τ (l)i as the correction

of node vi. Suppose there are in total L iterations, we obtain the node-wise corrections τ ∈ RN
+ of

ASCENT via

τ (0) = d, τ (l) := D̂−1Âτ (l−1) (1 ≤ l ≤ L), and τ := θτ (L), (12)

where Â := A + IN is the adjacency matrix with self-edges; D̂ is the degree diagonal matrix
w.r.t. Â; θ > 0 is a hyper-parameter. Concretely, we first let τ (0)i = di for initialization. Then,
we iteratively update τ (l) using a typical mean aggregation operation of GNN (Kipf & Welling,
2016; Hamilton et al., 2017). Different from existing GNN-based graph clustering methods (Bianchi
et al., 2020; Tsitsulin et al., 2023; Bhowmick et al., 2024), ASCENT does not rely on any graph
attribute inputs and training procedures. Instead, it directly uses {τ (l) ∈ RN

+} as special features for
aggregation. In each iteration, it computes the average correction value w.r.t. the one-hop neighbors
for each node. We use τi = θτ

(L)
i as the final correction value of node vi. Similar to the role of δ in

RSC, SCORE+, and ISC as summarized in Table 1, θ adjusts the scale of τi. Furthermore, ASCENT
adopts the same strategies of spectral embedding arrangement and normalization (i.e., steps (II) and
(III) in Table 1) as ISC. Algorithm 1 summarizes the overall procedure of ASCENT.

Fig. 2 demonstrates our node-wise correction scheme on the Karate Club graph (Zachary, 1977)
with 34 nodes and 2 clusters, where we visualize {τ (l)} in different iterations; each color denotes
a cluster. Although different nodes have various initial values (i.e., node degrees) in τ (0), the ag-
gregation operation in (12) forces nodes in the same cluster (i.e., with more common high-order
neighbors) to have close correction values. For instance, in τ (9), τ (10), and τ (11), nodes in the first
cluster tend to have larger corrections than those in the second cluster. It is well-known that most
GNNs, especially those with a mean aggregator, suffer from the over-smoothing issue (Rusch et al.,
2023), where node features converge to a constant as the number of layers increases. Similarly, the
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Figure 2: Case study of {τ (l)} on the Karate Club graph, where each color denotes a cluster.
node-wise corrections of ASCENT also converge to a constant for a large number of iterations l
(e.g., τ (50)), due to the over-smoothing effect s.t. lim

l→∞
τ
(l)
i = c,∀vi ∈ V , with c as a constant. In

this case, ASCENT reduces to existing DCSC methods with a constant correction τ , corresponding
to a ‘global’ average of node degrees. Our experiments further indicate that ASCENT can potentially
achieve better clustering quality in some early stages before over-smoothing (e.g., with L < 10). It
corresponds to a special ‘local’ average of node degrees.

We extend our analysis to the following Proposition 9 regarding ASCENT (see Appendix E for the
full proof). For each cluster Ŝr, we introduce a cluster-wise correction τ̂r := max{τi|vi ∈ Ŝr}.
Since different nodes {vi} may have different {τi}, different clusters {Ŝr} may have different {τ̂r},
which can be used to demonstrate the advantages of node-wise corrections {τi} beyond conven-
tional methods with a constant τ . Based on Proposition 9, we further explore when can ASCENT
potentially outperform ISC in Appendix F.

Proposition 9 Let φ̄K(G) :=
∑K

r=1 d̃rϕ(Ŝr)/K be a reweighted conductance w.r.t. the opti-
mal partition (Ŝ1, · · · , ŜK), with d̃r := dmin/(dmax + τ̂r). By replacing ΨISC with ΨAST :=

(1 + λK+2)
−1[1− (d̂− φ̄K(G))], where d̂ :=

∑K
r=1 d̃r/K, Theorems 3 and 8 hold for ASCENT.

5 EXPERIMENTS

5.1 EXPERIMENT SETUP

Table 3: Statistic details of datasets.
Datasets N |E| K min max avg d
LFR-1 2,000 7,693-12,057 2-15 1-2 286-1,000 7-12
LFR-2 2,000 8,489-32,202 4-14 2-6 375-1,000 8-32
SBM-1 1,000 18,911-20,354 11 13-24 57-74 37-40
SBM-2 1,000 16,368-20,202 11 12-24 51-72 32-40
Caltech 590 12,822 8 1 179 43.5
Simmons 1,137 24,257 4 1 293 42.7
PolBlogs 1,222 16,714 2 1 351 27.4
BioGrid 5,640 59,748 81 1 2570 21.2
Airport 3,158 18,605 N/A 1 246 11.8
Wiki 4,777 92,295 N/A 2 3,644 38
BlogCatalog 10,312 333,983 N/A 1 3,992 64
ogbn-Protein 132,534 39,561,252 N/A 1 7,750 597

Table 4: Summary of baselines.
Baselines Venues
NJW NIPS 2001
SCORE Ann. Stat. 2015
RSC NIPS 2013
SCORE+ SankhyaA 2021
ISC arXiv 2020
GraphEncoder (GE) AAAI 2014
GAP arXiv 2019
SDCN WWW 2020
MinCutPool (MCP) ICML 2020
DMoN JMLR 2023
DGCluster (DGC) AAAI 2024

Datasets. We used 4 settings of synthetic benchmarks and 8 real graphs for evaluation. Table 3
summarizes statistics of these datasets, where N , |E|, and K are the numbers of nodes, edges, and
clusters (if available); d denotes node degree.
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Figure 3: Parameter analysis of L on Caltech
in terms of NMI↑, AC↑, and conductance↓,
where ASCENT achieves the best clustering
quality with a small setting of L (i.e., L = 3)
before it reduces to conventional DCSC meth-
ods due to the over-smoothing issue.

Table 5: Synthetic graph analysis on LFR-net in terms of NMI↑, AC↑, and conductance↓.
LFR-1 LFR-2

η=0.1 0.3 0.5 d=10 20 30
NMI AC Cond NMI AC Cond NMI AC Cond NMI AC Cond NMI AC Cond NMI AC Cond
(↑,%) (↑,%) (↓,%) (↑,%) (↑,%) (↓,%) (↑,%) (↑,%) (↓,%) (↑,%) (↑,%) (↓,%) (↑,%) (↑,%) (↓,%) (↑,%) (↑,%) (↓,%)

NJW 87.64 96.90 10.04 56.90 77.06 34.89 24.91 43.93 57.12 26.27 44.32 57.10 66.58 79.15 53.18 81.47 90.33 51.37
SCORE 77.15 86.90 21.68 59.77 80.17 39.64 30.19 48.60 66.10 30.09 47.74 66.48 65.19 77.27 57.22 83.54 89.17 53.55
RSC 80.73 94.98 10.11 54.43 78.65 32.17 39.18 60.59 52.82 39.75 61.22 53.94 61.86 77.19 52.60 76.63 87.41 51.66
SCORE+ 78.99 91.88 12.75 60.19 84.03 32.32 43.66 65.38 53.94 44.72 66.30 53.49 71.81 85.38 52.22 85.64 93.61 50.99
ISC 88.01 97.23 10.00 65.27 86.59 31.79 44.16 65.73 52.31 44.77 66.59 52.87 72.62 85.59 52.21 86.88 93.91 50.97
GE 61.70 81.73 73.49 38.94 60.69 79.02 20.60 34.98 87.18 21.37 36.21 87.59 38.89 54.09 86.13 54.24 68.11 84.22
GAP 2.93 41.30 66.69 2.02 35.03 73.87 0.79 24.36 84.01 0.23 23.68 85.02 0.36 25.27 83.05 0.35 25.98 81.85
SDCN 1.66 40.64 70.92 0.37 33.74 76.78 1.56 24.23 86.65 1.61 24.00 87.10 0.88 25.29 85.09 1.25 26.27 83.45
MCP 63.34 84.18 19.60 11.66 42.72 65.46 0.56 24.12 84.20 0.29 23.86 85.03 0.00 25.16 83.21 0.00 25.90 81.91
DMoN 80.64 93.41 11.92 55.36 76.08 36.38 30.29 47.46 57.45 29.70 46.06 59.16 49.43 61.52 60.48 56.68 67.24 59.51
DGC 88.47 97.15 10.02 67.79 85.82 31.82 45.12 64.44 52.66 44.67 63.90 53.06 72.33 85.56 51.69 85.92 89.48 52.12
ASCENT 89.38 97.60 9.95 68.83 88.73 31.74 46.42 67.80 52.01 46.45 68.51 51.72 77.53 88.84 51.14 89.81 95.44 50.57
Improv.(%) +1.03 +0.38 +0.5 +1.53 +2.47 +0.16 +2.88 +3.15 +0.57 +3.75 +2.88 +2.18 +6.76 +3.80 +1.06 +3.37 +1.63 +0.78

LFR-net (Lancichinetti et al., 2008) is a synthetic benchmark that can simulate various properties
of real-world graphs. It uses (d̄, dmax, cmin, cmax, η) to generate a graph, where d̄ and dmax are the
average and maximum degree; cmin and cmax are the minimum and maximum cluster size; η is the
ratio between the external degree and total degree of a node vi w.r.t. the cluster that vi belongs
to. To test the ability to handle (i) weak clustering structures and (ii) high degree heterogeneity,
we used LFR-net to generate two sets of graphs, denoted as LFR-1 and LFR-2. For LFR-1, we
fixed (N, d̄, dmax, cmin, cmax) = (2000, 50, 1000, 50, 500) and adjusted η ∈ {0.1, 0.3, 0.5}. With
the increase of η, clustering structures are increasingly difficult to identify (i.e., weaker clustering
structures). For LFR-2, we fixed (N, dmax, cmin, cmax, η) = (2000, 1000, 50, 500, 0.5) and set
d̄ ∈ {10, 20, 30}, where lower d̄ indicates higher degree heterogeneity.

We also used the SBM generator (Kao et al., 2017) implemented by graph-tool2 to simulate
the two cases about (i) weak clustering structures and (ii) high degree heterogeneity, which are
denoted as SBM-1 and SBM-2. The generator uses (γ, β, ρ) to generate a graph, where γ is the
ratio of between the number of within- and between-cluster edges; β controls the power-law dis-
tribution of node degrees; ρ adjusts the heterogeneity of community size. For SBM-1, we fixed
(N, ρ, β) = (1000, 1, 2.5) and set γ ∈ {0.5, 0.6, 0.7}. With the increase of γ, the clustering struc-
tures are increasingly easy to identify. For SBM-2, we fixed (N, ρ, γ) = (1000, 1, 0.5) and set
β ∈ {2.5, 2.75, 3}, where larger β implies higher degree heterogeneity.

Caltech (Red et al., 2011), Simmons (Red et al., 2011), PolBlogs (Adamic & Glance, 2005), and
BioGrid (Stark et al., 2006) are real datasets with explicit ground-truth for graph clustering. In
contrast, Airport (Chami et al., 2019), Wiki (Grover & Leskovec, 2016), BlogCatalog (Grover
& Leskovec, 2016), and obgn-Protein (Szklarczyk et al., 2019) are real datasets that do not pro-
vide ground-truth w.r.t. our problem statements in Section 2. Due to space limit, we leave details
regarding these real datasets in Appendix H.

Baselines. As summarized in Table 4, we compare ASCENT over 11 baselines published from
2001 to 2024, which can be divided into two categories. First, (i) NJW (Ng et al., 2001), (ii) SCORE
(Jin, 2015), (iii) RSC (Qin & Rohe, 2013), (iv) SCORE+ (Jin et al., 2021), and (v) ISC (Qing &
Wang, 2020a) are representative spectral clustering methods. Second, (vi) GraphEncoder (Tian
et al., 2014), (vii) GAP (Nazi et al., 2019), (viii) SDCN (Bo et al., 2020), (ix) MinCutPool (Bianchi

2https://graph-tool.skewed.de/

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 6: Synthetic graph analysis on SBM in terms of NMI↑, AC↑, and conductance↓.
SBM-1 SBM-2

γ=0.5 0.6 0.7 β=2.5 2.75 3
NMI AC Cond NMI AC Cond NMI AC Cond NMI AC Cond NMI AC Cond NMI AC Cond
(↑,%) (↑,%) (↓,%) (↑,%) (↑,%) (↓,%) (↑,%) (↑,%) (↓,%) (↑,%) (↑,%) (↓,%) (↑,%) (↑,%) (↓,%) (↑,%) (↑,%) (↓,%)

NJW 79.94 87.74 70.54 91.81 95.35 66.21 96.48 98.16 62.80 80.20 87.82 70.59 76.16 85.23 70.59 73.34 83.36 70.56
SCORE 72.03 78.86 71.60 85.58 88.55 67.11 91.04 92.62 63.73 72.39 79.27 71.63 68.46 75.77 71.60 65.02 73.66 71.65
RSC 76.89 84.03 70.97 89.76 92.98 66.52 94.47 96.14 63.18 77.09 83.75 71.01 73.35 80.70 71.00 70.38 79.66 71.02
SCORE+ 82.08 89.18 70.33 92.99 96.10 66.08 97.02 98.53 62.72 82.06 89.10 70.39 78.29 86.61 70.42 75.36 84.54 70.35
ISC 82.33 89.62 70.32 93.18 96.18 66.06 97.32 98.66 62.70 82.46 89.54 70.38 78.80 87.05 70.39 75.70 85.21 70.35
GE 66.79 76.28 74.70 86.12 90.70 67.80 93.42 95.41 63.77 67.68 77.03 74.61 62.61 73.19 75.42 57.20 68.68 76.39
GAP 1.27 15.47 90.72 1.65 15.60 90.66 1.76 15.50 90.66 1.37 15.11 90.69 1.18 15.29 90.71 1.10 15.07 90.71
SDCN 26.01 35.09 85.54 39.13 47.31 81.20 48.02 54.58 77.74 26.29 36.80 85.40 22.26 32.87 86.32 18.99 29.62 87.16
MCP 0.00 14.81 90.91 0.00 14.81 90.91 0.00 14.81 90.91 0.00 14.81 90.91 0.00 14.81 90.91 0.00 14.81 90.91
DMoN 76.25 79.33 72.14 84.96 85.07 68.93 88.84 87.52 65.99 75.94 79.17 72.21 73.42 77.81 71.86 69.55 74.98 71.75
DGC 68.02 67.92 77.91 80.19 76.14 73.44 87.21 81.50 69.57 68.23 69.30 77.59 66.94 68.42 77.61 64.90 67.89 77.45
ASCENT 82.52 90.08 70.27 93.41 96.51 66.02 97.38 98.68 62.68 82.74 89.87 70.32 79.00 87.51 70.33 76.05 85.79 70.29
Improv.(%) +0.23 +0.51 +0.02 +0.24 +0.34 +0.06 +0.06 +0.02 +0.03 +0.34 +0.37 +0.09 +0.25 +0.53 +0.09 +0.46 +0.68 +0.09

Table 7: Evaluation results on datasets with ground-truth in terms of NMI↑, AC↑, & conductance↓.
Caltech Simmons PolBlogs BioGrid

NMI AC Cond NMI AC Cond NMI AC Cond NMI AC Cond
(↑,%) (↑,%) (↓,%) (↑,%) (↑,%) (↓,%) (↑,%) (↑,%) (↓,%) (↑,%) (↑,%) (↓,%)

NJW 62.13 75.39 50.76 67.96 73.44 33.87 0.06 51.88 26.94 41.83 12.84 66.20
SCORE 56.39 69.05 50.12 58.53 76.39 29.92 72.50 95.25 7.67 13.93 7.37 90.90
RSC 58.58 71.05 49.86 61.52 78.61 28.88 71.33 94.76 7.34 43.64 13.52 66.07
SCORE+ 69.14 82.85 48.44 72.95 88.81 27.41 73.08 95.33 7.53 24.36 9.44 82.02
ISC 70.28 83.73 48.32 73.57 89.36 27.35 72.67 95.09 7.35 43.21 13.26 66.07
GE 36.75 44.44 68.97 49.19 58.86 48.13 6.15 51.88 50.13 31.74 11.28 98.51
GAP 65.80 75.59 49.94 48.69 57.96 40.84 42.89 77.82 2.44 44.18 13.40 80.40
SDCN 28.50 34.03 74.79 38.28 53.91 51.39 14.96 62.93 28.48 20.77 8.44 95.83
MCP 50.57 63.32 58.16 64.66 82.90 29.80 58.15 86.56 16.26 0.00 4.43 98.77
DMoN 66.29 72.47 53.97 63.64 81.20 28.00 71.16 94.91 7.47 41.73 12.91 79.74
DGC 66.75 75.32 51.92 70.53 79.74 33.18 71.21 94.91 7.42 21.63 7.74 91.04
ASCENT 71.20 84.41 48.28 74.06 89.62 27.34 73.48 95.34 7.31 43.28 13.59 64.88
Improvement +1.31% +0.81% +0.08% +0.67% +0.29% +0.04% +0.55% +0.01% +0.41% – +0.52% +1.80%

et al., 2020), (x) DMoN (Tsitsulin et al., 2023), and (xi) DGCluster (Bhowmick et al., 2024) are
deep graph clustering approaches.

RSC, SCORE+, and ISC are DCSC baselines as summarized in Table 1. Note that we consider graph
clustering without attributes in this study, while GAP, SDCN, MinCutPool, DMoN, and DGCluster
are GNN-based methods originally designed for attributed graphs. We tried several widely-used
strategies of (i) SVD on the adjacency matrix and (ii) one-hot encoding of node degrees to derive
feature inputs for GAP, MinCutPool, DMoN, and DGCluster, with the best quality metrics reported.
Moreover, we directly used the adjacency matrix as input of the auto-encoder in SDCN.

Evaluation Metrics. For datasets with ground-truth, we used normalized mutual information
(NMI) and accuracy (AC) as quality metrics. We also adopted the conductance achieved by each
method as an unsupervised metric for all the datasets. For datasets without ground-truth, we set
K ∈ {2, 8, 32} and recorded the corresponding conductance values. Usually, smaller conductance
as well as larger NMI and AC indicate better clustering quality. We tuned hyper-parameters of all
the methods based on the unsupervised conductance metric. Due to space limit, we detail other
experiment setups (e.g., experiment environment and parameter settings) in Appendix H.

5.2 PARAMETER ANALYSIS

We first tested the effect of L for ASCENT. Example analysis results on Caltech are visualized
in Fig. 3, where we adjusted L ∈ {0, 1, · · · , 10}. When L = 0, ASCENT suffers from poor
clustering quality, which can be significantly improved as L increases. It validates the effectiveness
of the iterative aggregation in ASCENT. With the increase of L, the clustering quality of ASCENT
gradually converges due to over-smoothing, which is consistent with our case study in Fig. 2. In
particular, ASCENT achieves the best clustering quality with a small L (i.e., L = 3) before it reduces
to conventional DCSC methods with a constant correction τ . ASCENT also achieves the best quality
with a small L in the following evaluation. We leave further analysis of θ in Appendix I.

5.3 SYNTHETIC GRAPH ANALYSIS

For each setting of a synthetic benchmark, we independently generated 100 graphs and recorded
the mean as well as standard derivation of all the quality metrics over these graphs. The average
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Table 8: Evaluation results on datasets without ground-truth in terms of conductance (%)↓.
Airport Wiki BlogCatalog ogbn-Protein

K=2 8 32 K=2 8 32 K=2 8 32 K=2 8 32
NJW 1.67 10.16 19.48 40.16 74.32 85.32 29.35 67.83 82.79 6.34 11.92 41.36
SCORE 10.95 74.98 85.82 40.29 82.73 92.08 29.65 77.84 93.67 22.38 44.69 82.42
RSC 6.09 23.44 37.11 37.75 73.06 85.32 29.24 66.56 81.74 12.03 15.87 36.63
SCORE+ 5.19 52.48 71.47 39.06 75.69 86.87 29.33 69.95 86.19 7.09 21.92 64.33
ISC 4.24 21.70 35.04 37.91 73.31 85.78 29.26 65.02 81.43 6.93 14.88 34.64
GE 48.14 84.27 92.58 52.08 89.02 97.23 49.59 87.49 96.78 OOM
GAP 32.00 87.50 96.88 44.66 87.50 96.88 41.81 87.50 96.88 OOT
SDCN 17.83 86.06 92.73 50.00 87.30 96.41 49.87 85.44 95.80 OOM
MCP 8.80 23.80 54.33 50.00 87.50 96.88 34.15 86.97 96.82 OOM
DMoN 6.44 20.40 51.00 37.09 77.25 91.59 42.89 75.95 90.28 OOM
DGC 5.75 13.54 69.80 37.45 83.53 95.96 29.89 77.73 94.34 OOM
ASCENT 1.67 9.97 18.85 37.43 72.00 84.77 29.23 64.22 80.68 3.47 11.06 33.20
Improvement – +1.87% +3.23% +0.85% +1.45% +0.64% +0.10% +1.23% +0.92% +45.27% +7.21% +4.16%

evaluation results on LFR-1, LFR-2, SBM-1, and SBM-2 are depicted in Tables 5 and 6 (see the
corresponding standard derivations in Appendix I), where a metric is in bold or underlined if it per-
forms the best or second-best. In most cases, spectral clustering methods have significantly better
quality than deep clustering baselines. It indicates that some GNN-based approaches, with standard
strategies to extract auxiliary feature inputs from topology, may fail to handle the high degree het-
erogeneity and weak clustering structures, although some of them are claimed to be effective in the
clustering on attributed graphs. Moreover, DCSC methods (i.e., SCORE+, ISC, and ASCENT) are
always in groups with the best quality, which validates the robustness of DCSC over vanilla spectral
clustering. In particular, ASCENT performs the best in most cases. In summary, ASCENT, which
serves as a simple yet effective extension of DCSC, is more powerful in handling the high degree
heterogeneity and weak clustering structures of graphs.

5.4 REAL GRAPH EVALUATION

On each real dataset, we repeated the evaluation procedure over 5 random seeds and recorded the
mean as well as standard derivation of each metric. The average evaluation results on real datasets
are reported in Tables 7 and 8 (see corresponding standard derivations in Appendix I), where a
metric is in bold or underlined if it performs the best or second-best; OOM denotes the out-of-
memory exception. We define that a method encounters the out-of-time (OOT) exception if it cannot
derive a feasible result within 104 seconds. Consistent with our synthetic graph analysis, spectral
clustering methods significantly outperform deep clustering baselines in most cases. In particular,
some deep clustering approaches encounter OOM or OOT exceptions on large-scale graphs (e.g.,
ogbn-Protein), due to the reconstruction of an N × N matrix (e.g., normalized adjacency matrices
in GraphEncoder) or time/space-consuming training procedures. In contrast, spectral clustering
methods can derive feasible clustering results on all the datasets. In most cases, ASCENT performs
the best and can achieve much better quality than other DCSC baselines (i.e., RSC, SCORE+, and
ISC). It further validates the effectiveness of ASCENT as an extension of DCSC.

6 CONCLUSION

In this paper, we provided an alternative analysis of DCSC from a pure spectral view. Different from
most existing studies on DCSC that gave theoretical results associated with random graph models
(e.g., DCSBM), our analysis gives bounds for the mis-clustered volume and conductance w.r.t. the
optimal solution to conductance minimization objective without using random graph models. In
contrast to early studies on vanilla spectral clustering, the presented analysis also includes quantities
that indicate impacts of (i) degree heterogeneity and (ii) weakness of clustering structures to the clus-
tering quality of DCSC. Inspired by recent advances in GNNs and the associated over-smoothing
issue, we proposed ASCENT, a simple yet effective extension of DCSC. It follows a novel node-
wise correction scheme that assigns nodes {vi} with different correction terms {τi} via the mean
aggregation of GNNs. We further demonstrated that ASCENT reduces to conventional DCSC meth-
ods when encountering the over-smoothing issue. Experiments also validated that some early stages
before over-smoothing can potentially obtain better clustering quality for ASCENT. Due to space
limit, we discuss limitations and possible future directions of this study in Appendix J.
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Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural
networks. Advances in neural information processing systems, 32, 2019.

Kamalika Chaudhuri, Fan Chung, and Alexander Tsiatas. Spectral clustering of graphs with general
degrees in the extended planted partition model. In Conference on Learning Theory, pp. 35–1.
JMLR Workshop and Conference Proceedings, 2012.

Anne Condon and Richard M Karp. Algorithms for graph partitioning on the planted partition
model. Random Structures & Algorithms, 18(2):116–140, 2001.

Lin Dai and Bo Bai. Optimal decomposition for large-scale infrastructure-based wireless networks.
IEEE Transactions on Wireless Communications, 16(8):4956–4969, 2017.

Ling Ding, Chao Li, Di Jin, and Shifei Ding. Survey of spectral clustering based on graph theory.
Pattern Recognition, pp. 110366, 2024.

Yu Gao, Meng Qin, Yibin Ding, Li Zeng, Chaorui Zhang, Weixi Zhang, Wei Han, Rongqian Zhao,
and Bo Bai. Raftgp: Random fast graph partitioning. In 2023 IEEE High Performance Extreme
Computing Conference, pp. 1–7. IEEE, 2023.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining,
pp. 855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.

Jiashun Jin. Fast community detection by score. The Annals of Statistics, 43(1):57–89, 2015.

Jiashun Jin, Zheng Tracy Ke, and Shengming Luo. Improvements on score, especially for weak
signals. Sankhya A, pp. 1–36, 2021.

Edward Kao, Vijay Gadepally, Michael Hurley, Michael Jones, Jeremy Kepner, Sanjeev Mohindra,
Paul Monticciolo, Albert Reuther, Siddharth Samsi, William Song, et al. Streaming graph chal-
lenge: Stochastic block partition. In Proceedings of the 2017 IEEE High Performance Extreme
Computing Conference (HPEC), pp. 1–12. IEEE, 2017.

Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in networks.
Physical Review E, 83(1):016107, 2011.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In Proceedings of the 2016 International Conference on Learning Representations, 2016.

Andrew V Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block pre-
conditioned conjugate gradient method. SIAM Journal on Scientific Computing, 23(2):517–541,
2001.

Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for testing com-
munity detection algorithms. Physical Review E, 78(4):046110, 2008.

Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users’ guide: solution of large-
scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, 1998.

Tomohiko Mizutani. Improved analysis of spectral algorithm for clustering. Optimization Letters,
15:1303–1325, 2021.

Azade Nazi, Will Hang, Anna Goldie, Sujith Ravi, and Azalia Mirhoseini. Gap: Generalizable
approximate graph partitioning framework. arXiv preprint arXiv:1903.00614, 2019.

Mark EJ Newman. Modularity and community structure in networks. Proceedings of the National
Academy of Sciences, 103(23):8577–8582, 2006.

Mark EJ Newman and Aaron Clauset. Structure and inference in annotated networks. Nature
Communications, 7(1):11863, 2016.

Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm.
Advances in Neural Information Processing Systems, 14, 2001.

Richard Peng, He Sun, and Luca Zanetti. Partitioning well-clustered graphs: Spectral clustering
works! In Conference on Learning Theory, pp. 1423–1455. PMLR, 2015.

Shuye Pu, Jessica Wong, Brian Turner, Emerson Cho, and Shoshana J Wodak. Up-to-date catalogues
of yeast protein complexes. Nucleic Acids Research, 37(3):825–831, 2009.

Guimin Qin and Lin Gao. Spectral clustering for detecting protein complexes in protein–protein
interaction (ppi) networks. Mathematical and Computer Modelling, 52(11-12):2066–2074, 2010.

Meng Qin and Kai Lei. Dual-channel hybrid community detection in attributed networks. Informa-
tion Sciences, 551:146–167, 2021.

Meng Qin and Dit-Yan Yeung. Irwe: Inductive random walk for joint inference of identity and
position network embedding. arXiv preprint arXiv:2401.00651, 2024.

Meng Qin, Di Jin, Kai Lei, Bogdan Gabrys, and Katarzyna Musial-Gabrys. Adaptive community
detection incorporating topology and content in social networks. Knowledge-Based Systems, 161:
342–356, 2018.

Meng Qin, Kai Lei, Bo Bai, and Gong Zhang. Towards a profiling view for unsupervised traffic
classification by exploring the statistic features and link patterns. In Proceedings of the 2019
ACM SIGCOMM Workshop on Network Meets AI & ML, pp. 50–56, 2019.

Meng Qin, Chaorui Zhang, Bo Bai, Gong Zhang, and Dit-Yan Yeung. Towards a better trade-off
between quality and efficiency of community detection: An inductive embedding method across
graphs. ACM Transactions on Knowledge Discovery from Data, 2023.

Meng Qin, Chaorui Zhang, Yu Gao, Weixi Zhang, and Dit-Yan Yeung. Pre-train and refine: Towards
higher efficiency in k-agnostic community detection without quality degradation. In Proceedings
of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2467–
2478, 2024.

Tai Qin and Karl Rohe. Regularized spectral clustering under the degree-corrected stochastic block-
model. Advances in Neural Information Processing Systems, 26, 2013.

Huan Qing and Jingli Wang. An improved spectral clustering method for community detection
under the degree-corrected stochastic blockmodel. arXiv preprint arXiv:2011.06374, 2020a.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Huan Qing and Jingli Wang. Dual regularized laplacian spectral clustering methods on community
detection. arXiv preprint arXiv:2011.04392, 2020b.

Veronica Red, Eric D Kelsic, Peter J Mucha, and Mason A Porter. Comparing community structure
to characteristics in online collegiate social networks. SIAM Review, 53(3):526–543, 2011.

T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in
graph neural networks. arXiv preprint arXiv:2303.10993, 2023.

Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton Breitkreutz, and Mike
Tyers. Biogrid: a general repository for interaction datasets. Nucleic Acids Research, 34(suppl 1):
D535–D539, 2006.

Xing Su, Shan Xue, Fanzhen Liu, Jia Wu, Jian Yang, Chuan Zhou, Wenbin Hu, Cecile Paris, Surya
Nepal, Di Jin, et al. A comprehensive survey on community detection with deep learning. IEEE
Transactions on Neural Networks & Learning Systems, 2022.

Damian Szklarczyk, Annika L Gable, David Lyon, Alexander Junge, Stefan Wyder, Jaime Huerta-
Cepas, Milan Simonovic, Nadezhda T Doncheva, John H Morris, Peer Bork, et al. String v11:
protein–protein association networks with increased coverage, supporting functional discovery in
genome-wide experimental datasets. Nucleic Acids Research, 47(D1):D607–D613, 2019.

Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. Learning deep representations for
graph clustering. In Proceedings of the 28th AAAI Conference on Artificial Intelligence, pp.
1293–1299, 2014.

Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with graph
neural networks. Journal of Machine Learning Research, 24(127):1–21, 2023.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics & Computing, 17:395–416, 2007.

Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. Am-gcn: Adaptive multi-
channel graph convolutional networks. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1243–1253, 2020.

Bryan Wilder, Eric Ewing, Bistra Dilkina, and Milind Tambe. End to end learning and optimization
on graphs. Advances in Neural Information Processing Systems, 32, 2019.

Susumu Yamada, Toshiyuki Imamura, and Masahiko Machida. High performance parallel lobpcg
method for large hamiltonian derived from hubbard model on multi-gpu systems. In Asian Con-
ference on Supercomputing Frontiers, pp. 1–19. Springer, 2022.

Yuchen Yan, Yongyi Hu, Qinghai Zhou, Lihui Liu, Zhichen Zeng, Yuzhong Chen, Menghai Pan,
Huiyuan Chen, Mahashweta Das, and Hanghang Tong. Pacer: Network embedding from posi-
tional to structural. In Proceedings of the ACM on Web Conference 2024, pp. 2485–2496, 2024.

Liang Yang, Xiaochun Cao, Dongxiao He, Chuan Wang, Xiao Wang, and Weixiong Zhang. Mod-
ularity based community detection with deep learning. In Proceedings of the 25fth International
Joint Conference on Artificial Intelligence, pp. 2252–2258, 2016.

Linbin Yu and Chris Ding. Network community discovery: Solving modularity clustering via nor-
malized cut. In Proceedings of the 8th Workshop on Mining & Learning with Graphs, pp. 34–36,
2010.

Liu Yue, Xia Jun, Zhou Sihang, Wang Siwei, Guo Xifeng, Yang Xihong, Liang Ke, Tu Wenxuan,
Liu Xin Wang, et al. A survey of deep graph clustering: Taxonomy, challenge, and application.
arXiv:2211.12875, 2022.

Wayne W Zachary. An information flow model for conflict and fission in small groups. Journal of
Anthropological Research, 33(4):452–473, 1977.

Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data clustering method for
very large databases. ACM SIGMOD Record, 25(2):103–114, 1996.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Algorithm 1: Proposed ASCENT Algorithm

Input: graph G = (V,E), number of clusters K, hyper-parameters {θ, L}
Output: a feasible clustering result (C1, · · · , CK)

1 for each node vi ∈ V do
2 τ

(0)
i ← di //Initialize node-wise corrections

3 for l from 1 to L do
4 τ (l) ← D̂−1Âτ (l−1) //Iteratively update node-wise corrections

5 τ ← θτ (L) //Final node-wise corrections
6 Lτ ← (D+ diag(τ ))−1/2A(D+ diag(τ ))−1/2

7 Find the leading (K + 1) eigenvalues (λ1, · · · , λK+1) and eigenvectors (u1, · · · ,uK+1) of Lτ

8 F← [λ1u1, · · · , λK+1uK+1]
9 for each node vi ∈ V do

10 F̃i,: ← Fi,:/|Fi,:|2
11 apply KMeans to rows of F̃ to get the clustering result (C1, · · · , CK)

Yilin Zhang and Karl Rohe. Understanding regularized spectral clustering via graph conductance.
Advances in Neural Information Processing Systems, 31, 2018.

David Zhuzhunashvili and Andrew Knyazev. Preconditioned spectral clustering for stochastic block
partition streaming graph challenge (preliminary version at arxiv.). In Proceedings of the 2017
IEEE High Performance Extreme Computing Conference (HPEC), pp. 1–6. IEEE, 2017.

A RELATED WORK OF DEEP GRAPH CLUSTERING METHODS

In recent years, several deep graph clustering methods have been proposed based on different model
architectures and training objectives as reviewed in (Yue et al., 2022; Su et al., 2022).

GraphEncoder (Tian et al., 2014) and DNR (Yang et al., 2016) are early studies that learn low-
dimensional community-preserving representations (a.k.a. embeddings) by reconstructing topology-
related features (e.g., normalized adjacency matrices and modularity matrices) via a deep auto-
encoder. A downstream clustering algorithm (e.g., KMeans) is then applied to the learned em-
bedding to derive a feasible clustering result. SDCN (Bo et al., 2020) further combines deep auto-
encoder with GNN and uses a dual self-supervised mechanism to unify these two deep architectures.
Moreover, GAP (Nazi et al., 2019), ClusterNet (Wilder et al., 2019), MinCutPool (Bianchi et al.,
2020), and DMoN (Tsitsulin et al., 2023) adopt a deep end-to-end structure, which contains a GNN
and an output module (e.g., a multi-layer perceptron for the derivation of clustering results), to fit
some classic graph clustering objectives (e.g., normalized cut minimization (Von Luxburg, 2007)
and modularity maximization (Newman, 2006)). DGCluster (Bhowmick et al., 2024) also uses the
modularity maximization objective to optimize GNN, which outputs community-preserving embed-
ding but derives final clustering results using BIRCH (Zhang et al., 1996).

Most of the aforementioned methods, especially those based on GNNs, were originally designed
for attributed graphs. We argue that most of them do not consider the complicated correlations
between graph topology and attributes as discussed in Section 2. Our empirical experiments (see
Section 5) also demonstrated that when attributes are unavailable, these deep graph clustering (with
standard strategies to extract auxiliary feature inputs from topology) cannot effectively handle the
(i) high degree heterogeneity and (ii) weak clustering structures of graphs. Different from spectral
clustering methods, most existing studies about deep graph clustering also lack interpretability and
theoretical guarantees.

B PROOF OF THEOREM 3

Recall that we have F := [λ1u1, · · · , λK+1uK+1] as the rearranged spectral embedding of ISC;

G ∈ RN×K encodes membership of the optimal partition (Ŝ1, · · · , ŜK), where Gir =

√
di/µ(Ŝr)

if vi ∈ Ŝr and Gir = 0 otherwise. For simplicity, we let U := [u1, · · · ,uK+1] be the arrangement

14
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of eigenvectors without reweighting and F = UΛ, where Λ := diag(λ1, · · · , λK+1) is a diagonal
matrix w.r.t the leading (K + 1) eigenvalues.

For each r ∈ {1, · · · ,K}, it is obvious that |G:,r|2 = 1. In particular, one can derive G:,r via the
linear combination of eigenvectors {u1, · · · ,uN} w.r.t. eigenvalues {λ1, · · · , λN} of regularized
graph Laplacian Lτ of ISC. Namely, we have G:,r =

∑N
i=1 hirλiui with {hir} as corresponding

weights for the linear combination. We further let ûr :=
∑K+1

i=1 hirλiui. Then, we have the
following derivation:

GT
:,r(IN − Lτ )G:,r =

N∑
i=1

G2
ir − 2

∑
(vi,vj)∈E

GirGjr√
di + τ

√
dj + τ

=
∑

(vi,vj)∈E

[(
1√
di
Gir)

2

− 2GirGjr√
di + τ

√
dj + τ

+ (
1√
dj

Gjr)
2

]

=
∑

(vi,vj)∈E(Ŝr,V \Ŝr)

1

µ(Ŝr)
+

∑
(vi,vj)∈E(Ŝr)

2

µ(Ŝr)
(1−

√
didj√

di + τ
√
dj + τ

)

≤ |E(Ŝr, V \Ŝr)|
µ(Ŝr)

+
2|E(Ŝr)|
µ(Ŝr)

(1− dmin

dmax + τ
)

= ϕ(Ŝr) +
µ(Ŝr)− |E(Ŝr, V \Ŝr)|

µ(Ŝr)
(1− dmin

dmax + τ
)

= 1− (1− ϕ(Ŝr))
dmin

dmax + τ
.

Note that we also have

GT
:,r(IN − Lτ )G:,r = (

N∑
i=1

hirλiui)
T (IN − Lτ )(

N∑
i=1

hirλiui)

=

N∑
i=1

h2irλ
2
i −

N∑
i=1

h2irλ
3
i

=

N∑
i=1

h2irλ
2
i (1− λi)

≥
N∑

i=K+2

h2irλ
2
i (1− λi)

≥ (1− λK+2)

N∑
i=K+2

h2irλ
2
i .

By combining the aforementioned two inequalities, one can have

||ûr −G:,r||22 =

N∑
i=K+2

h2irλ
2
i ≤ 1

1− λK+2
[1− (1− ϕ(Ŝr))

dmin

dmax + τ
],

for each Ŝr (r ∈ {1, · · · ,K}). Let F̂ := [û1, · · · , ûK ]. For the whole graph G, we have

||F̂−G||2F =

K∑
r=1

||ûr −G:,r||22 ≤ K

1− λK+2
[1− (1− ϕ̄K(G))

dmin

dmax + τ
] = KΨISC. (13)

This inequality can be rewritten as

||F̂−G||2F = ||UΛH−G||2F ≤ KΨISC, (14)

where H ∈ R(K+1)×K is a matrix rearranging weights {hir} in the linear combination.
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Claim. Let Z := F̂−G = [z1, · · · , zN ]. Then, ZTZ = IK −HTΛTΛH.

Proof. First, we have
zTr zs = (ûr −G:,r)

T (ûs −G:,s) = ûT
r ûs − ûT

r G:,s −GT
:,rûs +GT

:,rG:,s. (15)
Consider each term in (15). We further have

ûT
r ûs = (

K+1∑
t=1

hrtλtut)
T (

K+1∑
t=1

hstλtut) =

K+1∑
t=1

hrthstλ
2
t ;

ûT
r G:,s = (

K+1∑
t=1

hrtλtut)
T (

N∑
t=1

hstλtut)
T =

K+1∑
t=1

hrthstλ
2
t ;

GT
:,rûs = (

N∑
t=1

hrtλtut)
T (

K+1∑
t=1

hstλtut)
T =

K+1∑
t=1

hrthstλ
2
t ;

GT
:,rG:,s =

{
0, r = s
1, r ̸= s

.

Therefore, one can rewrite (15) as

zTr zs =

{
1−

∑K+1
t=1 hrthstλ

2
t , r = s

−
∑K+1

t=1 hrthstλ
2
t , r ̸= s

,

which corresponds to the following matrix form:

ZTZ = IK −HTΛTΛH.

This completes the proof of Claim.

Consider the singular value decomposition of H ∈ R(K+1)×K denoted as H = XΣYT , where
X ∈ R(K+1)×(K+1) and Y ∈ RK×K are orthogonal matrices; Σ is a (K + 1) × K matrix, with
only the (i, i)-th entries as non-zero values {σi}. One can rewrite (14) as

KΨISC ≥ ||F̂−G||2F = ||Z||2F ≥ ||ZTZ||F
= ||IK −HTΛ2H||F
= ||IK −YΣXTΛ2XΣYT ||F
= ||Y(IK −ΣXTΛ2XΣ)YT ||F
= ||IK −ΣXTΛ2XΣ||F .

Note that (ΛXΣ)ij = λiσjXij , which can lead to

(ΣXTΛ2XΣ)ij =

{
λ2iσ

2
i , i = j

0, i ̸= j
.

We further have

KΨISC ≥ ||IK −ΣXTΛ2XΣ||F = [

K∑
r=1

(1− λ2rσ
2
r)

2]1/2

≥ [

K∑
r=1

(1− λ21σ
2
r)

2]1/2 ≥ [

K∑
r=1

(1− σ2
r)

2]1/2

= ||I(K+1)×K −Σ||F ,
where I(K+1)×K := [IK ,0K×1]

T . Let O := XI(K+1)×KYT , which is an orthogonal matrix. One
can derive the following inequalities:

||FO−G||F = ||UΛO−G||F
= ||UΛO− F̂+ F̂−G||F
≤ ||UΛO− F̂||F + ||F̂−G||F
= ||U(ΛO−ΛH)||F + ||F̂−G||F
≤ ||ΛO−ΛH||F + ||F̂−G||F
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For the first term, one can derive the following inequality:

||ΛO−ΛH||F = ||ΛX(I(K+1)×K −Σ)YT ||F
= ||Λ(I(K+1)×K −Σ)||F

=

√
λ1

2(1− σ1)
2
+ · · ·+ λK

2(1− σK)
2

≤
√
λ1

2[(1− σ1)
2
+ · · ·+ (1− σK)

2
]

≤ λ1

√
(1− σ1)

2
(1 + σ1)

2
+ · · ·+ (1− σK)

2
(1 + σK)

2

= λ1

√
(1− σ2

1)
2
+ · · ·+ (1− σ2

K)
2

= λ1||I−Σ2||F = λ1||I−HTH||F
≤ λ1||I−HTΛ2H||F = λ1||ZTZ||F
= λ1||(F̂−G)T (F̂−G)||F ≤ λ1KΨISC.

By combining (13), we finally have

||FO−G||F ≤ ||ΛO−ΛH||F + ||F̂−G||F ≤ λ1KΨ+
√
KΨISC.

If KΨISC < 1, then
||FO−G||F ≤ (1 + λ1)

√
KΨISC.

This completes the proof of Theorem 3.

C PROOF OF LEMMA 4

Since or and ot (∀r ̸= t) are orthogonal, we have

|or − ot|22 = (or − ot)
T (or − ot) = |or|22 + |or|22 − oT

t or − oT
r ot = 2.

According to Lemma 1 in (Mizutani, 2021), one can have∣∣∣∣ a

|a|2
− b

∣∣∣∣
2

≤ 2|a− b|2,

for vectors a,b ∈ RK+1. By (2), (8), and Theorem 3, we have the following derivation:

g(Ŝ1, · · · , ŜK ; o1, · · · , oK) =

K∑
r=1

∑
vi∈Ŝr

di

∥∥∥F̃i,: − or

∥∥∥2
2

=

K∑
r=1

∑
vi∈Ŝr

di

∥∥∥∥ Fi,:

|Fi,:|
− or

∥∥∥∥2
2

=

K∑
r=1

∑
vi∈Ŝr

di

∥∥∥∥∥∥ Fi,:

√
µ(Ŝr)/di

|Fi,:

√
µ(Ŝr)/di|

− or

∥∥∥∥∥∥
2

2

≤ 4

K∑
r=1

∑
vi∈Ŝr

di

∥∥∥∥∥∥Fi,:

√
µ(Ŝr)

di
− or

∥∥∥∥∥∥
2

2

= 4

K∑
r=1

∑
vi∈Ŝr

µ(Ŝr)

∥∥∥∥∥Fi,: −
√

di

µ(Ŝr)
or

∥∥∥∥∥
2

2

≤ 4

K∑
r=1

∑
vi∈Ŝr

µmax

∥∥∥∥∥Fi,: −
√

di

µ(Ŝr)
or

∥∥∥∥∥
2

2

≤ 4(1 + λ1)
2µmaxKΨISC.

This completes the proof of Lemma 4.
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D PROOF OF THEOREM 8

One can prove Theorem 8 by contradiction. We first choose a real number

ϵ = 33(1 + λ1)
2αµ̃KΨISC < 1/4,

where µ̃ := µmax/µmin. For every permutation π : {1, · · · ,K} → {1, · · · ,K}, assume that there
is an index l s.t. µ(Cl∆Ŝπ(l)) ≥ 2ϵ · µ(Sπ(l)) for a real number ϵ (i.e., the assumption of Lemma 6
and Theorem 7). For the lower bound given by Theorem 7, we have

COST(C1, · · · , CK) ≥ 1

4
ϵ · µmin − 4(1 + λ1)

2αKµmaxΨISC

≥ 33

4
(1 + λ1)

2αKµmaxΨISC − 4(1 + λ1)
2αKµmaxΨISC,

> 4(1 + λ1)
2αKµmaxΨISC

which contracts to the upper bound given by Theorem 5. It indicates that the assumption
µ(Cl∆Ŝπ(l)) ≥ 2ϵ · µ(Ŝπ(l)) is false. Namely, after a suitable renumbering of (C1, · · · , CK),
we can derive

µ(Cr∆Ŝr) ≤ 2ϵ · µ(Ŝr) = [66(1 + λ1)
2αµ̃KΨISC]µ(Ŝr),

for r ∈ {1, · · · ,K}. Note that for any sets A,B ⊆ V , we have

|E(A, V \A)| ≤ |E(B, V \B)|+ µ(A∆B).

For µ(Cr), we further have

µ(Cr) ≥ µ(Cr ∩ Ŝr) = µ(Ŝr)− µ(Ŝr\Cr) ≥ µ(Ŝr)− µ(Cr∆Ŝr) ≥ (1− 2ϵ)µ(Ŝr).

For ψ(Cr), we have

ϕ(Cr) =
|E(Cr, V \Cr)|

µ(Cr)
≤ |E(Cr, V \Cr)|

(1− 2ϵ)µ(Ŝr)

≤ |E(Ŝr, V \Ĉr)|+ 2ϵµ(Ŝr)

(1− 2ϵ)µ(Ŝr)
=

1

1− 2ϵ
ϕ(Ŝr) +

2ϵ

1− 2ϵ

≤ (1 + 4ϵ)ϕ(Ŝr) + 4ϵ = [1 + 132(1 + λ1)
2αµ̃KΨISC]ϕ(Ŝr) + 132(1 + λ1)

2αµ̃KΨISC.

This completes the proof of Theorem 8.

E PROOF OF PROPOSITION 9

Similar to the derivation of the first inequality in Appendix B (i.e., the proof of Theorem 3), we
have the following derivations for ASCENT:

GT
:,r(IN − Lτ )G:,r =

N∑
i=1

G2
ir − 2

∑
(vi,vj)∈E

GirGjr√
di + τi

√
dj + τj

,

=
∑

(vi,vj)∈E

[(
1√
di
Gir)

2

− 2GirGjr√
di + τi

√
di + τi

+ [(
1√
dj

Gjr)
2

]

=
∑

(vi,vj)∈E(Sr,V \Ŝr)

1

µ(Ŝr)
+

∑
(vi,vj)∈E(Ŝr)

2

µ(Ŝr)
(1−

√
didj√

di + τi
√
dj + τj

).
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Let τ̂r := max{τi|vi ∈ Ŝr}, i.e., the maximum corrections among nodes in cluster Ŝr. Then, we
have the following derivations:

GT
:,r(IN − Lτ )G:,r ≤

∑
(vi,vj)∈E(Sr,V \Ŝr)

1

µ(Ŝr)
+

∑
(vi,vj)∈E(Ŝr)

2

µ(Ŝr)
(1−

√
didj√

di + τ̂r
√
dj + τ̂r

)

≤ |E(Ŝr, V \Ŝr)|
µ(Ŝr)

+
2|E(Ŝr)|
µ(Ŝr)

(1− dmin

dmax + τ̂r
)

= ϕ(Ŝr) +
µ(Ŝr)− |E(Ŝr, V \Ŝr)|

µ(Ŝr)
(1− dmin

dmax + τ̂r
)

= ϕ(Ŝr) + (1− ϕ(Ŝr))(1−
dmin

dmax + τ̂r
)

= 1− (1− ϕ(Ŝr))
dmin

dmax + τ̂r
.

Following the same definitions of {hir}, {ûr}, and F̂ in Appendix B, we further have

||ûr −G:,r||22 =

N∑
i=K+2

h2irλ
2
i ≤ 1

1− λK+2
[1− (1− ϕ(Ŝr))

dmin

dmax + τ̂r
],

for each cluster Ŝr. For the whole graph, we have

||F̂−G||2F =

K∑
r=1

||ûr −G:,r||22

≤ K

1− λK+2
− 1

1− λK+2

K∑
r=1

(
dmin

dmax + τ̂r
− dmin

dmax + τ̂r
ϕ(Ŝr))

= K

[
1

1− λK+2
− 1

K(1− λK+2)

K∑
r=1

dmin(1− ϕ(Ŝr))

dmax + τ̂r

]
= KΨAST.

By following the same strategy of the proof of Theorems 3, 5, 7, and 8, we can complete the proof
of Proposition 9.

F FURTHER ANALYSIS OF DCSC

Our analysis of ISC (cf. Section 3) can be easily reduced to other DCSC algorithms. As a demon-
stration, we summarize the corresponding theoretical results for NJW, RSC, SCORE+, ISC, and
ASCENT in Table 9. For simplicity, we use the subscripts (or superscripts) of ‘NJW’, ‘RSC’, ‘SC+’,
‘ISC’, and ‘AST’ to denote corresponding variables of NJW, RSC, SCORE+, ISC, and ASCENT,
respectively. Based on Table 9, we try to answer the following questions.

• Q1: Why can ISC potentially outperform RSC?
• Q2: When can a DCSC algorithm (e.g., RSC) potentially outperform vanilla spectral clus-

tering (i.e., NJW)?
• Q3: When can ASCENT potentially outperform ISC?

F.1 Q1: WHY CAN ISC POTENTIALLY OUTPERFORM RSC?

Suppose RSC and ISC have almost the same approximation ratio α of KMeans. Usually, α may
be related to the dimensionality m of input data (i.e., m = K and m = (K + 1) for RSC and
ISC as summarized in Table 1), depending on the concrete KMeans algorithm (e.g., α = O(logK)
for KMeans++ (Arthur & Vassilvitskii, 2007)). Moreover, suppose RSC and ISC use the same
correction term τ . Then, we have

λRSC
K+1 = λISCK+1 ≥ λISCK+2 ⇒ ΨRSC ≥ ΨISC.
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Table 9: Further theoretical results of DCSC.

Ψ

NJW ΨNJW :=
(
1− λNJW

K+1

)−1
ϕ̄K(G)

RSC ΨRSC :=
(
1− λRSC

K+1

)−1
[
1− d̃(1− ϕ̄K(G))

]
SCORE+ ΨSC+ = (1− λSC+

K+2)
−1

[
1− d̃(1− ϕ̄K(G))

]
ISC ΨISC :=

(
1− λISC

K+2

)−1
[
1− d̃(1− ϕ̄K(G))

]
ASCENT ΨAST :=

(
1− λAST

K+2

)−1
[
1− (d̂− φ̄K(G))

]

Assumptions

NJW ΨNJW ≤ 1/(600αµ̃K)
RSC ΨRSC ≤ 1/(528αµ̃K)
SCORE+ ΨSC+ ≤ 1/[132(1 + λSC+

2 )αµ̃K]
ISC ΨISC ≤ 1/[132(1 + λISC

1 )2αµ̃K]
ASCENT ΨAST ≤ 1/[132(1 + λAST

1 )2αµ̃K]

µ(Cr∆Ŝr) ≤

NJW [300αµ̃KΨNJW]µ(Ŝr)

RSC [264αµ̃KΨRSC]µ(Ŝr)

SCORE+ [66(1 + λSC+
2 )2αµ̃KΨSC+]µ(Ŝr)

ISC [66(1 + λISC
1 )2αµ̃KΨISC]µ(Ŝr)

ASCENT [66(1 + λAST
1 )2αµ̃KΨAST]µ(Ŝr)

ϕ(Cr) ≤

NJW [1 + 600αµ̃KΨNJW]ϕ(Ŝr) + 300αµ̃KΨNJW

RSC [1 + 528αµ̃KΨRSC]ϕ(Ŝr) + 528αµ̃KΨRSC

SCORE+ [1 + 132(1 + λSC+
2 )αµ̃KΨSC+]ϕ(Ŝr) + 132(1 + λSC+

2 )αµ̃KΨSC+

ISC [1 + 132(1 + λISC
1 )2αµ̃KΨISC]ϕ(Ŝr) + 132(1 + λISC

1 )αµ̃KΨISC

ASCENT [1 + 132(1 + λAST
1 )2αµ̃KΨAST]ϕ(Ŝr) + 132(1 + λAST

1 )αµ̃KΨAST

Note that λISC1 < 1. For the upper bond of mis-clustered volume µ(Cr∆Ŝr), we further have

66(1 + λISC1 )2αµ̃KΨISCµ(Ŝr) < 264αµ̃KΨRSCµ(Ŝr),

which indicates that ISC has a tighter upper bound for µ(Cr∆Ŝr) than that of RSC. One can also
reach the same conclusion for conductance ϕ(Cr). Therefore, ISC can potentially achieve better
clustering quality (measured by µ(Cr∆Ŝr) or ϕ(Cr)) than RSC.

F.2 Q2: WHEN CAN A DCSC ALGORITHM POTENTIALLY OUTPERFORM VANILLA SPECTRAL
CLUSTERING?

We first compare the upper bound of µ(Cr∆Ŝr) for NJW and RSC, which is equivalent to comparing
values of 300ΨNJW and 264ΨRSC. When RSC outperforms NJW, RSC is more likely to have a
tighter upper bound of µ(Cr∆Ŝr), which indicates that 300ΨNJW ≥ 264ΨRSC ⇒ (300ΨNJW −
264ΨRSC) ≥ 0. For simplicity, let d̃ := dmin/(dmax + τ). We further have

300ΨNJW − 264ΨRSC =
300

1− λNJW
K+1

ϕ̄K(G)− 264

1− λRSC
K+1

+
264d̃

1− λRSC
K+1

− 264d̃

1− λRSC
K+1

ϕ̄K(G) ≥ 0,

⇒ (
300

1− λNJW
K+1

− 264d̃

1− λRSC
K+1

)ϕ̄K(G) ≥ 264

1− λRSC
K+1

(1− d̃),

⇒ [
300

264

1− λRSC
K+1

1− λNJW
K+1

− d̃]ϕ̄K(G) ≥ (1− d̃),

⇒ 75

66
·
1− λRSC

K+1

1− λNJW
K+1

· dmax + τ

dmax − dmin + τ
− dmin

dmax − dmin + τ
≥ ϕ̄−1K (G).

Let q := (1− λRSC
K+1)/(1− λNJW

K+1 ). Usually, we have λRSC
K+1 ≤ λNJW

K+1 and thus q ≥ 1. Assume RSC
adopts its default setting of τ (i.e., τ = d̄). One can rewrite the aforementioned inequality as

1.14q(dmax + τ)− dmin

dmax − dmin + τ
=

1.14qdmax − dmin + 1.14qd̄

dmax − dmin + d̄
≥ ϕ̄−1K (G).
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To ensure that the aforementioned inequality holds, one may first ensure that the right part ϕ̄−1K (G)
is small enough (i.e., ϕK(G) is large). It implies that the graphG is not so well-clustered, in contrast
to the well-clustered condition (Ng et al., 2001; Mizutani, 2021) interpreted in Section 3. Moreover,
one may also ensure that the left part is large enough. With the increase of degree heterogeneity, the
value of numerator increases faster than that of denominator. Therefore, higher degree heterogeneity
results in a larger value of the left part. In summary, a graph G (i) has a high degree heterogeneity
and (ii) is not so well-clustered, RSC has a tighter upper bound of mis-clustered volume µ(Cr∆Ŝr)
than that of NJW, indicating that RSC may potentially outperform NJW. One can also reach a similar
conclusion by comparing the upper bounds of conductance ϕ(Cr), because the upper bound of
ϕ(Cr) is derived based on that of µ(Cr∆Ŝr).

F.3 Q3: WHEN CAN ASCENT POTENTIALLY OUTPERFORM ISC?

When λISCK+2 ≥ λAST
K+2, we have ΨISC = (1− λISCK+2)

−1[1 − (d̃ − d̃ϕ̄K(G))] ≥ (1− λAST
K+2)

−1[1 −
(d̃− d̃ϕ̄K(G))], with d̃ := dmin/(dmax + τ). We further have

ΨISC −ΨAST ≥ 1

1− λAST
K+2

[(d̂− d̃) + (d̃ϕ̄K(G)− φ̄K(G))]

=
1

1− λAST
K+2

1

K

K∑
r=1

[
(

dmin

dmax + τ̂r
− dmin

dmax + τ
)(1− ϕ(Ŝr))

]

=
1

1− λAST
K+2

1

K

K∑
r=1

[
dmin(τ − τ̂r)

(dmax + τ)(dmax + τ̂r)
(1− ϕ(Ŝr))

]

=
1

1− λAST
K+2

d̃

K

K∑
r=1

[
τ − τ̂r

dmax + τ̂r
(1− ϕ(Ŝr))

]
.

To ensure ΨISC ≥ ΨAST ⇒ ΨISC − ΨAST ≥ 0, which indicates that ASCENT can potentially
outperform ISC, one needs to ensure

K∑
r=1

τ − τ̂r
dmax + τ̂r

(1− ϕ(Ŝr)) ≥ 0.

Therefore, it is possible for ASCENT to satisfy the aforementioned conditions.

G COMPLEXITY ANALYSIS

Given a large-scale graph, we usually have K,L ≪ N < |E|. Assume that the graph to be par-
titioned is sparse. For ASCENT, the time complexity of deriving node-wise corrections {τi} (i.e.,
lines 1-5 in Algorithm 1) is no more than O(|E|L) = O(|E|) by fully utilizing the sparsity of a
graph and the sparse-dense matrix multiplication operation. ASCENT follows the same steps of (i)
ED, (ii) spectral embedding arrangement, (iii) embedding normalization, and (iv) KMeans cluster-
ing with ISC, which have complexities of (i)O((N+ |E|)K) = O(|E|) (using the efficient Lanczos
algorithm (Lehoucq et al., 1998) for ED), (ii) O(NK) = O(N), (iii) O(NK) = O(N), and (iv)
O(NK2t) = O(N) (with t ≪ N as the number of iterations in KMeans), respectively. In sum-
mary, the overall time complexity of ASCENT is about O(|E|). It has the same complexity with
most existing DCSC algorithms. Therefore, the additional step of deriving node-wise corrections
{τi} will not increase the complexity of ASCENT.

H DETAILED EXPERIMENT SETUP

Datasets. Caltech (Red et al., 2011) and Simmons (Red et al., 2011) are two graphs regarding
friendships of two online social networks. PolBlogs (Adamic & Glance, 2005) is a graph constructed
based on the links between blogs with different political leaning. Airport (Chami et al., 2019) is a
graph describing the real-world airline routes as from OpenFlights.org. Wiki (Grover & Leskovec,
2016) is a cooccurrence graph of words that appear in the first million bytes of the Wikipedia dump.
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Table 10: Recommended parameter settings of ASCENT.
LFR-1 LFR-2 SBM-1 SBM-2 Caltech Simmons PolBlogs BioGrid Airport Wiki BlogCatalog ogbn-Protein

θ 1.0 1.0 0.01 0.01 0.1 0.2 0.05 0.1 0.01 0.1 0.1 0.1
L 4 2 1 1 3 3 1 5 1 4 7 2

Table 11: Detailed evaluation results on LFR-1 in terms of NMI↑.
η=0.1 0.3 0.5

NJW 0.8764 (0.0230) 0.5690 (0.1018) 0.2491 (0.1397)
SCORE 0.7715 (0.1217) 0.5977 (0.1322) 0.3019 (0.0835)
RSC 0.8073 (0.0419) 0.5443 (0.0906) 0.3918 (0.0901)
SCORE+ 0.7899 (0.0598) 0.6019 (0.0802) 0.4366 (0.1048)
ISC 0.8801 (0.0278) 0.6527 (0.0827) 0.4416 (0.0947)
GE 0.6170 (0.1227) 0.3894 (0.0998) 0.2060 (0.0548)
GAP 0.0293 (0.1445) 0.0202 (0.1063) 0.0079 (0.0377)
SDCN 0.0166 (0.0628) 0.0037 (0.0067) 0.0156 (0.0207)
MCP 0.6334 (0.1967) 0.1166 (0.1849) 0.0056 (0.0200)
DMoN 0.8064 (0.0532) 0.5536 (0.1224) 0.3029 (0.1115)
DGC 0.8847 (0.0275) 0.6779 (0.0775) 0.4512 (0.0844)
ASCENT 0.8938 (0.0270) 0.6883 (0.0735) 0.4642 (0.0954)
Improvement +1.03% +1.53% +2.88%

BlogCatalog (Grover & Leskovec, 2016) is extracted from social relationships provided by blogger
authors. BioGrid (Stark et al., 2006) and ogbn-Protein (Szklarczyk et al., 2019) are two protein-
protein interaction graphs

During preprocessing, we followed (Qin & Gao, 2010) to extract clustering ground-truth of BioGrid,
where the complex set CYC2008 (Pu et al., 2009) with 231 protein complexes was used as the
reference set. For the rest datasets, we directly used their original formats in our experiments.

Note that we could not use the ground-truth of Wiki and BlogCatalog, which describes overlapping
community structures, since we focus on disjoint graph clustering in this study. As highlighted in
Section 2, we assume that graph attributes are unavailable. The ground-truth of Airport describes
the structural role that each node plays in the graph topology (a.k.a. node identity), which may
preserve information contradicting with clustering structures (Qin & Yeung, 2024; Yan et al., 2024),
so we could also not use its ground-truth for the evaluation of graph clustering. ogbn-Protein is
an attributed graph for the evaluation of node classification. Our evaluation only utilized the graph
topology of this dataset. In particular, we did not use the ground-truth of ogbn-Protein, because it
is unclear that such ground-truth is dominated by graph topology or attributes.

Experiment Environment. All the experiments were conducted on a server with one Intel Xeon
CPU (4214R @2.40GHz), one 24GB memory GPU, 512GB main memory, and Ubuntu Linux OS.
We implemented each spectral clustering method (i.e., NJW, SCORE, RSC, SCORE+, ISC, and
ASCENT) using Python, including the sparse ED supported by SciPy. Moreover, we adopted the
official open-source implementations of all the deep learning baselines (i.e., GraphEncoder, GAP,
SDCN, MinCutPool, DMoN, and DGCluster), which are based on PyTorch or TensorFlow and
thus were ran on the GPU.

Parameter Settings. The details parameter settings of {θ, L} in ASCENT on all the datasets are
depicted in Table 10.

Table 12: Detailed evaluation results on LFR-1 in terms of AC↑.
η=0.1 0.3 0.5

NJW 0.9690 (0.0051) 0.7706 (0.0854) 0.2491 (0.1397)
SCORE 0.8690 (0.1403) 0.8017 (0.1122) 0.3019 (0.0835)
RSC 0.9498 (0.0109) 0.7865 (0.0700) 0.3918 (0.0901)
SCORE+ 0.9188 (0.0861) 0.8403 (0.0407) 0.4366 (0.1048)
ISC 0.9723 (0.0086) 0.8659 (0.0489) 0.4416 (0.0947)
GE 0.8173 (0.0895) 0.6069 (0.1156) 0.2060 (0.0548)
GAP 0.4130 (0.1182) 0.3503 (0.1088) 0.0079 (0.0377)
SDCN 0.4064 (0.1046) 0.3374 (0.0712) 0.0156 (0.0207)
MCP 0.8418 (0.1359) 0.4272 (0.1694) 0.0056 (0.0200)
DMoN 0.9341 (0.0370) 0.7608 (0.0839) 0.3029 (0.1115)
DGC 0.9715 (0.0078) 0.8582 (0.0814) 0.4512 (0.0844)
ASCENT 0.9760 (0.0074) 0.8873 (0.0357) 0.4642 (0.0954)
Improvement +0.38% +2.47% +2.88%

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Table 13: Detailed evaluation results on LFR-1 in terms of conductance↓.
η=0.1 0.3 0.5

NJW 0.1004 (0.0068) 0.3489 (0.0465) 0.5712 (0.0356)
SCORE 0.2168 (0.1307) 0.3964 (0.0982) 0.6610 (0.0953)
RSC 0.1011 (0.0076) 0.3217 (0.0192) 0.5282 (0.0160)
SCORE+ 0.1275 (0.0620) 0.3232 (0.0369) 0.5394 (0.0344)
ISC 0.1000 (0.0098) 0.3179 (0.0145) 0.5231 (0.0144)
GE 0.7349 (0.0919) 0.7902 (0.0663) 0.8718 (0.0473)
GAP 0.6669 (0.1271) 0.7387 (0.1069) 0.8401 (0.0681)
SDCN 0.7092 (0.0822) 0.7678 (0.0722) 0.8665 (0.0503)
MCP 0.1960 (0.1491) 0.6546 (0.1746) 0.8420 (0.0626)
DMoN 0.1192 (0.0491) 0.3638 (0.0583) 0.5745 (0.0392)
DGC 0.1002 (0.0087) 0.3182 (0.0127) 0.5266 (0.0260)
ASCENT 0.0995 (0.0082) 0.3174 (0.0161) 0.5201 (0.0212)
Improvement +0.5% +0.16% +0.57%

Table 14: Detailed evaluation results on LFR-2 in terms of NMI↑.
d=10 20 30

NJW 0.2627 (0.1517) 0.6658 (0.0955) 0.8147 (0.1124)
SCORE 0.3009 (0.0917) 0.6519 (0.1125) 0.8354 (0.0906)
RSC 0.3975 (0.0933) 0.6186 (0.0981) 0.7663 (0.0867)
SCORE+ 0.4472 (0.1021) 0.7181 (0.1177) 0.8564 (0.0690)
ISC 0.4477 (0.0942) 0.7262 (0.0913) 0.8688 (0.0679)
GE 0.2137 (0.0588) 0.3889 (0.0887) 0.5424 (0.0856)
GAP 0.0023 (0.0115) 0.0036 (0.0291) 0.0035 (0.0228)
SDCN 0.0161 (0.0194) 0.0088 (0.0157) 0.0125 (0.0233)
MCP 0.0029 (0.0173) 0.0000 (0.0002) 0.0000 (0.0000)
DMoN 0.2970 (0.1166) 0.4943 (0.1230) 0.5668 (0.1371)
DGC 0.4467 (0.0918) 0.7233 (0.0886) 0.8592 (0.1173)
ASCENT 0.4645 (0.0943) 0.7753 (0.0845) 0.8981 (0.0593)
Improvement +3.75% +6.76% +3.37%

Table 15: Detailed evaluation results on LFR-2 in terms of AC↑.
d=10 20 30

NJW 0.4432 (0.1154) 0.7915 (0.0800) 0.9033 (0.0779)
SCORE 0.4774 (0.1070) 0.7727 (0.1119) 0.8917 (0.0881)
RSC 0.6122 (0.0474) 0.7719 (0.0751) 0.8741 (0.0669)
SCORE+ 0.6630 (0.0573) 0.8538 (0.0738) 0.9361 (0.0429)
ISC 0.6659 (0.0519) 0.8559 (0.0672) 0.9391 (0.0463)
GE 0.3621 (0.0635) 0.5409 (0.1017) 0.6811 (0.0947)
GAP 0.2368 (0.0396) 0.2527 (0.0329) 0.2598 (0.0341)
SDCN 0.2400 (0.0384) 0.2529 (0.0302) 0.2627 (0.0347)
MCP 0.2386 (0.0403) 0.2516 (0.0316) 0.2590 (0.0342)
DMoN 0.4606 (0.0565) 0.6152 (0.0738) 0.6724 (0.1022)
DGC 0.6390 (0.0680) 0.8556 (0.0887) 0.8948 (0.1092)
ASCENT 0.6851 (0.0540) 0.8884 (0.0569) 0.9544 (0.0389)
Improvement +2.88% +3.80% +1.63%

Table 16: Detailed evaluation results on LFR-2 in terms of conductance↓.
d=10 20 30

NJW 0.5710 (0.0368) 0.5318 (0.0214) 0.5137 (0.0119)
SCORE 0.6648 (0.1052) 0.5722 (0.0578) 0.5355 (0.0392)
RSC 0.5394 (0.0154) 0.5260 (0.0148) 0.5166 (0.0133)
SCORE+ 0.5349 (0.0283) 0.5222 (0.0089) 0.5099 (0.0052)
ISC 0.5287 (0.0128) 0.5221 (0.0070) 0.5097 (0.0050)
GE 0.8759 (0.0476) 0.8613 (0.0416) 0.8422 (0.0339)
GAP 0.8502 (0.0592) 0.8305 (0.0502) 0.8185 (0.0450)
SDCN 0.8710 (0.0466) 0.8509 (0.0456) 0.8345 (0.0466)
MCP 0.8503 (0.0600) 0.8321 (0.0493) 0.8191 (0.0458)
DMoN 0.5916 (0.0374) 0.6048 (0.0379) 0.5951 (0.0450)
DGC 0.5306 (0.0356) 0.5169 (0.0263) 0.5212 (0.0297)
ASCENT 0.5172 (0.0147) 0.5114 (0.0089) 0.5057 (0.0064)
Improvement +2.18% +1.06% +0.78%

Table 17: Detailed evaluation results on SBM-1 in terms of NMI↑.
γ=0.5 0.6 0.7

NJW 0.7994 (0.0374) 0.9181 (0.0329) 0.9648 (0.0172)
SCORE 0.7203 (0.0567) 0.8558 (0.0571) 0.9104 (0.0514)
RSC 0.7689 (0.0455) 0.8976 (0.0417) 0.9447 (0.0328)
SCORE+ 0.8208 (0.0331) 0.9299 (0.0246) 0.9702 (0.0127)
ISC 0.8233 (0.0336) 0.9318 (0.0251) 0.9732 (0.0111)
GE 0.6679 (0.0672) 0.8612 (0.0431) 0.9342 (0.0311)
GAP 0.0127 (0.0342) 0.0165 (0.0410) 0.0176 (0.0455)
SDCN 0.2601 (0.0491) 0.3913 (0.0739) 0.4802 (0.0869)
MCP 0.0000 (0.0000) 0.1481 (0.0197) 0.9091 (0.0000)
DMoN 0.7625 (0.0420) 0.8496 (0.0310) 0.8884 (0.0344)
DGC 0.6802 (0.0536) 0.8019 (0.0546) 0.8721 (0.0490)
ASCENT 0.8252 (0.0318) 0.9341 (0.0228) 0.9738 (0.0109)
Improvement +0.23% +0.24% +0.06%
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Table 18: Detailed evaluation results on SBM-1 in terms of AC↑.
γ=0.5 0.6 0.7

NJW 0.8774 (0.0360) 0.9535 (0.0312) 0.9816 (0.0143)
SCORE 0.7886 (0.0668) 0.8855 (0.0716) 0.9262 (0.0625)
RSC 0.8403 (0.0516) 0.9298 (0.0517) 0.9614 (0.0372)
SCORE+ 0.8918 (0.0315) 0.9610 (0.0229) 0.9853 (0.0076)
ISC 0.8962 (0.0318) 0.9618 (0.0255) 0.9866 (0.0084)
GE 0.7628 (0.0742) 0.9070 (0.0516) 0.9541 (0.0387)
GAP 0.1547 (0.0264) 0.1560 (0.0277) 0.1550 (0.0307)
SDCN 0.3509 (0.0632) 0.4731 (0.0912) 0.5458 (0.0985)
MCP 0.0000 (0.0000) 0.1481 (0.0197) 0.9091 (0.0000)
DMoN 0.7933 (0.0596) 0.8507 (0.0457) 0.8752 (0.0591)
DGC 0.6792 (0.0674) 0.7614 (0.0715) 0.8150 (0.0670)
ASCENT 0.9008 (0.0258) 0.9651 (0.0200) 0.9868 (0.0089)
Improvement +0.51% +0.34% +0.02%

Table 19: Detailed evaluation results on SBM-1 in terms of conductance↓.
γ=0.5 0.6 0.7

NJW 0.7054 (0.0063) 0.6621 (0.0075) 0.6280 (0.0055)
SCORE 0.7160 (0.0086) 0.6711 (0.0108) 0.6373 (0.0118)
RSC 0.7097 (0.0073) 0.6652 (0.0086) 0.6318 (0.0085)
SCORE+ 0.7033 (0.0060) 0.6608 (0.0068) 0.6272 (0.0050)
ISC 0.7032 (0.0061) 0.6606 (0.0068) 0.6270 (0.0048)
GE 0.7470 (0.0209) 0.6780 (0.0161) 0.6377 (0.0145)
GAP 0.9072 (0.0049) 0.9066 (0.0061) 0.9066 (0.0065)
SDCN 0.8554 (0.0133) 0.8120 (0.0227) 0.7774 (0.0292)
MCP 0.0000 (0.0000) 0.1481 (0.0197) 0.9091 (0.0000)
DMoN 0.7214 (0.0087) 0.6893 (0.0115) 0.6599 (0.0160)
DGC 0.7791 (0.0198) 0.7344 (0.0244) 0.6957 (0.0271)
ASCENT 0.7027 (0.0058) 0.6602 (0.0065) 0.6268 (0.0047)
Improvement +0.02% +0.06% +0.03%

Table 20: Detailed evaluation results on SBM-2 in terms of NMI↑.
β=2.5 2.75 3

NJW 0.8020 (0.0384) 0.7616 (0.0361) 0.7334 (0.0370)
SCORE 0.7239 (0.0609) 0.6846 (0.0540) 0.6502 (0.0521)
RSC 0.7709 (0.0485) 0.7335 (0.0425) 0.7038 (0.0404)
SCORE+ 0.8206 (0.0347) 0.7829 (0.0308) 0.7536 (0.0338)
ISC 0.8246 (0.0336) 0.7880 (0.0324) 0.7570 (0.0347)
GE 0.6768 (0.0587) 0.6261 (0.0523) 0.5720 (0.0632)
GAP 0.0137 (0.0380) 0.0118 (0.0311) 0.0110 (0.0303)
SDCN 0.2629 (0.0529) 0.2226 (0.0571) 0.1899 (0.0502)
MCP 0.0000 (0.0000) 0.0000 (0.0000) 0.0000 (0.0000)
DMoN 0.7594 (0.0375) 0.7342 (0.0471) 0.6955 (0.0509)
DGC 0.6823 (0.0562) 0.6694 (0.0499) 0.6490 (0.0578)
ASCENT 0.8274 (0.0320) 0.7900 (0.0309) 0.7605 (0.0319)
Improvement +0.34% +0.25% +0.34%

Table 21: Detailed evaluation results on SBM-2 in terms of AC↑.
β = 2.5 2.75 3

NJW 0.8782 (0.0354) 0.8523 (0.0351) 0.8336 (0.0376)
SCORE 0.7927 (0.0704) 0.7577 (0.0637) 0.7366 (0.0597)
RSC 0.8375 (0.0568) 0.8070 (0.0560) 0.7966 (0.0475)
SCORE+ 0.8910 (0.0326) 0.8661 (0.0279) 0.8454 (0.0340)
ISC 0.8954 (0.0315) 0.8705 (0.0319) 0.8521 (0.0334)
GE 0.7703 (0.0634) 0.7319 (0.0530) 0.6868 (0.0674)
GAP 0.1511 (0.0307) 0.1529 (0.0271) 0.1507 (0.0261)
SDCN 0.3680 (0.0660) 0.3287 (0.0630) 0.2962 (0.0588)
MCP 0.1481 (0.0197) 0.1481 (0.0197) 0.1481 (0.0197)
DMoN 0.7917 (0.0511) 0.7781 (0.0631) 0.7498 (0.0658)
DGC 0.6930 (0.0666) 0.6842 (0.0630) 0.6789 (0.0676)
ASCENT 0.8987 (0.0295) 0.8751 (0.0279) 0.8579 (0.0269)
Improvement +0.37% +0.53% +0.68%

Table 22: Detailed evaluation results on SBM-2 in terms of conductance↓.
β = 2.5 2.75 3

NJW 0.7059 (0.0069) 0.7059 (0.0065) 0.7056 (0.0060)
SCORE 0.7163 (0.0092) 0.7160 (0.0085) 0.7165 (0.0072)
RSC 0.7101 (0.0078) 0.7100 (0.0070) 0.7102 (0.0062)
SCORE+ 0.7039 (0.0065) 0.7042 (0.0064) 0.7035 (0.0059)
ISC 0.7038 (0.0066) 0.7039 (0.0065) 0.7035 (0.0060)
GE 0.7461 (0.0193) 0.7542 (0.0181) 0.7639 (0.0196)
GAP 0.9069 (0.0058) 0.9071 (0.0050) 0.9071 (0.0050)
SDCN 0.8540 (0.0153) 0.8632 (0.0149) 0.8716 (0.0147)
MCP 0.9091 (0.0000) 0.9091 (0.0000) 0.9091 (0.0000)
DMoN 0.7221 (0.0078) 0.7186 (0.0086) 0.7175 (0.0072)
DGC 0.7759 (0.0207) 0.7761 (0.0174) 0.7745 (0.0195)
ASCENT 0.7032 (0.0064) 0.7033 (0.0064) 0.7029 (0.0056)
Improvement +0.09% +0.09% +0.09%

24



1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Table 23: Detailed evaluation results on Caltech and Simmons.
Caltech Simmons

NMI↑ AC↑ Cond↓ NMI↑ AC↑ Cond↓
NJW 0.6213 (0.0032) 0.7539 (0.0043) 0.5076 (0.0007) 0.6796 (0.0000) 0.7344 (0.0000) 0.3387 (0.0000)
SCORE 0.5639 (0.0035) 0.6905 (0.0028) 0.5012 (0.0004) 0.5853 (0.0002) 0.7639 (0.0004) 0.2992 (0.0001)
RSC 0.5858 (0.0011) 0.7105 (0.0007) 0.4986 (0.0002) 0.6152 (0.0011) 0.7861 (0.0009) 0.2888 (0.0001)
SCORE+ 0.6914 (0.0063) 0.8285 (0.0047) 0.4844 (0.0017) 0.7295 (0.0000) 0.8881 (0.0004) 0.2741 (0.0002)
ISC 0.7028 (0.0021) 0.8373 (0.0019) 0.4832 (0.0002) 0.7357(0.0000) 0.8936 (0.0000) 0.2735 (0.0000)
GE 0.3675 (0.0811) 0.4444 (0.0803) 0.6897 (0.0417) 0.4919 (0.0337) 0.5886 (0.0876) 0.4813 (0.0570)
GAP 0.6580 (0.0366) 0.7559 (0.0699) 0.4994 (0.0124) 0.4869 (0.2484) 0.5796 (0.1529) 0.4084 (0.1778)
SDCN 0.2850 (0.0746) 0.3403 (0.0610) 0.7479 (0.0403 0.3828 (0.0856) 0.5391 (0.0767) 0.5139 (0.0870)
MCP 0.5057 (0.2537) 0.6332 (0.2387) 0.5816 (0.1468) 0.6466 (0.0231) 0.8290 (0.0100) 0.2980 (0.0035)
DMoN 0.6629 (0.0011) 0.7247 (0.0014) 0.5397 (0.0063) 0.6364 (0.0035) 0.8120 (0.0064) 0.2800 (0.0003)
DGC 0.6675 (0.0159) 0.7532 (0.0298) 0.5192 (0.0263) 0.7053 (0.0200) 0.7974 (0.0437) 0.3318 (0.0432)
ASCENT 0.7120 (0.0105) 0.8441 (0.0056) 0.4828 (0.0002) 0.7406 (0.0000) 0.8962 (0.0000) 0.2734 (0.0000)
Improvement +1.31% +0.81% +0.08% +0.67% +0.29% +0.04%

Table 24: Detailed evaluation results on PolBlogs and BioGrid.
PolBlogs BioGrid

NMI↑ AC↑ Cond↓ NMI↑ AC↑ Cond↓
NJW 0.0006 (0.0000) 0.5188 (0.0000) 0.2694 (0.0000) 0.4183 (0.0034) 0.1284 (0.0020) 0.6620 (0.0048)
SCORE 0.7250 (0.0000) 0.9525 (0.0000) 0.0767 (0.0000) 0.1393 (0.0072) 0.0737 (0.0034) 0.9090 (0.0083)
RSC 0.7133 (0.0000) 0.9476 (0.0000) 0.0734 (0.0000) 0.4364 (0.0012) 0.1352 (0.0010) 0.6607 (0.0038)
SCORE+ 0.7308 (0.0000) 0.9533 (0.0000) 0.0753 (0.0000) 0.2436 (0.0099) 0.0944 (0.0034) 0.8202 (0.0053)
ISC 0.7267 (0.0000) 0.9509 (0.0000) 0.0735 (0.0000) 0.4321 (0.0016) 0.1326 (0.0021) 0.6607 (0.0036)
GE 0.0615 (0.0063) 0.5188 (0.0046) 0.5013 (0.0003) 0.3174 (0.0027) 0.1128 (0.0041) 0.9851 (0.0014)
GAP 0.4289 (0.3502) 0.7782 (0.2105) 0.2440 (0.2090) 0.4418 (0.0058) 0.1340 (0.0029) 0.8040 (0.0169)
SDCN 0.1496 (0.0767) 0.6293 (0.0560) 0.2848 (0.1107) 0.2077 (0.0225) 0.0844 (0.0052) 0.9583 (0.0044)
MCP 0.5815 (0.2908) 0.8656 (0.1726) 0.1626 (0.1687) 0.0000 (0.0000) 0.0443 (0.0000) 0.9877 (0.0000)
DMoN 0.7116 (0.0053) 0.9491 (0.0013) 0.0747 (0.0001) 0.4173 (0.0048) 0.1291 (0.0038) 0.7974 (0.0162)
DGC 0.7121 (0.0098) 0.9491 (0.0014) 0.0742 (0.0006) 0.2163 (0.0229) 0.0774 (0.0066) 0.9104 (0.0023)
ASCENT 0.7348 (0.0000) 0.9534 (0.0000) 0.0731 (0.0000) 0.4328 (0.0027) 0.1359 (0.0020) 0.6488 (0.0041)
Improvement +0.55% +0.01% +0.41% – +0.52% +1.80%

Table 25: Detailed evaluation results on Airport and Wiki in terms of conductance↓.
Airport Wiki

K=2 8 32 K=2 8 32
NJW 0.0167 (0.0000) 0.1016 (0.0057) 0.1948 (0.0103) 0.4016 (0.0000) 0.7432 (0.0007) 0.8532 (0.0013)
SCORE 0.1095 (0.0000) 0.7498 (0.0233) 0.8582 (0.0056) 0.4029 (0.0001) 0.8273 (0.0036) 0.9208 (0.0032)
RSC 0.0609 (0.0000) 0.2344 (0.0002) 0.3711 (0.0040) 0.3775 (0.0000) 0.7306 (0.0002) 0.8532 (0.0005)
SCORE+ 0.0519 (0.0008) 0.5248 (0.0173) 0.7147 (0.0179) 0.3906 (0.0001) 0.7569 (0.0002) 0.8687 (0.0023)
ISC 0.0424 (0.0000) 0.2170 (0.0049) 0.3504 (0.0047) 0.3791 (0.0001) 0.7331 (0.0002) 0.8578 (0.0011)
GE 0.4814 (0.0272) 0.8427 (0.0179) 0.9258 (0.0169) 0.5208 (0.0024) 0.8902 (0.0010) 0.9723 (0.0005)
GAP 0.3200 (0.2205) 0.8750 (0.0000) 0.9688 (0.0000) 0.4466 (0.0655) 0.8750 (0.0000) 0.9688 (0.0000)
SDCN 0.1783 (0.0335) 0.8606 (0.0087) 0.9273 (0.0141) 0.5000 (0.0000) 0.8730 (0.0050) 0.9641 (0.0012)
MCP 0.0880 (0.0365) 0.2380 (0.0179) 0.5433 (0.1725) 0.5000 (0.0000) 0.8750 (0.0000) 0.9688 (0.0000)
DMoN 0.0644 (0.0105) 0.2040 (0.0123) 0.5100 (0.0200) 0.3709 (0.0021) 0.7725 (0.0091) 0.9159 (0.0036)
DGC 0.0575 (0.0124) 0.1354 (0.0155) 0.6980 (0.0196) 0.3745 (0.0045) 0.8353 (0.0099) 0.9596 (0.0023)
ASCENT 0.0167 (0.0000) 0.0997 (0.0046) 0.1885 (0.0068) 0.3743 (0.0001) 0.7200 (0.0002) 0.8477 (0.0014)
Improvement – +1.87% +3.23% +0.85% +1.45% +0.64%

Table 26: Detailed evaluation results on BlogCatalog and ogbn-Protein in terms of conductance↓.
BlogCatalog ogbn-Protein

K=2 8 32 K=2 8 32
NJW 0.2935 (0.0000) 0.6783 (0.0003) 0.8279 (0.0011) 0.0634 (0.0000) 0.1192 (0.0009) 0.4136 (0.0032)
SCORE 0.2965 (0.0000) 0.7784 (0.0027) 0.9367 (0.0064) 0.2238 (0.0001) 0.4469 (0.0224) 0.8242 (0.0049)
RSC 0.2924 (0.0000) 0.6656 (0.0028) 0.8174 (0.0018) 0.1203 (0.0006) 0.1587 (0.0038) 0.3663 (0.0054)
SCORE+ 0.2933 (0.0000) 0.6995 (0.0003) 0.8619 (0.0025) 0.0709 (0.0000) 0.2192 (0.0113) 0.6433 (0.0143)
ISC 0.2926 (0.0000) 0.6502 (0.0001) 0.8143 (0.0017) 0.0693 (0.0000) 0.1488 (0.0001) 0.3464 (0.0071)
GE 0.4959 (0.0000) 0.8749 (0.0016) 0.9678 (0.0003) OOM
GAP 0.4181 (0.1003) 0.8750 (0.0000) 0.9688 (0.0000) OOT
SDCN 0.4987 (0.0404) 0.8544 (0.0185) 0.9580 (0.0063) OOM
MCP 0.3415 (0.0793) 0.8697 (0.0063) 0.9682 (0.0011) OOM
DMoN 0.4289 (0.0188) 0.7595 (0.0147) 0.9028 (0.0045) OOM
DGC 0.2989 (0.0022) 0.7773 (0.0244) 0.9434 (0.0041) OOM
ASCENT 0.2923 (0.0000) 0.6422 (0.0034) 0.8068 (0.0010) 0.0347 (0.0000) 0.1106 (0.0050) 0.3320 (0.0043)
Improvement +0.10% +1.23% +0.92% +45.27% +7.21% +4.16%
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Figure 4: Parameter analysis of θ on Caltech in
terms of NMI↑, AC↑, and conductance↓.

Table 27: Evaluation of runtime↓ (sec) on datasets with ground-truth.
Caltech Simmons PolBlogs BioGrid

Total τ ED KM Total τ ED KM Total τ ED KM Total τ ED KM
NJW 0.13 N/A 0.10 0.03 0.23 N/A 0.21 0.03 0.17 N/A 0.14 0.03 1.00 N/A 0.84 0.16
SCORE 0.10 N/A 0.07 0.03 0.20 N/A 0.17 0.03 0.15 N/A 0.13 0.02 0.80 N/A 0.63 0.17
RSC 0.13 N/A 0.10 0.03 0.19 N/A 0.16 0.03 0.15 N/A 0.13 0.02 0.86 N/A 0.76 0.10
SCORE+ 0.13 N/A 0.11 0.02 0.31 N/A 0.28 0.03 0.16 N/A 0.13 0.02 0.74 N/A 0.64 0.10
ISC 0.17 N/A 0.14 0.03 0.23 N/A 0.20 0.03 0.21 N/A 0.19 0.02 0.93 N/A 0.82 0.11
GE 4.36 N/A N/A N/A 4.85 N/A N/A N/A 4.12 N/A N/A N/A 122.01 N/A N/A N/A
GAP 21.92 N/A N/A N/A 32.85 N/A N/A N/A 4.29 N/A N/A N/A 648.30 N/A N/A N/A
SDCN 0.97 N/A N/A N/A 0.99 N/A N/A N/A 3.23 N/A N/A N/A 218.64 N/A N/A N/A
MCP 91.31 N/A N/A N/A 163.51 N/A N/A N/A 54.15 N/A N/A N/A 350.96 N/A N/A N/A
DMoN 101.79 N/A N/A N/A 174.15 N/A N/A N/A 257.95 N/A N/A N/A 579.64 N/A N/A N/A
DGC 81.26 N/A N/A N/A 131.59 N/A N/A N/A 164.26 N/A N/A N/A 559.25 N/A N/A N/A
ASCENT 0.15 0.01 0.11 0.03 0.24 0.03 0.18 0.03 0.17 0.02 0.13 0.02 1.02 0.07 0.81 0.14

I DETAILED EXPERIMENT RESULTS

Quantitative Evaluation Results. On each dataset, we recorded the mean m and standard deriva-
tion s of each quality metric. Detailed evaluation results in the format of ‘m (s)’ are depicted in
Tables 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, and 26, where each quality metric is
in bold or underlined if it performs the best or second-best.

Further Parameter Analysis. Example analysis results of θ on Caltech are visualized in Fig. 4,
where we adjusted θ ∈ {0.01, 0.05, 0.1, 0.2, · · · , 1, 2, 5, 10}. In summary, we recommend adjusting
L ∈ {1, 2, · · · , 10} and θ ∈ {0.01, 0.05, 0.1, 0.5, 1.0} for ASCENT.

Efficiency Analysis. In addition to the clustering quality, we further evaluated the efficiency of each
method in terms of its overall runtime (sec) to get a feasible clustering result. In particular, we also
recorded the runtime of different steps for each spectral clustering method. Results of the efficiency
analysis on all the real datasets are depicted in Tables 27, 28, 29, and 30, where (i) τ , (ii) ED, and
(iii) KM denote the runtime of (i) deriving node-wise corrections {τi} (only for ASCENT), (ii)
eigen-decomposition of the corresponding graph Laplacian, and (iii) KMeans clustering (including
the arrangement and normalization of corresponding spectral embeddings), respectively.

Compared with deep graph clustering approaches (e.g., GE and GAP) which involve a time-
consuming learning procedure (e.g., gradient descent to iteratively update model parameters), all
the spectral clustering methods can achieve significantly better efficiency. Moreover, ED is the ma-
jor bottleneck for all the spectral clustering algorithms. For ASCENT, the derivation of node-wise
corrections {τi} would not significantly increase the overall runtime compared with other spectral
clustering baselines. In summary, ASCENT can still achieve high inference efficiency close to that
of other conventional spectral clustering methods.

J LIMITATIONS AND FUTURE DIRECTIONS

Clustering on Attributed Graphs. As described in Section 2, we followed the conventional prob-
lem statement of graph clustering where topology is the only available information source (without
any attributes), due to the complicated corrections between graph topology and attributes. In our
future work, we will analyze DCSC on attributed graphs with the consideration of the possible in-
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Table 28: Evaluation of runtime↓ (sec) with K = 2 on datasets without ground-truth.
Airport Wiki BlogCatalog ogbn-Protein

Total τ ED KM Total τ ED KM Total τ ED KM Total τ ED KM
NJW 0.23 N/A 0.20 0.03 0.88 N/A 0.84 0.04 1.63 N/A 1.61 0.03 201.94 N/A 201.77 0.17
SCORE 0.18 N/A 0.16 0.02 0.35 N/A 0.32 0.03 0.88 N/A 0.85 0.03 80.42 N/A 80.16 0.27
RSC 0.22 N/A 0.18 0.03 0.76 N/A 0.73 0.03 1.89 N/A 1.86 0.03 189.30 N/A 189.07 0.23
SCORE+ 0.21 N/A 0.18 0.03 0.78 N/A 0.74 0.03 1.92 N/A 1.89 0.03 182.00 N/A 181.79 0.21
ISC 0.21 N/A 0.19 0.02 0.60 N/A 0.57 0.03 1.86 N/A 1.82 0.04 172.51 N/A 172.27 0.24
GE 8.40 N/A N/A N/A 16.80 N/A N/A N/A 128.60 N/A N/A N/A OOM N/A N/A N/A
GAP 38.74 N/A N/A N/A 116.62 N/A N/A N/A 241.89 N/A N/A N/A OOT N/A N/A N/A
SDCN 16.33 N/A N/A N/A 321.51 N/A N/A N/A 133.26 N/A N/A N/A OOM N/A N/A N/A
MCP 125.90 N/A N/A N/A 116.98 N/A N/A N/A 113.26 N/A N/A N/A OOM N/A N/A N/A
DMoN 105.39 N/A N/A N/A 790.42 N/A N/A N/A 682.02 N/A N/A N/A OOM N/A N/A N/A
DGC 60.47 N/A N/A N/A 634.26 N/A N/A N/A 642.09 N/A N/A N/A OOM N/A N/A N/A
ASCENT 0.26 0.02 0.21 0.02 0.76 0.10 0.62 0.04 2.36 0.36 1.93 0.07 242.29 41.41 198.24 2.64

Table 29: Evaluation of runtime↓ (sec) with K = 8 on datasets without ground-truth.
Airport Wiki BlogCatalog ogbn-Protein

Total τ ED KM Total τ ED KM Total τ ED KM Total τ ED KM
NJW 0.29 N/A 0.27 0.02 0.82 N/A 0.78 0.03 1.85 N/A 1.81 0.04 200.58 N/A 200.50 0.08
SCORE 0.25 N/A 0.24 0.01 0.37 N/A 0.33 0.04 0.97 N/A 0.96 0.01 86.48 N/A 86.40 0.07
RSC 0.26 N/A 0.25 0.01 0.76 N/A 0.74 0.02 2.02 N/A 2.00 0.02 194.82 N/A 194.74 0.08
SCORE+ 0.26 N/A 0.25 0.01 0.77 N/A 0.75 0.02 1.82 N/A 1.80 0.02 188.81 N/A 188.74 0.07
ISC 0.28 N/A 0.27 0.01 0.61 N/A 0.59 0.02 1.88 N/A 1.86 0.02 202.37 N/A 202.25 0.12
GE 9.25 N/A N/A N/A 20.98 N/A N/A N/A 133.09 N/A N/A N/A OOM N/A N/A N/A
GAP 58.85 N/A N/A N/A 134.81 N/A N/A N/A 301.02 N/A N/A N/A OOT N/A N/A N/A
SDCN 13.46 N/A N/A N/A 333.90 N/A N/A N/A 139.26 N/A N/A N/A OOM N/A N/A N/A
MCP 125.84 N/A N/A N/A 112.09 N/A N/A N/A 115.71 N/A N/A N/A OOM N/A N/A N/A
DMoN 105.27 N/A N/A N/A 792.56 N/A N/A N/A 625.64 N/A N/A N/A OOM N/A N/A N/A
DGC 59.54 N/A N/A N/A 634.21 N/A N/A N/A 634.89 N/A N/A N/A OOM N/A N/A N/A
ASCENT 0.30 0.02 0.27 0.01 0.93 0.16 0.73 0.04 2.49 0.43 2.04 0.02 240.83 45.56 195.18 0.09

consistency between the two sources (Newman & Clauset, 2016; Qin et al., 2018; Wang et al., 2020;
Qin & Lei, 2021).

Learnable Node-wise Corrections {τi}. In ASCENT, we still manually set the node-wise correc-
tions {τi} by adjusting hyper-parameters {θ, L}. We plan to extend it to a more advanced setting
with learnable node-wise corrections {τi} and provide theoretical analysis combined with recent
advances in GNNs

Better Efficiency and Scalability. As demonstrated in our efficiency analysis (cf. Appendix I),
ED is the major bottleneck of ASCENT. We intend to further improve the efficiency and scalability
of this bottleneck using the advanced Locally Optimal Block Preconditioned Conjugate Gradient
(LOBPCG) solver (Knyazev, 2001; Zhuzhunashvili & Knyazev, 2017) and consider its parallel im-
plementations (Yamada et al., 2022).

Other Graph Clustering Objectives. In this study, we only considered the conductance mini-
mization objective (or equivalently normalized cut minimization) as defined in Definition 1. Spec-
tral clustering can be considered as an approximated algorithm for a relaxed version of this objec-
tive. Some graph clustering algorithms may consider other objectives (e.g., ratio-cut minimization
(Von Luxburg, 2007) and modularity maximization (Newman, 2006; Yu & Ding, 2010; Qin et al.,
2024)) that have relations close to conductance minimization. We also plan to further extend our
analysis to these objectives.

Improved Analysis with Looser Conditions. As discussed in Section 3, the condition in Theo-
rem 8 implies an assumption that (i) G is well-clustered and (ii) the degree heterogeneity is not so
high. It is possible for a given graph G that this condition may not hold. In our future work, we
intend to further improve this condition by extending some new theoretical results on the combinato-
rial optimization problem of graph-cut minimization (e.g., conductance minimization in this paper)
to DCSC.
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Table 30: Evaluation of runtime↓ (sec) with K = 32 on datasets without ground-truth.
Airport Wiki BlogCatalog ogbn-Protein

Total τ ED KM Total τ ED KM Total τ ED KM Total τ ED KM
NJW 0.38 N/A 0.37 0.01 1.00 N/A 0.96 0.04 2.10 N/A 2.04 0.07 201.61 N/A 201.21 0.40
SCORE 0.31 N/A 0.30 0.01 0.42 N/A 0.39 0.03 1.18 N/A 1.15 0.03 98.87 N/A 98.61 0.26
RSC 0.34 N/A 0.33 0.01 0.82 N/A 0.79 0.03 2.31 N/A 2.20 0.11 189.30 N/A 189.07 0.23
SCORE+ 0.32 N/A 0.31 0.01 0.98 N/A 0.91 0.07 2.17 N/A 2.11 0.07 204.08 N/A 203.70 0.38
ISC 0.31 N/A 0.30 0.01 0.73 N/A 0.68 0.05 2.07 N/A 2.02 0.05 257.38 N/A 256.94 0.44
GE 12.92 N/A N/A N/A 20.19 N/A N/A N/A 135.09 N/A N/A N/A OOM N/A N/A N/A
GAP 74.08 N/A N/A N/A 178.94 N/A N/A N/A 450.36 N/A N/A N/A OOT N/A N/A N/A
SDCN 18.92 N/A N/A N/A 343.42 N/A N/A N/A 161.03 N/A N/A N/A OOM N/A N/A N/A
MCP 126.05 N/A N/A N/A 109.82 N/A N/A N/A 112.79 N/A N/A N/A OOM N/A N/A N/A
DMoN 105.31 N/A N/A N/A 798.33 N/A N/A N/A 763.28 N/A N/A N/A OOM N/A N/A N/A
DGC 60.29 N/A N/A N/A 633.89 N/A N/A N/A 638.75 N/A N/A N/A OOM N/A N/A N/A
ASCENT 0.38 0.02 0.35 0.01 1.10 0.16 0.90 0.04 2.78 0.40 2.34 0.04 246.39 44.02 202.04 0.33

28


	Introduction
	Problem Statements & Preliminaries
	Proposed Analysis: A Pure Spectral View
	Extension of DCSC: ASCENT
	Experiments
	Experiment Setup
	Parameter Analysis
	Synthetic Graph Analysis
	Real Graph Evaluation

	Conclusion
	Related Work of Deep Graph Clustering Methods
	Proof of Theorem 3
	Proof of Lemma 4
	Proof of Theorem 8
	Proof of Proposition 9
	Further Analysis of DCSC
	Q1: Why can ISC potentially outperform RSC?
	Q2: When can a DCSC algorithm potentially outperform vanilla spectral clustering?
	Q3: When can ASCENT potentially outperform ISC?

	Complexity Analysis
	Detailed Experiment Setup
	Detailed Experiment Results
	Limitations and Future Directions

