RETHINKING DEGREE-CORRECTED SPECTRAL CLUS TERING: A PURE SPECTRAL ANALYSIS & EXTENSION

Anonymous authors

Paper under double-blind review

ABSTRACT

Spectral clustering is a representative graph clustering technique with strong interpretability and theoretical guarantees. Recently, degree-corrected spectral clustering (DCSC) has emerged as the state-of-the-art for this technique. While prior studies have provided several theoretical results for DCSC, their analysis relies on some random graph models (e.g., stochastic block models). In this study, we explore an alternative analysis of DCSC from a pure spectral view. It gives rigorous bounds for the mis-clustered volume and conductance w.r.t. the optimal solution while involving quantities that indicate impacts of (i) high degree heterogeneity and (ii) weak clustering structures to DCSC. Inspired by recent advances in graph neural networks (GNNs) and the associated over-smoothing issue, we propose ASCENT (Adaptive Spectral ClustEring with Node-wise correcTion), a simple yet effective extension of DCSC. Different from most DCSC methods with a constant degree correction for all nodes, ASCENT follows a node-wise correction scheme. It can assign different corrections for nodes via the mean aggregation of GNNs. We further demonstrate that (i) ASCENT reduces to conventional DCSC methods when encountering over-smoothing and (ii) some early stages before over-smoothing can potentially obtain better clustering quality.

1 INTRODUCTION

029 030 031

037

004

010 011

012

013

014

015

016

017

018

019

021

024

025

026

027 028

Graph clustering (a.k.a. disjoint community detection) is a classic inference task that partitions nodes of a graph into densely connected groups (a.k.a. clusters or communities). Since the extracted clusters have been validated to correspond to some substructures of real-world systems (e.g., functional groups in protein interactions (Berahmand et al., 2021)), many network applications (e.g., protein complex detection (Qin & Gao, 2010), cellular network decomposition (Dai & Bai, 2017), and Internet traffic profiling (Qin et al., 2019)) are formulated as graph clustering.

Spectral clustering is one of the representative techniques for this task. As summarized in Table 1, a typical spectral clustering algorithm includes the (I) eigen-decomposition (ED) on graph Laplacian, (II) arrangement of spectral embedding, (III) normalization of the arranged embedding, and (IV) 040 KMeans clustering. In Table 1, A and D are the adjacency matrix and corresponding degree diag-041 onal matrix of a graph; K is a pre-set number of clusters; λ_r denotes the r-th largest eigenvalue of 042 graph Laplacian L (e.g., $L := D^{-1/2}AD^{-1/2}$ and L := A for *NJW* (Ng et al., 2001) and *SCORE* 043 (Jin, 2015)) with $\mathbf{u}_r \in \mathbb{R}^N$ as the corresponding eigenvector. Different spectral clustering algo-044 rithms usually differ in terms of the four steps. For instance, NJW, SCORE, and RSC (Qin & Rohe, 2013) only consider eigenvectors $(\mathbf{u}_1, \cdots, \mathbf{u}_K)$ w.r.t. the leading K eigenvalues. Whereas, step (II) of SCORE+ (Jin et al., 2021) and ISC (Qing & Wang, 2020a) involves $(\mathbf{u}_1, \cdots, \mathbf{u}_K, \mathbf{u}_{K+1})$, 046 which are further reweighted by corresponding (K+1) eigenvalues $(\lambda_1, \dots, \lambda_K, \lambda_{K+1})$. Moreover, 047 *NJW*, *RSC*, and *ISC* adopt the row-wise l_2 -normalization in step (III), while *SCORE* and *SCORE*+ 048 use (reweighted) \mathbf{u}_1 to conduct column-wise normalization. 049

050 Recently, degree-corrected spectral clustering (DCSC), a.k.a. regularized spectral clustering in some **051** literature (Qin & Rohe, 2013; Zhang & Rohe, 2018), has emerged as a state-of-the-art class of **052** spectral clustering methods, due to their effectiveness in handling the high degree heterogeneity of **053** graphs. These approaches usually incorporate an additional degree correction term τ in their graph Laplacian for ED (e.g., *RSC*, *SCORE*+, and *ISC* with different settings of τ in Table 1).

063

Table 1: Summary of some spectral clustering algorithms, where $\mathbf{D}_{\tau} := \mathbf{D} + \tau \mathbf{I}_N$; τ is the degree correction term in DCSC, with $\tau = \bar{d}$, δd_{\max} , and $\delta (d_{\min} + d_{\max})/2$ for *RSC*, *SCORE*+, and *ISC* (e.g., $\delta = 0.1$); \bar{d} , d_{\min} , and d_{\max} are the average, minimum, and maximum node degrees.

	<i>,, ,</i> <u>, , , , , , , , , , , , , , , , ,</u>	uit 0 /	6	
	Step (I)	Step (II)	Step (III)	Step (IV)
NJW	ED on $\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}$	$\mathbf{F} := [\mathbf{u}_1, \cdots, \mathbf{u}_K]$	$i \in [1, N], \mathbf{F}_{i,:} \leftarrow \mathbf{F}_{i,:} / \mathbf{F}_{i,:} _2$	
SCORE	ED on A	$\mathbf{F} := [\mathbf{u}_2, \cdots, \mathbf{u}_K]$	$r \in [1, K-1], \mathbf{F}_{:,r} \leftarrow \mathbf{F}_{:,r}/\mathbf{u}_1$	KMeans
RSC		$\mathbf{F} := [\mathbf{u}_1, \cdots, \mathbf{u}_K]$	$i \in [1, N], \mathbf{F}_{i,:} \leftarrow \mathbf{F}_{i,:} / \mathbf{F}_{i,:} _2$	on rows
SCORE+	ED on $\mathbf{D}_{\tau}^{-1/2} \mathbf{A} \mathbf{D}_{\tau}^{-1/2}$	$\mathbf{F} := [\lambda_2 \mathbf{u}_2, \cdots, \lambda_{K+1} \mathbf{u}_{K+1}]$	$r \in [1, K], \mathbf{F}_{:,r} \leftarrow \mathbf{F}_{:,r}/(\lambda_1 \mathbf{u}_1)$	of F
ISC		$\mathbf{F} := [\lambda_1 \mathbf{u}_1, \cdots, \lambda_{K+1} \mathbf{u}_{K+1}]$	$i \in [1, N], \mathbf{F}_{i,:} \leftarrow \mathbf{F}_{i,:} / \mathbf{F}_{i,:} _2$	

Table 2: Summary of representative theoretical analysis among DCSC, where most related studies rely on the assumption of a random graph model and give bounds w.r.t. such a model.

Analysis	Rand Model	Theoretical Bounds	Analysis	Rand Model	Theoretical Bounds
(Chaudhuri et al., 2012)	EPP model	EPP's optimal separation	(Qing & Wang, 2020a)	DCSBM	Hamming error wrt
(Qin & Rohe, 2013) DCSBM		Misclustered rate w.r.t.	(Qing & Wang, 2020b)	DCSBM	DCSBM's and
(Amini et al., 2013)	DCSBM	DCSBM's groundtruth	(Jin et al., 2021)	DCSBM	DC3DIVI 5 glid
(Zhang & Rohe, 2018)	DCSBM	Conductance	Ours	N/A	Misclustered vol. &
					conductance w.r.t.
					optimal solution

Related Theoretical Analysis on DCSC. In the past few decades, a series of spectral clustering
 methods have been proposed. Ding et al. (2024) provided a comprehensive overview of related
 research. Table 2 summarizes some representative theoretical results regarding DCSC. We introduce
 more related work about recent advances in deep graph clustering in Appendix A.

074 As in Table 2, Chaudhuri et al. (2012) proposed a DCSC method for graphs drawn from an extended 075 planted partition (EPP) model (Condon & Karp, 2001) and examined the performance guarantees. 076 Qin & Rohe (2013) analyzed the potential of *RSC* to handle the high degree heterogeneity of graphs 077 using the degree-corrected stochastic blockmodel (DCSBM) (Karrer & Newman, 2011) and provided guidance on the choice of τ . (Zhang & Rohe, 2018) theoretically studied the (i) failures of spectral clustering and (ii) benefits of degree correction based on the relationship between graph 079 conductance and spectral clustering. Amini et al. (2013) introduced a fast pseudo-likelihood method for fitting DCSBM with theoretical guarantees, where a DCSC algorithm with perturbations was 081 used for initialization. Qing & Wang (2020a) and Jin et al. (2021) proposed ISC and SCORE+, 082 which were further validated to be effective in handling the (i) high degree heterogeneity and (ii) 083 weak clustering structures (a.k.a. weak signals in (Qing & Wang, 2020b;a; Jin et al., 2021)) via the 084 theoretical analysis based on DCSBM. 085

In summary, most existing theoretical studies of DCSC rely on some assumptions of random graph models (e.g., EPP model and DCSBM). They usually fit the adjacency matrix or graph Laplacian using a certain random graph model (e.g., $\mathcal{A} := \Theta \mathbf{Z} \mathbf{B} \mathbf{Z}^T \Theta$ (Qin & Rohe, 2013) with { $\Theta, \mathbf{Z}, \mathbf{B}$ } as notations defined in DCSBM) and further give theoretical bounds related to such a model (e.g., mis-clustered rate and Hamming error w.r.t. the ground-truth given by DCSBM).

Present Analysis on DCSC & Extension. Spectral clustering is a typical approximated algorithm 091 for the NP-hard combinatorial optimization problem of conductance minimization (Von Luxburg, 092 2007). Based on this nature, some early studies (Peng et al., 2015; Mizutani, 2021) analyzed vanilla spectral clustering (e.g., NJW) using the spectral graph theory. Motivated by these studies, we 094 consider an alternative analysis for DCSC from a pure spectral view, instead of using random graph 095 models. Different from existing analysis on DCSC with bounds related to a random graph model, 096 we provide theoretical bounds for the mis-clustered volume and conductance w.r.t. the optimal 097 solution to conductance minimization. In contrast to early spectral-based studies on vanilla spectral 098 clustering (Peng et al., 2015; Mizutani, 2021), our analysis involves additional quantities about (i) 099 degree heterogeneity and (ii) weakness of clustering structures, which can help reveal impacts of (i) high degree heterogeneity and (ii) weak clustering structures to DCSC. 100

Inspired by recent advances in graph neural networks (GNNs) and the associated over-smoothing issue (Rusch et al., 2023), we propose ASCENT (<u>A</u>daptive <u>Spectral ClustEring</u> with <u>N</u>ode-wise correcTion), a simple yet effective extension of DCSC. Instead of using a constant correction term τ for all nodes (e.g., *RSC*, *SCORE*+, and *ISC* in Table 1), ASCENT follows a node-wise correction scheme, where nodes { v_i } are allowed to be assigned with different corrections { τ_i }. Such a scheme iteratively updates { τ_i } via the mean aggregation of GNNs, where nodes { v_i } with more common high-order neighbors (e.g., in the same cluster) are more likely to have close { τ_i }. Consistent with the over-smoothing issue of GNNs, { τ_i } will finally converge to a constant. In this case, ASCENT

reduces to conventional DCSC methods. Our experiments demonstrate that some early stages of this updating procedure (i.e., before over-smoothing) can potentially result in better clustering quality. 110

111 112

2 **PROBLEM STATEMENTS & PRELIMINARIES**

113 In general, an undirected and unweighted simple graph can be represented as a 2-tuple G := (V, E), 114 where $V := \{v_1, \dots, v_N\}$ and $E := \{(v_i, v_j) | v_i, v_j \in V\}$ are the sets of nodes and edges. One can use an adjacency matrix $\mathbf{A} \in \{0, 1\}^{N \times N}$ to describe the topology of G, where $\mathbf{A}_{ij} = \mathbf{A}_{ji} = 1$ if $(v_i, v_j) \in E$ and $\mathbf{A}_{ij} = \mathbf{A}_{ji} = 0$ otherwise. Let $\mathbf{D} := \text{diag}(d_1, d_2, \dots, d_N)$ be the degree diagonal matrix of G, with $d_i := \sum_j \mathbf{A}_{ij}$ as the degree of node v_i . 115 116 117 118

Given a graph G and a pre-set number of clusters K, graph clustering (a.k.a. disjoint community 119 **detection**) aims to partition V into K disjoint subsets (C_1, \dots, C_K) , which are defined as clusters 120 or communities, with $\bigcup_r C_r = V$ and $C_r \cap C_t = \emptyset$ ($\forall r \neq t$) s.t. (i) within each cluster the edge 121 connections between nodes are dense but (ii) between clusters the connections are relatively loose. 122

123 Note that we follow the classic problem statement of spectral clustering, where graph topology is 124 the only available information source. Different from most deep graph clustering methods (Nazi 125 et al., 2019; Bo et al., 2020; Bianchi et al., 2020; Tsitsulin et al., 2023; Bhowmick et al., 2024), our analysis does not consider graph attributes, due to the complicated correlations between topology 126 and attributes validated by prior studies (Newman & Clauset, 2016; Qin et al., 2018; Wang et al., 127 2020; Qin & Lei, 2021). Concretely, the simple integration of attributes may bring inconsistent 128 features or noise that lead to quality decline compared with the case only considering topology, 129 although attributes may sometimes provide complementary information for better clustering quality. 130

Graph clustering is an approximated algorithm for the combinatorial optimization objective of con-131 ductance minimization (Von Luxburg, 2007). For a subset $S \subseteq V$, let $E(S, V \setminus S) := \{(v_i, v_j) \in E : v_i \in S, v_j \in V \setminus S\}$ be the set of edges across S and $V \setminus S$. Let $\mu(S) := \sum_{v_i \in S} d_i$ be the 133 volume of S. The conductance of S is defined as $\phi(S) := |E(S, V \setminus S)| / \mu(S)$. 134

Definition 1 (Conductance Minimization) Let U be the collection of all possible K-way partitions of the node set V in graph G. The conductance minimization objective is defined as

137 120

135

136

152

153

159

160

161

 $\bar{\phi}_K(G) := \min_{(S_1, \cdots, S_K) \in U} \frac{1}{K} (\phi(S_1) + \cdots + \phi(S_K)).$ (1)

140 It aims to find a partition (S_1, \dots, S_K) of V that can achieve the **minimal average conductance** 141 $\phi_K(G)$. We define that a partition (S_1, \dots, S_K) is $\phi_K(G)$ -optimal if its average conductance 142 $(\phi(S_1) + \cdots + \phi(S_K))/K$ achieves $\overline{\phi}_K(G)$. 143

For the ED on graph Laplacian (i.e., step (I) of Table 1), let λ_r and $\mathbf{u}_r \in \mathbb{R}^N$ denote the r-th 144 largest eigenvalue and corresponding eigenvector. When considering the normalized graph Lapla-145 cian $\mathbf{D}^{-1/2}\mathbf{A}\mathbf{D}^{-1/2}$, we have $1 = \lambda_1 \geq \cdots \geq \lambda_N \geq -1^1$ and $\mathbf{u}_r^T \mathbf{u}_t = 0$ ($\forall r \neq t$). Moreover, we 146 have $1 > \lambda_1 \ge \lambda_2 \ge \cdots \ge \lambda_N$ for the regularized graph Laplacian $\mathbf{D}_{\tau}^{-1/2} \mathbf{A} \mathbf{D}_{\tau}^{-1/2}$. In step (II) of Table 1, we arrange the (reweighted) eigenvectors as a matrix $\mathbf{F} \in \mathbb{R}^{N \times K}$ (or $\mathbb{R}^{N \times (K+1)}$) via the 147 148 column-wise concatenation. We define the *i*-th row $\mathbf{F}_{i,:}$ of \mathbf{F} as the spectral embedding of node v_i . 149 Most spectral clustering algorithms apply normalization to \mathbf{F} (i.e., step (III) in Table 1). We denote 150 the corresponding normalized spectral embedding as F. 151

Definition 2 (Clustering Cost) Given a set of vectors $(\mathbf{w}_1, \dots, \mathbf{w}_K)$, we follow (Peng et al., 2015) to define the **distance** between a partition (S_1, \dots, S_K) of V and $(\mathbf{w}_1, \dots, \mathbf{w}_K)$ as

$$g(S_1, \cdots, S_K; \mathbf{w}_1, \cdots, \mathbf{w}_K) := \sum_{r=1}^K \sum_{v_i \in S_r} d_i \left\| \tilde{\mathbf{F}}_{i,:} - \mathbf{w}_r \right\|_2^2.$$
(2)

It maps each node v_i to d_i identical points in the embedding space. As claimed in (Peng et al., 2015), this definition allows us to bound the overlap between (i) feasible clustering results and (ii)

¹Some literature (Von Luxburg, 2007; Qin et al., 2023; Gao et al., 2023) defines the normalized graph Laplacian as $I_N - D^{-1/2} W D^{-1/2}$, which equivalently has the eigenvalues of $0 = 1 - \lambda_1 \leq \cdots \leq 1 - \lambda_N \leq 2$.

Figure 1: The high-level overview of our pure spectral analysis on DCSC.

optimal ones, which is further used in our analysis (cf. Lemma 4 and Lemma 6). By assuming that for each node $v_i \in V$, all the d_i copies of $\mathbf{F}_{i,:}$ are contained in one of $\{S_1, \dots, S_K\}$, (2) reduces to the standard cost of KMeans. The clustering cost of a partition (S_1, \dots, S_K) is then defined as

$$\operatorname{COST}(S_1, \cdots, S_K) := \min_{(\mathbf{c}_1, \cdots, \mathbf{c}_K)} g(S_1, \cdots, S_K; \mathbf{c}_1, \cdots, \mathbf{c}_K),$$
(3)

which finds a set of centers $(\mathbf{c}_1, \dots, \mathbf{c}_K)$ with the minimum distance to (S_1, \dots, S_K) . Based on $COST(S_1, \dots, S_K)$, we define the optimal clustering cost as

$$OPT := \min_{(S_1, \cdots, S_K) \in U} COST(S_1, \cdots, S_K).$$
(4)

PROPOSED ANALYSIS: A PURE SPECTRAL VIEW

Inspired by early spectral-based studies (Peng et al., 2015; Mizutani, 2021) on vanilla spectral clus-tering (e.g., NJW), we give an alternative analysis for DCSC from a pure spectral view, without using random graph models. We adopt ISC (see Table 1) as an example for analysis because it has a more generic format involving the reweighted (K + 1) leading eigenvectors $[\lambda_1 \mathbf{u}_1, \cdots, \lambda_{K+1} \mathbf{u}_{K+1}]$. Whereas, other DCSC methods usually have simpler formats (e.g., only $[\mathbf{u}_1, \cdots, \mathbf{u}_K]$ without reweighting for RSC). Fig. 1 illustrates the overall sketch of our analysis. In Appendix F, we fur-ther reduce this generic analysis on ISC to other DCSC algorithms (e.g., SCORE+ and RSC), which extends our analysis to a unified framework involving a series of spectral clustering approaches.

In contrast to early work (Peng et al., 2015; Mizutani, 2021) on vanilla spectral clustering, our analysis aims to reveal impacts of (i) degree heterogeneity and (ii) weakness of clustering structures to the clustering quality of DCSC. We first introduce a quantity measuring both aspects:

$$\Psi_{\rm ISC} := m_K^{-1} [1 - h \cdot (1 - \bar{\phi}_K(G))] = \frac{1}{(1 - \lambda_{K+2})} [1 - \frac{d_{\min}}{d_{\max} + \tau} (1 - \bar{\phi}_K(G))], \quad (5)$$

where $m_K := 1 - \lambda_{K+2}$ and $h := d_{\min}/(d_{\max} + \tau)$. In (5), h measures the degree heterogeneity, where a small h (i.e., a large difference between d_{\min} and d_{\max}) indicates high degree heterogeneity. Since $\phi_K(G) \leq 1$, higher degree heterogeneity (i.e., a smaller h) will lead to a larger $\Psi_{\rm ISC}$.

As validated in (Jin et al., 2021), when clustering structures of a graph (with K clusters) are weak, $\tilde{m}_K := 1 - \lambda_{K+1}/\lambda_K$ is small, which is consistent with a small $|\lambda_K - \lambda_{K+1}|$ by the eigen-gap **property** of graph Laplacian (Von Luxburg, 2007). Since $1 > \lambda_K \ge \lambda_{K+1} \ge \lambda_{K+2}$, we have

$$m_K \ge \tilde{m}_K \text{ and } \Psi_{\text{ISC}} = m_K^{-1} [1 - h(1 - \bar{\phi}_K(G))] \le \tilde{m}_K^{-1} [1 - h(1 - \bar{\phi}_K(G))].$$
 (6)

Therefore, weaker clustering structures (i.e., a smaller \tilde{m}_K) indicates a larger upper bound of $\Psi_{\rm ISC}$.

Theorem 3 Let $(\hat{S}_1, \dots, \hat{S}_K)$ be a $\bar{\phi}_K(G)$ -optimal partition, with the partition membership en-coded by $\mathbf{G} \in \mathbb{R}^{N \times K}$, where $\mathbf{G}_{ir} = \sqrt{d_i/\mu(\hat{S}_r)}$ if $v_i \in \hat{S}_r$ and $\mathbf{G}_{ir} = 0$ otherwise. $\mathbf{F} := [\lambda_1 \mathbf{u}_1, \cdots, \lambda_{K+1} \mathbf{u}_{K+1}] \in \mathbb{R}^{N \times (K+1)}$ is the spectral embedding of ISC (i.e., step (II) of *Table 1). If* $K\Psi_{\text{ISC}} \leq 1$ *, there exists an orthogonal matrix* $\mathbf{O} := [\mathbf{o}_1, \cdots, \mathbf{o}_K] \in \mathbb{R}^{(K+1) \times K}$ *s.t.*

$$\|\mathbf{FO} - \mathbf{G}\|_F \le (1 + \lambda_1) \sqrt{K\Psi_{\text{ISC}}}.$$
(7)

As in Fig. 1, one can prove **Theorem 3** by reformulating **G** via the linear combination of orthogonal eigenvectors $\{u_i\}$ (see Appendix B for the full proof). The first term in (7) can be rewritten as

$$\|\mathbf{F}\mathbf{O} - \mathbf{G}\|_{F}^{2} = \|\mathbf{F} - \mathbf{G}\mathbf{O}^{T}\|_{F}^{2} = \|\mathbf{F}^{T} - \mathbf{O}\mathbf{G}^{T}\|_{F}^{2} = \sum_{r=1}^{K} \sum_{v_{i} \in S_{r}} \left\|\mathbf{F}_{i,:} - \sqrt{\frac{d_{i}}{\mu(S_{r})}}\mathbf{o}_{r}\right\|_{2}^{2}.$$
 (8)

By using the same strategy as the proof of Lemma 2 in (Mizutani, 2021), which connects (8) with (2), we can derive the following upper bound of **clustering cost** (see Appendix C for the full proof).

Lemma 4 Let $(\hat{S}_1, \dots, \hat{S}_K)$ be a $\bar{\phi}_K(G)$ -optimal partition and $\tilde{\mathbf{F}}$ be the normalized spectral embedding of ISC. $\{\mathbf{o}_r\}$ are with the same definitions as those in **Theorem 3**. The followings hold:

•
$$\|\mathbf{o}_r - \mathbf{o}_t\|_2^2 = 2$$
, $\forall r, t \in \{1, 2, \cdots, K\}$ and $r \neq t$;

•
$$g(\hat{S}_1, \cdots, \hat{S}_K; \mathbf{o}_1, \cdots, \mathbf{o}_K) \le 4(1+\lambda_1)^2 \mu_{\max} K \Psi_{\text{ISC}}$$

with $\mu_{\max} := \max_{\hat{S}_n} \mu(\hat{S}_r)$ as the maximum volume.

Obviously, we have $OPT \leq COST(C_1, \dots, C_K) \leq g(\hat{S}_1, \dots, \hat{S}_K; \mathbf{o}_1, \dots, \mathbf{o}_K)$. Assume that *K*Means has an approximation ratio of α (i.e., $COST(C_1, \dots, C_K) \leq \alpha OPT$), which depends on the concrete *K*Means algorithm we used (e.g., $\alpha = O(\log K)$ for *K*Means++ (Arthur & Vassilvit-skii, 2007)). One can directly derive the following **Theorem 5** based on **Lemma 4**.

Theorem 5 Let (C_1, \dots, C_K) be a feasible clustering result given by ISC. When the KM eans clustering algorithm has an approximation ratio of α , we have

$$COST(C_1, \cdots, C_K) \le 4(1 + \lambda_1)^2 \alpha \mu_{max} K \Psi_{ISC}.$$
(9)

Furthermore, the lower bound of $COST(C_1, \dots, C_K)$ can be obtained via the following Lemma 6.

Lemma 6 (*Mizutani*, 2021) For every permutation $\pi : \{1, \dots, K\} \rightarrow \{1, \dots, K\}$, assume that there is an index l s.t. $\mu(C_l \Delta \hat{S}_{\pi(l)}) \ge 2\epsilon \cdot \mu(\hat{S}_{\pi(l)})$, with $A\Delta B := (A \setminus B) \cup (B \setminus A)$ as the symmetric difference between two sets and $0 \le \epsilon \le 1/2$. Let $\zeta_{r,t}$ and ω be the lower bound of $||\mathbf{o}_r - \mathbf{o}_t||_2^2$ and the upper bound of $g(\hat{S}_1, \dots, \hat{S}_K; \mathbf{o}_1, \dots, \mathbf{o}_K)$ in Lemma 4. Then, the following inequality holds:

$$\operatorname{COST}(C_1, \cdots, C_K) \ge \frac{1}{8} \sum_{r \in H} \left[\xi_r \zeta_{r,t} \min\{\mu(\hat{S}_r), \mu(\hat{S}_t)\} \right] - \omega, \tag{10}$$

where H is a subset of $\{1, \dots, K\}$; $t \in \{1, \dots, K\}$; $\xi_r \ge 0$ is a real number s.t. $\sum_{r \in H} \xi_r \ge \epsilon$.

As highlighted in Fig. 1, the key idea to prove Lemma 6 is to apply $\sum_{v_i \in \hat{S}_r} d_i ||\tilde{\mathbf{F}}_{i:} - \mathbf{w}_r||_2^2 \ge \sum_{v_i \in \hat{S}_r \cap C_l} d_i ||\tilde{\mathbf{F}}_{i:} - \mathbf{w}_r||_2^2$ to (2) and utilize properties of $\mu(C_l \Delta \hat{S}_{\pi(l)})$ (see the proof of Lemma 4 in (Mizutani, 2021)). By setting $\zeta_{r,t} = 2$ and $\omega = 4(1 + \lambda_1)^2 \alpha K \mu_{\max} \Psi_{\text{ISC}}$ according to the corresponding bounds in Lemma 4, we can derive the following Theorem 7 based on Lemma 6.

Theorem 7 Suppose that the assumption of Lemma 6 holds. Then, we have

$$\operatorname{COST}(C_1, \cdots, C_K) \ge \frac{1}{4} \epsilon \mu_{\min} - 4(1+\lambda_1)^2 \alpha \mu_{\max} K \Psi_{\mathrm{ISC}}, \tag{11}$$

260 with
$$\mu_{\min} := \min\{\mu(\hat{S}_r)\}$$
 and $\mu_{\max} := \max\{\mu(\hat{S}_r)\}$

Finally, we obtain our main theoretical results based on **Theorems 5** and **7**.

Theorem 8 (Main Theoretical Results) Given a graph G and a pre-set number of clusters K, let $(\hat{S}_1, \dots, \hat{S}_K)$ be a $\bar{\phi}_K(G)$ -optimal partition of conductance minimization and (C_1, \dots, C_K) be a feasible clustering result given by ISC. Assume that KMeans has an approximation ratio of α . If $\Psi_{\text{ISC}} \leq 1/[132(1 + \lambda_1)^2 \alpha \tilde{\mu} K]$ with $\tilde{\mu} := \mu_{\text{max}}/\mu_{\text{min}}$, after a suitable renumbering of (C_1, \dots, C_K) , the following inequalities hold for $r \in \{1, \dots, K\}$:

$$\mu(C_r\Delta\hat{S}_r) \leq [66(1+\lambda_1)^2\alpha\tilde{\mu}K\Psi_{\rm ISC}]\mu(\hat{S}_r), \text{ and}$$

$$\phi(C_r) \le [1 + 132(1 + \lambda_1)^2 \alpha \tilde{\mu} K \Psi_{\text{ISC}}] \phi(\hat{S}_r) + 132(1 + \lambda_1)^2 \alpha \tilde{\mu} K \Psi_{\text{ISC}}.$$

270 As depicted in Fig. 1, one can prove Theorem 8 by contradiction using the upper and lower bounds 271 in Theorems 5 and 7 (see Appendix D for the full proof). Theorem 8 provides upper bounds 272 for the mis-clustered volume $\mu(C_r \Delta \hat{S}_r)$ and conductance $\phi(C_r)$ w.r.t. the optimal solution 273 $(\hat{S}_1, \dots, \hat{S}_K)$ to conductance minimization. These bounds are directly proportional to Ψ_{ISC} . A 274 graph with (i) higher degree heterogeneity and (ii) weaker clustering structures will cause a larger 275 $\Psi_{\rm ISC}$ and thus lead to higher upper bounds. Since $\mu(C_r\Delta \tilde{S}_r)$ and $\phi(C_r)$ can be used to measure 276 the clustering quality, higher upper bounds indicate that ISC is more likely to achieve a low-quality 277 result. In this way, our analysis can quantitatively reveal impacts of (i) degree heterogeneity and (ii) 278 weakness of clustering structures to the quality of DCSC.

279 To ensure that the condition in **Theorem 8** holds, one needs small $\overline{\phi}_K(G)/(1 - \lambda_{K+2})$ and large 280 $d_{\min}/[(d_{\max + \tau})(1 - \lambda_{K+2})]$. In some early studies on vanilla spectral clustering (Ng et al., 2001; 281 Mizutani, 2021), a graph is defined to be well-clustered, if $\bar{\phi}_K(G)/(1-\lambda_{K+1})$ is sufficiently 282 small, consistent with that $\bar{\phi}_K(G)/(1 - \lambda_{K+2})$ is small $(\lambda_{K+2} \ge \lambda_{K+1})$. The well-clustered as-sumption adopted by early work (Ng et al., 2001; Mizutani, 2021) indicates that the optimal solution 283 284 $(\hat{S}_1, \dots, \hat{S}_K)$ describes an explicit clustering structure of G. Moreover, large $d_{\min}/[(d_{\max + \tau})]$ in-285 dicates that the degree heterogeneity should not be very high. Therefore, the condition in **Theorem 8** 286 implies an assumption that (i) G is well-clustered and (ii) the degree heterogeneity is not so high. 287 In particular, the adjustment of τ can also help resist the impacts of these two aspects. For instance, 288 a larger τ can result in smaller eigenvalues λ_1 and λ_{K+2} , which further lead to smaller $\Psi_{\rm ISC}$ and larger $1/[132(1 + \lambda_1)^2 \alpha \tilde{\mu} K]$. The condition is more likely to satisfy. 289

290 291

292

304

305

4 EXTENSION OF DCSC: ASCENT

293 Inspired by recent advances in GNNs and the associated over-smoothing issue, we introduce AS-294 CENT, a simple yet effective extension of DCSC. Different from most DCSC methods with a con-295 stant correction τ for all nodes (e.g., RSC, SCORE+, and ISC in Table 1), ASCENT adopts a nodewise correction scheme. It can adaptively determine different corrections $\{\tau_i\}$ for nodes $\{v_i\}$ via 296 an iterative aggregation mechanism that computes 'local' average degrees w.r.t. graph topology. 297 Whereas, τ is usually set to be a 'global' average degree for existing DCSC algorithms (e.g., $\tau = d$ 298 for RSC). To the best of our knowledge, we are the first to explore an extension of DCSC with 299 node-wise corrections. 300

Let $\tau^{(l)} \in \mathbb{R}^N_+$ be the vector of node-wise corrections in the *l*-th iteration, with $\tau_i^{(l)}$ as the correction of node v_i . Suppose there are in total *L* iterations, we obtain the node-wise corrections $\tau \in \mathbb{R}^N_+$ of ASCENT via

$$\boldsymbol{\tau}^{(0)} = \mathbf{d}, \ \boldsymbol{\tau}^{(l)} := \hat{\mathbf{D}}^{-1} \hat{\mathbf{A}} \boldsymbol{\tau}^{(l-1)} \ (1 \le l \le L), \text{ and } \boldsymbol{\tau} := \boldsymbol{\theta} \boldsymbol{\tau}^{(L)},$$
(12)

where $\hat{\mathbf{A}} := \mathbf{A} + \mathbf{I}_N$ is the adjacency matrix with self-edges; $\hat{\mathbf{D}}$ is the degree diagonal matrix 306 w.r.t. $\hat{\mathbf{A}}$; $\theta > 0$ is a hyper-parameter. Concretely, we first let $\tau_i^{(0)} = d_i$ for initialization. Then, 307 we iteratively update $au^{(l)}$ using a typical **mean aggregation operation** of GNN (Kipf & Welling, 308 2016; Hamilton et al., 2017). Different from existing GNN-based graph clustering methods (Bianchi 309 et al., 2020; Tsitsulin et al., 2023; Bhowmick et al., 2024), ASCENT does not rely on any graph 310 attribute inputs and training procedures. Instead, it directly uses $\{\tau^{(l)} \in \mathbb{R}^N_+\}$ as special features for aggregation. In each iteration, it computes the average correction value w.r.t. the one-hop neighbors 311 312 for each node. We use $\tau_i = \theta \tau_i^{(L)}$ as the final correction value of node v_i . Similar to the role of δ in 313 RSC, SCORE+, and ISC as summarized in Table 1, θ adjusts the scale of τ_i . Furthermore, ASCENT 314 adopts the same strategies of spectral embedding arrangement and normalization (i.e., steps (II) and 315 (III) in Table 1) as ISC. Algorithm 1 summarizes the overall procedure of ASCENT. 316

Fig. 2 demonstrates our node-wise correction scheme on the Karate Club graph (Zachary, 1977) with 34 nodes and 2 clusters, where we visualize $\{\tau^{(l)}\}$ in different iterations; each color denotes a cluster. Although different nodes have various initial values (i.e., node degrees) in $\tau^{(0)}$, the aggregation operation in (12) forces nodes in the same cluster (i.e., with more common high-order neighbors) to have close correction values. For instance, in $\tau^{(9)}$, $\tau^{(10)}$, and $\tau^{(11)}$, nodes in the first cluster tend to have larger corrections than those in the second cluster. It is well-known that most GNNs, especially those with a mean aggregator, suffer from the over-smoothing issue (Rusch et al., 2023), where node features converge to a constant as the number of layers increases. Similarly, the

Figure 2: Case study of $\{\tau^{(l)}\}$ on the Karate Club graph, where each color denotes a cluster. 343 node-wise corrections of ASCENT also converge to a constant for a large number of iterations l(e.g., $\tau^{(50)}$), due to the over-smoothing effect s.t. $\lim_{l\to\infty}\tau_i^{(l)}=c, \forall v_i\in V$, with c as a constant. In 345 this case, ASCENT reduces to existing DCSC methods with a constant correction τ , corresponding 346 to a 'global' average of node degrees. Our experiments further indicate that ASCENT can potentially 347 achieve better clustering quality in some early stages before over-smoothing (e.g., with L < 10). It corresponds to a special 'local' average of node degrees.

We extend our analysis to the following **Proposition 9** regarding ASCENT (see Appendix E for the full proof). For each cluster \hat{S}_r , we introduce a cluster-wise correction $\hat{\tau}_r := \max\{\tau_i | v_i \in \hat{S}_r\}$. Since different nodes $\{v_i\}$ may have different $\{\tau_i\}$, different clusters $\{\hat{S}_r\}$ may have different $\{\hat{\tau}_r\}$, which can be used to demonstrate the advantages of node-wise corrections $\{\tau_i\}$ beyond conventional methods with a constant τ . Based on **Proposition 9**, we further explore when can ASCENT potentially outperform *ISC* in Appendix F.

Proposition 9 Let $\bar{\varphi}_K(G) := \sum_{r=1}^K \tilde{d}_r \phi(\hat{S}_r) / K$ be a reweighted conductance w.r.t. the optimal partition $(\hat{S}_1, \dots, \hat{S}_K)$, with $\tilde{d}_r := d_{\min}/(d_{\max} + \hat{\tau}_r)$. By replacing Ψ_{ISC} with $\Psi_{\text{AST}} :=$ $(1 + \lambda_{K+2})^{-1} [1 - (\hat{d} - \bar{\varphi}_K(G))]$, where $\hat{d} := \sum_{r=1}^K \tilde{d}_r / K$, **Theorems 3** and 8 hold for **ASCENT**.

5 **EXPERIMENTS**

PolBlogs

BioGrid

Airport

BlogCatalog

ogbn-Protein

Wiki

344

348

349

350 351

352

353

354

355 356

357

358

359 360 361

362 363

364 365

366

367

368

369

370

371

372

373

374

375

EXPERIMENT SETUP 5.1

1,222

5,640

3,158

4,777

10.312

132,534

Table 3: Statistic details of datasets. Datasets |E| \overline{K} min max avg d2.000 7 693-12 057 7-12 LFR-1 2 - 151-2286-1.000 LFR-2 2.000 8.489-32.202 4-14 2-6375-1.000 8-32 SBM-1 1.000 18.911-20.354 11 13-24 57-74 37 - 40SBM-2 1.000 16,368-20,202 11 12-24 51-72 32-40 Caltech 12,822 179 43.5 590 8 Simmons 1,137 24,257 4 293 42.7

2

81

N/A

N/A 2

N/A

N/A

16,714

59,748

18.605

92,295

333,983

39,561,252

Table 7. Summary of Daschines	Table 4:	Summary	of baselir	nes.
-------------------------------	----------	---------	------------	------

Baselines	Venues
NJW	NIPS 2001
SCORE	Ann. Stat. 2015
RSC	NIPS 2013
SCORE+	SankhyaA 2021
ISC	arXiv 2020
GraphEncoder (GE)	AAAI 2014
GAP	arXiv 2019
SDCN	WWW 2020
MinCutPool (MCP)	ICML 2020
DMoN	JMLR 2023
DGCluster (DGC)	AAAI 2024

Datasets. We used 4 settings of synthetic benchmarks and 8 real graphs for evaluation. Table 3 376 summarizes statistics of these datasets, where N, |E|, and K are the numbers of nodes, edges, and 377 clusters (if available); d denotes node degree.

351

2570

246

3,644

3.992

7,750

27.4

21.2

11.8

38

64

597

(c) Conductance↓

0.5

0.48

386

387

388

389

391

392 393

396 397

399400401402

431

Figure 3: Parameter analysis of L on **Caltech** in terms of **NMI** \uparrow , **AC** \uparrow , and **conductance** \downarrow , where ASCENT achieves the best clustering ¹⁰quality with a small setting of L (i.e., L = 3) before it reduces to conventional DCSC methods due to the over-smoothing issue.

Table 5: Synthetic graph analysis on LFR-net in terms of **NMI** \uparrow , **AC** \uparrow , and **conductance** \downarrow .

		LFR-1			LFR-2	
	$\eta = 0.1$	0.3	0.5	d=10	20	30
	NMI AC Cond					
	$(\uparrow,\%)$ $(\uparrow,\%)$ $(\downarrow,\%)$					
NJW	87.64 96.90 10.04	56.90 77.06 34.89	24.91 43.93 57.12	26.27 44.32 57.10	66.58 79.15 53.18	81.47 90.33 51.37
SCORE	77.15 86.90 21.68	59.77 80.17 39.64	30.19 48.60 66.10	30.09 47.74 66.48	65.19 77.27 57.22	83.54 89.17 53.55
RSC	80.73 94.98 10.11	54.43 78.65 32.17	39.18 60.59 52.82	39.75 61.22 53.94	61.86 77.19 52.60	76.63 87.41 51.66
SCORE+	78.99 91.88 12.75	60.19 84.03 32.32	43.66 65.38 53.94	44.72 66.30 53.49	71.81 85.38 52.22	85.64 93.61 50.99
ISC	88.01 <u>97.23</u> <u>10.00</u>	65.27 <u>86.59</u> <u>31.79</u>	44.16 <u>65.73</u> <u>52.31</u>	<u>44.77</u> <u>66.59</u> <u>52.87</u>	72.62 85.59 52.21	<u>86.88</u> <u>93.91</u> <u>50.97</u>
GE	61.70 81.73 73.49	38.94 60.69 79.02	20.60 34.98 87.18	21.37 36.21 87.59	38.89 54.09 86.13	54.24 68.11 84.22
GAP	2.93 41.30 66.69	2.02 35.03 73.87	0.79 24.36 84.01	0.23 23.68 85.02	0.36 25.27 83.05	0.35 25.98 81.85
SDCN	1.66 40.64 70.92	0.37 33.74 76.78	1.56 24.23 86.65	1.61 24.00 87.10	0.88 25.29 85.09	1.25 26.27 83.45
MCP	63.34 84.18 19.60	11.66 42.72 65.46	0.56 24.12 84.20	0.29 23.86 85.03	0.00 25.16 83.21	0.00 25.90 81.91
DMoN	80.64 93.41 11.92	55.36 76.08 36.38	30.29 47.46 57.45	29.70 46.06 59.16	49.43 61.52 60.48	56.68 67.24 59.51
DGC	88.47 97.15 10.02	<u>67.79</u> 85.82 31.82	<u>45.12</u> 64.44 52.66	44.67 63.90 53.06	72.33 85.56 <u>51.69</u>	85.92 89.48 52.12
ASCENT	89.38 97.60 9.95	68.83 88.73 31.74	46.42 67.80 52.01	46.45 68.51 51.72	77.53 88.84 51.14	89.81 95.44 50.57
Improv.(%)	+1.03 +0.38 +0.5	+1.53 +2.47 +0.16	+2.88 +3.15 +0.57	+3.75 +2.88 +2.18	+6.76 +3.80 +1.06	+3.37 +1.63 +0.78

LFR-net (Lancichinetti et al., 2008) is a synthetic benchmark that can simulate various properties 403 of real-world graphs. It uses $(\bar{d}, d_{\max}, c_{\min}, c_{\max}, \eta)$ to generate a graph, where d and d_{\max} are the 404 average and maximum degree; c_{\min} and c_{\max} are the minimum and maximum cluster size; η is the 405 ratio between the external degree and total degree of a node v_i w.r.t. the cluster that v_i belongs 406 to. To test the ability to handle (i) weak clustering structures and (ii) high degree heterogeneity, 407 we used LFR-net to generate two sets of graphs, denoted as LFR-1 and LFR-2. For LFR-1, we 408 fixed $(N, \bar{d}, d_{\max}, c_{\min}, c_{\max}) = (2000, 50, 1000, 50, 500)$ and adjusted $\eta \in \{0.1, 0.3, 0.5\}$. With 409 the increase of η , clustering structures are increasingly difficult to identify (i.e., weaker clustering 410 *structures*). For LFR-2, we fixed $(N, d_{\max}, c_{\min}, c_{\max}, \eta) = (2000, 1000, 50, 500, 0.5)$ and set 411 $d \in \{10, 20, 30\}$, where *lower* d indicates higher degree heterogeneity.

412 We also used the SBM generator (Kao et al., 2017) implemented by graph-tool² to simulate 413 the two cases about (i) weak clustering structures and (ii) high degree heterogeneity, which are 414 denoted as **SBM-1** and **SBM-2**. The generator uses (γ, β, ρ) to generate a graph, where γ is the 415 ratio of between the number of within- and between-cluster edges; β controls the power-law dis-416 tribution of node degrees; ρ adjusts the heterogeneity of community size. For **SBM-1**, we fixed 417 $(N, \rho, \beta) = (1000, 1, 2.5)$ and set $\gamma \in \{0.5, 0.6, 0.7\}$. With the increase of γ , the clustering structures are increasingly easy to identify. For SBM-2, we fixed $(N, \rho, \gamma) = (1000, 1, 0.5)$ and set 418 $\beta \in \{2.5, 2.75, 3\}$, where *larger* β *implies higher degree heterogeneity*. 419

Caltech (Red et al., 2011), Simmons (Red et al., 2011), PolBlogs (Adamic & Glance, 2005), and
BioGrid (Stark et al., 2006) are real datasets with explicit ground-truth for graph clustering. In
contrast, Airport (Chami et al., 2019), Wiki (Grover & Leskovec, 2016), BlogCatalog (Grover
& Leskovec, 2016), and obgn-Protein (Szklarczyk et al., 2019) are real datasets that do not provide ground-truth w.r.t. our problem statements in Section 2. Due to space limit, we leave details
regarding these real datasets in Appendix H.

Baselines. As summarized in Table 4, we compare ASCENT over 11 baselines published from 2001 to 2024, which can be divided into two categories. First, (i) *NJW* (Ng et al., 2001), (ii) *SCORE* (Jin, 2015), (iii) *RSC* (Qin & Rohe, 2013), (iv) *SCORE*+ (Jin et al., 2021), and (v) *ISC* (Qing & Wang, 2020a) are representative spectral clustering methods. Second, (vi) *GraphEncoder* (Tian et al., 2014), (vii) *GAP* (Nazi et al., 2019), (viii) *SDCN* (Bo et al., 2020), (ix) *MinCutPool* (Bianchi

²https://graph-tool.skewed.de/

4	3	2
4	3	3
4	3	4

Table 6: Synthetic graph analysis on SBM in terms of **NMI** \uparrow , **AC** \uparrow , and **conductance** \downarrow .

434			SBM-1		SBM-2						
		$\gamma=0.5$	0.6	0.7	β=2.5	2.75	3				
435		NMI AC Cond									
		$(\uparrow,\%)$ $(\uparrow,\%)$ $(\downarrow,\%)$									
436	NJW	79.94 87.74 70.54	91.81 95.35 66.21	96.48 98.16 62.80	80.20 87.82 70.59	76.16 85.23 70.59	73.34 83.36 70.56				
407	SCORE	72.03 78.86 71.60	85.58 88.55 67.11	91.04 92.62 63.73	72.39 79.27 71.63	68.46 75.77 71.60	65.02 73.66 71.65				
437	RSC	76.89 84.03 70.97	89.76 92.98 66.52	94.47 96.14 63.18	77.09 83.75 71.01	73.35 80.70 71.00	70.38 79.66 71.02				
438	SCORE+	82.08 89.18 70.33	92.99 96.10 66.08	97.02 98.53 62.72	82.06 89.10 70.39	78.29 86.61 70.42	75.36 84.54 <u>70.35</u>				
100	ISC	82.33 89.62 70.32	<u>93.18</u> <u>96.18</u> <u>66.06</u>	<u>97.32</u> <u>98.66</u> <u>62.70</u>	82.46 89.54 70.38	<u>78.80</u> 87.05 70.39	<u>75.70</u> <u>85.21</u> <u>70.35</u>				
439	GE	66.79 76.28 74.70	86.12 90.70 67.80	93.42 95.41 63.77	67.68 77.03 74.61	62.61 73.19 75.42	57.20 68.68 76.39				
4.4.0	GAP	1.27 15.47 90.72	1.65 15.60 90.66	1.76 15.50 90.66	1.37 15.11 90.69	1.18 15.29 90.71	1.10 15.07 90.71				
440	SDCN	26.01 35.09 85.54	39.13 47.31 81.20	48.02 54.58 77.74	26.29 36.80 85.40	22.26 32.87 86.32	18.99 29.62 87.16				
441	MCP	0.00 14.81 90.91	0.00 14.81 90.91	0.00 14.81 90.91	0.00 14.81 90.91	0.00 14.81 90.91	0.00 14.81 90.91				
	DMoN	76.25 79.33 72.14	84.96 85.07 68.93	88.84 87.52 65.99	75.94 79.17 72.21	73.42 77.81 71.86	69.55 74.98 71.75				
442	DGC	68.02 67.92 77.91	80.19 76.14 73.44	87.21 81.50 69.57	68.23 69.30 77.59	66.94 68.42 77.61	64.90 67.89 77.45				
4.40	ASCENT	82.52 90.08 70.27	93.41 96.51 66.02	97.38 98.68 62.68	82.74 89.87 70.32	79.00 87.51 70.33	76.05 85.79 70.29				
443	Improv.(%)	+0.23 +0.51 +0.02	+0.24 +0.34 +0.06	+0.06 +0.02 +0.03	+0.34 +0.37 +0.09	+0.25 +0.53 +0.09	+0.46 +0.68 +0.09				

Table 7: Evaluation results on datasets with ground-truth in terms of **NMI** \uparrow , **AC** \uparrow , & **conductance** \downarrow .

		Caltech		S	Simmon	s]	PolBlogs	5		BioGrid		
	NMI	AC	Cond	NMI	AC	Cond	NMI	AC	Cond	NMI	AC	Cond	
	(†,%)	(†,%)	$(\downarrow,\%)$	(†,%)	(†,%)	(↓,%)	(†,%)	(†,%)	(↓,%)	(†,%)	(†,%)	(↓,%)	
NJW	62.13	75.39	50.76	67.96	73.44	33.87	0.06	51.88	26.94	41.83	12.84	66.20	
SCORE	56.39	69.05	50.12	58.53	76.39	29.92	72.50	95.25	7.67	13.93	7.37	90.90	
RSC	58.58	71.05	49.86	61.52	78.61	28.88	71.33	94.76	7.34	43.64	13.52	66.07	
SCORE+	69.14	82.85	48.44	72.95	88.81	27.41	73.08	95.33	7.53	24.36	9.44	82.02	
ISC	<u>70.28</u>	<u>83.73</u>	<u>48.32</u>	<u>73.57</u>	<u>89.36</u>	<u>27.35</u>	72.67	95.09	7.35	43.21	13.26	66.07	
GE	36.75	44.44	68.97	49.19	58.86	48.13	6.15	51.88	50.13	31.74	11.28	98.51	
GAP	65.80	75.59	49.94	48.69	57.96	40.84	42.89	77.82	2.44	44.18	13.40	80.40	
SDCN	28.50	34.03	74.79	38.28	53.91	51.39	14.96	62.93	28.48	20.77	8.44	95.83	
MCP	50.57	63.32	58.16	64.66	82.90	29.80	58.15	86.56	16.26	0.00	4.43	98.77	
DMoN	66.29	72.47	53.97	63.64	81.20	28.00	71.16	94.91	7.47	41.73	12.91	79.74	
DGC	66.75	75.32	51.92	70.53	79.74	33.18	71.21	94.91	7.42	21.63	7.74	91.04	
ASCENT	71.20	84.41	48.28	74.06	89.62	27.34	73.48	95.34	7.31	43.28	13.59	64.88	
Improvement	+1.31%	+0.81%	+0.08%	+0.67%	+0.29%	+0.04%	+0.55%	+0.01%	+0.41%	_	+0.52%	+1.80%	

et al., 2020), (x) DMoN (Tsitsulin et al., 2023), and (xi) DGCluster (Bhowmick et al., 2024) are deep graph clustering approaches.

RSC, SCORE+, and ISC are DCSC baselines as summarized in Table 1. Note that we consider graph clustering without attributes in this study, while GAP, SDCN, MinCutPool, DMoN, and DGCluster are GNN-based methods originally designed for attributed graphs. We tried several widely-used strategies of (i) SVD on the adjacency matrix and (ii) one-hot encoding of node degrees to derive feature inputs for GAP, MinCutPool, DMoN, and DGCluster, with the best quality metrics reported. Moreover, we directly used the adjacency matrix as input of the auto-encoder in SDCN.

Evaluation Metrics. For datasets with ground-truth, we used normalized mutual information (NMI) and accuracy (AC) as quality metrics. We also adopted the conductance achieved by each method as an unsupervised metric for all the datasets. For datasets without ground-truth, we set $K \in \{2, 8, 32\}$ and recorded the corresponding conductance values. Usually, smaller conductance as well as larger NMI and AC indicate better clustering quality. We tuned hyper-parameters of all the methods based on the unsupervised conductance metric. Due to space limit, we detail other experiment setups (e.g., experiment environment and parameter settings) in Appendix H.

5.2 PARAMETER ANALYSIS

We first tested the effect of L for ASCENT. Example analysis results on **Caltech** are visualized in Fig. 3, where we adjusted $L \in \{0, 1, \dots, 10\}$. When L = 0, ASCENT suffers from poor clustering quality, which can be significantly improved as L increases. It validates the effectiveness of the iterative aggregation in ASCENT. With the increase of L, the clustering quality of ASCENT gradually converges due to over-smoothing, which is consistent with our case study in Fig. 2. In particular, ASCENT achieves the best clustering quality with a small L (i.e., L = 3) before it reduces to conventional DCSC methods with a constant correction τ . ASCENT also achieves the best quality with a small L in the following evaluation. We leave further analysis of θ in Appendix I.

5.3 SYNTHETIC GRAPH ANALYSIS

For each setting of a synthetic benchmark, we independently generated 100 graphs and recorded the mean as well as standard derivation of all the quality metrics over these graphs. The average

-100	/1	Q	R
	-	0	v

Table 8: Evaluation results on day	atasets without ground-truth i	In terms of conductance $(\%)\downarrow$
------------------------------------	--------------------------------	---

		Airport			Wiki		Bl	ogCatal	og	og	bn-Prot	ein
	K=2	8	32	K=2	8	32	K=2	8	32	K=2	8	32
NJW	1.67	10.16	19.48	40.16	74.32	85.32	29.35	67.83	82.79	<u>6.34</u>	11.92	41.36
SCORE	10.95	74.98	85.82	40.29	82.73	92.08	29.65	77.84	93.67	22.38	44.69	82.42
RSC	6.09	23.44	37.11	<u>37.75</u>	73.06	85.32	29.24	66.56	81.74	12.03	15.87	36.63
SCORE+	5.19	52.48	71.47	39.06	75.69	86.87	29.33	69.95	86.19	7.09	21.92	64.33
ISC	4.24	21.70	35.04	37.91	73.31	85.78	29.26	<u>65.02</u>	81.43	6.93	14.88	34.64
GE	48.14	84.27	92.58	52.08	89.02	97.23	49.59	87.49	96.78		OOM	
GAP	32.00	87.50	96.88	44.66	87.50	96.88	41.81	87.50	96.88		OOT	
SDCN	17.83	86.06	92.73	50.00	87.30	96.41	49.87	85.44	95.80		OOM	
MCP	8.80	23.80	54.33	50.00	87.50	96.88	34.15	86.97	96.82		OOM	
DMoN	6.44	20.40	51.00	37.09	77.25	91.59	42.89	75.95	90.28		OOM	
DGC	5.75	13.54	69.80	37.45	83.53	95.96	29.89	77.73	94.34		OOM	
ASCENT	1.67	9.97	18.85	37.43	72.00	84.77	29.23	64.22	80.68	3.47	11.06	33.20
Improvement	-	+1.87%	+3.23%	+0.85%	+1.45%	+0.64%	+0.10%	+1.23%	+0.92%	+45.279	% +7.21%	+4.16%

499 evaluation results on LFR-1, LFR-2, SBM-1, and SBM-2 are depicted in Tables 5 and 6 (see the 500 corresponding standard derivations in Appendix I), where a metric is in **bold** or underlined if it per-501 forms the best or second-best. In most cases, spectral clustering methods have significantly better quality than deep clustering baselines. It indicates that some GNN-based approaches, with standard 502 strategies to extract auxiliary feature inputs from topology, may fail to handle the high degree heterogeneity and weak clustering structures, although some of them are claimed to be effective in the 504 clustering on attributed graphs. Moreover, DCSC methods (i.e., SCORE+, ISC, and ASCENT) are 505 always in groups with the best quality, which validates the robustness of DCSC over vanilla spectral 506 clustering. In particular, ASCENT performs the best in most cases. In summary, ASCENT, which 507 serves as a simple yet effective extension of DCSC, is more powerful in handling the high degree 508 heterogeneity and weak clustering structures of graphs. 509

510

5.4 REAL GRAPH EVALUATION

511 512

On each real dataset, we repeated the evaluation procedure over 5 random seeds and recorded the 513 mean as well as standard derivation of each metric. The average evaluation results on real datasets 514 are reported in Tables 7 and 8 (see corresponding standard derivations in Appendix I), where a 515 metric is in **bold** or underlined if it performs the best or second-best; OOM denotes the *out-of-*516 memory exception. We define that a method encounters the out-of-time (OOT) exception if it cannot 517 derive a feasible result within 10^4 seconds. Consistent with our synthetic graph analysis, spectral 518 clustering methods significantly outperform deep clustering baselines in most cases. In particular, 519 some deep clustering approaches encounter OOM or OOT exceptions on large-scale graphs (e.g., 520 ogbn-Protein), due to the reconstruction of an $N \times N$ matrix (e.g., normalized adjacency matrices 521 in GraphEncoder) or time/space-consuming training procedures. In contrast, spectral clustering methods can derive feasible clustering results on all the datasets. In most cases, ASCENT performs 522 the best and can achieve much better quality than other DCSC baselines (i.e., RSC, SCORE+, and 523 *ISC*). It further validates the effectiveness of ASCENT as an extension of DCSC. 524

525 526

6 CONCLUSION

527 528

In this paper, we provided an alternative analysis of DCSC from a pure spectral view. Different from 529 most existing studies on DCSC that gave theoretical results associated with random graph models 530 (e.g., DCSBM), our analysis gives bounds for the mis-clustered volume and conductance w.r.t. the 531 optimal solution to conductance minimization objective without using random graph models. In 532 contrast to early studies on vanilla spectral clustering, the presented analysis also includes quantities 533 that indicate impacts of (i) degree heterogeneity and (ii) weakness of clustering structures to the clus-534 tering quality of DCSC. Inspired by recent advances in GNNs and the associated over-smoothing 535 issue, we proposed ASCENT, a simple yet effective extension of DCSC. It follows a novel node-536 wise correction scheme that assigns nodes $\{v_i\}$ with different correction terms $\{\tau_i\}$ via the mean aggregation of GNNs. We further demonstrated that ASCENT reduces to conventional DCSC methods when encountering the over-smoothing issue. Experiments also validated that some early stages 538 before over-smoothing can potentially obtain better clustering quality for ASCENT. Due to space limit, we discuss limitations and possible future directions of this study in Appendix J.

540 REFERENCES 541

542 543	Lada A Adamic and Natalie Glance. The political blogosphere and the 2004 us election: divided they blog. In <i>Proceedings of the 3rd International Workshop on Link Discovery</i> , pp. 36–43, 2005.
544 545	Arash A Amini, Aiyou Chen, Peter J Bickel, and Elizaveta Levina. Pseudo-likelihood methods for community detection in large sparse networks. <i>The Annals of Statistics</i> , pp. 2097–2122, 2013.
546 547 548	David Arthur and Sergei Vassilvitskii. k-means++: the advantages of careful seeding. In <i>Proceedings of the 8th Annual ACM-SIAM Symposium on Discrete Algorithms</i> , pp. 1027–1035, 2007.
549 550 551	Kamal Berahmand, Elahe Nasiri, Yuefeng Li, et al. Spectral clustering on protein-protein interaction networks via constructing affinity matrix using attributed graph embedding. <i>Computers in Biology and Medicine</i> , 138:104933, 2021.
552 553 554 555	Aritra Bhowmick, Mert Kosan, Zexi Huang, Ambuj Singh, and Sourav Medya. Dgcluster: A neural framework for attributed graph clustering via modularity maximization. In <i>Proceedings of the 36th AAAI Conference on Artificial Intelligence</i> , pp. 11069–11077, 2024.
556 557 558	Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Spectral clustering with graph neural networks for graph pooling. In <i>International Conference on Machine Learning</i> , pp. 874–883. PMLR, 2020.
559 560 561	Deyu Bo, Xiao Wang, Chuan Shi, Meiqi Zhu, Emiao Lu, and Peng Cui. Structural deep clustering network. In <i>Proceedings of the Web Conference 2020</i> , pp. 1400–1410, 2020.
562 563	Ines Chami, Zhitao Ying, Christopher Ré, and Jure Leskovec. Hyperbolic graph convolutional neural networks. <i>Advances in neural information processing systems</i> , 32, 2019.
564 565 566	Kamalika Chaudhuri, Fan Chung, and Alexander Tsiatas. Spectral clustering of graphs with general degrees in the extended planted partition model. In <i>Conference on Learning Theory</i> , pp. 35–1. JMLR Workshop and Conference Proceedings, 2012.
568 569	Anne Condon and Richard M Karp. Algorithms for graph partitioning on the planted partition model. <i>Random Structures & Algorithms</i> , 18(2):116–140, 2001.
570 571 572	Lin Dai and Bo Bai. Optimal decomposition for large-scale infrastructure-based wireless networks. <i>IEEE Transactions on Wireless Communications</i> , 16(8):4956–4969, 2017.
572 573 574	Ling Ding, Chao Li, Di Jin, and Shifei Ding. Survey of spectral clustering based on graph theory. <i>Pattern Recognition</i> , pp. 110366, 2024.
575 576 577	Yu Gao, Meng Qin, Yibin Ding, Li Zeng, Chaorui Zhang, Weixi Zhang, Wei Han, Rongqian Zhao, and Bo Bai. Raftgp: Random fast graph partitioning. In 2023 IEEE High Performance Extreme Computing Conference, pp. 1–7. IEEE, 2023.
578 579 580 581	Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In <i>Proceedings</i> of the 22nd ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 855–864, 2016.
582 583	Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs. In Advances in Neural Information Processing Systems, pp. 1024–1034, 2017.
584 585	Jiashun Jin. Fast community detection by score. The Annals of Statistics, 43(1):57-89, 2015.
586 587	Jiashun Jin, Zheng Tracy Ke, and Shengming Luo. Improvements on score, especially for weak signals. <i>Sankhya A</i> , pp. 1–36, 2021.
588 589 590 591	Edward Kao, Vijay Gadepally, Michael Hurley, Michael Jones, Jeremy Kepner, Sanjeev Mohindra, Paul Monticciolo, Albert Reuther, Siddharth Samsi, William Song, et al. Streaming graph challenge: Stochastic block partition. In <i>Proceedings of the 2017 IEEE High Performance Extreme Computing Conference (HPEC)</i> , pp. 1–12. IEEE, 2017.
592 593	Brian Karrer and Mark EJ Newman. Stochastic blockmodels and community structure in networks. <i>Physical Review E</i> , 83(1):016107, 2011.

- 594 Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-595 works. In Proceedings of the 2016 International Conference on Learning Representations, 2016. 596 Andrew V Knyazev. Toward the optimal preconditioned eigensolver: Locally optimal block pre-597 conditioned conjugate gradient method. SIAM Journal on Scientific Computing, 23(2):517-541, 598 2001. 600 Andrea Lancichinetti, Santo Fortunato, and Filippo Radicchi. Benchmark graphs for testing com-601 munity detection algorithms. Physical Review E, 78(4):046110, 2008. 602 Richard B Lehoucq, Danny C Sorensen, and Chao Yang. ARPACK users' guide: solution of large-603 scale eigenvalue problems with implicitly restarted Arnoldi methods. SIAM, 1998. 604 605 Tomohiko Mizutani. Improved analysis of spectral algorithm for clustering. *Optimization Letters*, 606 15:1303-1325, 2021. 607 Azade Nazi, Will Hang, Anna Goldie, Sujith Ravi, and Azalia Mirhoseini. Gap: Generalizable 608 approximate graph partitioning framework. arXiv preprint arXiv:1903.00614, 2019. 609 610 Mark EJ Newman. Modularity and community structure in networks. Proceedings of the National 611 Academy of Sciences, 103(23):8577-8582, 2006. 612 Mark EJ Newman and Aaron Clauset. Structure and inference in annotated networks. Nature 613 Communications, 7(1):11863, 2016. 614 615 Andrew Ng, Michael Jordan, and Yair Weiss. On spectral clustering: Analysis and an algorithm. 616 Advances in Neural Information Processing Systems, 14, 2001. 617 Richard Peng, He Sun, and Luca Zanetti. Partitioning well-clustered graphs: Spectral clustering 618 works! In Conference on Learning Theory, pp. 1423–1455. PMLR, 2015. 619 620 Shuye Pu, Jessica Wong, Brian Turner, Emerson Cho, and Shoshana J Wodak. Up-to-date catalogues of yeast protein complexes. Nucleic Acids Research, 37(3):825-831, 2009. 621 622 Guimin Qin and Lin Gao. Spectral clustering for detecting protein complexes in protein-protein 623 interaction (ppi) networks. *Mathematical and Computer Modelling*, 52(11-12):2066–2074, 2010. 624 Meng Qin and Kai Lei. Dual-channel hybrid community detection in attributed networks. Informa-625 tion Sciences, 551:146–167, 2021. 626 627 Meng Qin and Dit-Yan Yeung. Irwe: Inductive random walk for joint inference of identity and 628 position network embedding. arXiv preprint arXiv:2401.00651, 2024. 629 Meng Qin, Di Jin, Kai Lei, Bogdan Gabrys, and Katarzyna Musial-Gabrys. Adaptive community 630 detection incorporating topology and content in social networks. *Knowledge-Based Systems*, 161: 631 342-356, 2018. 632 633 Meng Qin, Kai Lei, Bo Bai, and Gong Zhang. Towards a profiling view for unsupervised traffic 634 classification by exploring the statistic features and link patterns. In *Proceedings of the 2019* 635 ACM SIGCOMM Workshop on Network Meets AI & ML, pp. 50–56, 2019. 636 Meng Qin, Chaorui Zhang, Bo Bai, Gong Zhang, and Dit-Yan Yeung. Towards a better trade-off 637 between quality and efficiency of community detection: An inductive embedding method across 638 graphs. ACM Transactions on Knowledge Discovery from Data, 2023. 639 640 Meng Qin, Chaorui Zhang, Yu Gao, Weixi Zhang, and Dit-Yan Yeung. Pre-train and refine: Towards 641 higher efficiency in k-agnostic community detection without quality degradation. In *Proceedings* of the 30th ACM SIGKDD Conference on Knowledge Discovery and Data Mining, pp. 2467– 642 2478, 2024. 643 644 Tai Qin and Karl Rohe. Regularized spectral clustering under the degree-corrected stochastic block-645 model. Advances in Neural Information Processing Systems, 26, 2013. 646
- 647 Huan Qing and Jingli Wang. An improved spectral clustering method for community detection under the degree-corrected stochastic blockmodel. *arXiv preprint arXiv:2011.06374*, 2020a.

Huan Qing and Jingli Wang. Dual regularized laplacian spectral clustering methods on community 649 detection. arXiv preprint arXiv:2011.04392, 2020b. 650 Veronica Red, Eric D Kelsic, Peter J Mucha, and Mason A Porter. Comparing community structure 651 to characteristics in online collegiate social networks. SIAM Review, 53(3):526–543, 2011. 652 653 T Konstantin Rusch, Michael M Bronstein, and Siddhartha Mishra. A survey on oversmoothing in 654 graph neural networks. arXiv preprint arXiv:2303.10993, 2023. 655 656 Chris Stark, Bobby-Joe Breitkreutz, Teresa Reguly, Lorrie Boucher, Ashton Breitkreutz, and Mike Tyers. Biogrid: a general repository for interaction datasets. Nucleic Acids Research, 34(suppl_1): 657 D535–D539, 2006. 658 659 Xing Su, Shan Xue, Fanzhen Liu, Jia Wu, Jian Yang, Chuan Zhou, Wenbin Hu, Cecile Paris, Surva 660 Nepal, Di Jin, et al. A comprehensive survey on community detection with deep learning. IEEE 661 Transactions on Neural Networks & Learning Systems, 2022. 662 Damian Szklarczyk, Annika L Gable, David Lyon, Alexander Junge, Stefan Wyder, Jaime Huerta-663 Cepas, Milan Simonovic, Nadezhda T Doncheva, John H Morris, Peer Bork, et al. String v11: 664 protein-protein association networks with increased coverage, supporting functional discovery in 665 genome-wide experimental datasets. Nucleic Acids Research, 47(D1):D607–D613, 2019. 666 667 Fei Tian, Bin Gao, Qing Cui, Enhong Chen, and Tie-Yan Liu. Learning deep representations for 668 graph clustering. In Proceedings of the 28th AAAI Conference on Artificial Intelligence, pp. 669 1293-1299, 2014. 670 Anton Tsitsulin, John Palowitch, Bryan Perozzi, and Emmanuel Müller. Graph clustering with graph 671 neural networks. Journal of Machine Learning Research, 24(127):1-21, 2023. 672 673 Ulrike Von Luxburg. A tutorial on spectral clustering. *Statistics & Computing*, 17:395–416, 2007. 674 Xiao Wang, Meiqi Zhu, Deyu Bo, Peng Cui, Chuan Shi, and Jian Pei. Am-gcn: Adaptive multi-675 channel graph convolutional networks. In Proceedings of the 26th ACM SIGKDD International 676 Conference on Knowledge Discovery & Data Mining, pp. 1243–1253, 2020. 677 678 Bryan Wilder, Eric Ewing, Bistra Dilkina, and Milind Tambe. End to end learning and optimization 679 on graphs. Advances in Neural Information Processing Systems, 32, 2019. 680 Susumu Yamada, Toshiyuki Imamura, and Masahiko Machida. High performance parallel lobpcg 681 method for large hamiltonian derived from hubbard model on multi-gpu systems. In Asian Con-682 ference on Supercomputing Frontiers, pp. 1-19. Springer, 2022. 683 684 Yuchen Yan, Yongyi Hu, Qinghai Zhou, Lihui Liu, Zhichen Zeng, Yuzhong Chen, Menghai Pan, 685 Huiyuan Chen, Mahashweta Das, and Hanghang Tong. Pacer: Network embedding from posi-686 tional to structural. In Proceedings of the ACM on Web Conference 2024, pp. 2485–2496, 2024. 687 Liang Yang, Xiaochun Cao, Dongxiao He, Chuan Wang, Xiao Wang, and Weixiong Zhang. Mod-688 ularity based community detection with deep learning. In Proceedings of the 25fth International 689 Joint Conference on Artificial Intelligence, pp. 2252–2258, 2016. 690 691 Linbin Yu and Chris Ding. Network community discovery: Solving modularity clustering via nor-692 malized cut. In Proceedings of the 8th Workshop on Mining & Learning with Graphs, pp. 34-36, 693 2010. 694 Liu Yue, Xia Jun, Zhou Sihang, Wang Siwei, Guo Xifeng, Yang Xihong, Liang Ke, Tu Wenxuan, 695 Liu Xin Wang, et al. A survey of deep graph clustering: Taxonomy, challenge, and application. 696 arXiv:2211.12875, 2022. 697 Wayne W Zachary. An information flow model for conflict and fission in small groups. Journal of 699 Anthropological Research, 33(4):452–473, 1977. 700 Tian Zhang, Raghu Ramakrishnan, and Miron Livny. Birch: an efficient data clustering method for 701

very large databases. ACM SIGMOD Record, 25(2):103-114, 1996.

702 Algorithm 1: Proposed ASCENT Algorithm 703 **Input:** graph G = (V, E), number of clusters K, hyper-parameters $\{\theta, L\}$ 704 **Output:** a feasible clustering result (C_1, \dots, C_K) 705 1 for each node $v_i \in V$ do 706 2 $\tau_i^{(0)} \leftarrow d_i$ //Initialize node-wise corrections 707 3 for l from 1 to L do 708 4 $\mathbf{\tau}^{(l)} \leftarrow \hat{\mathbf{D}}^{-1} \hat{\mathbf{A}} \boldsymbol{\tau}^{(l-1)}$ //Iteratively update node-wise corrections 709 5 $\boldsymbol{\tau} \leftarrow \theta \boldsymbol{\tau}^{(L)}$ //Final node-wise corrections 710 6 $\mathbf{L}_{\tau} \leftarrow (\mathbf{D} + \operatorname{diag}(\boldsymbol{\tau}))^{-1/2} \mathbf{A} (\mathbf{D} + \operatorname{diag}(\boldsymbol{\tau}))^{-1/2}$ 711 7 Find the leading (K+1) eigenvalues $(\lambda_1, \dots, \lambda_{K+1})$ and eigenvectors $(\mathbf{u}_1, \dots, \mathbf{u}_{K+1})$ of \mathbf{L}_{τ} 712 8 $\mathbf{F} \leftarrow [\lambda_1 \mathbf{u}_1, \cdots, \lambda_{K+1} \mathbf{u}_{K+1}]$ 713 9 for each node $v_i \in V$ do 714 $\mathbf{F}_{i,:} \leftarrow \mathbf{F}_{i,:} / |\mathbf{F}_{i,:}|_2$ 10 715 11 apply KM eans to rows of $\tilde{\mathbf{F}}$ to get the clustering result (C_1, \cdots, C_K) 716 717

Yilin Zhang and Karl Rohe. Understanding regularized spectral clustering via graph conductance. *Advances in Neural Information Processing Systems*, 31, 2018.

David Zhuzhunashvili and Andrew Knyazev. Preconditioned spectral clustering for stochastic block partition streaming graph challenge (preliminary version at arxiv.). In *Proceedings of the 2017 IEEE High Performance Extreme Computing Conference (HPEC)*, pp. 1–6. IEEE, 2017.

723 724

718

719

720 721

722

725 726 727

728

729

A RELATED WORK OF DEEP GRAPH CLUSTERING METHODS

In recent years, several deep graph clustering methods have been proposed based on different model architectures and training objectives as reviewed in (Yue et al., 2022; Su et al., 2022).

GraphEncoder (Tian et al., 2014) and DNR (Yang et al., 2016) are early studies that learn low-730 dimensional community-preserving representations (a.k.a. embeddings) by reconstructing topology-731 related features (e.g., normalized adjacency matrices and modularity matrices) via a deep auto-732 encoder. A downstream clustering algorithm (e.g., KMeans) is then applied to the learned em-733 bedding to derive a feasible clustering result. SDCN (Bo et al., 2020) further combines deep auto-734 encoder with GNN and uses a dual self-supervised mechanism to unify these two deep architectures. 735 Moreover, GAP (Nazi et al., 2019), ClusterNet (Wilder et al., 2019), MinCutPool (Bianchi et al., 736 2020), and DMoN (Tsitsulin et al., 2023) adopt a deep end-to-end structure, which contains a GNN 737 and an output module (e.g., a multi-layer perceptron for the derivation of clustering results), to fit 738 some classic graph clustering objectives (e.g., normalized cut minimization (Von Luxburg, 2007) 739 and modularity maximization (Newman, 2006)). DGCluster (Bhowmick et al., 2024) also uses the modularity maximization objective to optimize GNN, which outputs community-preserving embed-740 ding but derives final clustering results using BIRCH (Zhang et al., 1996). 741

742 Most of the aforementioned methods, especially those based on GNNs, were originally designed 743 for attributed graphs. We argue that most of them do not consider the complicated correlations 744 between graph topology and attributes as discussed in Section 2. Our empirical experiments (see Section 5) also demonstrated that when attributes are unavailable, these deep graph clustering (with 745 standard strategies to extract auxiliary feature inputs from topology) cannot effectively handle the 746 (i) high degree heterogeneity and (ii) weak clustering structures of graphs. Different from spectral 747 clustering methods, most existing studies about deep graph clustering also lack interpretability and 748 theoretical guarantees. 749

750

752

751 B PROOF OF THEOREM 3

Recall that we have $\mathbf{F} := [\lambda_1 \mathbf{u}_1, \cdots, \lambda_{K+1} \mathbf{u}_{K+1}]$ as the rearranged spectral embedding of *ISC*; **G** $\in \mathbb{R}^{N \times K}$ encodes membership of the optimal partition $(\hat{S}_1, \cdots, \hat{S}_K)$, where $\mathbf{G}_{ir} = \sqrt{d_i/\mu(\hat{S}_r)}$ if $v_i \in \hat{S}_r$ and $\mathbf{G}_{ir} = 0$ otherwise. For simplicity, we let $\mathbf{U} := [\mathbf{u}_1, \cdots, \mathbf{u}_{K+1}]$ be the arrangement of eigenvectors without reweighting and $\mathbf{F} = \mathbf{U}\mathbf{\Lambda}$, where $\mathbf{\Lambda} := \operatorname{diag}(\lambda_1, \cdots, \lambda_{K+1})$ is a diagonal matrix w.r.t the leading (K+1) eigenvalues.

For each $r \in \{1, \dots, K\}$, it is obvious that $|\mathbf{G}_{:,r}|_2 = 1$. In particular, one can derive $\mathbf{G}_{:,r}$ via the linear combination of eigenvectors $\{\mathbf{u}_1, \dots, \mathbf{u}_N\}$ w.r.t. eigenvalues $\{\lambda_1, \dots, \lambda_N\}$ of regularized graph Laplacian \mathbf{L}_{τ} of *ISC*. Namely, we have $\mathbf{G}_{:,r} = \sum_{i=1}^{N} h_{ir}\lambda_i \mathbf{u}_i$ with $\{h_{ir}\}$ as corresponding weights for the linear combination. We further let $\hat{\mathbf{u}}_r := \sum_{i=1}^{K+1} h_{ir}\lambda_i \mathbf{u}_i$. Then, we have the following derivation:

$$\begin{aligned} \mathbf{G}_{:,r}^{T}(\mathbf{I}_{N}-\mathbf{L}_{\tau})\mathbf{G}_{:,r} &= \sum_{i=1}^{N} \mathbf{G}_{ir}^{2} - 2\sum_{(v_{i},v_{j})\in E} \frac{\mathbf{G}_{ir}\mathbf{G}_{jr}}{\sqrt{d_{i}+\tau}\sqrt{d_{j}+\tau}} \\ &= \sum_{(v_{i},v_{j})\in E} \left[\left(\frac{1}{\sqrt{d_{i}}}\mathbf{G}_{ir}\right)^{2} - \frac{2\mathbf{G}_{ir}\mathbf{G}_{jr}}{\sqrt{d_{i}+\tau}\sqrt{d_{j}+\tau}} + \left(\frac{1}{\sqrt{d_{j}}}\mathbf{G}_{jr}\right)^{2} \right] \\ &= \sum_{(v_{i},v_{j})\in E(\hat{S}_{r},V\setminus\hat{S}_{r})} \frac{1}{\mu(\hat{S}_{r})} + \sum_{(v_{i},v_{j})\in E(\hat{S}_{r})} \frac{2}{\mu(\hat{S}_{r})} \left(1 - \frac{\sqrt{d_{i}d_{j}}}{\sqrt{d_{i}+\tau}\sqrt{d_{j}+\tau}}\right) \\ &\leq \frac{|E(\hat{S}_{r},V\setminus\hat{S}_{r})|}{\mu(\hat{S}_{r})} + \frac{2|E(\hat{S}_{r})|}{\mu(\hat{S}_{r})} \left(1 - \frac{d_{\min}}{d_{\max}+\tau}\right) \\ &= \phi(\hat{S}_{r}) + \frac{\mu(\hat{S}_{r}) - |E(\hat{S}_{r},V\setminus\hat{S}_{r})|}{\mu(\hat{S}_{r})} \left(1 - \frac{d_{\min}}{d_{\max}+\tau}\right) \\ &= 1 - (1 - \phi(\hat{S}_{r}))\frac{d_{\min}}{d_{\max}+\tau}. \end{aligned}$$

Note that we also have

$$\begin{aligned} \mathbf{G}_{:,r}^{T}(\mathbf{I}_{N}-\mathbf{L}_{\tau})\mathbf{G}_{:,r} &= (\sum_{i=1}^{N}h_{ir}\lambda_{i}\mathbf{u}_{i})^{T}(\mathbf{I}_{N}-\mathbf{L}_{\tau})(\sum_{i=1}^{N}h_{ir}\lambda_{i}\mathbf{u}_{i}) \\ &= \sum_{i=1}^{N}h_{ir}^{2}\lambda_{i}^{2} - \sum_{i=1}^{N}h_{ir}^{2}\lambda_{i}^{3} \\ &= \sum_{i=1}^{N}h_{ir}^{2}\lambda_{i}^{2}(1-\lambda_{i}) \\ &\geq \sum_{i=K+2}^{N}h_{ir}^{2}\lambda_{i}^{2}(1-\lambda_{i}) \\ &\geq (1-\lambda_{K+2})\sum_{i=K+2}^{N}h_{ir}^{2}\lambda_{i}^{2}. \end{aligned}$$

By combining the aforementioned two inequalities, one can have

$$||\hat{\mathbf{u}}_{r} - \mathbf{G}_{:,r}||_{2}^{2} = \sum_{i=K+2}^{N} h_{ir}^{2} \lambda_{i}^{2} \le \frac{1}{1 - \lambda_{K+2}} [1 - (1 - \phi(\hat{S}_{r})) \frac{d_{\min}}{d_{\max} + \tau}],$$

for each \hat{S}_r $(r \in \{1, \dots, K\})$. Let $\hat{\mathbf{F}} := [\hat{\mathbf{u}}_1, \dots, \hat{\mathbf{u}}_K]$. For the whole graph G, we have

$$||\mathbf{\hat{F}} - \mathbf{G}||_{F}^{2} = \sum_{r=1}^{K} ||\mathbf{\hat{u}}_{r} - \mathbf{G}_{:,r}||_{2}^{2} \le \frac{K}{1 - \lambda_{K+2}} [1 - (1 - \bar{\phi}_{K}(G))\frac{d_{\min}}{d_{\max} + \tau}] = K\Psi_{\text{ISC}}.$$
 (13)

This inequality can be rewritten as

$$||\mathbf{\hat{F}} - \mathbf{G}||_F^2 = ||\mathbf{U}\mathbf{\Lambda}\mathbf{H} - \mathbf{G}||_F^2 \le K\Psi_{\text{ISC}},\tag{14}$$

where $\mathbf{H} \in \mathbb{R}^{(K+1) \times K}$ is a matrix rearranging weights $\{h_{ir}\}$ in the linear combination.

Chain. Let
$$\mathbf{Z} := \hat{\mathbf{F}} - \mathbf{G} = [\mathbf{z}_1, \cdots, \mathbf{z}_N]$$
. Then, $\mathbf{Z}^T \mathbf{Z} = \mathbf{I}_K - \mathbf{H}^T \mathbf{A}^T \mathbf{A} \mathbf{H}$.
Proof. First, we have
 $\mathbf{z}_s^T \mathbf{z}_s = (\hat{\mathbf{u}}_r - \mathbf{G}_{r,r})^T (\hat{\mathbf{u}}_s - \mathbf{G}_{s,s}) = \hat{\mathbf{u}}_r^T \hat{\mathbf{u}}_s - \hat{\mathbf{u}}_s^T \mathbf{G}_{r,s} - \mathbf{G}_{r,r}^T \hat{\mathbf{u}}_s + \mathbf{G}_{r,r}^T \mathbf{G}_{r,s}$. (15)
Consider each term in (15). We further have
 $\hat{\mathbf{u}}_r^T \hat{\mathbf{u}}_s = (\sum_{t=1}^{K+1} h_{rt} \lambda_t \mathbf{u}_t)^T (\sum_{t=1}^{K+1} h_{st} \lambda_t \mathbf{u}_t)^T = \sum_{t=1}^{K+1} h_{rt} h_{st} \lambda_t^2;$
 $\hat{\mathbf{u}}_r^T \mathbf{G}_{r,s} = (\sum_{t=1}^{K+1} h_{rt} \lambda_t \mathbf{u}_t)^T (\sum_{t=1}^{K+1} h_{st} \lambda_t \mathbf{u}_t)^T = \sum_{t=1}^{K+1} h_{rt} h_{st} \lambda_t^2;$
 $\mathbf{G}_{r,r}^T \hat{\mathbf{u}}_s = (\sum_{t=1}^{N} h_{rt} \lambda_t \mathbf{u}_t)^T (\sum_{t=1}^{K+1} h_{st} \lambda_t \mathbf{u}_t)^T = \sum_{t=1}^{K+1} h_{rt} h_{st} \lambda_t^2;$
 $\mathbf{G}_{r,r}^T \hat{\mathbf{u}}_s = \left\{ \begin{array}{c} 1 - \sum_{t=1}^{K+1} h_{tr} h_{st} \lambda_t \mathbf{u}_t \right\}^T = S$
 \mathbf{T} . Therefore, one can rewrite (15) as
 $\mathbf{z}_r^T \mathbf{z}_s = \left\{ \begin{array}{c} 1 - \sum_{t=1}^{K+1} h_{tr} h_{st} \lambda_s^2; r \neq s \\ - \sum_{t=1}^{K+1} h_{tr} h_{st} \lambda_s^2; r \neq s \end{array} \right\}$,
which corresponds to the following matrix form:
 $\mathbf{Z}^T \mathbf{Z} = \mathbf{I}_K - \mathbf{H}^T \mathbf{A}^T \mathbf{A} \mathbf{H}.$
This completes the proof of **Claim**.
Consider the singular value decomposition of $\mathbf{H} \in \mathbb{R}^{(K+1) \times K}$ denoted as $\mathbf{H} = \mathbf{X} \mathbf{\Sigma} \mathbf{Y}^T$, where
 $\mathbf{X} \in \mathbb{R}^{(K+1) \times (K+1)}$ and $\mathbf{Y} \in \mathbb{R}^{K \times K}$ are orthogonal matrices; $\mathbf{\Sigma}$ is a $(K+1) \times K$ matrix, with
only the (i, i) -th entries as non-zero values $\{\sigma_t\}_0$. One can rewrite (14) as
 $K \Psi_{\rm ISC} \geq \||\hat{\mathbf{F}} - \mathbf{G}\||_F^2 = ||\mathbf{Z}||_F^2 \geq ||\mathbf{Z}^T \mathbf{Z}||_F$
 $= ||\mathbf{I}_K - \mathbf{\Sigma} \mathbf{X}^T \mathbf{A}^2 \mathbf{X} \mathbf{\Sigma}||_F = \left[\sum_{r=1}^{K} (1 - \lambda_r^2 \sigma_r^2)^2]^{1/2}$
 $= ||\mathbf{K}_K - \mathbf{\Sigma} \mathbf{X}^T \mathbf{A}^2 \mathbf{X} \mathbf{\Sigma}||_F$.
Note that $(\mathbf{A} \mathbf{X} \mathbf{\Sigma})_{ij} = \lambda_i \sigma_j \mathbf{X}_{ij}$, which can lead to
 $(\mathbf{\Sigma} \mathbf{X}^T \mathbf{A}^2 \mathbf{X} \mathbf{\Sigma})_{ij} = \left\{ \begin{array}{c} \lambda_r^2 \sigma_r^2, \{i} = j \\ n_{r=1} (1 - \lambda_r^2 \sigma_r^2)^2]^{1/2}$
 $\geq ||\mathbf{K}_{r=1} (1 - \lambda_r^2 \sigma_r^2)^2]^{1/2} \geq ||\mathbf{E}_{r=1} (1 - \sigma_r^2 \sigma_r^2)^2]^{1/2}$
 $\geq ||\mathbf{K}_{r=1} (1 - \lambda_r^2 \sigma_r^2)^2]^{1/2} \geq ||\mathbf{K}_{r=1} (1 - \sigma_r^2 \sigma_r$

 $\begin{aligned} & \leq ||\mathbf{U}\mathbf{\Lambda}\mathbf{O} - \hat{\mathbf{F}}||_F + ||\hat{\mathbf{F}} - \mathbf{G}||_F \\ & \leq ||\mathbf{U}(\mathbf{\Lambda}\mathbf{O} - \mathbf{\Lambda}\mathbf{H})||_F + ||\hat{\mathbf{F}} - \mathbf{G}||_F \\ & \leq ||\mathbf{\Lambda}\mathbf{O} - \mathbf{\Lambda}\mathbf{H}||_F + ||\hat{\mathbf{F}} - \mathbf{G}||_F \end{aligned}$

For the first term, one can derive the following inequality:

$$\begin{split} \||\mathbf{A}\mathbf{O} - \mathbf{A}\mathbf{H}\||_{F} &= \||\mathbf{A}\mathbf{X}(\mathbf{I}_{(K+1)\times K} - \mathbf{\Sigma})\mathbf{Y}^{T}\||_{F} \\ &= \||\mathbf{A}[\mathbf{L}_{(K+1)\times K} - \mathbf{\Sigma})\||_{F} \\ &= \sqrt{\lambda_{1}^{2}(1-\sigma_{1})^{2}+\dots+\lambda_{K}^{2}(1-\sigma_{K})^{2}} \\ &\leq \sqrt{\lambda_{1}^{2}[(1-\sigma_{1})^{2}+\dots+(1-\sigma_{K})^{2}]} \\ &\leq \lambda_{1}\sqrt{(1-\sigma_{1})^{2}(1+\sigma_{1})^{2}+\dots+(1-\sigma_{K})^{2}} \\ &= \lambda_{1}\sqrt{(1-\sigma_{1}^{2})^{2}+\dots+(1-\sigma_{K})^{2}} \\ &= \lambda_{1}\sqrt{(1-\sigma_{1}^{2})^{2}+\dots+(1-\sigma_{K})^{2}} \\ &= \lambda_{1}\sqrt{(1-\sigma_{1}^{2})^{2}+\dots+(1-\sigma_{K})^{2}} \\ &= \lambda_{1}\sqrt{(1-\sigma_{1}^{2})^{2}+\dots+(1-\sigma_{K})^{2}} \\ &= \lambda_{1}\|[\mathbf{V} - \mathbf{G}_{1}]|_{F} \\ &= \lambda_{1}\|[\mathbf{I} - \mathbf{\Sigma}^{2}]|_{F} \\ &= \lambda_{1}\|[\mathbf{I} - \mathbf{I}^{2}]|_{F} \\ &= \lambda_$$

This completes the proof of Lemma 4.

PROOF OF THEOREM 8 D

One can prove Theorem 8 by contradiction. We first choose a real number

 $\epsilon = 33(1+\lambda_1)^2 \alpha \tilde{\mu} K \Psi_{\rm ISC} < 1/4,$

where $\tilde{\mu} := \mu_{\max}/\mu_{\min}$. For every permutation $\pi : \{1, \dots, K\} \to \{1, \dots, K\}$, assume that there is an index l s.t. $\mu(C_l \Delta \hat{S}_{\pi(l)}) \ge 2\epsilon \cdot \mu(S_{\pi(l)})$ for a real number ϵ (i.e., the assumption of Lemma 6 and Theorem 7). For the *lower bound* given by Theorem 7, we have

$$\operatorname{COST}(C_1, \cdots, C_K) \geq \frac{1}{4} \epsilon \cdot \mu_{\min} - 4(1+\lambda_1)^2 \alpha K \mu_{\max} \Psi_{\mathrm{ISC}}$$
$$\geq \frac{33}{4} (1+\lambda_1)^2 \alpha K \mu_{\max} \Psi_{\mathrm{ISC}} - 4(1+\lambda_1)^2 \alpha K \mu_{\max} \Psi_{\mathrm{ISC}},$$
$$> 4(1+\lambda_1)^2 \alpha K \mu_{\max} \Psi_{\mathrm{ISC}}$$

which contracts to the *upper bound* given by **Theorem 5**. It indicates that the assumption $\mu(C_l\Delta S_{\pi(l)}) \geq 2\epsilon \cdot \mu(S_{\pi(l)})$ is false. Namely, after a suitable renumbering of (C_1, \dots, C_K) , we can derive

$$\mu(C_r \Delta \hat{S}_r) \le 2\epsilon \cdot \mu(\hat{S}_r) = [66(1+\lambda_1)^2 \alpha \tilde{\mu} K \Psi_{\rm ISC}] \mu(\hat{S}_r),$$

for $r \in \{1, \dots, K\}$. Note that for any sets $A, B \subseteq V$, we have

 $\leq \frac{|E(\hat{S}_r, V \backslash \hat{C}_r)| + 2\epsilon \mu(\hat{S}_r)}{(1 - 2\epsilon)\mu(\hat{S}_r)} = \frac{1}{1 - 2\epsilon}\phi(\hat{S}_r) + \frac{2\epsilon}{1 - 2\epsilon}$

 $|E(A, V \setminus A)| \le |E(B, V \setminus B)| + \mu(A \Delta B).$

For $\mu(C_r)$, we further have

$$\mu(C_r) \ge \mu(C_r \cap \hat{S}_r) = \mu(\hat{S}_r) - \mu(\hat{S}_r \setminus C_r) \ge \mu(\hat{S}_r) - \mu(C_r \Delta \hat{S}_r) \ge (1 - 2\epsilon)\mu(\hat{S}_r).$$

 $\leq (1+4\epsilon)\phi(\hat{S}_r) + 4\epsilon = [1+132(1+\lambda_1)^2\alpha\tilde{\mu}K\Psi_{\rm ISC}]\phi(\hat{S}_r) + 132(1+\lambda_1)^2\alpha\tilde{\mu}K\Psi_{\rm ISC}.$

For $\psi(C_r)$, we have

This completes the proof of **Theorem 8**.

 $\phi(C_r) = \frac{|E(C_r, V \setminus C_r)|}{\mu(C_r)} \le \frac{|E(C_r, V \setminus C_r)|}{(1 - 2\epsilon)\mu(\hat{S}_r)}$

E **PROOF OF PROPOSITION 9**

Similar to the derivation of the first inequality in Appendix B (i.e., the proof of **Theorem 3**), we have the following derivations for ASCENT:

$$\begin{aligned} \mathbf{G}_{:,r}^{T}(\mathbf{I}_{N} - \mathbf{L}_{\tau})\mathbf{G}_{:,r} &= \sum_{i=1}^{N} \mathbf{G}_{ir}^{2} - 2\sum_{(v_{i},v_{j})\in E} \frac{\mathbf{G}_{ir}\mathbf{G}_{jr}}{\sqrt{d_{i} + \tau_{i}}\sqrt{d_{j} + \tau_{j}}}, \\ &= \sum_{(v_{i},v_{j})\in E} \left[\left(\frac{1}{\sqrt{d_{i}}}\mathbf{G}_{ir}\right)^{2} - \frac{2\mathbf{G}_{ir}\mathbf{G}_{jr}}{\sqrt{d_{i} + \tau_{i}}\sqrt{d_{i} + \tau_{i}}} + \left[\left(\frac{1}{\sqrt{d_{j}}}\mathbf{G}_{jr}\right)^{2} \right] \right] \\ &= \sum_{(v_{i},v_{j})\in E(S_{r},V\setminus\hat{S}_{r})} \frac{1}{\mu(\hat{S}_{r})} + \sum_{(v_{i},v_{j})\in E(\hat{S}_{r})} \frac{2}{\mu(\hat{S}_{r})} \left(1 - \frac{\sqrt{d_{i}d_{j}}}{\sqrt{d_{i} + \tau_{i}}\sqrt{d_{j} + \tau_{j}}}\right). \end{aligned}$$

Let $\hat{\tau}_r := \max\{\tau_i | v_i \in \hat{S}_r\}$, i.e., the maximum corrections among nodes in cluster \hat{S}_r . Then, we have the following derivations:

$$\begin{aligned} \mathbf{G}_{:,r}^{T}(\mathbf{I}_{N}-\mathbf{L}_{\tau})\mathbf{G}_{:,r} &\leq \sum_{(v_{i},v_{j})\in E(S_{r},V\setminus\hat{S}_{r})} \frac{1}{\mu(\hat{S}_{r})} + \sum_{(v_{i},v_{j})\in E(\hat{S}_{r})} \frac{2}{\mu(\hat{S}_{r})} (1 - \frac{\sqrt{d_{i}d_{j}}}{\sqrt{d_{i}+\hat{\tau}_{r}}\sqrt{d_{j}+\hat{\tau}_{r}}}) \\ &\leq \frac{|E(\hat{S}_{r},V\setminus\hat{S}_{r})|}{\mu(\hat{S}_{r})} + \frac{2|E(\hat{S}_{r})|}{\mu(\hat{S}_{r})} (1 - \frac{d_{\min}}{d_{\max}+\hat{\tau}_{r}}) \\ &= \phi(\hat{S}_{r}) + \frac{\mu(\hat{S}_{r}) - |E(\hat{S}_{r},V\setminus\hat{S}_{r})|}{\mu(\hat{S}_{r})} (1 - \frac{d_{\min}}{d_{\max}+\hat{\tau}_{r}}) \end{aligned}$$

$$\mu(S_r) = \phi(\hat{S}_r) + (1 - \phi(\hat{S}_r))(1 - \frac{d_{\min}}{1 - \phi(\hat{S}_r)})$$

$$= \phi(S_r) + (1 - \phi(S_r))(1 - \frac{a_{\min}}{d_{\max} + \hat{\tau}_r})$$

$$= 1 - (1 - \phi(\hat{S}_r)) \frac{d_{\min}}{d_{\max} + \hat{\tau}_r}.$$

Following the same definitions of $\{h_{ir}\}, \{\hat{\mathbf{u}}_r\}, \{\hat{\mathbf{u}}_r\}$, and $\hat{\mathbf{F}}$ in Appendix B, we further have

$$||\hat{\mathbf{u}}_r - \mathbf{G}_{:,r}||_2^2 = \sum_{i=K+2}^N h_{ir}^2 \lambda_i^2 \le \frac{1}{1 - \lambda_{K+2}} [1 - (1 - \phi(\hat{S}_r)) \frac{d_{\min}}{d_{\max} + \hat{\tau}_r}],$$

for each cluster \hat{S}_r . For the whole graph, we have

$$\begin{split} ||\hat{\mathbf{F}} - \mathbf{G}||_{F}^{2} &= \sum_{r=1}^{K} ||\hat{\mathbf{u}}_{r} - \mathbf{G}_{:,r}||_{2}^{2} \\ &\leq \frac{K}{1 - \lambda_{K+2}} - \frac{1}{1 - \lambda_{K+2}} \sum_{r=1}^{K} \left(\frac{d_{\min}}{d_{\max} + \hat{\tau}_{r}} - \frac{d_{\min}}{d_{\max} + \hat{\tau}_{r}} \phi(\hat{S}_{r})\right) \\ &= K \left[\frac{1}{1 - \lambda_{K+2}} - \frac{1}{K(1 - \lambda_{K+2})} \sum_{r=1}^{K} \frac{d_{\min}(1 - \phi(\hat{S}_{r}))}{d_{\max} + \hat{\tau}_{r}}\right] \\ &= K \Psi_{\text{AST}}. \end{split}$$

By following the same strategy of the proof of **Theorems 3**, **5**, **7**, and **8**, we can complete the proof of Proposition 9.

F FURTHER ANALYSIS OF DCSC

Our analysis of *ISC* (cf. Section 3) can be easily reduced to other DCSC algorithms. As a demon-stration, we summarize the corresponding theoretical results for NJW, RSC, SCORE+, ISC, and ASCENT in Table 9. For simplicity, we use the subscripts (or superscripts) of 'NJW', 'RSC', 'SC+', 'ISC', and 'AST' to denote corresponding variables of NJW, RSC, SCORE+, ISC, and ASCENT, respectively. Based on Table 9, we try to answer the following questions.

- **Q1**: Why can *ISC* potentially outperform *RSC*?
 - Q2: When can a DCSC algorithm (e.g., *RSC*) potentially outperform vanilla spectral clustering (i.e., NJW)?
- Q3: When can ASCENT potentially outperform *ISC*?

Q1: WHY CAN *ISC* POTENTIALLY OUTPERFORM *RSC*? F.1

Suppose RSC and ISC have almost the same approximation ratio α of KM eans. Usually, α may be related to the dimensionality m of input data (i.e., m = K and m = (K + 1) for RSC and *ISC* as summarized in Table 1), depending on the concrete KMeans algorithm (e.g., $\alpha = O(\log K)$) for KMeans++ (Arthur & Vassilvitskii, 2007)). Moreover, suppose RSC and ISC use the same correction term τ . Then, we have

$$\lambda_{K+1}^{\rm RSC} = \lambda_{K+1}^{\rm ISC} \ge \lambda_{K+2}^{\rm ISC} \Rightarrow \Psi_{\rm RSC} \ge \Psi_{\rm ISC}.$$

	Ta	ble 9: Further theoretical results of DCSC.
	NJW	$\Psi_{\text{NJW}} := \left(1 - \lambda_{K+1}^{\text{NJW}}\right)^{-1} \bar{\phi}_K(G)$
Ψ	RSC	$\Psi_{\text{RSC}} := \left(1 - \lambda_{K+1}^{\text{RSC}}\right)^{-1} \left[1 - \tilde{d}(1 - \bar{\phi}_K(G))\right]$
1	SCORE+	$\Psi_{\rm SC+} = (1 - \lambda_{K+2}^{\rm SC+})^{-1} \left[1 - \tilde{d}(1 - \bar{\phi}_K(G)) \right]$
	ISC	$\Psi_{\rm ISC} := \left(1 - \lambda_{K+2}^{\rm ISC}\right)^{-1} \left[1 - \tilde{d}(1 - \bar{\phi}_K(G))\right]$
	ASCENT	$\Psi_{\text{AST}} := \left(1 - \lambda_{K+2}^{\text{AST}}\right)^{-1} \left[1 - \left(\hat{d} - \bar{\varphi}_K(G)\right)\right]$
	NJW	$\Psi_{\rm NJW} \le 1/(600\alpha\tilde{\mu}K)$
	RSC	$\Psi_{\rm RSC} \le 1/(528lpha \tilde{\mu} K)$
Assumptions	SCORE+	$\Psi_{\rm SC+} \le 1/[132(1+\lambda_2^{\rm SC+})\alpha\tilde{\mu}K]$
	ISC	$\Psi_{\rm ISC} \le 1/[132(1+\lambda_1^{\rm ISC})^2 \alpha \tilde{\mu} K]$
	ASCENT	$\Psi_{\rm AST} \le 1/[132(1+\lambda_1^{\rm AST})^2 \alpha \tilde{\mu} K]$
	NJW	$[300\alpha\tilde{\mu}K\Psi_{\rm NJW}]\mu(\hat{S}_r)$
	RSC	$[264\alpha\tilde{\mu}K\Psi_{\rm RSC}]\mu(\hat{S}_r)$
$\mu(C_r \Delta \hat{S}_r) \le$	SCORE+	$[66(1+\lambda_2^{\rm SC+})^2 \alpha \tilde{\mu} K \Psi_{\rm SC+}] \mu(\hat{S}_r)$
	ISC	$[66(1+\lambda_1^{\text{ISC}})^2 \alpha \tilde{\mu} K \Psi_{\text{ISC}}] \mu(\hat{S}_r)$
	ASCENT	$[66(1+\lambda_1^{\overline{AST}})^2 \alpha \tilde{\mu} K \Psi_{AST}] \mu(\hat{S}_r)$
	NJW	$[1 + 600\alpha\tilde{\mu}K\Psi_{\rm NJW}]\phi(\hat{S}_r) + 300\alpha\tilde{\mu}K\Psi_{\rm NJW}$
	RSC	$[1+528\alpha\tilde{\mu}K\Psi_{\rm RSC}]\phi(\hat{S}_r)+528\alpha\tilde{\mu}K\Psi_{\rm RSC}$
$\phi(C_r) \leq$	SCORE+	$[1+132(1+\lambda_2^{\rm SC+})\alpha\tilde{\mu}K\Psi_{\rm SC+}]\phi(\hat{S}_r)+132(1+\lambda_2^{\rm SC+})\alpha\tilde{\mu}K\Psi_{\rm SC+}]\phi(\hat{S}_r)$
	ISC	$[1+132(1+\lambda_1^{\overline{\text{ISC}}})^2 \alpha \tilde{\mu} K \Psi_{\text{ISC}}] \phi(\hat{S}_r) + 132(1+\lambda_1^{\overline{\text{ISC}}}) \alpha \tilde{\mu} K \Psi$
	ASCENT	$\frac{[1+132(1+\lambda_1^{\text{AST}})^2\alpha\tilde{\mu}K\Psi_{\text{AST}}]\phi(\hat{S}_r)+132(1+\lambda_1^{\text{AST}})\alpha\tilde{\mu}K}{[1+132(1+\lambda_1^{\text{AST}})^2\alpha\tilde{\mu}K}$

1050 1051 1052

1057

1070

Note that $\lambda_1^{\text{ISC}} < 1$. For the upper bond of **mis-clustered volume** $\mu(C_r \Delta \hat{S}_r)$, we further have

$$66(1+\lambda_1^{\mathrm{ISC}})^2 \alpha \tilde{\mu} K \Psi_{\mathrm{ISC}} \mu(\hat{S}_r) < 264 \alpha \tilde{\mu} K \Psi_{\mathrm{RSC}} \mu(\hat{S}_r),$$

which indicates that *ISC* has a tighter upper bound for $\mu(C_r\Delta \hat{S}_r)$ than that of *RSC*. One can also reach the same conclusion for **conductance** $\phi(C_r)$. Therefore, *ISC* can potentially achieve better clustering quality (measured by $\mu(C_r\Delta \hat{S}_r)$ or $\phi(C_r)$) than *RSC*.

F.2 Q2: WHEN CAN A DCSC ALGORITHM POTENTIALLY OUTPERFORM VANILLA SPECTRAL CLUSTERING?

1060 1061 We first compare the upper bound of $\mu(C_r \Delta \hat{S}_r)$ for *NJW* and *RSC*, which is equivalent to comparing values of $300\Psi_{\rm NJW}$ and $264\Psi_{\rm RSC}$. When *RSC* outperforms *NJW*, *RSC* is more likely to have a tighter upper bound of $\mu(C_r \Delta \hat{S}_r)$, which indicates that $300\Psi_{\rm NJW} \ge 264\Psi_{\rm RSC} \Rightarrow (300\Psi_{\rm NJW} - 264\Psi_{\rm RSC}) \ge 0$. For simplicity, let $\tilde{d} := d_{\rm min}/(d_{\rm max} + \tau)$. We further have

$$\begin{array}{ll} 1065\\ 1066\\ 1066\\ 1067\\ 1068\\ 1069\\ 1068\\ 1069\\ 1068\\ 1069\\ 1069\\ 1069\\ 1069\\ 1069\\ 1069\\ 1069\\ 1070\\ 1070\\ 1070\\ 1070\\ 1071\\ 1072\\ 1071\\ 1072\\ 1073\\ 1074\\ 1075\\ 1074\\ 1075\\ 1074\\ 1075$$

1076 Let $q := (1 - \lambda_{K+1}^{\text{RSC}})/(1 - \lambda_{K+1}^{\text{NJW}})$. Usually, we have $\lambda_{K+1}^{\text{RSC}} \le \lambda_{K+1}^{\text{NJW}}$ and thus $q \ge 1$. Assume *RSC* 1077 adopts its default setting of τ (i.e., $\tau = \overline{d}$). One can rewrite the aforementioned inequality as

1079
$$\frac{1.14q(d_{\max}+\tau) - d_{\min}}{d_{\max} - d_{\min} + \tau} = \frac{1.14qd_{\max} - d_{\min} + 1.14q\bar{d}}{d_{\max} - d_{\min} + \bar{d}} \ge \bar{\phi}_K^{-1}(G).$$

1080 To ensure that the aforementioned inequality holds, one may first ensure that the right part $\bar{\phi}_{-1}^{-1}(G)$ is small enough (i.e., $\phi_K(G)$ is large). It implies that the graph G is not so well-clustered, in contrast 1082 to the well-clustered condition (Ng et al., 2001; Mizutani, 2021) interpreted in Section 3. Moreover, one may also ensure that the left part is large enough. With the increase of degree heterogeneity, the 1084 value of numerator increases faster than that of denominator. Therefore, higher degree heterogeneity results in a larger value of the left part. In summary, a graph G (i) has a high degree heterogeneity and (ii) is not so well-clustered, RSC has a tighter upper bound of **mis-clustered volume** $\mu(C_r\Delta \hat{S}_r)$ 1086 than that of NJW, indicating that RSC may potentially outperform NJW. One can also reach a similar 1087 conclusion by comparing the upper bounds of **conductance** $\phi(C_r)$, because the upper bound of 1088 $\phi(C_r)$ is derived based on that of $\mu(C_r \Delta \hat{S}_r)$. 1089

1092

1095

1098

1099

F.3 **Q3**: WHEN CAN ASCENT POTENTIALLY OUTPERFORM *ISC*?

When $\lambda_{K+2}^{\text{ISC}} \ge \lambda_{K+2}^{\text{AST}}$, we have $\Psi_{\text{ISC}} = (1 - \lambda_{K+2}^{\text{ISC}})^{-1} [1 - (\tilde{d} - \tilde{d}\bar{\phi}_K(G))] \ge (1 - \lambda_{K+2}^{\text{AST}})^{-1} [1 - (\tilde{d} - \tilde{d}\bar{\phi}_K(G))]$ 1093 $(\tilde{d} - \tilde{d}\phi_K(G))]$, with $\tilde{d} := d_{\min}/(d_{\max} + \tau)$. We further have 1094

$$\Psi_{\rm ISC} - \Psi_{\rm AST} \ge \frac{1}{1 - \lambda_{K+2}^{\rm AST}} [(\hat{d} - \tilde{d}) + (\tilde{d}\bar{\phi}_K(G) - \bar{\varphi}_K(G))]$$

$$= \frac{1}{1 - \lambda_{K+2}^{\text{AST}}} \frac{1}{K} \sum_{r=1}^{K} \left[(\frac{d_{\min}}{d_{\max} + \hat{\tau}_r} - \frac{d_{\min}}{d_{\max} + \tau}) (1 - \frac{d_{\min}}{d_{\max} + \tau}) (1 - \frac{d_{\min}}{d_{\max} + \tau}) \right]$$

$$= \frac{1}{1 - \lambda_{K+2}^{\text{AST}}} \frac{1}{K} \sum_{r=1} \left[\left(\frac{a_{\min}}{d_{\max} + \hat{\tau}_r} - \frac{a_{\min}}{d_{\max} + \tau} \right) (1 - \phi(\hat{S}_r)) \right]$$

$$= \frac{1}{1 - \lambda_{K+2}^{\text{AST}}} \frac{1}{K} \sum_{r=1}^{K} \left[\frac{d_{\min}(\tau - \hat{\tau}_r)}{(d_{\max} + \tau)(d_{\max} + \hat{\tau}_r)} (1 - \phi(\hat{S}_r)) \right]$$

$$= \frac{1}{1 - \lambda_{K+2}^{\text{AST}}} \frac{1}{K} \sum_{r=1}^{K} \left[\frac{d_{\min}(\tau - \hat{\tau}_r)}{(d_{\max} + \tau)(d_{\max} + \hat{\tau}_r)} (1 - \phi(\hat{S}_r)) \right]$$

1104
1105
1106
$$= \frac{1}{1 - \lambda_{K+2}^{\text{AST}}} \frac{\tilde{d}}{K} \sum_{r=1}^{K} \left[\frac{\tau - \hat{\tau}_r}{d_{\max} + \hat{\tau}_r} (1 - \phi(\hat{S}_r)) \right]$$
1104

To ensure $\Psi_{ISC} \ge \Psi_{AST} \Rightarrow \Psi_{ISC} - \Psi_{AST} \ge 0$, which indicates that ASCENT can potentially 1107 outperform ISC, one needs to ensure 1108

$$\sum_{r=1}^{K} \frac{\tau - \hat{\tau}_r}{d_{\max} + \hat{\tau}_r} (1 - \phi(\hat{S}_r)) \ge 0.$$

1112 Therefore, it is possible for ASCENT to satisfy the aforementioned conditions.

1113 1114 1115

1109 1110 1111

G **COMPLEXITY ANALYSIS**

1116 Given a large-scale graph, we usually have $K, L \ll N < |E|$. Assume that the graph to be par-1117 titioned is sparse. For ASCENT, the time complexity of deriving node-wise corrections $\{\tau_i\}$ (i.e., 1118 lines 1-5 in Algorithm 1) is no more than O(|E|L) = O(|E|) by fully utilizing the sparsity of a 1119 graph and the sparse-dense matrix multiplication operation. ASCENT follows the same steps of (i) 1120 ED, (ii) spectral embedding arrangement, (iii) embedding normalization, and (iv) KMeans cluster-1121 ing with ISC, which have complexities of (i) O((N + |E|)K) = O(|E|) (using the efficient Lanczos 1122 algorithm (Lehoucq et al., 1998) for ED), (ii) O(NK) = O(N), (iii) O(NK) = O(N), and (iv) $O(NK^2t) = O(N)$ (with $t \ll N$ as the number of iterations in KMeans), respectively. In sum-1123 mary, the overall time complexity of ASCENT is about O(|E|). It has the same complexity with 1124 most existing DCSC algorithms. Therefore, the additional step of deriving node-wise corrections 1125 $\{\tau_i\}$ will not increase the complexity of ASCENT. 1126

1127

1129

DETAILED EXPERIMENT SETUP 1128 Η

Datasets. Caltech (Red et al., 2011) and Simmons (Red et al., 2011) are two graphs regarding 1130 friendships of two online social networks. PolBlogs (Adamic & Glance, 2005) is a graph constructed 1131 based on the links between blogs with different political leaning. Airport (Chami et al., 2019) is a 1132 graph describing the real-world airline routes as from OpenFlights.org. Wiki (Grover & Leskovec, 1133 2016) is a cooccurrence graph of words that appear in the first million bytes of the Wikipedia dump.

	LFR	-1 LFR	-2 SBM-	1 SBM-2	Caltech	1 Simmons	PolBlogs	BioGrid	Airport	Wiki	BlogCatalog	ogbn-Protein
θ	1.0	1.0	0.01	0.01	0.1	0.2	0.05	0.1	0.01	0.1	0.1	0.1
L	4	2	1	1	3	3	1	5	1	4	7	2
		-	P.1.1. 1	1. D. (.)		1	1	IPD	1		C NIN // TA	
		1	able_1	I: Detai	led eva	luation 1	esults of	on LFR	-1 in ter	ms c	of NMIT.	
				WW	η=0	0.1 764 (0.0230)	0.5	0 (0 1018)	0.5	(0.139	7)	
				SCORE	0.07	15 (0.1217)	0.597	7 (0.1322)	0.3019	(0.083	5)	
			1	RSC	0.80	073 (0.0419)	0.544	3 (0.0906)	0.3918	(0.090	1)	
				SCORE+	0.78	899 (0.0598) 201 (0.0278)	0.6019	9 (0.0802)	0.4366	(0.104)	8) 7)	
				GE	0.60	70 (0.1227)	0.032	$\frac{7(0.0327)}{4(0.0998)}$	0.2060	(0.094)	7) 8)	
			(GAP	0.02	293 (0.1445)	0.0202	2 (0.1063)	0.0079	(0.037	7)	
				SDCN	0.01	66 (0.0628)	0.003	7 (0.0067)	0.0156	(0.020	7)	
			L I	MCP DMoN	0.63	34 (0.1967) 64 (0.0532)	0.116	5(0.1849) 5(0.1224)	0.0056	(0.020)	0) 5)	
]	DGC	0.88	347 (0.0275)	0.6779	9(0.0775)	0.4512	(0.084	4)	
				ASCENT	0.89	038 (0.0270)	0.688	3 (0.0735)	0.4642	(0.095	4)	
				mprovemen	it +1.0)3%	+1.53	%	+2.88%	2		
	a	(0		. .	•			a				
Blog	Catalo	og (Gr	over &	Leskov	ec, 201	16) is ext	racted	from so	cial rela	tions	ships provid	ded by blo
autho	ors. Bi	oGric	l (Star	k et al., i	2006)	and ogb i	n-Prote	ein (Szk	larczyk	et a	l., 2019) ai	re two pro
prote	in inte	ractio	n grapl	ns								
Durir	na nrer											
Duin		moces	sino u	ie follow	ed (Oi	n & Gao	2010)	to extra	ct cluste	rino	ground-tru	ith of BioG
wher	ig picp e the d	roces	sing, w ex-set	e follow	red (Qi	n & Gao	, 2010) 2009) w	to extra	ct cluste	ering	ground-tru	ith of Bio G
where	e the c	compl	sing, w ex set	e follow CYC20 st datase	ved (Qi 08 (Pu	n & Gao et al., 2	, 2010) 2009) v used th	to extra vith 231	ct cluste protei	ering n com	ground-tru mplexes w	th of BioG as used as
where refere	e the c ence se	compl et. For	sing, w ex set the re	ve follow CYC20 st datase	red (Qi 08 (Pu ets, we	n & Gao et al., 2 directly	, 2010) 2009) v used th	to extra vith 231 eir origi	ct cluste protei nal forr	ering n com nats	ground-tru mplexes w in our expe	oth of BioG as used as eriments.
where refere Note	that w	compl et. For	sing, w ex set the re ld not u	ve follow CYC20 st datase use the g	red (Qi 08 (Pu ets, we round-	n & Gao et al., 2 directly truth of V	, 2010) 2009) v used th Wiki ar	to extra vith 231 eir origi nd Blog	ct cluste protei nal forr C atalog	ering n com nats g, wh	ground-tru mplexes w in our expe ich describ	oth of BioG as used as eriments. bes overlap
where refere Note	that w	ecompl et. For e coul struct	sing, w ex set the re d not u tures, s	ve follow CYC20 st datase use the g since we	red (Qi 08 (Pu ts, we round- focus	n & Gao et al., 2 directly truth of ¹ on disjo	, 2010) 2009) v used th Wiki ar int graj	to extra vith 231 eir origi nd Blog oh clust	ct cluste protei nal forr C atalog ering in	ering n com nats g, wh this	ground-tru mplexes w in our expe ich describ study. As	th of BioG as used as eriments. bes overlap highlighte
where refere Note comm	that work on 2. y	ecompl et. For e coul struct we ass	sing, w ex set the re d not u tures, s sume th	ve follow CYC20 st datase use the g since we nat graph	red (Qi 08 (Pu ts, we round- focus n attrib	n & Gao et al., 2 directly truth of ¹ on disjo	, 2010) 2009) v used th Wiki ar int graj unavail	to extra vith 231 eir origi ad Blog oh cluste able. T	ct cluste protei nal forr C atalog ering in he grou	ering n con nats g, wh this nd-tu	ground-tru mplexes w in our expe ich describ study. As ruth of Air	th of BioG as used as eriments. bes overlap highlighte port descr
where refere Note comm Section the st	that w nunity on 2, y	ecompl et. For e coul struct we ass ral role	sing, w ex set the re d not u tures, s sume that	ve follow CYC20 st datase use the g since we nat graph each noo	red (Qi 08 (Pu ts, we round- focus n attrib de play	n & Gao a et al., 2 directly truth of ³ on disjo putes are vs in the	, 2010) 2009) v used th Wiki ar int graj unavail graph	to extra vith 231 eir origi ad Blog ph clust able. T topolog	ct cluste protein nal forr Catalog ering in he grou	ering n con nats g, wh this nd-tr a. nc	ground-tru mplexes w in our expe ich describ study. As ruth of Air ode identity	th of BioG as used as eriments. bes overlap highlighte port descr v), which
where refere Note comm Section the st	that w nunity on 2, v tructur	ecompl et. For e coul struct we ass ral role	sing, w ex set the re d not u tures, s sume the that tion co	ve follow CYC20 ⁰ st datase use the g since we nat graph each noo ntradicti	red (Qi 08 (Pu ets, we round- focus n attrib de play	n & Gao i et al., 2 directly truth of ^v on disjo putes are ys in the h cluster	, 2010) 2009) v used th Wiki ar int grap unavail graph	to extractivith 231 eir original ad Blog (ph cluste able. T topolog	ct cluste protei nal forr C atalog ering in he grou y (a.k.a Oin & Y	ering n con nats g, wh this nd-tr a. no Yeung	ground-tru mplexes w in our expe ich describ study. As ruth of Air ode identity 9 2024: Yz	th of BioG as used as eriments. bes overlap highlighte port descr y), which an et al. 20
where refere Note comm Section the st prese	that w nunity on 2, v rve inf	et. For et. For et. For et. For struct we ass al role format	sing, w ex set the re d not u tures, s sume the that tion co	ve follow CYC20 st datase use the g since we nat graph each noo ntradicti	red (Qi 08 (Pu ets, we round- focus n attrib de play ng with	n & Gao i et al., 2 directly truth of ^v on disjo outes are ys in the h cluster	, 2010) 2009) v used th Wiki ar int grap unavail graph ing stru be eval	to extractivith 231 eir original ad Blog bh cluste able. T topolog ctures (ct cluste protein anal form C atalog ering in he grou y (a.k.a Qin & Y	ering n con nats g, wh this nd-tr a. no Yeung	ground-tru mplexes w in our expe ich describ study. As ruth of Air ode identity g, 2024; Ya	th of BioC as used as eriments. bes overlap highlighte port descr y), which an et al., 20 gbn-Prote
where refere Note comm Section the st prese so we an aff	that w nunity on 2, v tructur rve inf e could tribute	e coul struct we ass al role format d also	sing, w ex set the re dd not u tures, s sume the that tion co not us bh for t	ve follow CYC20 ⁰ st datase use the g since we hat graph each noo ntradicti se its gro be evalu	red (Qi 08 (Pu tts, we round- focus n attrib de play ng with pund-tr ation of	n & Gao i et al., 2 directly truth of V on disjo putes are ys in the h cluster ruth for t	, 2010) 2009) v used th Wiki ar int grap unavail graph ing stru the eval	to extra vith 231 eir origi ad Blog bh clust able. T topolog ctures (luation of ation of	ct cluste protein nal forr Catalog ering in he grou y (a.k.a Qin & Y of graph	ering n con nats g, wh this nd-tr a. nc deung n clu	ground-tru mplexes w in our expe ich describ study. As ruth of Air ode identity g, 2024; Ya stering. og	th of BioG as used as eriments. bes overlap highlighte port descr y), which an et al., 20 gbn-Prote lized the g
where reference Note comm Section the suppressence so we an attended	that w nunity on 2, w tructur rve inf e could tribute	e coul struct we ass al role format d also d grap	sing, w ex set the re d not u tures, s sume the that tion co not us bh for t	ve follow CYC200 st datase use the g since we hat graph each noo ntradicti se its gro he evalu	red (Qi 08 (Pu ts, we round- focus n attrib de play ng with pund-tr ation of ioular	n & Gao i et al., 2 directly truth of V on disjo outes are ys in the h cluster ruth for t of node c	, 2010) 2009) v used th Wiki ar int grap unavail graph ing stru the eval	to extra vith 231 eir origi ad Blog oh clust able. T topolog ctures (luation. C the grad.	ct cluste protei nal forr Catalog ering in he grou y (a.k.a Qin & Y of grap Dur eval	ering n con nats g, wh this nd-tr a. no Yeung n clu luation	ground-tru mplexes w in our expe ich describ study. As tuth of Air ode identity g, 2024; Ya stering. 0 on only util	th of BioG as used as eriments. bes overlap highlighte port descr y), which an et al., 20 gbn-Prote lized the g
where reference Note comm Section the structure prese so we an att topol	that w nunity on 2, w tructur rve inf e could tribute ogy of	et. For e coul struct we ass ral role format d also d grap f this c	sing, w ex set the re d not u tures, s sume the that tion co not us oh for t dataset	ve follow CYC200 st datase use the graph each noo ntradicti se its group he evalu . In part	red (Qi 08 (Pu ots, we round- focus n attrib de play ng with pund-tr ation of icular,	n & Gao directly truth of V on disjo outes are ys in the h cluster of node c we did r	, 2010) 2009) v used th Wiki ar int grap unavail graph ing stru the eval classific iot use	to extra vith 231 eir origi ad Blog bh clust able. T topolog ctures (luation of ation. C the grout	ct cluste protei nal forn Catalog ering in he grou yy (a.k.a Qin & Y of grapl Dur eval und-trut	ering n con nats g, wh this nd-tr a. no Yeung n clu luation h of	ground-tru mplexes w in our expe- ich describ study. As ruth of Air ode identity g, 2024; Ya stering. og on only util ogbn-Prot	th of BioG as used as eriments. bes overlap highlighte port descr y), which an et al., 20 gbn-Prote lized the g tein , becau
where reference Note comm Section the st prese so we an att topol is uno	that w nunity on 2, w tructur rve inf e could tribute ogy of clear th	et. For e coul struct we ass cal role format d also d grap t this c nat suc	sing, w ex set the re dd not u tures, s sume the that tion co not us oh for t dataset ch grou	ve follow CYC200 st datase use the g since we hat graph each noo ntradicti se its gro he evalu . In parti	red (Qi 08 (Pu ots, we round- focus n attrib de play ng with pund-tr ation o icular, n is dor	n & Gao directly truth of V on disjo outes are ys in the h cluster fruth for t of node c we did r minated l	, 2010) 2009) v used th Wiki ar int grap unavail graph ing stru the eval classific not use by grap	to extra vith 231 eir origi ad Blog bh clust able. T topolog ctures (luation of ation. C the grou h topolog	ct cluste protei nal forn Catalog ering in he grou y (a.k.a Qin & Y of grapl Dur eval und-trut ogy or a	ering n con nats g, wh this nd-tr a. no Yeung n clu luation h of ttribu	ground-tru mplexes w in our expe ich describ study. As ruth of Air ode identity g, 2024; Ya stering. og on only util ogbn-Prot ntes.	th of BioG as used as eriments. bes overlap highlighte port descr y), which an et al., 20 gbn-Prote lized the g tein , becau
where reference Note comm Section the structure prese so we an att topol is unce Expe	that w nunity on 2, w tructur rve inf e could tribute ogy of clear th	toroces complet. For e coul struct we asseal role format d also d grap f this con at suc	sing, w ex set the re d not u tures, s sume the that tion co not us oh for t dataset ch grou	ve follow CYC200 st datase use the graph each noo ntradicti se its gro he evalu . In parti und-truth ent. All	red (Qi 08 (Pu ts, we round- focus n attrib de play ng with bound-tri ation of icular, n is dor	n & Gao directly truth of V on disjo outes are ys in the h cluster cuth for t of node c we did r minated l	, 2010) 2009) v used th Wiki ar int grap unavail graph ing stru the eval classific not use by grap	to extra vith 231 eir origi ad Blog bh clust able. T topolog ctures (luation of ation. C the grou h topolog	ct cluste protei nal forn Catalog ering in he grou yy (a.k.a Qin & Y of grapl Dur eval und-trut ogy or a cted on	ering n con nats g, wh this nd-tra n du reung n clu uation h of ttribu	ground-tru mplexes w in our expe- ich describ study. As ruth of Air ode identity g, 2024; Ya stering. og on only util ogbn-Prot ites.	th of BioG as used as eriments. bes overlap highlighte port descr y), which an et al., 20 gbn-Prote lized the g tein, becau
where reference Note common Section the sin prese so we an att topol is und Expe	that we nunity on 2, we tructur rve infe e could tribute ogy of clear the rimen (4214	toroces complet. For e coul struct we ass al role format d also d grap f this c nat suc t Env R @2	sing, w ex set the re dd not u tures, s sume the tion co not us oh for t dataset ch grou 'ironm	ve follow CYC200 st datase use the graph each noo ntradicti se its group he evalue. In parti- und-truth ent. All	red (Qi 08 (Pu ts, we round- focus n attrib de play ng with bound-tri ation of icular, n is dor l the e: 24GB	n & Gao directly truth of V on disjo outes are ys in the h cluster cuth for t of node c we did r minated l xperimer	, 2010) 2009) v used th Wiki ar int grap unavail graph ing stru he eval classific not use by grap ats were GPU	to extra vith 231 eir origi ad Blog bh clust able. T topolog ctures (luation of ation. C the grou h topolo c condu	ct cluste protei nal forn Catalog ering in he grou yy (a.k.a Qin & Y of grapl Dur eval und-trut ogy or a cted on nain mo	ering n con nats g, wh this nd-tu a. no Yeung h clu luatio h of ttribu a se	ground-tru mplexes w in our expe- ich describ study. As ruth of Air ode identity g, 2024; Ya stering. og on only util ogbn-Prot ites. rver with o	th of BioG as used as eriments. bes overlap highlighte port descr y), which an et al., 20 gbn-Prote lized the g tein, becau
where reference Note comm Section the sin prese so we an att topol is unce Expe CPU We in	that we nunity on 2, we tructur rve inf e could tribute ogy of clear the rimen (4214	et. For e coul struct we ass al role format d also d grap t this c hat suc t Env R @2	sing, w ex set the re dd not u tures, s sume the tion co not us oh for t dataset ch grou 'ironm . 40GH	ve follow CYC200 st datase use the graph each noo ntradicti se its groc he evalu . In parti und-truth ent. All z), one 2	red (Qi 08 (Pu ts, we round- focus n attrib de play ng with bound-tri ation of icular, n is dor l the e: 24GB to cluster	n & Gao directly truth of V on disjo outes are ys in the h cluster cuth for t of node c we did r minated l xperimer memory	, 2010) 2009) v used th Wiki ar int grap unavail graph ing stru the eval classific not use by grap tts were GPU, 5	to extra vith 231 eir origi ad Blog bh clust able. T topolog ctures (luation of ation. C the grou h topolo c condu	ct cluste protei nal forr Catalog ering in he grou y (a.k.a Qin & Y of grapl Dur eval und-trut ogy or a cted on nain ma	ering n con nats g, wh this nd-tr a. no <i>C</i> eung n clu uation h of ttribu a see emor	ground-tru mplexes w in our expe- ich describ study. As ruth of Air ode identity g, 2024; Ya stering. og on only util ogbn-Prot ites. rver with o y, and Ubu	th of BioG as used as eriments. bes overlap highlighte port descript), which an et al., 20 gbn-Prote lized the g tein, becau
where reference Note comm Section the suppressent so we an att topol is unce Expe CPU We in	that we nunity on 2, we tructur rve infe e could tribute ogy of clear the rimen (4214 mplem	toroces complet. For e coul struct we ass al role format d also d grap this c hat suc t Env R @2 hented	sing, w ex set the re d not u tures, s sume the tion co not us oh for t dataset ch grou ironm .40GH each	ve follow CYC200 st datase use the graph each noo ntradicti se its gro he evalu . In parti und-truth tent . All z), one 2 spectral	red (Qi 08 (Pu ts, we round- focus n attrib de play ng with bund-tri ation of icular, n is dor l the e: 24GB n cluster ding the	n & Gao directly truth of V on disjo outes are ys in the h cluster routh for t of node c we did r minated l xperimer memory ring met	, 2010) 2009) v used th Wiki ar int grap unavail graph ing stru he eval classific tot use by grap tts were GPU, 5 hod (i.	to extra vith 231 eir origi ad Blog bh clust able. T topolog ctures (luation of ation. C the grou h topolo e condu 512GB r e., <i>NJW</i>	ct cluste protei nal forr Catalog ering in he grou y (a.k.a Qin & Y of grapl Dur eval und-trut ogy or a cted on nain may <i>f</i> , <i>SCOP</i>	ering n com mats g, wh this nd-tu a. no deung n clu duatic h of ttribu a se emor <i>RE</i> , <i>H</i>	ground-tru mplexes w in our exper- ich describ study. As ruth of Air ode identity g, 2024; Ya stering. og on only util ogbn-Prot ites. rver with o <i>y</i> , and Ubu <i>SSC</i> , <i>SCOI</i>	th of BioG as used as eriments. bes overlap highlighte port descriptly), which an et al., 20 gbn-Prote lized the g tein, becau one Intel Σ untu Linux RE+, <i>ISC</i> ,
where reference Note comm Section the set prese so we an att topol is und Expe CPU We in ASCI	that we nunity on 2, we tructur rve inf e could tribute ogy of clear the rimen (4214 mplem ENT) to	toroces complet. For e coul struct we ass al role format d also d grap this c nat suc t Env R @2 hented using 1	sing, w ex set the re d not u tures, s sume the tion co not us oh for t dataset ch grou 'ironm .40GH each Pytho	ve follow CYC20 st datase use the g since we hat graph each noo ntradicti se its gro he evalu . In part und-truth ent . All z), one 2 spectral	red (Qi 08 (Pu ts, we round- focus n attrib de play ng with bund-tr ation of icular, n is dor l the e: 24GB n cluster ding th	n & Gao directly truth of V on disjo outes are ys in the h cluster ruth for t of node c we did r minated l xperimer memory ring met	, 2010) 2009) v used th Wiki ar int grap unavail graph ing stru the eval classific tot use by grap tts were GPU, 5 hod (i. ED sup	to extract with 231 eir original ad Blog bh cluste able. T topolog ctures (luation of ation. C the grou h topoloc e condu 512GB r e., <i>NJW</i> pported	ct cluste protei nal forr Catalog ering in he grou yy (a.k.a Qin & Y of graph Dur eval und-trut ogy or a cted on main may <i>SCOP</i> by Sci	ering n com nats g, wh this nd-tria. no deung n clu duation h of tttribu a see eemor <i>RE</i> , <i>H</i> Py. 1	ground-tru mplexes w in our expension ich describ study. As ruth of Air ode identity g, 2024; Ya stering. og on only util ogbn-Prot ites. rver with o y, and Ubu <i>SSC</i> , <i>SCOI</i> Moreover, V	th of BioG as used as eriments. bes overlap highlighte port descripy), which an et al., 20 gbn-Prote lized the g biph-Prote lized the g tein, becau one Intel Σ intu Linux RE+, <i>ISC</i> , we adopted
where reference Note comm Section the strend present so we an attern topol is und Expe CPU We in ASCI official	that we nunity on 2, we tructur rve inf e could tribute ogy of clear the rimen (4214 mplem ENT) to al ope	toroces complet. For e coul struct we ass al role format d also d grap this c hat suc t Env R @2 hented using i n-sou	sing, we set existence of the re- tures, some the tures, some the e that tion co- not us oh for t dataset ch grou- rironm .40GH each Pythor rce imp	ve follow CYC20 st datase use the g since we hat graph each noo ntradicti se its gro he evalu . In part und-truth tent . All z), one 2 spectral on, inclu plementa	red (Qi 08 (Pu ts, we round- focus n attrib de play ng with bund-tr ation of icular, n is dor l the ei 24GB n cluster ding th ttions of	n & Gao directly truth of V on disjo outes are ys in the h cluster routh for t of node c we did r minated l xperimer memory ring met the sparse of all the	, 2010) 2009) v used th Wiki ar int grap unavail graph ing stru he eval classific tot use by grap tts were GPU, 5 hod (i. ED sup deep 1	to extra vith 231 eir origi ad Blog bh clust able. T topolog ctures (luation of ation. Of the grou h topolo e condu 512GB r e., <i>NJW</i> oported l earning	ct cluste protei nal forr Catalog ering in he grou y (a.k.a Qin & Y of grapl Dur eval und-trut ogy or a cted on nain may <i>f</i> , <i>SCOP</i> by Sci baselin	ering n com mats g, whi t this nd-tu a. no Zeung n clu luation h of ttribu a see eemor <i>RE</i> , <i>H</i> Py. 1	ground-tru mplexes w in our exper- ich describ study. As ruth of Air ode identity g, 2024; Ya stering. og on only util ogbn-Prot ites. rver with o <i>y</i> , and Ubu <i>SSC</i> , <i>SCOI</i> Moreover, <i>Y</i> e., <i>Graph</i>	th of BioG as used as eriments. bes overlap highlighte port descriptly, which an et al., 20 gbn-Prote lized the g tein, becau one Intel Σ untu Linux RE+, <i>ISC</i> , we adopted
where refere Note comm Section the st prese so we an att topol is und Expe CPU We in ASCI offici SDCh	that we nunity on 2, we tructur rve inf e could tribute ogy of clear the rimen (4214 mplem ENT) to al ope V, <i>Min</i>	ter could struct we assign to be formated also d grap this contact such that such the could be the could be the could be the could be the could be the could be the could be the could be the could be the could be the could be the could be the could be the could be t	sing, we set existence of the re- ductor of the re- tures, so source the existence of the balance of the character source of the each Pythor rece impool, DM	ve follow CYC20 st datase use the gasince we hat graph each noo ntradicti se its gro he evalu . In part und-truth tent . All z), one 2 spectral on, inclu plementa <i>IoN</i> , and	red (Qi 08 (Pu 08 (Pu ts, we round- focus n attrib de play ng with bund-tr ation of icular, n is dor l the e: 24GB n cluster ding th ttions of 1 DGC	n & Gao directly truth of V on disjo outes are ys in the h cluster we did r minated l xperimer memory ring met the sparse of all the <i>cluster</i>), v	, 2010) 2009) v used th Wiki ar int grap unavail graph ing stru he eval classific tot use by grap tts were GPU, 5 hod (i. ED sup deep 1 which a	to extract vith 231 eir origi ad Blog bh clust able. T topolog ctures (luation of ation. C the grou h topolo e condu 512GB r e., <i>NJW</i> oported l earning re based	ct cluste protei nal forr Catalog ering in he grou y (a.k.a Qin & Y of graph Dur eval und-trut ogy or a cted on nain may <i>SCOP</i> by Sci baselin l on Py	ering n con mats g, wh t this nd-tu a, no Zeung n cluuluation h of ttribu a see eemor <i>RE</i> , <i>H</i> Py. 1 ees (i. Tor	ground-tru mplexes w in our exper- ich describ study. As ruth of Air ode identity g, 2024; Ya stering. og on only util ogbn-Prot ntes. rver with of <i>XSC</i> , <i>SCOI</i> Moreover, <i>Y</i> . <i>e., GraphI</i> ch or Ten	th of Bio G as used as eriments. bes overlap highlighte port descripy), which an et al., 20 gbn-Prote lized the g tein, becau one Intel Σ untu Linux RE+, <i>ISC</i> , we adopted <i>Encoder</i> , <i>C</i> sorFlow
where refere Note comm Section the st prese so we an att topol is und Expe CPU We in ASCI offici <i>SDCI</i> thus y	that we nunity on 2, we tructur rve inf e could tribute ogy of clear the rimen (4214 mplem ENT) to al ope V, <i>Min</i> were ra	e coul struct we ass cal role format d also d grap this c hat suc ut Env R @2 hented using 1 n-soun <i>CutPc</i> an on	sing, w ex set the re tures, s sume the tion co not us oh for t lataset ch grou vironm .40GH each Pytho rce imp <i>ool, DM</i>	ve follow CYC200 st datase use the graph each noo ntradicti se its gro he evalu . In parti und-truth tent . All z), one 2 spectral on, inclu plementa <i>AoN</i> , and U.	red (Qi 08 (Pu 08 (Pu ts, we round- focus n attrib de play ng with bound-tri ation of icular, n is dor l the e: 24GB n cluster ding th ttions of 1 DGC	n & Gao directly truth of V on disjo outes are ys in the h cluster truth for the of node of we did r minated l xperimen memory ring met the sparse of all the <i>cluster</i>), w	, 2010) 2009) v used th Wiki ar int grap unavail graph ing stru the eval classific tot use by grap tts were GPU, 5 hod (i., ED sup deep 1 which a	to extract vith 231 eir origi ad Blog bh cluste lable. T topolog ctures (luation of ation. C the grou h topolo e condu 512GB r e., <i>NJW</i> oported l earning re based	ct cluste protei inal forr Catalog ering in he grou yy (a.k.a Qin & Y of graph Dur eval und-trut ogy or a cted on main may <i>x</i> , <i>SCOP</i> by Sci baselin l on Py	ering n com mats g, whi this nd-tu a. no deung n clu luation h of ttribu a see eemor <i>RE</i> , <i>H</i> Py. 1 es (i. Tor	ground-tru mplexes w in our expe- ich describ study. As ruth of Air ode identity g, 2024; Ya stering. og on only util ogbn-Prot ites. rver with o <i>y</i> , and Ubu <i>XSC</i> , <i>SCOI</i> Moreover, <i>Y</i> . e., <i>GraphI</i> ch or Ten	th of Bio (as used as eriments. bes overlap highlighte port descripy), which an et al., 20 gbn-Prote lized the g bit becau one Intel Σ intu Linux RE+, <i>ISC</i> , we adopted <i>Encoder</i> , <i>C</i> sorFlow
where refered Note commensation of the set o	that we nunity on 2, we tructur rve inf e could tribute ogy of clear the rimen (4214 mplem ENT) to al ope V, <i>Min</i> were ra	e coul struct we ass cal role format d also d grap f this c nat suc t Env R @2 hented using i n-soun ccutPc an on	sing, w ex set the re dd not u tures, s sume the tion co not us oh for t dataset ch grou <i>v</i> ironm .40GH each Pytho rce imp <i>ool, DM</i> the GF	ve follow CYC200 st datase use the g since we nat graph each noo ntradicti se its gro he evalu . In parti und-truth nent . All z), one 2 spectral on, inclu oblementa <i>MoN</i> , and U.	red (Qi 08 (Pu 08 (Pu ts, we round- focus n attrib de play ng with bound-tri ation of icular, n is dor l the e: 24GB n cluster ding th ttions of 1 <i>DGC</i>	n & Gao directly truth of V on disjo outes are ys in the h cluster truth for the of node of we did r minated l xperimen memory ring met the sparse of all the <i>cluster</i>), we	, 2010) 2009) v used th Wiki ar int grap unavail graph ing stru the eval classific tot use by grap tts were GPU, 5 hod (i., ED sup deep 1 which a	to extract vith 231 eir origi ad Blog bh cluste lable. T topolog ctures (luation of ation. C the grou h topolog e condu 512GB r e., <i>NJW</i> oported l earning re based	ct cluste protei nal forr Catalog ering in he grou y (a.k.a Qin & Y of graph Dur eval ind-trut bgy or a cted on nain mo <i>x</i> , <i>SCOH</i> by Sci baselin d on Py	ering n com mats g, whi this nd-tu a, no deung n clu luation h of ttribu a see emor <i>RE</i> , <i>H</i> PPy. 1 es (i. Tor	ground-tru mplexes w in our exper- ich describ study. As ruth of Air ode identity og, 2024; Ya stering. og on only util ogbn-Prot ites. rver with o <i>y</i> , and Ubu <i>RSC</i> , <i>SCOI</i> Moreover, <i>y</i> e., <i>GraphI</i> ch or Ten	th of BioC as used as eriments. besoverlap highlighte port descripy), which an et al., 20 gbn-Prote lized the g lized the g bit of the g bit of the g lized the g tein, becau one Intel Σ intu Linux RE+, <i>ISC</i> , we adopted <i>Encoder</i> , <i>C</i> sorFlow
where reference Note comm Section the sit prese so we an att topol is und Expe CPU We in ASCI offici <i>SDCI</i> thus y Para	that we nunity on 2, we tructur rve inf e could tribute ogy of clear the rimen (4214 mplem ENT) to al ope N, <i>Min</i> were ra meter	e coul struct we ass cal role format d also d grap f this c nat suc t Env R @2 ented using i n-soun c <i>CutPc</i> an on Settin	sing, w ex set the re dd not u tures, s sume the tion co not us oh for t dataset ch grou vironm .40GH each Pytho rce imp <i>ool, DM</i> the GF	ve follow CYC200 st datase use the g since we nat graph each noo ntradicti se its gro he evalu . In parti und-truth cent . All z), one 2 spectral on, inclu oblementa <i>MoN</i> , and U.	red (Qi 08 (Pu 08 (Pu ts, we round- focus n attrib de play ng with bound-tri ation of icular, n is dor l the e: 24GB n cluster ding th titions of 1 <i>DGC</i> ls para	n & Gao directly truth of V on disjo outes are ys in the h cluster ruth for the of node of we did r minated l xperimen memory ring met of all the <i>cluster</i>), we	, 2010) 2009) v used th Wiki ar int grap unavail graph ing stru the eval classific tot use by grap tts were GPU, 5 hod (i., ED sup deep 1 which a	to extract with 231 eir original ad Blog bh cluste lable. T topolog ctures (function of ation. C the group h topolog e condu 512GB r e., <i>NJW</i> ported learning re based of $\{\theta, L\}$	ct cluste protei nal forr Catalog ering in he grou y (a.k.a Qin & Y of graph Dur eval ind-trut ogy or a cted on main mod , SCOH by Sci baselin d on Py } in AS	ering n com mats g, whi this nd-tu a. no deung n clu luation h of ttribu a see emor <i>RE</i> , <i>H</i> PPy. 1 es (i. Tor	ground-tru mplexes w in our exper- ich describ study. As ruth of Air ode identity og 2024; Ya stering. og on only util ogbn-Prot ites. rver with o <i>y</i> , and Ubu <i>RSC</i> , <i>SCOP</i> Moreover, <i>y</i> e., <i>GraphI</i> ch or Ten	th of Bio(as used a eriments. besoverlap highlight port desce y), which an et al., 20 gbn-Prote lized the g bized the g tein, becau one Intel 2 intu Linux RE+, <i>ISC</i> , we adopte <i>Encoder</i> , <i>C</i> sorFlow he dataset

Table	Table 12: Detailed evaluation results on LFR-1 in terms of AG												
		$\eta = 0.1$	0.3	0.5									
	NJW	0.9690 (0.0051)	0.7706 (0.0854)	0.2491 (0.1397)									
	SCOPE	0.8600 (0.1403)	0.8017 (0.1122)	0 2010 (0 0825)									

NJW	0.9690 (0.0051)	0.7706 (0.0854)	0.2491 (0.1397)
SCORE	0.8690 (0.1403)	0.8017 (0.1122)	0.3019 (0.0835)
RSC	0.9498 (0.0109)	0.7865 (0.0700)	0.3918 (0.0901)
SCORE+	0.9188 (0.0861)	0.8403 (0.0407)	0.4366 (0.1048)
ISC	<u>0.9723</u> (0.0086)	0.8659 (0.0489)	0.4416 (0.0947)
GE	0.8173 (0.0895)	0.6069 (0.1156)	0.2060 (0.0548)
GAP	0.4130 (0.1182)	0.3503 (0.1088)	0.0079 (0.0377)
SDCN	0.4064 (0.1046)	0.3374 (0.0712)	0.0156 (0.0207)
MCP	0.8418 (0.1359)	0.4272 (0.1694)	0.0056 (0.0200)
DMoN	0.9341 (0.0370)	0.7608 (0.0839)	0.3029 (0.1115)
DGC	0.9715 (0.0078)	0.8582 (0.0814)	0.4512 (0.0844)
ASCENT	0.9760 (0.0074)	0.8873 (0.0357)	0.4642 (0.0954)
Improvement	+0.38%	+2.47%	+2.88%

1188				
1189	Table 13: Detailed eva	aluation results	s on LFR-1 in	terms of conductance
1190		η=0.1	0.3	0.5
1101	NJW	0.1004 (0.0068)	0.3489 (0.0465)	0.5712 (0.0356)
1100	SCORE	0.2168 (0.1307)	0.3964 (0.0982) 0.3217 (0.0192)	0.6610 (0.0953)
1192	SCORE+	0.1275 (0.0620)	0.3232 (0.0369)	0.5394 (0.0344)
1193	ISC	<u>0.1000</u> (0.0098)	<u>0.3179</u> (0.0145)	0.5231 (0.0144)
1194	GE	0.7349 (0.0919)	0.7902 (0.0663)	0.8718 (0.0473)
1195	SDCN	0.7092 (0.0822)	0.7678 (0.0722)	0.8665 (0.0503)
1196	MCP	0.1960 (0.1491)	0.6546 (0.1746)	0.8420 (0.0626)
1197	DMoN	0.1192 (0.0491)	0.3638(0.0583) 0.3182(0.0127)	0.5745 (0.0392)
1198	ASCENT	0.0995 (0.0082)	0.3174 (0.0127)	0.5200 (0.0200)
1199	Improvement	+0.5%	+0.16%	+0.57%
1200	Table 14: Detailed	1 avaluation ra	culta on I FD) in tarms of NMIA
1200	Table 14. Detailed	d=10	20	$\frac{2 \text{ III terms of INIT}}{30}$
1201	NJW	0.2627 (0.1517)	0.6658 (0.0955)	0.8147 (0.1124)
1202	SCORE	0.3009 (0.0917)	0.6519 (0.1125)	0.8354 (0.0906)
1203	RSC SCORF+	0.3975 (0.0933)	0.6186 (0.0981)	0.7663 (0.0867) 0.8564 (0.0690)
1204	ISC	<u>0.4477</u> (0.0942)	<u>0.7262</u> (0.0913)	<u>0.8688</u> (0.0679)
1205	GE	0.2137 (0.0588)	0.3889 (0.0887)	0.5424 (0.0856)
1206	GAP SDCN	0.0023 (0.0115)	0.0036 (0.0291) 0.0088 (0.0157)	0.0035 (0.0228) 0.0125 (0.0233)
1207	MCP	0.0029 (0.0173)	0.0000 (0.0002)	0.0000 (0.0000)
1208	DMoN	0.2970 (0.1166)	0.4943 (0.1230)	0.5668 (0.1371)
1200	ASCENT	0.4467 (0.0918)	0.7233 (0.0886)	0.8592 (0.1173)
1010	Improvement	+3.75%	+6.76%	+3.37%
1210		1 1		
1211	Table 15: Detaile	d evaluation r	esults on LFR	-2 in terms of AC \uparrow .
1212	NIW	d=10 0.4432 (0.1154)	20	<u> </u>
1213	SCORE	0.4774 (0.1070)	0.7727 (0.1119)	0.8917 (0.0881)
1214	RSC	0.6122 (0.0474)	0.7719 (0.0751)	0.8741 (0.0669)
1215	ISC	0.6630(0.0573) 0.6659(0.0519)	0.8538(0.0738) 0.8559(0.0672)	$0.9361 (0.0429) \\ 0.9391 (0.0463)$
1216	GE	0.3621 (0.0635)	0.5409 (0.1017)	0.6811 (0.0947)
1217	GAP	0.2368 (0.0396)	0.2527 (0.0329)	0.2598 (0.0341)
1218	MCP	0.2386 (0.0403)	0.2529 (0.0302)	0.2590 (0.0342)
1210	DMoN	0.4606 (0.0565)	0.6152 (0.0738)	0.6724 (0.1022)
1000	DGC	0.6390 (0.0680)	0.8556 (0.0887)	0.8948 (0.1092)
1220	Improvement	+2.88%	+3.80%	+1.63%
1221				
1222	Table 16: Detailed eva	aluation results	s on LFR-2 in	terms of conductance
1223	NIW	d=10 0.5710 (0.0368)	20 0.5318 (0.0214)	30
1224	SCORE	0.6648 (0.1052)	0.5722 (0.0578)	0.5355 (0.0392)
1225	RSC	0.5394 (0.0154)	0.5260 (0.0148)	0.5166 (0.0133)
1226	SCORE+ ISC	0.5349 (0.0283)	0.5222 (0.0089) 0.5221 (0.0070)	0.5099 (0.0052) 0.5097 (0.0050)
1227	GE	0.8759 (0.0476)	0.8613 (0.0416)	0.8422 (0.0339)
1228	GAP	0.8502 (0.0592)	0.8305 (0.0502)	0.8185 (0.0450)
1220	SDCN MCP	0.8710 (0.0466)	0.8509(0.0456) 0.8321(0.0493)	0.8345 (0.0466) 0.8191 (0.0458)
1000	DMoN	0.5916 (0.0374)	0.6048 (0.0379)	0.5951 (0.0450)
1230	DGC	0.5306 (0.0356)	0.5169 (0.0263)	0.5212 (0.0297)
1231	ASCEN I Improvement	0.5172 (0.0147) +2.18%	0.5114 (0.0089) +1.06%	0.505 7 (0.0064) +0.78%
1232		1211070	11.00%	1011070
1233	Table 17: Detailed	l evaluation re	sults on SBM-	1 in terms of NMI [↑] .
1234		$\gamma = 0.5$	0.6	0.7
1235	NJW SCORE	0.7994 (0.0374)	0.9181 (0.0329) 0.8558 (0.0571)	0.9648 (0.0172) 0.9104 (0.0514)
1236	RSC	0.7689 (0.0455)	0.8976 (0.0417)	0.9447 (0.0328)
1237	SCORE+	0.8208 (0.0331)	0.9299 (0.0246)	0.9702 (0.0127)
1038	GE	$\frac{0.8233}{0.6679} (0.0336)$	0.9518 (0.0251)	0.9752 (0.0111)
1230	GAP	0.0127 (0.0342)	0.0165 (0.0410)	0.0176 (0.0455)
1239	SDCN	0.2601 (0.0491)	0.3913 (0.0739)	0.4802 (0.0869)
1240	MCP DMoN	0.0000 (0.0000)	0.1481 (0.0197) 0.8496 (0.0310)	0.9091 (0.0000) 0.8884 (0.0344)
1241	DGC	0.6802 (0.0536)	0.8019 (0.0546)	0.8721 (0.0490)
	ASCENT	0.8252 (0.0318)	0.9341 (0.0228)	0.9738 (0.0109)
	Improvement	+0.23%	+0.24%	+0.00%

1242				
1243	Table 18. Detaile	d evaluation re	esults on SBM	-1 in terms of AC [↑]
1244	lucie 10. Deune	$\gamma=0.5$	0.6	0.7
1245	NJW	0.8774 (0.0360)	0.9535 (0.0312)	0.9816 (0.0143)
1246	SCORE RSC	0.7886 (0.0668)	0.8855 (0.0716)	0.9262 (0.0625) 0.9614 (0.0372)
1240	SCORE+	0.8918 (0.0315)	0.9610 (0.0229)	0.9853 (0.0076)
1247	ISC	0.8962 (0.0318)	0.9618 (0.0255)	0.9866 (0.0084)
1248	GAP	0.7628 (0.0742)	0.9070 (0.0516)	0.9541 (0.0387) 0.1550 (0.0307)
1249	SDCN	0.3509 (0.0632)	0.4731 (0.0912)	0.5458 (0.0985)
1250	MCP	0.0000 (0.0000)	0.1481 (0.0197)	0.9091 (0.0000)
1251	DMoN DGC	0.7933 (0.0596)	0.8507 (0.0457) 0.7614 (0.0715)	0.8752 (0.0591) 0.8150 (0.0670)
1252	ASCENT	0.9008 (0.0258)	0.9651 (0.0200)	0.9868 (0.0089)
1253	Improvement	+0.51%	+0.34%	+0.02%
1254	Table 10: Detailed ave	luction results	on SBM 1 in	terms of conductoned
1055	Table 19. Detailed eva	$\alpha = 0.5$	06	$\frac{1}{0.7}$
1200	NJW	0.7054 (0.0063)	0.6621 (0.0075)	0.6280 (0.0055)
1256	SCORE	0.7160 (0.0086)	0.6711 (0.0108)	0.6373 (0.0118)
1257	RSC	0.7097 (0.0073)	0.6652 (0.0086)	0.6318 (0.0085)
1258	ISC	0.7033 (0.0060)	0.6606 (0.0068)	0.6272 (0.0030)
1259	GE	0.7470 (0.0209)	0.6780 (0.0161)	0.6377 (0.0145)
1260	GAP	0.9072 (0.0049)	0.9066 (0.0061)	0.9066 (0.0065)
1261	SDCN MCP	0.8554 (0.0133)	0.8120 (0.0227) 0.1481 (0.0197)	0.7774 (0.0292) 0.9091 (0.0000)
1060	DMoN	0.7214 (0.0087)	0.6893 (0.0115)	0.6599 (0.0160)
1202	DGC	0.7791 (0.0198)	0.7344 (0.0244)	0.6957 (0.0271)
1263	ASCENT	0.7027 (0.0058)	0.6602 (0.0065)	0.6268 (0.0047)
1264	Improvement	+0.02%	+0.00%	+0.03%
1265	Table 20: Detailed	d evaluation re-	sults on SBM-	2 in terms of NMI↑.
1266		β=2.5	2.75	3
1267	NJW	0.8020 (0.0384)	0.7616 (0.0361)	0.7334 (0.0370)
1268	RSC	0.7239(0.0609) 0.7709(0.0485)	0.6846 (0.0540) 0.7335 (0.0425)	0.6502 (0.0521) 0.7038 (0.0404)
1200	SCORE+	0.8206 (0.0347)	0.7829 (0.0308)	0.7536 (0.0338)
1269	ISC	<u>0.8246</u> (0.0336)	0.7880 (0.0324)	<u>0.7570</u> (0.0347)
1270	GAP	0.6768 (0.0587)	0.6261 (0.0523) 0.0118 (0.0311)	0.5720 (0.0632)
1271	SDCN	0.2629 (0.0529)	0.2226 (0.0571)	0.1899 (0.0502)
1272	MCP	0.0000 (0.0000)	0.0000 (0.0000)	0.0000 (0.0000)
1273	DMoN DGC	0.7594 (0.0375)	0.7342(0.0471) 0.6694(0.0499)	0.6955 (0.0509)
1274	ASCENT	0.8274 (0.0320)	0.0094 (0.0499) 0.7900 (0.0309)	0.0490 (0.0378)
1975	Improvement	+0.34%	+0.25%	+0.34%
1076	Table 21. Details	d avaluation m	aulta an SDM	2 in terms of ACA
1270	Table 21: Detaile	a = 25	2 75	$\frac{-2 \text{ in terms of } AC .}{2}$
1277	NJW	p = 2.3 0.8782 (0.0354)	0.8523 (0.0351)	0.8336 (0.0376)
1278	SCORE	0.7927 (0.0704)	0.7577 (0.0637)	0.7366 (0.0597)
1279	RSC	0.8375 (0.0568)	0.8070 (0.0560)	0.7966 (0.0475)
1280	SCORE+ ISC	0.8910 (0.0326)	0.8001 (0.0279)	0.8454 (0.0340) 0.8521 (0.0334)
1281	GE	0.7703 (0.0634)	0.7319 (0.0530)	0.6868 (0.0674)
1282	GAP	0.1511 (0.0307)	0.1529 (0.0271)	0.1507 (0.0261)
1202	SDCN MCP	0.3680 (0.0660)	0.3287 (0.0630)	0.2962 (0.0588)
1203	DMoN	0.7917 (0.0511)	0.7781 (0.0631)	0.7498 (0.0658)
1284	DGC	0.6930 (0.0666)	0.6842 (0.0630)	0.6789 (0.0676)
1285	ASCENT	0.8987 (0.0295)	0.8751 (0.0279)	0.8579 (0.0269)
1286	Improvement	+0.37%	+0.53%	+0.68%
1287	Table 22: Detailed eva	aluation results	on SBM-2 in	terms of conductance .
1288	· · · · · · · · · · · · · · · · · · ·	$\beta = 2.5$	2.75	3
1280	NJW	0.7059 (0.0069)	0.7059 (0.0065)	0.7056 (0.0060)
1203	SCORE	0.7163 (0.0092)	0.7160 (0.0085)	0.7165 (0.0072)
1290	SCORE+	0.7039 (0.0065)	0.7042 (0.0064)	0.7035 (0.0059)
1291	ISC	<u>0.7038</u> (0.0066)	<u>0.7039</u> (0.0065)	0.7035 (0.0060)
1292	GE	0.7461 (0.0193)	0.7542 (0.0181)	0.7639 (0.0196)
1293	GAP SDCN	0.9069 (0.0058)	0.9071 (0.0050) 0.8632 (0.0149)	0.9071 (0.0050) 0.8716 (0.0147)
1294	MCP	0.9091 (0.0000)	0.9091 (0.0000)	0.9091 (0.0000)
1205	DMoN	0.7221 (0.0078)	0.7186 (0.0086)	0.7175 (0.0072)
1200	DGC	0.7759 (0.0207)	0.7761 (0.0174)	0.7745 (0.0195)
	Improvement	+0.09%	+0.09%	+0.09%

		Caltech			Simmons	
	NMI↑	AC↑	Cond↓	NMI↑	AC↑	Cond↓
NJW	0.6213 (0.0032)	0.7539 (0.0043)	0.5076 (0.0007)	0.6796 (0.0000)	0.7344 (0.0000)	0.3387 (0.00
SCORE	0.5639 (0.0035)	0.6905 (0.0028)	0.5012 (0.0004)	0.5853 (0.0002)	0.7639 (0.0004)	0.2992 (0.00
RSC	0.5858 (0.0011)	0.7105 (0.0007)	0.4986 (0.0002)	0.6152 (0.0011)	0.7861 (0.0009)	0.2888 (0.00
SCORE+	0.6914 (0.0063)	0.8285 (0.0047)	0.4844 (0.0017)	0.7295 (0.0000)	0.8881 (0.0004)	0.2741 (0.00
ISC	<u>0.7028</u> (0.0021)	0.8373 (0.0019)	0.4832 (0.0002)	0.7357(0.0000)	0.8936 (0.0000)	0.2735 (0.00
GE	0.3675 (0.0811)	0.4444 (0.0803)	0.6897 (0.0417)	0.4919 (0.0337)	0.5886 (0.0876)	0.4813 (0.05
GAP	0.6580 (0.0366)	0.7559 (0.0699)	0.4994 (0.0124)	0.4869 (0.2484)	0.5796 (0.1529)	0.4084 (0.17
SDCN	0.2850 (0.0746)	0.3403 (0.0610)	0.7479 (0.0403	0.3828 (0.0856)	0.5391 (0.0767)	0.5139 (0.08
MCP	0.5057 (0.2537)	0.6332 (0.2387)	0.5816 (0.1468)	0.6466 (0.0231)	0.8290 (0.0100)	0.2980 (0.00
DMoN	0.6629 (0.0011)	0.7247 (0.0014)	0.5397 (0.0063)	0.6364 (0.0035)	0.8120 (0.0064)	0.2800 (0.00
	0 6675 (0 0150)	0.7522 (0.0200)	0 5192 (0 0263)	0.7052 (0.0200)		0 2218 (0 04
DGC	0.0075 (0.0159)	0.7532 (0.0298)	0.5172(0.0205)	0.7053 (0.0200)	0.7974 (0.0437)	0.5518 (0.04
DGC ASCENT	0.0073 (0.0139) 0.7120 (0.0105)	0.7532 (0.0298) 0.8441 (0.0056)	0.4828 (0.0002)	0.7053 (0.0200) 0.7406 (0.0000)	0.7974 (0.0437) 0.8962 (0.0000)	0.3318 (0.04 0.2734 (0.00
DGC ASCENT Improvement	0.7120 (0.0105) +1.31% Table 24:	0.7532 (0.0298) 0.8441 (0.0056) +0.81% Detailed evalue PolBlogs	0.4828 (0.0002) +0.08%	0.7406 (0.000) +0.67%	0.7974 (0.0437) 0.8962 (0.0000) +0.29% ad BioGrid. BioGrid	0.2734 (0.04 +0.04%
DGC ASCENT Improvement	0.7120 (0.0105) +1.31% Table 24:	0.7532 (0.0298) 0.8441 (0.0056) +0.81% PolBlogs AC↑	0.4828 (0.0002) +0.08% uation results (0.7033 (0.0200) 0.7406 (0.0000) +0.67%	0.7974 (0.0437) 0.8962 (0.0000) +0.29% nd BioGrid. BioGrid AC↑	0.3318 (0.04 0.2734 (0.00 +0.04%
DGC ASCENT Improvement	0.0013 (0.0133) 0.7120 (0.0105) +1.31% Table 24: NMI↑ 0.0006 (0.0000)	0.7532 (0.0298) 0.8441 (0.0056) +0.81% PolBlogs AC↑ 0.5188 (0.0000)	0.4828 (0.0002) +0.08% uation results (Cond↓ 0.2694 (0.0000)	0.7033 (0.0200) 0.7406 (0.0000) +0.67% on PolBlogs ar NMI↑ 0.4183 (0.0034)	0.7974 (0.0437) 0.8962 (0.0000) +0.29% nd BioGrid. BioGrid AC↑ 0.1284 (0.0020)	0.3313 (0.04 0.2734 (0.00 +0.04% Cond↓ 0.6620 (0.00
DGC ASCENT Improvement NJW SCORE	0.0013 (0.0135) 0.7120 (0.0105) +1.31% Table 24: NMI↑ 0.0006 (0.0000) 0.7250 (0.0000)	0.7532 (0.0298) 0.8441 (0.0056) +0.81% PolBlogs AC↑ 0.5188 (0.0000) 0.9525 (0.0000)	0.4828 (0.0002) +0.08% uation results (Cond↓ 0.2694 (0.0000) 0.0767 (0.0000)	0.7033 (0.0200) 0.7406 (0.0000) +0.67% 0.67% 0.67% 0.4183 (0.0034) 0.1393 (0.0072)	0.7974 (0.0437) 0.8962 (0.0000) +0.29% nd BioGrid. BioGrid AC↑ 0.1284 (0.0020) 0.0737 (0.0034)	0.2734 (0.00 +0.04% Cond↓ 0.6620 (0.00 0.9090 (0.00
DGC ASCENT Improvement NJW SCORE RSC	Image: 10.0013 (0.0133) 0.7120 (0.0105) +1.31% Table 24: NMI↑ 0.0006 (0.0000) 0.7250 (0.0000) 0.7133 (0.0000)	0.7532 (0.0298) 0.8441 (0.0056) +0.81% PolBlogs AC↑ 0.5188 (0.0000) 0.9525 (0.0000) 0.9476 (0.0000)	0.4828 (0.0002) +0.08% uation results (Cond↓ 0.2694 (0.0000) 0.0767 (0.0000) 0.0734 (0.0000)	0.7406 (0.0000) +0.67% Dr PolBlogs ar NMI↑ 0.4183 (0.0034) 0.1393 (0.0072) 0.4364 (0.0012)	0.7974 (0.0437) 0.8962 (0.0000) +0.29% nd BioGrid. BioGrid AC↑ 0.1284 (0.0020) 0.0737 (0.0034) 0.1352 (0.0010)	0.3738 (0.04 0.2734 (0.00 +0.04% Cond, 0.6620 (0.00 0.9090 (0.00 0.6607 (0.00
DGC ASCENT Improvement NJW SCORE RSC SCORE+	0.0013 (0.0133) 0.7120 (0.0105) +1.31% Table 24: NMI↑ 0.0006 (0.0000) 0.7130 (0.0000) 0.7133 (0.0000) 0.733 (0.0000) 0.733 (0.0000)	0.7532 (0.0298) 0.8441 (0.0056) +0.81% PolBlogs AC↑ 0.5188 (0.0000) 0.9525 (0.0000) 0.9476 (0.0000) 0.9533 (0.0000)	$\begin{array}{c} \textbf{0.3132} (0.0203) \\ \textbf{0.4828} (0.0002) \\ +0.08\% \\ \hline \\ \textbf{0.2694} (0.0000) \\ 0.0767 (0.0000) \\ \hline \\ \textbf{0.0753} (0.0000) \\ \hline \\ \textbf{0.0753} (0.0000) \\ \hline \end{array}$	0.7406 (0.0000) +0.67% Dn PolBlogs at NMI↑ 0.4183 (0.0034) 0.1393 (0.0072) 0.4364 (0.0012) 0.2436 (0.0099)	$\begin{array}{c} 0.7974 \ (0.0437) \\ \hline 0.8962 \ (0.0000) \\ + 0.29\% \\ \end{array}$	0.2734 (0.00 +0.04% Cond↓ 0.6620 (0.00 0.66620 (0.00 0.6667 (0.00 0.8202 (0.00
DGC ASCENT Improvement NJW SCORE RSC SCORE+ ISC	0.0013 (0.0133) 0.7120 (0.0105) +1.31% Table 24: NMI↑ 0.0006 (0.0000) 0.7250 (0.0000) 0.733 (0.0000) 0.7308 (0.0000) 0.7267 (0.0000)	0.7532 (0.0298) 0.8441 (0.0056) +0.81% PolBlogs AC↑ 0.5188 (0.0000) 0.9525 (0.0000) 0.9476 (0.0000) 0.9533 (0.0000) 0.9509 (0.0000)	0.4828 (0.0002) +0.08% uation results (Cond↓ 0.2694 (0.0000) 0.0767 (0.0000) 0.0753 (0.0000) 0.0735 (0.0000)	0.7406 (0.0000) +0.67% Dn PolBlogs at NMI↑ 0.4183 (0.0034) 0.1393 (0.0072) 0.2436 (0.0099) 0.4321 (0.0016)	$\begin{array}{c} 0.7974\ (0.0437)\\ \hline 0.8962\ (0.0000)\\ +0.29\%\\ \hline \end{array}$	0.2734 (0.00 +0.04% Cond↓ 0.6620 (0.00 0.6607 (0.00 0.8202 (0.00 0.6607 (0.00)
DGC ASCENT Improvement NJW SCORE RSC SCORE+ ISC ISC GE	Image: Table 24: NMI↑ 0.0006 (0.0000) 0.7133 (0.000) 0.7250 (0.0000) 0.7133 (0.0000) 0.7267 (0.0000) 0.7267 (0.0000)	0.7532 (0.0298) 0.8441 (0.0056) +0.81% PolBlogs AC↑ 0.5188 (0.0000) 0.9525 (0.0000) 0.9525 (0.0000) 0.9533 (0.0000) 0.9533 (0.0000) 0.9538 (0.0046)	$\begin{array}{c} 0.4828 (0.0002) \\ +0.08\% \end{array}$ uation results (0.0002) \\ +0.08\% \end{array} $\begin{array}{c} \hline Cond \downarrow \\ 0.2694 (0.0000) \\ 0.0767 (0.0000) \\ 0.0753 (0.0000) \\ 0.0735 (0.0000) \\ 0.0735 (0.0000) \\ 0.5013 (0.0003) \end{array}$	0.7406 (0.0000) +0.67% Dn PolBlogs at NMI↑ 0.4183 (0.0034) 0.1393 (0.0072) 0.4364 (0.0012) 0.4364 (0.0012) 0.4321 (0.0016) 0.3174 (0.0027)	$\begin{array}{c} 0.7974\ (0.0437)\\ \hline 0.8962\ (0.0000)\\ +0.29\%\\ \hline \\ \hline$	0.313 (0.04 0.2734 (0.00 +0.04% Cond↓ 0.6620 (0.00 0.9090 (0.00 0.6607 (0.00 0.6607 (0.00 0.9081 (0.00
DGC ASCENT Improvement NJW SCORE RSC SCORE+ ISC GE GAP	Image: Table 24: NMI↑ 0.0006 (0.0000) 0.7130 (0.0000) 0.7250 (0.0000) 0.7133 (0.0000) 0.7308 (0.0000) 0.7308 (0.0000) 0.7267 (0.0000) 0.0615 (0.0063) 0.4289 (0.3502)	0.7532 (0.0298) 0.8441 (0.0056) +0.81% PolBlogs AC↑ 0.9525 (0.0000) 0.9525 (0.0000) 0.9533 (0.0000) 0.9509 (0.0000) 0.5188 (0.0046) 0.7782 (0.2105)	$\begin{array}{c} \hline 0.4528 (0.000) \\ \hline 0.4628 (0.0002) \\ \pm 0.08\% \\ \hline \\ $	0.7053 (0.0200) 0.7406 (0.0000) +0.67% 0.183 (0.0034) 0.1393 (0.0072) 0.4364 (0.0012) 0.2436 (0.0099) 0.4321 (0.0016) 0.3174 (0.0027) 0.4418 (0.0058)	$\begin{array}{c} 0.7974\ (0.0437)\\ \hline 0.8962\ (0.0000)\\ +0.29\%\\ \hline \end{array}$	0.318 (0.04 0.2734 (0.00 +0.04% Cond↓ 0.6620 (0.00 0.9090 (0.00 0.6607 (0.00 0.8202 (0.00 0.8202 (0.00 0.8202 (0.00 0.8201 (0.00) 0.8201 (0.00)
DGC ASCENT Improvement MJW SCORE RSC SCORE+ ISC GE GAP SDCN	Image: NMI↑ 0.7120 (0.0105) +1.31% Table 24: NMI↑ 0.0006 (0.0000) 0.7250 (0.0000) 0.733 (0.0000) 0.7308 (0.0000) 0.7267 (0.0000) 0.615 (0.0063) 0.4289 (0.3502) 0.1496 (0.0767)	0.7532 (0.0298) 0.8441 (0.0056) +0.81% PolBlogs AC↑ 0.5188 (0.0000) 0.9525 (0.0000) 0.9525 (0.0000) 0.9476 (0.0000) 0.9533 (0.0000) 0.9509 (0.0000) 0.5188 (0.0046) 0.7782 (0.2105) 0.6293 (0.0560)	$\begin{array}{c} \hline 0.0000000000000000000000000000000000$	0.7053 (0.0200) 0.7406 (0.0000) +0.67% 0.4183 (0.0034) 0.1393 (0.0072) 0.4364 (0.0012) 0.4364 (0.0012) 0.4364 (0.0012) 0.4321 (0.0016) 0.3174 (0.0027) 0.4418 (0.0058) 0.2077 (0.0225)	$\begin{array}{c} 0.7974 \ (0.0437) \\ \hline 0.8962 \ (0.0000) \\ + 0.29\% \\ \end{array}$	0.318 (0.04 0.2734 (0.00 +0.04% Cond↓ 0.6620 (0.00 0.9090 (0.00 0.6607 (0.00 0.8202 (0.00 0.8202 (0.00 0.8202 (0.00 0.851 (0.00 0.8040 (0.01 0.8203 (0.00)
DGC ASCENT Improvement NJW SCORE RSC SCORE+ ISC GE GAP SDCN MCP	0.0013 (0.0139) 0.7120 (0.0105) +1.31% Table 24: NMI↑ 0.0006 (0.0000) 0.7250 (0.0000) 0.7133 (0.0000) 0.7308 (0.0000) 0.7267 (0.0000) 0.0615 (0.0063) 0.496 (0.0767) 0.5815 (0.2908)	0.7532 (0.0298) 0.8441 (0.0056) +0.81% PolBlogs AC↑ 0.5188 (0.0000) 0.9525 (0.0000) 0.9476 (0.0000) 0.9576 (0.0000) 0.9579 (0.0000) 0.5188 (0.0046) 0.7582 (0.2105) 0.6293 (0.0560) 0.8656 (0.1726)	0.4828 (0.0002) +0.08% +0.08% Cond↓ 0.2694 (0.0000) 0.0753 (0.0000) 0.0753 (0.0000) 0.0735 (0.0000) 0.5013 (0.0003) 0.2848 (0.1107) 0.1626 (0.1687)	0.7033 (0.0200) 0.7406 (0.0000) +0.67% 0.4183 (0.0034) 0.1393 (0.0072) 0.4364 (0.0012) 0.2436 (0.0012) 0.2436 (0.0012) 0.2436 (0.0012) 0.2436 (0.0027) 0.4418 (0.0058) 0.2077 (0.0225) 0.0000 (0.0000)	$\begin{array}{c} 0.7974 \ (0.0437) \\ \hline 0.8962 \ (0.0000) \\ + 0.29\% \\ \hline \\ \mbox{ hd } BioGrid \\ \hline AC\uparrow \\ \hline 0.1284 \ (0.0020) \\ 0.0737 \ (0.0034) \\ \hline 0.1326 \ (0.0010) \\ 0.0944 \ (0.0034) \\ \hline 0.1326 \ (0.0021) \\ \hline 0.1128 \ (0.0041) \\ \hline 0.1128 \ (0.0041) \\ \hline 0.1340 \ (0.0029) \\ \hline 0.0844 \ (0.0052) \\ 0.0443 \ (0.0000) \\ \hline \end{array}$	0.2734 (0.00 +0.04%
DGC ASCENT Improvement MJW SCORE RSC SCORE+ ISC GE GAP SDCN MCP DMoN	0.0013 (0.0139) 0.7120 (0.0105) +1.31% Table 24: NMI↑ 0.0006 (0.0000) 0.7250 (0.0000) 0.733 (0.0000) 0.7308 (0.0000) 0.7267 (0.0000) 0.0615 (0.0063) 0.4289 (0.3502) 0.1496 (0.0767) 0.5815 (0.2908) 0.7116 (0.0053)	0.7532 (0.0298) 0.8441 (0.0056) +0.81% PolBlogs AC↑ 0.5188 (0.0000) 0.9525 (0.0000) 0.9525 (0.0000) 0.9533 (0.0000) 0.9533 (0.0000) 0.5188 (0.0046) 0.7782 (0.2105) 0.6293 (0.0560) 0.8656 (0.1726) 0.9491 (0.0013)	0.4828 (0.0002) +0.08% uation results (0.2694 (0.0000) 0.0767 (0.0000) 0.0753 (0.0000) 0.0753 (0.0000) 0.0753 (0.0000) 0.0735 (0.0000) 0.2440 (0.2090) 0.2440 (0.2090) 0.2848 (0.1107) 0.1626 (0.1687) 0.0747 (0.0001)	0.7406 (0.0000) +0.67% Dn PolBlogs at NMI↑ 0.4183 (0.0034) 0.1393 (0.0072) 0.4364 (0.0012) 0.2436 (0.0099) 0.4321 (0.0016) 0.3174 (0.0027) 0.4418 (0.0058) 0.2077 (0.0225) 0.0000 (0.0000) 0.4173 (0.0048)	$\begin{array}{c} 0.7974\ (0.0437)\\ \hline 0.8962\ (0.0000)\\ +0.29\%\\ \hline \\ \hline \\ \textbf{M} \\ \hline \\ \textbf{BioGrid}\\ \hline \\ \textbf{AC}\uparrow\\ \hline \\ 0.1284\ (0.0020)\\ 0.0737\ (0.0034)\\ \hline \\ 0.1352\ (0.0010)\\ 0.0944\ (0.0034)\\ 0.1326\ (0.0021)\\ \hline \\ 0.1128\ (0.0041)\\ 0.1340\ (0.0029)\\ 0.0844\ (0.0029)\\ 0.0844\ (0.00052)\\ 0.0443\ (0.00002)\\ 0.1291\ (0.0038)\\ \hline \end{array}$	0.2734 (0.04 +0.04% +0.04% 0.6620 (0.00 0.9090 (0.00 0.6607 (0.00 0.8202 (0.00 0.8202 (0.00 0.8202 (0.00 0.8202 (0.00 0.8204 (0.01 0.9851 (0.00 0.9877 (0.00 0.9877 (0.00 0.9877 (0.00
DGC ASCENT Improvement MJW SCORE RSC SCORE+ ISC GE GAP SDCN MCP DMoN DGC	Image: Display of the system 0.7120 (0.0105) +1.31% Table 24: NMI↑ 0.0006 (0.0000) 0.7250 (0.0000) 0.733 (0.0000) 0.7308 (0.0000) 0.7267 (0.0000) 0.0615 (0.0063) 0.4289 (0.3502) 0.1496 (0.0767) 0.515 (0.2098) 0.7116 (0.0053) 0.7121 (0.0098)	0.7832 (0.0298) 0.8441 (0.0056) +0.81% PolBlogs AC↑ 0.5188 (0.0000) 0.9525 (0.0000) 0.9525 (0.0000) 0.9533 (0.0006) 0.5188 (0.0046) 0.5188 (0.0046) 0.5188 (0.0046) 0.782 (0.2105) 0.6293 (0.0560) 0.8656 (0.1726) 0.9491 (0.0013)	0.4828 (0.0002) +0.08% uation results (Cond↓ 0.2694 (0.0000) 0.0767 (0.000) 0.0753 (0.0000) 0.0735 (0.0000) 0.0735 (0.0000) 0.2848 (0.1107) 0.1626 (0.1687) 0.0742 (0.0001) 0.0742 (0.0006)	0.7053 (0.0200) 0.7406 (0.0000) +0.67% 0.1393 (0.0034) 0.1393 (0.0072) 0.4364 (0.0012) 0.2436 (0.0099) 0.4321 (0.0016) 0.3174 (0.0027) 0.4418 (0.0058) 0.2077 (0.0225) 0.0000 (0.0000) 0.4173 (0.0048) 0.2163 (0.0229)	$\begin{array}{c} 0.7974 \ (0.0437) \\ \hline 0.8962 \ (0.0000) \\ + 0.29\% \\ \hline \end{array}$	0.313 (0.00 0.2734 (0.00 +0.04% Cond↓ 0.6620 (0.00 0.6607 (0.00 0.6607 (0.00 0.8607 (0.00 0.8607 (0.00 0.8607 (0.00 0.9851 (0.00 0.9853 (0.00 0.9853 (0.00 0.9774 (0.01) 0.9104 (0.00
DGC ASCENT Improvement MJW SCORE RSC SCORE+ ISC GE GAP SDCN MCP DMoN DGC ASCENT	Image: constraint of the system 0.7120 (0.0105) +1.31% Table 24: NMI↑ 0.0006 (0.0000) 0.7250 (0.0000) 0.7250 (0.0000) 0.733 (0.0000) 0.7267 (0.0000) 0.0615 (0.0063) 0.4289 (0.3502) 0.1496 (0.0767) 0.5815 (0.2908) 0.7116 (0.0053) 0.7248 (0.0000)	0.7532 (0.0298) 0.8441 (0.0056) +0.81% PolBlogs AC↑ 0.5188 (0.0000) 0.9525 (0.0000) 0.9523 (0.0000) 0.9509 (0.0000) 0.5188 (0.0046) 0.7782 (0.2105) 0.6293 (0.0560) 0.8656 (0.1726) 0.9491 (0.0013) 0.9491 (0.0013) 0.94934 (0.0000)	$\begin{array}{c} \textbf{0.3012} (0.000) \\ \textbf{0.4828} (0.0002) \\ +0.08\% \\ \hline \\ \textbf{0.301} \\ 0.3$	0.7053 (0.0200) 0.7406 (0.0000) +0.67% 0.1393 (0.0034) 0.1393 (0.0072) 0.4364 (0.0012) 0.2436 (0.0099) 0.4321 (0.0016) 0.3174 (0.0027) 0.4418 (0.0028) 0.2077 (0.0225) 0.0000 (0.0000) 0.4173 (0.0048) 0.2163 (0.0229) 0.4328 (0.0027)	$\begin{array}{c} 0.7974\ (0.0437)\\ \hline 0.8962\ (0.0000)\\ +0.29\%\\ \hline \end{array}$	0.313 (0.04 0.2734 (0.00 +0.04% Cond↓ 0.6620 (0.00 0.9090 (0.00 0.6607 (0.00 0.8202 (0.00 0.8202 (0.00 0.8202 (0.00 0.8202 (0.00 0.8202 (0.00 0.9851 (0.00 0.8204 (0.01 0.9583 (0.00 0.977 (0.00 0.9104 (0.00 0.9104 (0.00 0.96488 (0.00)

1007		K=2	8	32	K=2	8	32
1321	NJW	0.0167 (0.0000)	0.1016 (0.0057)	0.1948 (0.0103)	0.4016 (0.0000)	0.7432 (0.0007)	0.8532 (0.0013)
1328	SCORE	0.1095 (0.0000)	0.7498 (0.0233)	0.8582 (0.0056)	0.4029 (0.0001)	0.8273 (0.0036)	0.9208 (0.0032)
1000	RSC	0.0609 (0.0000)	0.2344 (0.0002)	0.3711 (0.0040)	0.3775 (0.0000)	0.7306 (0.0002)	0.8532 (0.0005)
1329	SCORE+	0.0519 (0.0008)	0.5248 (0.0173)	0.7147 (0.0179)	0.3906 (0.0001)	0.7569 (0.0002)	0.8687 (0.0023)
1330	ISC	<u>0.0424</u> (0.0000)	0.2170 (0.0049)	0.3504 (0.0047)	0.3791 (0.0001)	0.7331 (0.0002)	0.8578 (0.0011)
1001	GE	0.4814 (0.0272)	0.8427 (0.0179)	0.9258 (0.0169)	0.5208 (0.0024)	0.8902 (0.0010)	0.9723 (0.0005)
1331	GAP	0.3200 (0.2205)	0.8750 (0.0000)	0.9688 (0.0000)	0.4466 (0.0655)	0.8750 (0.0000)	0.9688 (0.0000)
1332	SDCN	0.1783 (0.0335)	0.8606 (0.0087)	0.9273 (0.0141)	0.5000 (0.0000)	0.8730 (0.0050)	0.9641 (0.0012)
1000	MCP	0.0880 (0.0365)	0.2380 (0.0179)	0.5433 (0.1725)	0.5000 (0.0000)	0.8750 (0.0000)	0.9688 (0.0000)
1333	DMoN	0.0644 (0.0105)	0.2040 (0.0123)	0.5100 (0.0200)	0.3709 (0.0021)	0.7725 (0.0091)	0.9159 (0.0036)
1334	DGC	0.0575 (0.0124)	0.1354 (0.0155)	0.6980 (0.0196)	0.3745 (0.0045)	0.8353 (0.0099)	0.9596 (0.0023)
1005	ASCENT	0.0167 (0.0000)	0.0997 (0.0046)	0.1885 (0.0068)	0.3743 (0.0001)	0.7200 (0.0002)	0.8477 (0.0014)
1333	Improvement	-	+1.87%	+3.23%	+0.85%	+1.45%	+0.64%
1336							

Table 26: Detailed evaluation results on **BlogCatalog** and **ogbn-Protein** in terms of **conductance**↓.

		BlogCatalog			ogbn-Protein	
	K=2	8	32	K=2	8	32
NJW	0.2935 (0.0000)	0.6783 (0.0003)	0.8279 (0.0011)	0.0634 (0.0000)	<u>0.1192</u> (0.0009)	0.4136 (0.0032)
SCORE	0.2965 (0.0000)	0.7784 (0.0027)	0.9367 (0.0064)	0.2238 (0.0001)	0.4469 (0.0224)	0.8242 (0.0049)
RSC	0.2924 (0.0000)	0.6656 (0.0028)	0.8174 (0.0018)	0.1203 (0.0006)	0.1587 (0.0038)	0.3663 (0.0054)
SCORE+	0.2933 (0.0000)	0.6995 (0.0003)	0.8619 (0.0025)	0.0709 (0.0000)	0.2192 (0.0113)	0.6433 (0.0143)
ISC	0.2926 (0.0000)	0.6502 (0.0001)	0.8143 (0.0017)	0.0693 (0.0000)	0.1488 (0.0001)	0.3464 (0.0071)
GE	0.4959 (0.0000)	0.8749 (0.0016)	0.9678 (0.0003)		OOM	
GAP	0.4181 (0.1003)	0.8750 (0.0000)	0.9688 (0.0000)		OOT	
SDCN	0.4987 (0.0404)	0.8544 (0.0185)	0.9580 (0.0063)		OOM	
MCP	0.3415 (0.0793)	0.8697 (0.0063)	0.9682 (0.0011)		OOM	
DMoN	0.4289 (0.0188)	0.7595 (0.0147)	0.9028 (0.0045)		OOM	
DGC	0.2989 (0.0022)	0.7773 (0.0244)	0.9434 (0.0041)		OOM	
ASCENT	0.2923 (0.0000)	0.6422 (0.0034)	0.8068 (0.0010)	0.0347 (0.0000)	0.1106 (0.0050)	0.3320 (0.0043)
Improvement	+0.10%	+1.23%	+0.92%	+45.27%	+7.21%	+4.16%

	140	nc 2	/. L \	aiuau		unn	me↓	(sec)	on uata	iscis	witt	i giou	nu-u u			
		Calt	ech			Simn	nons			PolB	logs			BioC	rid	
	Total	au	ED	KM	Total	au	ED	KM	Total	au	ED	KM	Total	au	ED	KM
NJW	0.13	N/A	0.10	0.03	0.23	N/A	0.21	0.03	0.17	N/A	0.14	0.03	1.00	N/A	0.84	0.16
SCORE	0.10	N/A	0.07	0.03	0.20	N/A	0.17	0.03	0.15	N/A	0.13	0.02	0.80	N/A	0.63	0.17
RSC	0.13	N/A	0.10	0.03	0.19	N/A	0.16	0.03	0.15	N/A	0.13	0.02	0.86	N/A	0.76	0.10
SCORE+	0.13	N/A	0.11	0.02	0.31	N/A	0.28	0.03	0.16	N/A	0.13	0.02	0.74	N/A	0.64	0.10
ISC	0.17	N/A	0.14	0.03	0.23	N/A	0.20	0.03	0.21	N/A	0.19	0.02	0.93	N/A	0.82	0.11
GE	4.36	N/A	N/A	N/A	4.85	N/A	N/A	N/A	4.12	N/A	N/A	N/A	122.01	N/A	N/A	N/A
GAP	21.92	N/A	N/A	N/A	32.85	N/A	N/A	N/A	4.29	N/A	N/A	N/A	648.30	N/A	N/A	N/A
SDCN	0.97	N/A	N/A	N/A	0.99	N/A	N/A	N/A	3.23	N/A	N/A	N/A	218.64	N/A	N/A	N/A
MCP	91.31	N/A	N/A	N/A	163.51	N/A	N/A	N/A	54.15	N/A	N/A	N/A	350.96	N/A	N/A	N/A
DMoN	101.79	N/A	N/A	N/A	174.15	N/A	N/A	N/A	257.95	N/A	N/A	N/A	579.64	N/A	N/A	N/A
DGC	81.26	N/A	N/A	N/A	131.59	N/A	N/A	N/A	164.26	N/A	N/A	N/A	559.25	N/A	N/A	N/A
ASCENT	0.15	0.01	0.11	0.03	0.24	0.03	0.18	0.03	0.17	0.02	0.13	0.02	1.02	0.07	0.81	0.14

I DETAILED EXPERIMENT RESULTS

Quantitative Evaluation Results. On each dataset, we recorded the mean m and standard derivation s of each quality metric. Detailed evaluation results in the format of 'm (s)' are depicted in Tables 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, and 26, where each quality metric is in **bold** or <u>underlined</u> if it performs the best or second-best.

Further Parameter Analysis. Example analysis results of θ on **Caltech** are visualized in Fig. 4, where we adjusted $\theta \in \{0.01, 0.05, 0.1, 0.2, \dots, 1, 2, 5, 10\}$. In summary, we recommend adjusting $L \in \{1, 2, \dots, 10\}$ and $\theta \in \{0.01, 0.05, 0.1, 0.5, 1.0\}$ for ASCENT.

Efficiency Analysis. In addition to the clustering quality, we further evaluated the efficiency of each method in terms of its overall runtime (sec) to get a feasible clustering result. In particular, we also recorded the runtime of different steps for each spectral clustering method. Results of the efficiency analysis on all the real datasets are depicted in Tables 27, 28, 29, and 30, where (i) τ , (ii) ED, and (iii) KM denote the runtime of (i) deriving node-wise corrections { τ_i } (only for ASCENT), (ii) eigen-decomposition of the corresponding graph Laplacian, and (iii) KMeans clustering (including the arrangement and normalization of corresponding spectral embeddings), respectively.

Compared with deep graph clustering approaches (e.g., *GE* and *GAP*) which involve a timeconsuming learning procedure (e.g., gradient descent to iteratively update model parameters), all the spectral clustering methods can achieve significantly better efficiency. Moreover, ED is the major bottleneck for all the spectral clustering algorithms. For ASCENT, the derivation of node-wise corrections $\{\tau_i\}$ would not significantly increase the overall runtime compared with other spectral clustering baselines. In summary, ASCENT can still achieve high inference efficiency close to that of other conventional spectral clustering methods.

1397

1365

1367

1375

J LIMITATIONS AND FUTURE DIRECTIONS

1399 1400

Clustering on Attributed Graphs. As described in Section 2, we followed the conventional problem statement of graph clustering where topology is the only available information source (without any attributes), due to the complicated corrections between graph topology and attributes. In our future work, we will analyze DCSC on attributed graphs with the consideration of the possible in-

Table 28: Evaluation of runtime \downarrow (sec) with K = 2 on datasets without ground-truth.

		Airp	oort				BlogCatalog				ogbn-Protein					
	Total	au	ED	KM	Total	au	ED	KM	Total	au	ED	KM	Total	au	ED	KM
NJW	0.23	N/A	0.20	0.03	0.88	N/A	0.84	0.04	1.63	N/A	1.61	0.03	201.94	N/A	201.77	0.17
SCORE	0.18	N/A	0.16	0.02	0.35	N/A	0.32	0.03	0.88	N/A	0.85	0.03	80.42	N/A	80.16	0.27
RSC	0.22	N/A	0.18	0.03	0.76	N/A	0.73	0.03	1.89	N/A	1.86	0.03	189.30	N/A	189.07	0.23
SCORE+	0.21	N/A	0.18	0.03	0.78	N/A	0.74	0.03	1.92	N/A	1.89	0.03	182.00	N/A	181.79	0.21
ISC	0.21	N/A	0.19	0.02	0.60	N/A	0.57	0.03	1.86	N/A	1.82	0.04	172.51	N/A	172.27	0.24
GE	8.40	N/A	N/A	N/A	16.80	N/A	N/A	N/A	128.60	N/A	N/A	N/A	OOM	N/A	N/A	N/A
GAP	38.74	N/A	N/A	N/A	116.62	N/A	N/A	N/A	241.89	N/A	N/A	N/A	OOT	N/A	N/A	N/A
SDCN	16.33	N/A	N/A	N/A	321.51	N/A	N/A	N/A	133.26	N/A	N/A	N/A	OOM	N/A	N/A	N/A
MCP	125.90	N/A	N/A	N/A	116.98	N/A	N/A	N/A	113.26	N/A	N/A	N/A	OOM	N/A	N/A	N/A
DMoN	105.39	N/A	N/A	N/A	790.42	N/A	N/A	N/A	682.02	N/A	N/A	N/A	OOM	N/A	N/A	N/A
DGC	60.47	N/A	N/A	N/A	634.26	N/A	N/A	N/A	642.09	N/A	N/A	N/A	OOM	N/A	N/A	N/A
ASCENT	0.26	0.02	0.21	0.02	0.76	0.10	0.62	0.04	2.36	0.36	1.93	0.07	242.29	41.41	198.24	2.64

Table 29: Evaluation of runtime \downarrow (sec) with K = 8 on datasets without ground-truth.

		Airp	ort			Wi	ki		I	BlogC	atalog			ogbn-l	Protein	
	Total	au	ED	KM	Total	au	ED	KM	Total	au	ED	KM	Total	au	ED	KM
NJW	0.29	N/A	0.27	0.02	0.82	N/A	0.78	0.03	1.85	N/A	1.81	0.04	200.58	N/A	200.50	0.08
SCORE	0.25	N/A	0.24	0.01	0.37	N/A	0.33	0.04	0.97	N/A	0.96	0.01	86.48	N/A	86.40	0.07
RSC	0.26	N/A	0.25	0.01	0.76	N/A	0.74	0.02	2.02	N/A	2.00	0.02	194.82	N/A	194.74	0.08
SCORE+	0.26	N/A	0.25	0.01	0.77	N/A	0.75	0.02	1.82	N/A	1.80	0.02	188.81	N/A	188.74	0.07
ISC	0.28	N/A	0.27	0.01	0.61	N/A	0.59	0.02	1.88	N/A	1.86	0.02	202.37	N/A	202.25	0.12
GE	9.25	N/A	N/A	N/A	20.98	N/A	N/A	N/A	133.09	N/A	N/A	N/A	OOM	N/A	N/A	N/A
GAP	58.85	N/A	N/A	N/A	134.81	N/A	N/A	N/A	301.02	N/A	N/A	N/A	OOT	N/A	N/A	N/A
SDCN	13.46	N/A	N/A	N/A	333.90	N/A	N/A	N/A	139.26	N/A	N/A	N/A	OOM	N/A	N/A	N/A
MCP	125.84	N/A	N/A	N/A	112.09	N/A	N/A	N/A	115.71	N/A	N/A	N/A	OOM	N/A	N/A	N/A
DMoN	105.27	N/A	N/A	N/A	792.56	N/A	N/A	N/A	625.64	N/A	N/A	N/A	OOM	N/A	N/A	N/A
DGC	59.54	N/A	N/A	N/A	634.21	N/A	N/A	N/A	634.89	N/A	N/A	N/A	OOM	N/A	N/A	N/A
ASCENT	0.30	0.02	0.27	0.01	0.93	0.16	0.73	0.04	2.49	0.43	2.04	0.02	240.83	45.56	195.18	0.09

consistency between the two sources (Newman & Clauset, 2016; Qin et al., 2018; Wang et al., 2020; Qin & Lei, 2021).

1430 Learnable Node-wise Corrections $\{\tau_i\}$. In ASCENT, we still manually set the node-wise correc-1431 tions $\{\tau_i\}$ by adjusting hyper-parameters $\{\theta, L\}$. We plan to extend it to a more advanced setting 1432 with learnable node-wise corrections $\{\tau_i\}$ and provide theoretical analysis combined with recent 1433 advances in GNNs

Better Efficiency and Scalability. As demonstrated in our efficiency analysis (cf. Appendix I),
ED is the major bottleneck of ASCENT. We intend to further improve the efficiency and scalability
of this bottleneck using the advanced Locally Optimal Block Preconditioned Conjugate Gradient
(LOBPCG) solver (Knyazev, 2001; Zhuzhunashvili & Knyazev, 2017) and consider its parallel implementations (Yamada et al., 2022).

Other Graph Clustering Objectives. In this study, we only considered the conductance minimization objective (or equivalently normalized cut minimization) as defined in Definition 1. Spectral clustering can be considered as an approximated algorithm for a relaxed version of this objective. Some graph clustering algorithms may consider other objectives (e.g., ratio-cut minimization
(Von Luxburg, 2007) and modularity maximization (Newman, 2006; Yu & Ding, 2010; Qin et al.,
2024)) that have relations close to conductance minimization. We also plan to further extend our
analysis to these objectives.

1446Improved Analysis with Looser Conditions. As discussed in Section 3, the condition in Theo-1447rem 8 implies an assumption that (i) G is well-clustered and (ii) the degree heterogeneity is not so1448high. It is possible for a given graph G that this condition may not hold. In our future work, we1449intend to further improve this condition by extending some new theoretical results on the combinato-1450rial optimization problem of graph-cut minimization (e.g., conductance minimization in this paper)1451to DCSC.

Table 30. Evaluation	of runtime (se	c) with $K -$	32 on datasets	without ground-tru	th
Table 50. Evaluation		C W H H K = 1	52 OII Ualasets	without ground-tru	uu.

	Airport			Wiki			BlogCatalog				ogbn-Protein					
	Total	au	ED	KM	Total	au	ED	KM	Total	au	ED	KM	Total	au	ED	KM
NJW	0.38	N/A	0.37	0.01	1.00	N/A	0.96	0.04	2.10	N/A	2.04	0.07	201.61	N/A	201.21	0.40
SCORE	0.31	N/A	0.30	0.01	0.42	N/A	0.39	0.03	1.18	N/A	1.15	0.03	98.87	N/A	98.61	0.26
RSC	0.34	N/A	0.33	0.01	0.82	N/A	0.79	0.03	2.31	N/A	2.20	0.11	189.30	N/A	189.07	0.23
SCORE+	0.32	N/A	0.31	0.01	0.98	N/A	0.91	0.07	2.17	N/A	2.11	0.07	204.08	N/A	203.70	0.38
ISC	0.31	N/A	0.30	0.01	0.73	N/A	0.68	0.05	2.07	N/A	2.02	0.05	257.38	N/A	256.94	0.44
GE	12.92	N/A	N/A	N/A	20.19	N/A	N/A	N/A	135.09	N/A	N/A	N/A	OOM	N/A	N/A	N/A
GAP	74.08	N/A	N/A	N/A	178.94	N/A	N/A	N/A	450.36	N/A	N/A	N/A	OOT	N/A	N/A	N/A
SDCN	18.92	N/A	N/A	N/A	343.42	N/A	N/A	N/A	161.03	N/A	N/A	N/A	OOM	N/A	N/A	N/A
MCP	126.05	N/A	N/A	N/A	109.82	N/A	N/A	N/A	112.79	N/A	N/A	N/A	OOM	N/A	N/A	N/A
DMoN	105.31	N/A	N/A	N/A	798.33	N/A	N/A	N/A	763.28	N/A	N/A	N/A	OOM	N/A	N/A	N/A
DGC	60.29	N/A	N/A	N/A	633.89	N/A	N/A	N/A	638.75	N/A	N/A	N/A	OOM	N/A	N/A	N/A
ASCENT	0.38	0.02	0.35	0.01	1.10	0.16	0.90	0.04	2.78	0.40	2.34	0.04	246.39	44.02	2 202.04	0.33

