Under review as a conference paper at ICLR 2025

BRIDGING ML AND ALGORITHMS: COMPARISON OF
HYPERBOLIC EMBEDDINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

Hyperbolic embeddings are well-studied in the machine learning, network theory,
and algorithm communities. However, as the research proceeds independently in
those communities, comparisons and even awareness seem to be currently lacking.
We compare the performance (time needed to compute embeddings) and the quality
of the embeddings obtained by the popular approaches, both on real-life hierarchies
and networks, and simulated networks. In particular, according to our results, the
algorithm by Blisius et al (ESA 2016) is about 100 times faster than the Poincaré
embeddings (NIPS 2017) and Lorentz embeddings (ICML 2018) by Nickel and
Kiela, while achieving results of similar (or, in some cases, even better) quality.

1 INTRODUCTION

An embedding is an instance of some mathematical structure contained within another instance, such
as a group that is a subgroup. In general topology, embedding is a homeomorphism onto its images.
Homeomorphisms are the isomorphisms in the category of topological spaces — they are the mappings
that preserve all the topological properties of a given space. Given a network (V, E), where V is the
set of vertices and F is the set of edges, its embedding into some geometry G isamap m : V — G.

In hyperbolic geometry, all the postulates of Euclid hold, except for the parallel axiom. While parallel
lines stay at a constant distance in Euclidean geometry, similar lines in hyperbolic geometry diverge
exponentially. Recently, the area of hyperbolic embedders for networks —that is, algorithms for
embedding networks into hyperbolic geometry— has gained popularity within the Machine Learning
(ML) community. Those embedders exploit the properties of hyperbolic geometry, such as exponential
growth, which make them a perfect match for visualizing and modeling hierarchical structures.

Probably the most influential paper (Nickel and Kiela, 2017) (Poincaré embeddings) shows that
hyperbolic embeddings achieve impressive results compared to Euclidean and translational ones.
The results have been improved even further in the follow-up (Nickel and Kiela, 2018) (Lorentz
embeddings) by changing the used model of hyperbolic geometry. In the ML literature, those works
are recognized as some of the first studies on hyperbolic embeddings (Gu ef al.,[2019). However,
it is worth noting that a rich history of hyperbolic embedding research precedes these papers.
Hyperbolic embeddings have been initially devised in the network theory (NT) community through
the Hyperbolic Random Graph model (HRG) (Krioukov ez al.,[2010). The algorithmic properties
of this model, including embedding techniques, have been extensively studied in the algorithmic
community. Surprisingly, there is limited cross-referencing between these research communities. For
example, machine learning papers we have examined rarely cite algorithmic works, and vice versa.
Also, we lack comparative studies that bridge those communities.

We believe the insights in the algorithmic/NT papers could significantly benefit the ML community.
In this paper, we gather and experimentally compare 14 approaches from different communities using
both real-world (38 networks, including 7 hierarchies, 21 connectomes, and 10 other networks) and
simulated data (450 two-dimensional networks).

Against this background, our contributions are as follows:

* We present the first experimental comparison of hyperbolic embedders from the ML, NT,
and algorithmic communities, establishing crucial connections among these research areas.

Under review as a conference paper at ICLR 2025

Figure 1: Tessellations of the hyperbolic plane. Bitruncated order-3 heptagonal tiling on the right.

» We find that an O(n) algorithm for creating hyperbolic embeddings (BFKL) (Blisius et al.,
2016) that predates (Nickel and Kiela, [2017) is orders of magnitude faster while achieving
results of comparable quality, or in some cases, better. Mercator embeddings (Garcia-Pérez
et al.,2019) typically achieve results of intermediate quality while also being slow; TreeRep
Sonthalia and Gilbert|(2020) achieves good embedding quality on hierarchies but bad quality
on networks. The recent embedder CLOVE (Balogh et al.| 2025) is also worth of attention,
both due to its quality and time performance.

* While higher dimension yields better embeddings according to standard quality measures
(mAP, MeanRank, greedy routing success ratio and efficiency), this is usually an artifact of
optimization. Using information criteria principles, we introduce a new measure (Informa-
tion Control Value, ICV). Contrary to the standard measures, ICV penalizes embeddings of
large radius and/or dimension, enhancing the robustness of our comparisons.

2 THEORETICAL BACKGROUND

2.1 PRELIMINARIES ON HYPERBOLIC GEOMETRY

We start with the basics of hyperbolic geometry. For simplicity, we will focus on the hyperbolic
plane H?, although the same ideas work in higher dimensions. See e.g. the book (Cannon et al.,
1997) for a more thorough formal exposition, or the game HyperRogue (Kopczynski et al.l [2017) to
gain intuitions. Recall the Euclidean space E™ is R™ with distance dg(z,y) = /g+(x — y,z — y),

where g4 (21, .-, @n), (Y15, Un)) = Doiq Tili-

In modern terms, the simplest non-Euclidean geometry is spherical geometry. A two-dimensional
sphere of radius 1is S = {z € R3 : g, (x,2) = 1}. The distance is measured in terms of great
circle arcs; a point in distance 7 in direction (angle) ¢ from the central point Cy = (0,0, 1) has
coordinates (sin(¢) sin(r), cos(¢) sin(r), cos(r)). The spherical distance between z and y can be
computed as arccos(g4 (z,y)); this is straightforward when y = Cj, and also true in general, since
g+ is invariant under the isometries (i.e., rotations) of the sphere.

Gaussian curvature is a measure of difference of surface geometry from Euclidean geometry. A
sphere of radius R, RS?, has constant Gaussian curvature K = 1/R2. The hyperbolic plane is the
opposite of spherical geometry, that is, it has constant negative Gaussian curvature. Hyperbolic
surfaces are less ubiquituous, because they do not embed symetrically into E3 — that would essentially
require R to be imaginary. However, they appear in nature when maximizing surface area is needed
(e.g., lettuce leaves), and can be embedded symetrically in the Minkowski spacetime. The hyperbolic
plane H? is thus {x € R : 23 > 0,¢g_(x,7) = —1}, where g_ is the Minkowski inner product
g—((z1, 2, 23), (Y1, Y2,y3)) = T1Y1 + T2y2 — x3ys3 (the coordinate x5 works like a time coordinate
in special relativity). This is called the Minkowski hyperboloid model; many intuitions from spherical
geometry work in this model, for example, a point in distance 7 in direction (angle) ¢ from the
central point Cy = (0,0, 1) has coordinates p(r, ¢) = (sin(¢) sinh(r), cos(¢) sinh(r), cosh(r)).
The hyperbolic distance between x and y can be computed as arcosh(g_ (z, y)).

While the formulas of the Minkowski hyperboloid model tend to be intuitively obtainable by analogy
to the sphere model, this model is not applicable to visualization, since it naturally lives in Minkowski
spacetime rather than the usual three-dimensional space (we use Lorentz transformations rather than
Euclidean rotations for isometries involving the time coordinate). The most common method of
visualization of the hyperbolic plane is the Poincaré disk model, first devised by Eugenio Beltrami,

obtained as the stereographic projection of the Minkowski hyperboloid: p(z,y,2) = (17, 7).

Under review as a conference paper at ICLR 2025

This maps the (infinite) hyperbolic plane to a disk in the Euclidean plane. Figure [I] shows some
tessellations of the hyperbolic plane in the Poincaré disk model. Each shape of the same shade in
each of these tessellations is of the same size; the Poincaré disk model distorts distances so that the
same hyperbolic distance appears smaller when closer to the boundary of the disk.

The Poincaré disk model is called a model (rather than projection) because it is often used directly,
as an alternative representation of hyperbolic geometry. Many models are used; for us, the third
important model is the native polar coordinates (r, ¢). The formulas from converting from native
polar coordinates to the hyperboloid model are given above as p(r, ¢). All models describe the
same (isometric) abstract metric space, so theoretically could be equivalently used in computations,
although various models differ by how robust they are to numerical precision issues (as we will see
later, hyperbolic geometry exhibits exponential growth, which makes such issues very significant
(Celinska-Kopczynska and Kopczynskil, [2024b)). All can be generalized to higher dimensions
and allow interpolation between possible values of curvature K. In our experience, people new to
computational hyperbolic geometry use Poincaré model because introductory materials often focus on
it; however, they have then difficulties computing distances and isometries, while such computations
are straightforward in the hyperboloid model due to the full symmetry and spherical analogies. We
see the difference between (Nickel and Kiela, [2017) and (Nickel and Kiela, 2018)) as an example
of this. The Minkowski hyperboloid is popular as the underlying model in the visualizations of
hyperbolic geometry (Phillips and Gunnl [1992; [Kopczyniski ef al.| [2017)) due to simplicity and being a
generalization of the homogeneous coordinates commonly used in computer graphics. The choice of
the model may affect numerical precision (Floyd et al.l 2002; (Celinska-Kopczynska and Kopczynskil,
2024b)). As we will see later, native polar coordinates are commonly used for hyperbolic embeddings
of social networks (Friedrich ef al.| 2023).

2.2 HYPERBOLIC GEOMETRY IN VISUALIZATION, NT, AND ALGORITHMIC COMMUNITIES

While popular expositions of hyperbolic geometry usually focus on the sum of angles of a triangle
being less than 180 degrees, what is actually important to us is exponential growth. As can be easily
seen from the formula for p(r, ¢), a hyperbolic circle of radius 7 has circumference 27 sinh(r);
sinh(r) grows exponentially with r. This exponential growth, as well as the tree-like nature of the
hyperbolic space, can be seen in Figure[I|and has found application in the visualization of hierarchical
data, such as trees in the hyperbolic plane (Lamping ef al.,|1995) and three-dimensional hyperbolic
space (Munzner} [1998). Drawing a binary tree of large depth & on Euclidean paper, while keeping all
the edges to be of the same length, is difficult, because we eventually run out of space to fit all 2"
leaves. The hyperbolic plane, with its exponential growth, solves this issue perfectly.

This leads us to another application of hyperbolic geometry: the modelling of scale-free networks.
Scale-free networks are commonly found in nature, technology, and social structures. They are
characterized by the power law distribution of degrees (the probability that a random vertex has
degree > d is proportional to d~?), as well as the high clustering coefficient (if node a is connected
to b and ¢, the nodes b and c are also likely to be connected). Despite this ubiquity, it is not
straightforward to find a mathematical model that exhibits both these properties. One such model is
the Hyperbolic Random Graph model (HRG) (Krioukov et al.l 2010), characterized by parameters
N, R,«,T. In this model, N nodes {1, ..., N} are distributed randomly in a hyperbolic disk of
radius R. Their angular coordinates ¢ are distributed uniformly, while their radial coordinates r are
distributed according to the density function f(r) = a:sinh(ar)/(cosh(aR — 1). Let us denote with
m(i) € H? the position of node i. Every pair of nodes a and b is then connected with probability

pla,b) = (1 + exp((6(m(a), m(b)) — R))/2T))~", M

where 6(a, b) is the hyperbolic distance between the points in H? representing the two nodes. The
radial coordinates correspond to popularity (smaller = more popular) while the angular coordinates
correspond to similarity (closer ¢ = more similar); the connections in a network are based on
popularity and similarity. It can be shown that a random graph thus obtained has a high clustering
coefficient and a degree distribution that follows a power law with 8 = 2a + 1. There is extensive
literature on the HRG model, including its algorithmic properties. Hyperbolic random graphs can
be generated naively in O(n2) (Aldecoa et al.,|2015), in subquadratic time (von Looz et al.,[2015)),
and in linear time (Bringmann ef al.,2019). Earlier works include (Kleinberg, 2007) and (Shavitt
and Tankel, [2008). Despite being relatively popular, HRG is not the only generative model based on
a similarity-popularity mechanism. Other approaches with similar properties include the earlier S*

Under review as a conference paper at ICLR 2025

model (Serrano et al.l 2008)) allowing arbitrary degree distributions, GIRG (Bringmann et al., [2018)
in which the similarity space is a torus of some dimension d, generalized PSO (Papadopoulos et al.,
2012) in which additional external edges are added as the network grows, E-PSO (Papadopoulos ef
al.,|2015b), which uses only the external edges, and nPSO (Muscoloni and Cannistraci, [2018)), which
models realistic networks with communities using a non-uniform angular distribution.

With the theoretical generative models came the embeddings of real scale-free networks into the
hyperbolic plane. An embedding of a network (V, E) into geometry G is a mapping m : V — G.
In (Boguna et al.,[2010), such an embedding of the Internet was obtained and found to be highly
appropriate for greedy routing. In greedy routing, a node a wants to find a connection to another node
b by finding one of its neighbors ¢ which is the closest to b, then the neighbor of ¢ which is closest to
b, and so on. Greedy routing is successful when we eventually reach b; in the original variant, it fails
immediately when all the neighbors of ¢ are further away from b than c; in the modified variant, such
hops are allowed, and the method fails when we reach a cycle.

However, the embedding method used by [Bogufia et al.|(2010) required substantial manual inter-
vention and did not scale to large networks (Krioukov ef al.l [2010). Further research focused on
finding unsupervised and efficient algorithms. An embedder is an algorithm that finds an embedding.
While technically, any mapping is an embedding, we generally want the geometric structure of
m to be consistent with the structure of the network. MLE embedders, based on the maximum
likelihood estimation (MLE) method from statistics, work by finding an embedding that maximizes
the loglikelihood (LL). LL is the logarithm of the probability that if, for every pair of nodes (a, b), we
independently connect the nodes a and b with the probability computed according to the formulalT]
(for some R and T). Alternatively, spring embedders (Kobourov, 2013) simulate forces acting on the
graph: attractive forces pulling connected nodes together, and repulsive forces pushing unconnected
nodes away. Spring embedders have been adapted to non-Euclidean embeddings (Kobourov, [2013);
however, the straightforward adaptation to hyperbolic geometry does not produce good embeddings
of large radius (Blisius et al.,[2016).

Note that embedding is a difficult computational problem — even computing LL according to the for-
mula requires time O(n?), which is significant for large networks. The first algorithm for embedding
large networks, HyperMap, worked in time O(n3) (Papadopoulos et al.,|2015b)), later improved to
O(n2) in HyperMapCN (Papadopoulos et al.l 2015a) and |Wang et al.|(2016a). |Blésius et al.| (2016)
developed a quasilinear algorithm for finding hyperbolic embeddings. This algorithm computes the
HRG parameters based on the network’s statistics. Then, it embeds the network in layers, starting
from the nodes with the greatest degree, which form the center of the network. The algorithm, which
we call the BFKL embedder, is evaluated on several scale-free networks from the SNAP database
(Leskovec and Krevl, [2014) as well as randomly generated networks generated according to the HRG
model. Eventually, Wang et al.| (2016b) introduced a simple O(n) algorithm based on hierarchical
community detection Blondel et al.| (2008), ordering the communities based on the Community
Intimacy between pairs of communities, and basing the angular coordinates on this order and the
radial coordinates on the degree.

Time complexity is just one facet of the quality assessment. We need some measures of the goodness-
of-fit of an embedder. Embedders specialized to solve specific tasks popularized different measures.
E.g., greedy routing performance is now commonly assessed using the stretch factor (GSF), greedy
success rate (GSR), and greedy routing efficiency (GRE). The stretch factor (GSF) is the average
ratio of the number of steps to the minimum possible (for successful paths). Greedy success rate
(GSR) yields the share of the successful routings. [Boguna et al.|(2010) showed that using greedy
routing with the distances from the hyperbolic embedding achieves (GSR) 90%, which is significantly
higher than, e.g., greedy routing based on actual geographical distances between the network nodes;
Blasius et al.| (2016) found that greedy routing based on the BFKL embeddings again achieves
good GSR. In (Blistus et al.| 2018), the impact of numerical errors on the quality of hyperbolic
embeddings and greedy routing is evaluated. Greedy Routing Efficiency (GRE) (Muscoloni ef al.|
2017) is the average of x/y over all pairs of nodes, where ¥ is the number of steps used by greedy
routing and x is the minimum possible; contrary to GSF, for failed routing we assume this ratio to be
0 (therefore, failed routings no longer can contribute positively to the measure). LL also became a
quality measure — good LL is achieved when connected nodes are placed close (distance less than R),
and disconnected nodes are far away (distance greater than R). For tasks focused on angular positions
(e.g., problems related to the similarity space, such as community detection), other measures, such

Under review as a conference paper at ICLR 2025

as C-Score (Muscoloni et al.l 2017), became a standard. Other methods include mapping accuracy
Zhang et al.|(2021)) and geometric congruence |(Cannistraci and Muscoloni| (2022).

The official implementation of [Blisius et al|(2016) includes a spring embedder as a method of
improving the result of the quasilinear algorithm; however, the running time of this step is (n?),
which is too slow for large graphs. In (Celinska-Kopczynska and Kopczynski, [2022)), an alternative
approach based on hyperbolic tilings, as shown in Figure [I| and previously used in HyperRogue
(Kopczynski et al., |2017)), was introduced. The nodes of our graph are mapped not to points of the
hyperbolic plane, but rather to the tiles of such a tiling. Also, the distances are computed in a discrete
way, as the number of tiles. This is called DHRG, the discrete HRG model. This works, because such
tilings’ distances are a good approximation of hyperbolic distances (to a greater extent than similar
approximations in Euclidean space (Celinska-Kopczynska and Kopczynski, [2022)), and because
the radii of HRG embeddings are large — the typical radii are on the order of R = 30 tiles of the
bitruncated order-3 heptagonal tiling (I)). One benefit of such a discrete representation is avoiding
numerical precision issues. The other benefit is algorithmic: given a tile ¢; and a set of tiles T', we
can compute an array a such that a[i] is the number of tiles in 7" in distance ¢ from ¢; in time just
O(R?). The time of preprocessing (add or remove a tile from T) is O(R?) per tile. This gives us
an efficient algorithm to compute the loglikelihood of a DHRG embedding, and also to improve a
DHRG embedding in terms of LL by local search. Muscoloni ef al.|(2017) (Coalescent embedding)
and |Garcia-Pérez ef al.|(2019) (Mercator) introduce ML algorithms to obtain or improve embeddings.

Most research concentrates on two-dimensional embeddings, including the recent state-of-the-art,
CLOVE (Balogh et al., 2025)), which arranges the communities using the existing algorithms for
the Travelling Salesman Problem. Higher-dimensional embeddings have been studied recently
(Bringmann et al., 2019; |Budel et al.l 2023} [Kovacs et al., [2022; Jankowski et al.,[2023)). A recent
work (Celinska-Kopczynska and Kopczynski, 2024a) embeds into 3D Thurston geometries using
tiles and simulated annealing.

2.3 HYPERBOLIC GEOMETRY IN ML COMMUNITY

Nickel and Kiela (2017) applied the Riemannian Stochastic Gradient Descent (RSGD) method to find
hyperbolic embeddings. The algorithm is benchmarked on data that exhibit a clear latent hierarchical
structure (the WordNet noun hierarchy) and on social networks (scientific collaboration communities).
The quality is evaluated using new measures: MeanRank (MR) and Mean Average Precision (MAP).
MR is the average, over all edges v — v, of r, ,,, which is the number of vertices w such that there
is no edges from w to w and w is closer to u than v (including u, not including v, thus MR > 1).
MAP is the mean of average precision scores (AP) for all vertices. The average precision score of

vertex v is defined as Zle /7y v,;» Where k is the number of vertices v such that « — v, and v; is
the ¢-th closest of these vertices. In the case of WordNet, u — v iff v is a hypernym of u; this is a
transitive relation. In (Nickel and Kielal 2018), the results are improved by using the hyperboloid
model (referred to as the Lorentz model) instead of Poincaré model and evaluated using MR, MAP,
and Spearman rank order on multiple real-world taxonomies, including the WordNet noun and verb
hierarchies, the Enron email corpus, and the historical linguistics data.

While studies in NT on hyperbolic geometry seem to be inspired by the theoretical and applicational
premises (using geometry as the means to understand nature), ML researchers quickly recognized the
potential of including hyperbolic geometry as a part of an analytic pipeline, even in classification
tasks (see, e.g.,/Chamberlain ef al.|(2017) application of hyperbolic embeddings to neural networks).
That is why solutions to numerical precision issues have become a vibrant research area. Sala e?
al.|(2018) studied the tradeoff between the number of dimensions and the number of bits used for
representing the angles. They also gave a combinatorial method of embedding tree-like graphs. |[Yu
and De Sa|(2019) suggested a tiling-based model (LTiling) to combat the numerical precision issues.
Their main idea is somewhat similar to DHRG, although while DHRG only uses the tiles, LTiling also
includes the coordinates within the tiles. In TreeRep (Sonthalia and Gilbert, 2020), it is proposed that,
instead of learning a hyperbolic embedding, we should instead learn a tree. |Gu et al.| (2019) embed
networks not in H"™, but in products of lower-dimensional spaces with hyperbolic, Euclidean, or
spherical geometry, and in |Guo et al.|(2022)), a method for visualizing higher-dimensional hyperbolic
embeddings in H? is proposed.

Under review as a conference paper at ICLR 2025

In Nickel and Kielal (2017), the early papers on hyperbolic visualizations ((Lamping et al.,|1995)), but
not (Munzner} [1998)) and the HRG model are cited, although the authors and reviewers seem not to
be aware of the extensive literature on hyperbolic embeddings, including the paper (Muscoloni et al.|
2017) which uses ML methods and has appeared on arXiv in Feb 2016. The Poincaré embeddings are
thus compared only to Euclidean and translational embeddings. This continues in the other papers
mentioned in this section. As a result, many papers even directly claim or suggest thatNickel and
Kiela (2017) were the first to consider hyperbolic embeddings, e.g., "Initial works on hyperbolic
embeddings include Nickel & Kiela (2017) [...]" (Gu et al.l[2019).

We have found citations to NT research in |Ganea et al.| (2018)); in |Sonthalia and Gilbert (2020),
Blisius et al.| (2016) is in the bibliography, but surprisingly, not referred to in text, despite the
focus on speed; this paper also cites early work on hyperbolic embedding (Chepoi and Dragan,
2000), hyperbolic multi-dimensional scaling (Cvetkovski and Crovellal 2011)), and embedding of
0-hyperbolic graphs into trees (Chepoi and Dragan| 2000; |Chepoi et al.,2008; |Abraham et al.||2007).
Comparisons between the results of different communities seem lacking.

3 OUR RESULTS

3.1 COMPARISON ON REAL-WORLD TAXONOMIES AND SCALE-FREE NETWORKS
For every network, we use the following experimental setup.

* Apply the following embedders to it: Poincaré embedding (PE) Nickel and Kiela (2017,
Lorentz embedding (LE) Nickel and Kiela|(2018), BFKL |Blasius et al.|(2016), 2-dimensional
and 3-dimensional coalescent embedder [Muscoloni et al.| (2017), HyperLink embedder
(KVK) Kitsak et al.| (2020), fast and full Mercator embedding |Garcia-Pérez et al.|(2019)),
3-dimensional Mercator embedding |Jankowski et al.|(2023)), LTiling (Yu and De Sa}, 2019),
TreeRep (Sonthalia and Gilbert, [2020), Anneal (Celinska-Kopczynska and Kopczynskil
2024al), LPCS (Wang et al., 2016b), CLOVE (Balogh et al.| [2025), DHRG embedding
improvement Celinska-Kopczynska and Kopczynski| (2022) (applied to BFKL, PE, LE, and
CLOVE).

 Evaluate the obtained embeddings according to quality measures from the literature: MAP,
MR, GSF, GSR, GRE, and LL.

Apart from networks, we also conduct analysis on hierarchies; in this case we include the classic
HypViewer tree embedder (Munzner, |1998) (if the hierarchy is not a strict tree, the parent is picked
randomly) and do not evaluate on measures meaningful only for networks (GSF, GRE, and GSR).
For all hierarchies, v — v iff v is a superset (ancestor) of w; this is a transitive relation. We use
the networks and hierarchies that have already been used as benchmarks in influential papers on
hyperbolic embeddings. For the complete list of the networks and the hierarchies we used, see

Appendix

An implementation of MR and MAP is available with Nickel and Kielal (2018)). However, on larger
graphs, some embedders (such as BFKL) generate embeddings of large radius. This implementation
fails to evaluate such embeddings due to a numerical precision error. Therefore, we use our own
implementation which avoids this issue. See Appendix [B]

In the case of greedy routing measures, we prefer to use the original formulations, in which we
immediately fail when there is no neighbor closer to the target. This is because some embedders use
discrete tessellations, making it likely that some distances are equal. For original formulations, we
can route randomly, and use the expected route length (Celinska-Kopczynska and Kopczynski, [2024a)).
In the modified formulations, such an approach is ill-defined. Similar to (Celinska-Kopczynska
and Kopczynskil [2022)), to aid comparisons, we report the LL values for the R and T values that
maximize the log-likelihood (see Formula[I)). We restrict our analysis to quality measures related to
distance preservation; to our best knowledge, there are no measures that allow comparing the quality
of angular positions in real-world embeddings.

The achievable quality of the embedding depends on the embedding dimension (achieving better
results can be explained with higher dimensionality), therefore, in most cases, we compare 2D and
3D embeddings. (We include TreeRep because trees can be embedded into the hyperbolic plane.)

Under review as a conference paper at ICLR 2025

Figure 2: Quality assessment of embedders on real-world networks and hierarchies. Darker colors
indicate that the given embedder occurred more frequently in the given percentile of ranks (higher
percentiles are better) over all graphs benchmarked.

For comparison, we also evaluate 5D PE, 50D, and 200D Euclidean embeddings (EE) (Nickel and
Kiela, 2017). Product space embeddings (Gu et al.,|2019) are an interesting approach, but they use
higher-dimensional spaces, so they cannot be compared with 2D or 3D methods. The hMDS method
from (Sala et al.| 2018) looks interesting, but it depends on the scaling factor, and it is not clear how
to learn this parameter; therefore, we do not include this method in our experiments. Most embedders
are randomized, so we have repeated a portion of experiments using different seeds; this does not
usually change the rankings (Appendix [H). We use the official implementations and hyperparameters;
see Appendix |A|and the supplementary material.

Figure 2] shows the aggregate results, while details can be found in Appendices[E] (plots and tables)
and | (NOUN hierarchy). Surprisingly, while BFKL has been designed specifically for scale-free
networks and greedy routing, and LE has been benchmarked on hierarchies and MAP and MR, our
results show that BFKL or DHRG achieves significantly better results on many hierarchies (BFKL:
NOUN,VERBF,MESH; DHRG: mesh,tetrapoda), while Lorentz embeddings tend to achieve better
results on networks, especially for greedy routing (better GSR and GSF). Still, the quality of BFKL,
BFKL+DHRG, and 2D LE is similar across scale-free networks in our experiments, as measured
by MR and MAP. One counterexample in the YEAST network, where BFKL achieves significantly
better results than Lorentz on MAP (0.756 vs 0.542). In all cases, BFKL (and even BFKL+DHRG) is
orders of magnitude faster, making LE impractical for larger graphs. The new CLOVE embedder
tends to achieve even better results on hierarchies, in even better time. In many cases, DHRG is able
to improve the results of fast embedders such as CLOVE while remaining reasonably quick.

HypViewer (Munzner, |1998) produces quite bad MR and MAP; howeyver, it aims to put similar nodes
close together, while due to how the transitive graphs are constructed for hypernymy hierarchies,
high MR and MAP measures are achieved when similar categories (e.g., "lion” and tiger”) are
closer to their hypernyms (feline, mammal, animal, entity) than to each other, which promotes longer
edges on the outer levels of the hierarchy, and shorter edges in the center. The fast mode of Mercator
usually produces worse embeddings than BFKL, while full Mercator usually achieves results between
BFKL and 2D LE. Unfortunately, the full Mercator is slower than 2D LE for larger graphs. TreeRep
is based on the idea of learning a tree instead of a hyperbolic embedding. We agree with this
proposition for tree-like hierarchies, but for networks such as FACEBOOK and the connectomes,
hyperbolic embeddings achieve significantly better results. (Hyperbolic plane is tree-like in large
scale and Euclidean-like in small scale, and thus may potentially combine the advantages of both
approaches). LTiling did not generally achieve better results than 2D LE in our experiments, while
being significantly slower (contrary to DHRG, tiles are used only to improve numerical precision,
not to make the process faster); however, this might be due to incorrectly set hyperparameters or
testing on smaller, more shallow hierarchies, so the numerical precision issues did not yet become
relevant. Despite the claimed O(n) time, the official implementation of the LPCS embedder turned
out relatively slow in our experiments — this was probably caused by some MATLAB optimizations
that were not implemented in GNU Octave; we have reimplemented it in C++, and our implementation
is fast. Its results are quite bad on connectomes, but on hierarchies and other networks, its results are
comparable to BFKL. The coalescent embedder also performed relatively poorly in our experiments.

Under review as a conference paper at ICLR 2025

The KVK embedder often achieved excellent results, but unfortunately turned out to be very slow —
significantly slower than LE. Anneal works great for connectomes (which were its original area of
application), but often turns out to be not that good for other data; this is probably because Anneal
can only produce embeddings of small radius, and connectomes, being physical networks, can have
good embeddings of small radius.

Figure 3: Top row: NOUN (Lorentz 2D). VERB (left to right: Lorentz 2D, Lorentz 2D+DHRG, BFKL).
Bottom row: DROSOPHILIA1 (Lorentz 2D, Lorentz 2D+DHRG, BFKL, BFKL+DHRG).

3.2 VISUALIZATION

One application of 2D embeddings is visualization. We rendered the embeddings using the tools from
DHRG; see Figure[3] All pictures are in Poincaré model, centered on the center of the hyperbolic
disk used for embedding. One observation is that Lorentz embeddings tend to put nodes close to the
center, while the center is generally avoided in BFKL, and DHRG improves the balance.

3.3 DIMENSIONALITY

According to all our experiments so far, higher-dimensional embeddings achieve better results than
lower-dimensional ones. This result is trivially an artifact of optimization. Reducing the number of
dimensions could be seen as imposing a restriction on that dimension; usually optimization without

of MAP, T=0.1 ison of MAP, T=0.4 ison of MAP, T=0.7

% w96 o % B s % Om 0% o CE TR Ca—T % om0l T Y B T

of greedy success, T=0.4 of greedy success, T=0.7
- J—

Figure 4: Density plots of the differences between the values of quality measures (MAP and GSR)
obtained by Lorentz 2D and BFKL. Negative values indicate that BFKL performed better.

Under review as a conference paper at ICLR 2025

restrictions yields better results. To make comparisons fairer, we need to use information criteria to
control for this artifact properly. We introduce the information control value (ICV), based on the
Minimum Description Length (MDL) principle (Rissanen, |1978), which takes into account both the
quality of edge prediction and the description length of the embedding; this description length is
longer (worse) in more complex embeddings, such as those of higher dimension or radius. This is
welcome, since more complex embeddings are harder to visualize, and also embeddings of higher
radius are more prone to numerical errors (Blasius ef al | 2018} |Sala et al., 2018 |Celinska-Kopczynska
and Kopczynskil, 2024b). According to our results, two-dimensional embeddings perform better
for most real-world networks. The embedders we compare do not optimize the embedding radius,
except Anneal, which enforces embeddings of small radii. To further improve ICV, we have also
implemented a variant of DHRG that aims to reduce the embedding radius; the resulting improved
BFKL is called Penalty. See Appendix [C|for the description of ICV and the Penalty approach.

MAP

Figure 5: Quality assessment of embedders on simulated networks. Darker colors indicate that the
given embedder occured more frequently in the given percentile of ranks (higher percentiles are
better) over all graphs benchmarked.

3.4 COMPARISON ON ARTIFICIAL SCALE-FREE NETWORKS

For a more statistical analysis, we have also compared BFKL and Lorentz 2D embeddings on
artificially generated scale-free networks. We use the generator from BFKL based on the HRG model,
with default o = 0.75, network sizes n € {500, 1000, 2000} and temperature 7' € {0.1,0.4,0.7}.

Fig[T4]depicts the densities of the differences between the values of quality measures obtained by
2D LE and BFKL, and Table[I|contains results of the logit regressions on the determinants of the
probability that BFKL would perform better than 2D LE in terms of a given quality measure. No
matter the quality measure, according to our results, the greater the graph, the higher the probability
that BFKL will perform better; however, with rising temperature, that probability decreases. Real-
world networks are considered to have fairly large values of T', such as T' = 0.7 used for Internet
mapping (Blasius et al.l|2016; Boguna et al.,2010), which is consistent with our results on real-world
scale-free networks. Although our models were aimed at interpretation instead of prediction, we
included information on the prediction quality, both from cross-validation and benchmarking. Both
models are of satisfactory quality.

Even if our results suggest that, in many cases, 2D LE outperforms BFKL, it still comes at a high
time cost. In Fig[6] we present the trade-off between the markup in time expenditure (how many
times longer it takes to compute) in comparison to BFKL and the percentage gain in the quality of
the embedding (measured with MAP) resulting from using 2D LE. We conclude that there is no
significant monotonic relationship between the time spent and the percentage gain in quality (p-values
in Kendall-tau significance tests, as we encounter ties in our data that may make Spearman’s rho
inappropriate to use, are: 0.5282, 0.3141, and 0.0103 if we control for temperature 0.1, 0.4, and 0.7,
respectively. The last result is insignificant at 1% significance level).

Figure [5] depicts an aggregate ranking of all embedders. Regarding MAP and MR measures, we
note apparent differences in the embedders’ performance. LPCS tends to perform relatively poorly
(usually in the bottom 10%), while 2D LE is significantly improved by discretization in the case of
MAP. Unsurprisingly, fast Mercator performs worse than full Mercator. In contrast to the analysis of

Under review as a conference paper at ICLR 2025

MAP GSR GRE
Coeff. | Pr(> [z]) | Coeff. | Pr(> [2]) | Coeff. | Pr(> [2])
Intercept -1.9583 | 9.11e-08 | 0.7312 | 0.00468 | 0.6887 | 0.00749

Temp=0.4 -0.8864 | 0.004922 | -2.0924 | 4.27e-12 | -2.0929 | 3.97e-12
Temp=0.7 -4.6115 | 1.59-14 | -3.8869 <2e-16 | -3.9425 <2e-16
Size = 1000 | 1.5956 | 0.000119 | 0.8173 | 0.00796 | 0.7814 | 0.01153
Size =2000 | 4.0095 <2e-16 | 2.4526 | 6.34e-13 | 2.5229 | 2.75e-13

N 450 450 450

ACC,, 0.8598 0.8008 0.8029
ACChench 0.7178 0.5289 0.5356
K 0.6288 0.5992 0.6019

Table 1: Results of logit regressions for the determinants of BFKL embedder outperforming Lorentz
2D embedder in terms of quality measures. ACC,., and x are average accuracy and Kappa from
10-fold cross-validation; ACCype,p, is the accuracy of the naive model (always predict mode).

1000 - . 600 ’
: 500
800 1 500
. : 400
600 - . 400 S [
o et L 300 .
a0 LT T 300 o neh i - 7
.- N 200 . 0 0 C . 200

200

Figure 6: Comparisons of percentage gains in quality (MAP) of the 2D Lorentz embedding against
the markup in time expenditure in comparison to BFKL embedder. X axis is the percentage gain in
quality and the Y axis is how many times longer it takes.

the real-world networks, CLOVE’s performance is mediocre here — it occurs rarely within the top 10%
of embedders. Regarding the greedy routing measures, we see little difference. Interestingly, LPCS
and Coalescent embeddings tend to perform worse than other embedders on simulated networks
generated from the HRG model. An analysis of possible explanations for this finding could constitute
a future research line.

4 CONCLUSION

We have compared the popular hyperbolic embedders in three communities, paying special attention
to BFKL embedder against 2D Lorentz embeddings. Our main motivation for this comparison is the
apparent lack of awareness of the algorithmic results on hyperbolic embeddings in the ML community.
In all experiments, the BFKL embedder runs significantly (about 100 times) faster, while achieving
results generally of similar quality, although in some cases one or the other embedder may get
noticeably better results, depending on the input graph and the quality measure. Higher-dimensional
Lorentz embedding generally gets better results than both kinds of 2D embeddings, even in 3D;
however, this no longer holds when we take information criteria into account. A more detailed study
of our proposed criterion will be the subject of further research.

We have also found discrepancies between our results and the results in (Nickel and Kielal 2017
2018). In particular, in (Nickel and Kiela, |2017) 200D SGD Euclidean embeddings are performing
worse than even low-dimensional Poincaré embeddings, but in our experiments, they consistently
achieve significantly higher results (this particular case of non-reproducibility has been previously
observed and studied in (Bansal and Benton| [2021))); in (Nickel and Kiela, [2018)) Lorentz embeddings
achieve significantly better results than Poincaré, while in our experiments, their performance is
similar, and Poincaré is sometimes better. We could not reproduce the ACM and MESH taxonomies
used in (Nickel and Kielal |2018)) (the number of edges and even nodes is not consistent with the
numbers given — we are using our own data in this paper). See Appendix |G| for details.

10

Under review as a conference paper at ICLR 2025

REFERENCES

Ittai Abraham, Mahesh Balakrishnan, Fabian Kuhn, Dahlia Malkhi, Venugopalan Ramasubramanian,
and Kunal Talwar. Reconstructing approximate tree metrics. In Proceedings of the Tventy-Sixth
Annual ACM Symposium on Principles of Distributed Computing, PODC *07, page 43-52, New
York, NY, USA, 2007. Association for Computing Machinery.

Rodrigo Aldecoa, Chiara Orsini, and Dmitri Krioukov. Hyperbolic graph generator. Computer
Physics Communications, 196:492-496, nov 2015.

Antoine Allard and M. Angeles Serrano. Navigable maps of structural brain networks across species.
PLOS Computational Biology, 16(2):1-20, 02 2020.

Samuel Balogh, Bendeguiz Sulyok, Tamds Vicsek, and Gergely Palla. Clove, a travelling salesman’s
approach to hyperbolic embeddings of complex networks with communities. Communications
Physics, 8, 10 2025.

Sameer Bansal and Adrian Benton. Comparing Euclidean and hyperbolic embeddings on the WordNet
nouns hypernymy graph. In Jodo Sedoc, Anna Rogers, Anna Rumshisky, and Shabnam Tafreshi,
editors, Proceedings of the Second Workshop on Insights from Negative Results in NLP, pages 49—
53, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
Linguistics.

Thomas Blisius, Tobias Friedrich, Anton Krohmer, and Soren Laue. Efficient embedding of scale-free
graphs in the hyperbolic plane. In European Symposium on Algorithms (ESA), pages 16:1-16:18,
2016.

Thomas Blésius, Tobias Friedrich, Maximilian Katzmann, and Anton Krohmer. Hyperbolic embed-
dings for near-optimal greedy routing. In Algorithm Engineering and Experiments (ALENEX),
pages 199-208, 2018.

Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
of communities in large networks. Journal of Statistical Mechanics: Theory and Experiment,
2008(10):P10008, oct 2008.

Marian Bogufd, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustaining the internet with
hyperbolic mapping. Nature Communications, 1(6):1-8, Sep 2010.

Mihail Bota and Larry W. Swanson. Online workbenches for neural network connections. Journal of
Comparative Neurology, 500(5):807-814, 2007.

Karl Bringmann, Ralph Keusch, and Johannes Lengler. Geometric inhomogeneous random graphs.
Theoretical Computer Science, 2018.

Karl Bringmann, Ralph Keusch, and Johannes Lengler. Geometric inhomogeneous random graphs.
Theoretical Computer Science, 760:35-54, 2019.

Gabriel Budel, Maksim Kitsak, Rodrigo Aldecoa, Konstantin Zuev, and Dmitri Krioukov. Random
hyperbolic graphs in d + 1 dimensions, 2023.

Carlo Cannistraci and Alessandro Muscoloni. Geometrical congruence, greedy navigability and
myopic transfer in complex networks and brain connectomes. Nature Communications, 13, 11
2022.

James W. Cannon, William J. Floyd, Richard Kenyon, Walter, and R. Parry. Hyperbolic geometry.
In In Flavors of geometry, pages 59—115. University Press, 1997. Available online at http:
//www.msri.org/communications/books/Book31/files/cannon.pdf.

Dorota Celinska-Kopczyniska and Eryk Kopczynski. Discrete Hyperbolic Random Graph Model.
In Christian Schulz and Bora Ugar, editors, 20th International Symposium on Experimental
Algorithms (SEA 2022), volume 233 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 1:1-1:19, Dagstuhl, Germany, 2022. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik.

11

http://www.msri.org/communications/books/Book31/files/cannon.pdf
http://www.msri.org/communications/books/Book31/files/cannon.pdf

Under review as a conference paper at ICLR 2025

Dorota Celinska-Kopczynska and Eryk Kopczynski. Modelling brain connectomes networks: Solv
is a worthy competitor to hyperbolic geometry! In ECAI 2024 - 27th European Conference
on Artificial Intelligence, 19-24 October 2024, Santiago de Compostela, Spain - Including 13th
Conference on Prestigious Applications of Intelligent Systems (PAIS 2024), volume 392 of Frontiers
in Artificial Intelligence and Applications, pages 1792—1799. 10S Press, 2024.

Dorota Celinnska-Kopczynska and Eryk Kopczynski. Numerical aspects of hyperbolic geometry. In
Computational Science — ICCS 2024: 24th International Conference, Malaga, Spain, July 2—4,
2024, Proceedings, Part VI, page 115-130, Berlin, Heidelberg, 2024. Springer-Verlag.

Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth. Neural embeddings of
graphs in hyperbolic space, 2017.

Victor Chepoi and Feodor Dragan. A note on distance approximating trees in graphs. European
Journal of Combinatorics, 21(6):761-766, 2000.

Victor Chepoi, Feodor F. Dragan, Bertrand Estellon, Michel Habib, and Yann Vaxes. Notes on
diameters, centers, and approximating trees of §-hyperbolic geodesic spaces and graphs. Electronic
Notes in Discrete Mathematics, 31:231-234, 2008. The International Conference on Topological
and Geometric Graph Theory.

Andrej Cvetkovski and Mark Crovella. Multidimensional scaling in the poincaré disk. ArXiv,
abs/1105.5332, 2011.

Wouter De Nooy, Andrej Mrvar, and Vladimir Batagelj. Exploratory Social Network Analysis with
Pajek: Revised and Expanded Edition for Updated Software. Structural Analysis in the Social
Sciences. Cambridge University Press, 3 edition, 2018.

Sven Dorkenwald, Philipp J Schubert, Marius F Killinger, Gregor Urban, Shawn Mikula, Fabian
Svara, and Joergen Kornfeld. Automated synaptic connectivity inference for volume electron
microscopy. Nat. Methods, February 2017.

William J. Floyd, Brian Weber, and Jeffrey R. Weeks. The achilles’ heel of o(3, 1)? Exp. Math.,
11(1):91-97, 2002.

Tobias Friedrich, Maximilian Katzmann, and Leon Schiller. Computing voronoi diagrams in the
polar-coordinate model of the hyperbolic plane, 2023.

Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic entailment cones for
learning hierarchical embeddings. In Jennifer G. Dy and Andreas Krause, editors, Proceedings
of the 35th International Conference on Machine Learning, ICML 2018, Stockholmsmdssan,
Stockholm, Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research,
pages 1632-1641. PMLR, 2018.

Guillermo Garcia-Pérez, Antoine Allard, M Angeles Serrano, and Maridn Bogufid. Mercator: uncover-
ing faithful hyperbolic embeddings of complex networks. New Journal of Physics, 21(12):123033,
dec 2019.

Kwang-Il1 Goh, Michael E. Cusick, David Valle, Barton Childs, Marc Vidal, and Albert-Laszl6
Barabdsi. The human disease network. Proceedings of the National Academy of Sciences,
104(21):8685-8690, 2007.

William Gray Roncal, Zachary H. Koterba, Disa Mhembere, Dean M. Kleissas, Joshua T. Vogelstein,
Randal Burns, Anita R. Bowles, Dimitrios K. Donavos, Sephira Ryman, Rex E. Jung, Lei Wu,
Vince Calhoun, and R. Jacob Vogelstein. Migraine: Mri graph reliability analysis and inference for
connectomics. In 2013 IEEE Global Conference on Signal and Information Processing, pages
313-316, 2013.

Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature representations
in product spaces. In International Conference on Learning Representations, 2019.

Yunhui Guo, Haoran Guo, and Stella Yu. Co-sne: Dimensionality reduction and visualization for
hyperbolic data, 2022.

12

Under review as a conference paper at ICLR 2025

Patric Hagmann, Leila Cammoun, Xavier Gigandet, Reto Meuli, Christopher Honey, Van Wedeen,
and Olaf Sporns. Mapping the structural core of human cerebral cortex. PLoS biology, 6:¢159, 08
2008.

Logan Harriger, Martijn P. van den Heuvel, and Olaf Sporns. Rich club organization of macaque
cerebral cortex and its role in network communication. PLoS ONE, 7, 2012.

Moritz Helmstaedter, Kevin L. Briggman, Srinivas C. Turaga, Viren Jain, H. Sebastian Seung, and
Winfried Denk. Connectomic reconstruction of the inner plexiform layer in the mouse retina.
Nature, 500:168—-174, 2013.

Robert Jankowski, Antoine Allard, Mari’an Bogun’a, and M. Angeles Serrano. The d-mercator
method for the multidimensional hyperbolic embedding of real networks. Nature Communications,
14, 2023.

H. Jeong, S. P. Mason, A.-L. Barabasi, and Z. N. Oltvai. Lethality and centrality in protein networks.
Nature, 411(6833):41-42, may 2001.

Marcus Kaiser and Claus C. Hilgetag. Nonoptimal component placement, but short processing paths,
due to long-distance projections in neural systems. PLoS Computational Biology, 2, 2006.

Maksim Kitsak, Ivan Voitalov, and Dmitri Krioukov. Link prediction with hyperbolic geometry. Phys.
Rev. Res., 2:043113, Oct 2020.

R. Kleinberg. Geographic routing using hyperbolic space. In IEEE INFOCOM 2007 - 26th IEEE
International Conference on Computer Communications, pages 1902—-1909, 2007.

Stephen G. Kobourov. Force-directed drawing algorithms. In Roberto Tamassia, editor, Handbook of
Graph Drawing and Visualization, pages 383—408. Chapman and Hall/CRC, 2013.

Eryk Kopczyiiski, Dorota Celifiska, and Marek Ctrndct. HyperRogue: Playing with hyperbolic
geometry. In Proceedings of Bridges : Mathematics, Art, Music, Architecture, Education, Culture,
pages 9-16, Phoenix, Arizona, 2017. Tessellations Publishing.

Bianka Kovdcs, Sdmuel Balogh, and Gergely Palla. Generalised popularity-similarity optimisation
model for growing hyperbolic networks beyond two dimensions. Scientific Reports, 12, 01 2022.

Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Marid n Boguiia.
Hyperbolic geometry of complex networks. Physical Review E, 82(3), sep 2010.

John Lamping, Ramana Rao, and Peter Pirolli. A focus+context technique based on hyperbolic
geometry for visualizing large hierarchies. In Proceedings of the SIGCHI Conference on Human
Factors in Computing Systems, CHI 95, pages 401-408, New York, NY, USA, 1995. ACM
Press/Addison-Wesley Publishing Co.

Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
http://snap.stanford.edu/data, June 2014.

David R Maddison, Katja-Sabine Schulz, Wayne P Maddison, et al. The tree of life web project.
Zootaxa, 1668(1):19-40, 2007.

Nikola Markov, Méria Ercsey-Ravasz, Camille Lamy, Ana Rita, Ana Ribeiro Gomes, Loic Ma-
grou, Pierre Misery, Pascale Giroud, Pascal Barone, Colette Dehay, Zoltan Toroczkai, Kenneth
Knoblauch, David Essen, and Henry Kennedy. The role of long-range connections on the specificity
of the macaque interareal cortical network. Proceedings of the National Academy of Sciences, 110,
03 2013.

George A. Miller. WordNet: A lexical database for English. In Human Language Technology:
Proceedings of a Workshop held at Plainsboro, New Jersey, March 8-11, 1994, 1994.

Tamara Munzner. Exploring large graphs in 3d hyperbolic space. IEEE Computer Graphics and
Applications, 18(4):18-23, 1998.

13

Under review as a conference paper at ICLR 2025

Alessandro Muscoloni and Carlo Vittorio Cannistraci. A nonuniform popularity-similarity opti-
mization (npso) model to efficiently generate realistic complex networks with communities. New
Journal of Physics, 20(5):052002, may 2018.

Alessandro Muscoloni, Josephine Maria Thomas, Sara Ciucci, Ginestra Bianconi, and Carlo Vittorio
Cannistraci. Machine learning meets complex networks via coalescent embedding in the hyperbolic
space. Nature Communications, 8(1), nov 2017.

Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations.
In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Processing Systems 30, pages 6341-6350. Curran
Associates, Inc., 2017.

Maximilian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of
hyperbolic geometry. In Jennifer G. Dy and Andreas Krause, editors, Proceedings of the 35th
International Conference on Machine Learning, ICML 2018, Stockholmsmdssan, Stockholm,
Sweden, July 10-15, 2018, volume 80 of Proceedings of Machine Learning Research, pages
3776-3785. PMLR, 2018.

Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic embeddings of knowledge
graphs. In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, AAAT’ 16,
pages 1955-1961. AAAI Press, 2016.

Fragkiskos Papadopoulos, Maksim Kitsak, M. Angeles Serrano, Marian Bogufid, and Dmitri Krioukov.
Popularity versus Similarity in Growing Networks. Nature, 489:537-540, Sep 2012.

Fragkiskos Papadopoulos, Rodrigo Aldecoa, and Dmitri Krioukov. Network geometry inference
using common neighbors. Physical Review E, 92(2), aug 2015.

Fragkiskos Papadopoulos, Constantinos Psomas, and Dmitri Krioukov. Network mapping by replay-
ing hyperbolic growth. IEEE/ACM Transactions on Networking, 23(1):198-211, feb 2015.

Mark Phillips and Charlie Gunn. Visualizing hyperbolic space: Unusual uses of 4x4 matrices. In
Proc. 13D, pages 209-214, New York, NY, USA, 1992. Association for Computing Machinery.

Jorma Rissanen. Modeling by shortest data description. Automatica, 14(5):465-471, September
1978.

F B Rogers. Medical subject headings. Bull. Med. Libr. Assoc., 51:114—116, January 1963.

Frederic Sala, Chris De Sa, Albert Gu, and Christopher Re. Representation tradeoffs for hyperbolic
embeddings. In Proc. ICML, pages 4460-4469, Stockholmsmassan, Stockholm Sweden, 2018.
PMLR.

JW Scannell, Colin Blakemore, and MP Young. Analysis of connectivity in the cat cerebral cortex.
In Journal of Neuroscience, 1995.

Jack W. Scannell, Gully A. Burns, Claus C. Hilgetag, Molly A. O’Neil, and Malcolm P. Young. The
connectional organization of the cortico-thalamic system of the cat. Cerebral cortex, 9 3:277-99,
1999.

M. Angeles Serrano, Dmitri Krioukov, and Marian Boguiid. Self-similarity of complex networks and
hidden metric spaces. Phys. Rev. Lett., 100:078701, Feb 2008.

Yuval Shavitt and Tomer Tankel. Hyperbolic embedding of internet graph for distance estimation and
overlay construction. [EEE/ACM Transactions on Networking, 16(1):25-36, 2008.

Kazunori Shinomiya, Aljoscha Nern, Ian A. Meinertzhagen, Stephen M. Plaza, and Michael B. Reiser.
Neuronal circuits integrating visual motion information in drosophila melanogaster. Current
Biology, 32(16):3529-3544.e2, 2022.

Rishi Sonthalia and Anna Gilbert. Tree! i am no tree! i am a low dimensional hyperbolic embedding.
In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, Advances in Neural
Information Processing Systems, volume 33, pages 845-856. Curran Associates, Inc., 2020.

14

Under review as a conference paper at ICLR 2025

Lav R. Varshney, Beth L. Chen, Eric Paniagua, David H. Hall, and Dmitri B. Chklovskii. Structural
properties of the caenorhabditis elegans neuronal network. PLOS Computational Biology, 7(2):1-
21,02 2011.

Moritz von Looz, Henning Meyerhenke, and Roman Prutkin. Generating random hyperbolic graphs
in subquadratic time. In Khaled Elbassioni and Kazuhisa Makino, editors, Algorithms and
Computation, pages 467-478, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

Zuxi Wang, Qingguang Li, Fengdong Jin, Wei Xiong, and Yao Wu. Hyperbolic mapping of complex
networks based on community information. Physica A: Statistical Mechanics and its Applications,
455:104-119, 2016.

Zuxi Wang, Yao Wu, Qingguang Li, Fengdong Jin, and Wei Xiong. Link prediction based on
hyperbolic mapping with community structure for complex networks. Physica A: Statistical
Mechanics and its Applications, 450:609-623, 2016.

Malcolm P. Young. The organization of neural systems in the primate cerebral cortex. Proceedings:
Biological Sciences, 252(1333):13-18, 1993.

Tao Yu and Christopher M De Sa. Numerically accurate hyperbolic embeddings using tiling-based
models. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 32. Curran Associates, Inc.,
2019.

Yi-Jiao Zhang, Kai-Cheng Yang, and Filippo Radicchi. Systematic comparison of graph embedding
methods in practical tasks. Phys. Rev. E, 104:044315, Oct 2021.

15

Under review as a conference paper at ICLR 2025

A IMPLEMENTATION USED

We have downloaded the embedders from the following repositories, and use the following settings:

Poincaré and Lorentz: https://github.com/facebookresearch/
poincare—embeddings|(last commit on Sep 16, 2021), Attribution-NonCommercial
4.0 International

We use the hyperparameters -epochs 1500 -negs 50 -burnin 20
—dampening 0.75 -ndproc 4 -eval_each 100 -fresh -sparse
—burnin_multiplier 0.01 -neg_multiplier 0.1 -1lr_type

constant —-1lr 1 -train_threads 1 -dampening 1.0 -batchsize

50 —gpu 0 from the example train-nouns.sh from the repository, except that
we requested using the GPU (-train_threads 1 -gpu 0). We also add the
hyperparameters specifying a method (-manifold poincare —-dim 2). For
Lorentz 2D, Poincaré 3D, Poincaré 5D, Lorentz 3D, we replace —1r 1 with —1r 0.5
-no-maxnorm (this setting comes from the suggestion about Lorentz embeddings in
train-nouns. sh). The hyperparameters for SGD Euclidean embeddings are not given
in the current official repository; we use the same parameters as for Poincaré (learning rate
1).

BFKL: https://bitbucket.org/HaiZzhung/hyperbolic—embedder/
overview (last commit on Sep 8, 2016), no license given

This method estimates the hyperparameters in est imateHyperbolicParameters
method. We do not modify the original settings. The temperature (1') parameter for
embedding is set to a low value 0.1 which should work well for embeddings, the parameter
« is estimated based on fitting the power law, and the radius (R) is computed using a
formula.

DHRG: https://github.com/zenorogue/hyperrogue/tree/master/
rogueviz/dhrg (last commit on April 1, 2023), GPL v3

This method is parameterized by the tessellation used; we use the bitruncated order-3
heptagonal tiling. It does not create embeddings from scratch, but rather improves them
using local search; we allow up to 110 iterations of local search. Local search computes
the loglikelihood using the logistic function. We test it on the BFKL and Lorentz 2D
embeddings. For the penalty variant, we set the parameter to 2 (see Appendix [C)), and
perform 100 iterations of local search.

TreeRep: https://github.com/rsonthal/TreeRep (last commit on Jun 23,
2023), GPL v3

This method has no settings or hyperparameters (other than the number of threads, which
we set to 8 as suggested in the repository).

LTiling: https://github.com/ydtydr/HyperbolicTiling_Learning (last
commit Mar 19, 2020), Attribution-NonCommercial 4.0 International

We use the hyperparameters from the -epochs 1000 -negs 50 -burnin
20 -dampening 0.75 —-ndproc 4 -eval_each 100 -sparse
—burnin _multiplier 0.01 -neg_multiplier 0.1 -lr_type

constant —-train_threads 2 -dampening 1.0 -batchsize 50
-manifold LTiling_rsgd -dim 2 -com_n 1 -1lr 0.3 —-no-maxnorm
from the train-nouns. sh example.

HypViewer: https://graphics.stanford.edu/~munzner/h3/download)
html|(last modified in 2003), license in the COPYRIGHT file

This method has no hyperparameters. For non-strict hierarchies we pick the parent randomly.
Mercator: https://github.com/networkgeometry/mercator (last commit
Jun 21, 2022), GPL v3

Mercator has a setting for fast or full embedding; the fast method skips the likelihood
maximization step. We apply both variants. We do post-processing of the inferred values
of the radial positions. The parameter S can be provided, but we use the default behavior,
in which £ is inferred to reproduce the average local clustering coefficient of the original
edgelist.

16

https://github.com/facebookresearch/poincare-embeddings
https://github.com/facebookresearch/poincare-embeddings
https://bitbucket.org/HaiZhung/hyperbolic-embedder/overview
https://bitbucket.org/HaiZhung/hyperbolic-embedder/overview
https://github.com/zenorogue/hyperrogue/tree/master/rogueviz/dhrg
https://github.com/zenorogue/hyperrogue/tree/master/rogueviz/dhrg
https://github.com/rsonthal/TreeRep
https://github.com/ydtydr/HyperbolicTiling_Learning
https://graphics.stanford.edu/~munzner/h3/download.html
https://graphics.stanford.edu/~munzner/h3/download.html
https://github.com/networkgeometry/mercator

Under review as a conference paper at ICLR 2025

e d-Mercator: https://github.com/networkgeometry/d-mercator (last com-
mit Nov 23, 2023), GPL v3
The hyperparameters are similar to Mercator, except only full embedding is available for
greater dimensions.

e Simulated annealing: supplementary material in https://openreview.net/
forum?id=dgWobzl1AGb, GPL v3
This method is parameterized by the tessellation used; we use the bitruncated order-3
heptagonal tiling for 2D embeddings, and the subdivided(2) {4,3,5} honeycomb for 3D
embeddings (the g711 and g435b2 settings from the original paper). As in the original
paper, we set the parameter controlling the number of tiles to M = 20000. The number of
iterations of simulated annealing is Ng = 10000|V|. As in the original paper, We run the
embedder twice; the first pass is to obtain good initial values of the R and T parameters.

¢ Coalescent: https://github.com/biomedical-cybernetics/
coalescent_embeddingl(last commit Jul §, 2019)
We use the hyperparameters and settings from RUN_EXAMPLE . m. Specifically, 2D embed-
dings uses RA1-LE-EA. 3D embeddings use RA1-ISO. We run the code in Octave (the free
alternative of MatLab), which has no access to graphallshortestpaths function; we
solve this issue by computing the table of shortest paths with our own C++ implementation.

¢ KVK: https://bitbucket.org/dk-1ab/2020_code_hyperlink/src/
master/ (last commit Jun 11, 2011)
This embedder has two parameters, v controlling the power-law exponent, and temperature
T'. For simulated networks we use the actual temperature (thus giving more information to
the embedder), while for real-world networks, we use 0.1, similar to BFKL. As explained in
the paper, v = 2« + 1; we take « estimated by BFKL.

* LPCS: the source code is included with the paper at https://www.sciencedirect)
com/science/article/pi11/S0378437116000182
The source code is in MatLab. According to readme, before we call the MatLab func-
tion main_LPCS, we need to use the Fast Modularity Optimization (FMO) algorithm
proposed by Blondel et al. to detect the hierarchical community structure, using the
multilevel.community function in R (the name of this function is currently depre-
cated in favor of cluster_louvain); the source code of this part has not been included,
thus we had to write our own, and also adapt the main_LPCS function to the situation
when cluster_louvain returns a different number of community levels than 3. The
code also has a hyperparameter gama (the power law exponent); we use the R function
fit_power_law (degree (g)) to estimate this exponent. We also had to fix some bugs
(the code did not work when only two communities were found) and Octave warnings.
Since the official implementation ran very slow in Octave, we have also reimplemented
the algorithm in C++ (script/lpcs-remake.cpp). Our reimplementation fixes a bug in Con-
nectNextCom.m (which compares the intimacies of x(1) and x(2), while, according to the
paper, intimacies of the first and last subcommunity in x should be compared here). In
the following tables, embedding time is given for the original implementation, but not the
reimplementation (the reimplementation is generally very fast).

* CLOVE: https://github.com/samu32ELTE/hypCLOVE| (last commit Oct 16,
2025)
We use the default values of all settings and hyperparameters: -y to fit the degree distribution,
degree fitting sample size of 100, automatically detected dendrogram, Leiden community
detection method, exponential coarsening, the number 1 of anchor communities, Christofides
algorithm for solving the Travelling Salesman Problem, degree_greedy node arrange-
ment, community sector sizing based on the number of nodes in the community, and PSO
radial coordinates assigned. For some hierarchies, the official implementation of CLOVE
detects v < 2, and fails with a parameter inference error. In these cases, we use v = 2
instead.

For replicability we also control the PRNG seed.

We have downloaded the connectome datasets from |https://github.com/
networkgeometry/navigable_brain_maps_data. The scale-free networks are

17

https://github.com/networkgeometry/d-mercator
https://openreview.net/forum?id=dqWobzlAGb
https://openreview.net/forum?id=dqWobzlAGb
https://github.com/biomedical-cybernetics/coalescent_embedding
https://github.com/biomedical-cybernetics/coalescent_embedding
https://bitbucket.org/dk-lab/2020_code_hyperlink/src/master/
https://bitbucket.org/dk-lab/2020_code_hyperlink/src/master/
https://www.sciencedirect.com/science/article/pii/S0378437116000182
https://www.sciencedirect.com/science/article/pii/S0378437116000182
https://github.com/samu32ELTE/hypCLOVE
https://github.com/networkgeometry/navigable_brain_maps_data
https://github.com/networkgeometry/navigable_brain_maps_data

Under review as a conference paper at ICLR 2025

from the SNAP database (Leskovec and Krevl, 2014). The tree-of-life and GitHub followers graph
dataset have been included with DHRG.

We use the following hardware:

[1] Intel® Core™ i7-9700K CPU @ 3.60GHz, NVIDIA GeForce GTX 1060 6GB/PCle/SSE2, 96
GB RAM (we used zram for the embedders which did not fit in RAM)

[2] 11th Gen Intel® Core™ i7-11850H @ 2.50GHz, OpenGL renderer string: NVIDIA RTX A3000
Laptop GPU/PCle/SSE2

Software: Arch Linux, g++ 12.2.1 to 15.2.1 (DHRG, BFKL, KVK, Anneal, Mercator), Julia 1.9.3
(TreeRep), Python 3.6 (Poincaré, Lorentz, Itiling, Mercator), Octave 10.3 (Coalescent, LPCS), R
4.5.2 (LPCS, creation of graphs)

The times reported in the paper have been obtained on [1]. Some experiments have been run on [2].

18

Under review as a conference paper at ICLR 2025

B COMPUTING DISTANCES, DISCRETE MAP AND MR

The distance between two points p(r1, ¢1) and p(rs, ¢2) in the hyperbolic plane can be computed as
follows: (let ¢ = ¢1 — ¢2)

6(p(r1, ¢1),p(r2, ¢2)) = 6(p(r1,0), p(r2, ¢))
= arcosh g_((sinh(r),0, cosh(r1)),
(sinh(ry) cos ¢, sinh(rs) sin ¢, cosh(rz))
arcosh (sinh(r) sinh(r3) cos ¢ + cosh(ry) cosh(rs))
arcosh (cosh(rqy — r2) + (1 — cos(¢)) sinh(ry) sinh(rs))

The last formula has better numerical properties (Blasius et al., 2016; [Celinska-Kopczynska and
Kopczynskil 2024b)). The distance formula in the Poincaré disk model can be computed similarly,
although converting from Poincaré to hyperboloid needs solving a quadratic equation.

Still, the computation is somewhat slow: for each of O(n) nodes, O(n) distances from the other
nodes need to be computed and sorted. It is possible to apply the discretization method from DHRG
to quickly compute a discrete analog of MAP and MR (that we call IMAP and dMR). As mentioned
in Section discretization allows us to compute, for every node ¢, an array a such that a[é] is the
number of tiles in 7 in distance i from ¢, in time O(R?). If ¢ has e; edges, we can compute a similar
array b[¢] restricted to connected tiles in time O(e;R). Note that the formulas for MR and MAP given
in |Nickel et al.|(2016) are for the case of continuous distances, and need to be adjusted for discrete
values obtained from the DHRG model. In the case of MR, a non-edge with distance tie contributes
0.5 to 7, 4, and in the case of MAP, if there are b[d] edges and a[d] total nodes in distance d, we
assume k-th of these edges to be ranked after a[d](k — 0.5)/b[d] nodes. We can compute such MR
and MAP knowing ali] and b[i] for every node in total time O(nR? + mR), where m is the number
of edges.

C CONTROL VALUE

This section describes the information control value (ICV), the embedding quality measure suggested
by us. This value is based on the Minimum Description Length (MDL) principle (Rissanen, |1978]).
According to this principle, the shortest description of the data is the best model. We need — log,(p)
bit of information to describe an event happening with probability p.

In case of geometric embeddings, the description length consists of two parts: the description of the
embedding itself, and the loglikelihood of obtaining the connections, given the embeddings. The
second part is related to the loglikelihood used in the BFKL embedder. Recall that every pair of nodes
a and b is then connected with probability p(a, b) = p(§(a, b)) = (1 + exp((6(a,b) — R))/2T))~1,
where d(a, b) is the hyperbolic distance between the points in H? representing the two nodes. To
compute the log-likelihood, we sum log(p(a, b)) for every connected pair of nodes, and log(1 —
p(a, b)) for every unconnected pair of nodes. To compute the description length in bits, we use the
same formula, except that we use — log, (p) instead of the natural logarithm log(p). The parameters
R and T are chosen in order to maximize the log-likelihood (equivalently, minimize the description
length).

In a d-dimensional embedding, every node i is described with coordinates (r;, ¢;), where r; is the
distance from the center, and ¢; € S-1 is the angular coordinate. We assume that r; has exponential
distribution Exp(\) restricted to [0, Rq.]- We choose Rypqz to be the maximum r;, and A which
maximizes the likelihood. Let fr be the density of this distribution of the radial coordinates ;. For
¢;, we assume that it is uniformly distributed in Sé-1,

We assume that our coordinates are given with limited accuracy e. That is, instead of the precise
(r;, ¢;) obtained in our embedding, we use (7, ¢}) such that p(r}, ¢}) is close to p(r;, ¢;). To describe
7} such that |r; —]| < ¢, we need — log, f:‘"'j: f(r)dr bits. In case of angular coordinates, we need

to divide the sphere of radius 7;, whose volume is proportional to sinh® ™" (), by the area of (d — 1)
region of diameter €, which is proportional to €41, Therefore, to describe (j)g, we need d; - (log, € —
log, sinh(r;)) bits (as long as r; > €). Since we know the positions of nodes a and b with error €, in
the formula for p(a, b) we take not p(6(a, b)), but p’(a,b) = 3(p(5(a,b) — €) + p(6(a,b) + €)).

19

Under review as a conference paper at ICLR 2025

For the given €, we obtain the total description length L as a sum of description lengths of 7}, ¢} for all
nodes 7, and p’(a, b) for all pairs of nodes (a, b). We choose the ¢ which minimalizes this description
length L. Generally, a smaller € increases the description length for r; and ¢}, but decreases the
description length of p'(a, b).

To normalize the total description length, we compare L with the description length N of the naive
non-geometric representation, which simply assigns the same connection probability p to every pair
of nodes. Theoretically, a good geometric represesentation should obtain L < N; however, some of
the algorithms we study obtain L > N. If there are n nodes and m edges, the minimum description
length —mlog, p — ((5) — m)logy(1 — p) is obtained for p = m/ (). Our control value is then
N/(N + L). This value is bounded from below by 0 (the worst case L = co) and from above by 1
(which would be obtained for L = 0). Good geometric representation achieve the control value of at
least %, which corresponds to L = N.

Note that, for d; < ds, a dj-dimensional hyperbolic embedding e; can be considered a ds-
dimensional embedding, simply by considering the H? that e; uses as a subspace of —bbH?.
All quality measures found in the literature and studied in this paper (log-likelihood, MAP, MR,
GSR and GSF) will give exactly the same result whether e; is considered d;-dimensional or ds-
dimensional; in other words, these measures will always give advantage to higher-dimensional
embedding methods. In contrary, the control value will penalize higher-dimensional embeddings,
as the part of the description length which corresponds to (¢;) will be larger in higher dimension.
Furthermore, control value will also penalize embeddings of larger radius. This is welcome, since
embeddings of large radius are harder to visualize, and also more prone to numerical errors (Blisius
et al.,|2018; |Sala et al., 2018} |Celinska-Kopczynska and Kopczynskil 2024b).

In the Penalty variant of BFKL+DHRG, a node placed in distance of § steps from the center of the
model costs K - log(rs), where 75 is the number of tiles in distance 4. Instead of optimizing only the
loglikelihood, we optimize the sum of loglikelihood and this cost. For K = 1 this cost corresponds
to the part of description used to describe the angular coordinate. In our experiments we take K = 2,
to make the embeddings even smaller.

D REAL-WORLD HIERARCHIES AND NETWORKS USED

The list of real-world hierarchies and networks we benchmark all the embedders on is available in
Table @ In case of VERBF, we had to add an extra root node, since BFKL requires the network to be
connected. We have not included other networks used in BFKL benchmarks because they are too
large for slower algorithms such as Poincaré and Lorentz embeddings. In LE, the Enron email corpus
and the historical linguistics data are analyzed using weighted edges, so we cannot compare them to
BFKL or DHRG.

E RESULTS ON REAL-WORLD HIERARCHIES AND NETWORKS

The detailed results of our evaluation on real-world hierarchies can be found in Table Bl We also
include MAMMAL (the mammal subtree of Noun). The detailed results of our evaluation on real-
world networks can be found in Tables @3] Figures|[7} [8] O] [I0] [I1} and[I2]contain visualizations of
MAP, MR, GSR, GSF, and ICV on those hierarchies and networks. Figure [I3]shows the aggregate
information for the remaining measures.

Note that some algorithms are very slow, making them not feasible to run on large graphs. We do not
provide the results in these cases.

F ARTIFICIAL NETWORKS

Table [6]and Figure [T4] show the details of our evaluation of BFKL versus Lorentz 2D on artificial
networks.

20

Under review as a conference paper at ICLR 2025

name type details V] |E| source

ias Internet autonomous systems 23748 58414 IM (Boguiia ef al.|[2010)
facebook social social circles 4039 88234 BDsG (Leskovec and Krevl|[2014)
followers-2009 social GitHub followers 74946 537952 D

openflights transport transport network 3397 38460 MC (OpenFlights website)
grqc citation ~ general relativity 4158 13422 PSTY (Leskovec and Krevl|[2014)
astroph citation astrophysics 17903 196972 P (Leskovec and KrevI[[2014
condmat citation condensed matter 21363 91286 P (Leskovec and Krevl| 2014
hepph citation high-energy physics 11204 117619 P (Leskovec and Krevl| 2014
yeast biology yeast metabolism 1458 1948 STY (Jeong et al.||200
diseasome biology disease relationships 516 1188 ST (Goh et al.

noun hierarchy ~WordNet 82115 743086 PLSTY

acm hierarchy ACM classification 2114 8121 L

mammal hierarchy ~ WordNet 1180 6540 pY (Miller!|1994

verbf hierarchy ~ WordNet 13543 48621 LY (Miller/|1994

mesh hierarchy hierarchy 58737 300287 L (Rogers!|1963

tetrapoda hierarchy hierarchy 11262 527580 (Maddison et al.|[2007)
csphd hierarchy hierarchy 1025 3978 STG (De Nooy et al.]|2018}
CElegans cell nervous system 279 2287 sMAT |Varshney er al.|(2011)
Drosophilal cell optic medulla 350 2887 MA [Shinomiya et al.|(2022)
Drosophila2 cell optic medulla 1770 8904 A |Shinomiya ef al.

Mouse2 cell retina 916 77584 A|Helmstaedter ef al.|(2013
Mouse3 cell retina 1076~ 90811 A |Helmstaedter ez al.|(2013
ZebraFinch2 cell basal-ganglia (Area X) 610 15342 A|Dorkenwald ez al.|(2017)
Macaquel area cortex 94 1515 A |Kaiser and H11getag|(|2006}
Macaque?2 area cortex 71 438 A|Young|(1993)

Macaque3 area cortex 242 3054 A|Harriger er al.[(2012)
Macaque4 area cortex 29 322 AMarkov et al.|(2013)

Catl area cortex 65 730 AScannell et al.|(1995

Cat2 area cortex and thalamus 95 1170 A|Scannell ef al.|(1999

Cat3 area cortex 52 515 A|Scannell ef al.|(1999
Humanl area cortex 493 7773 AHagmann et al. (200
Human2 area cortex 496 8037 A|Hagmann et al.|(2008
Human6 area whole brain 116 1164 A|Gray Roncal et al.|(2013
Human7 area whole brain 110 965 A|Gray Roncal et al.|(2013
Human8 area whole brain 246 11060 A |Gray Roncal ez al.|(2013
Ratl area nervous system 503 23029 A|Bota and Swanson|(2007
Rat2 area nervous system 502 24655 A|Bota and Swanson|(2007
Rat3 area nervous system 493 25978 A[Bota and Swanson|(2007

Table 2: Our benchmark graphs. ’Cell’ and ’area’ are connectomes. The edges are directed in
hierarchies and undirected otherwise. Letters signify the embedders which used this benchmark: I
Bogund et al.l 2010), B (Blisius ef all,2016), D (Celinska-Kopczyriska and Kopczynsk1|, [2022), P
ickel and Kiela, 2017), L (Nickel and Kiela, 2018), S (Sala et al., 2013), G (Gu er al.l2019), Y
Yu and De Sa, 2019), M (Garcia-Pérez ez al.,[2019), T (Sonthalia and Gilbert, 2020), A (Allard and
[Serrano}, 2020}, [Celinska-Kopczynska and Kopczynskil, m, C (Balogh er a?.[, [2025). Small letters

appear in the repository but are not discussed in the paper.

G DISCREPANCIES

In Table[7} our results are compared to the results obtained inNickel and Kiela (2017 2018). Note
that VERB is different than VERBF used in our paper, which includes one extra node that is an ancestor
of every other node. Furthermore, the ACM hierarchy in Nickel and Kielal (2018)) is given as 2299
nodes and 6526 edges, while ours has 2114 nodes and 8121 edges; and the MESH hierarchy is given
as 28470 nodes and 191849 edges, while ours has 58737 nodes and 300290 edges.

The discrepancy in the result of Euclidean higher-dimensional embeddings has been previously
observed and studied in [Bansal and Benton| (2021)); the reported values did arise as a result of
using a different setting where the Euclidean embeddings were regularizecﬂ Other differences in

'https://github.com/facebookresearch/poincare-embeddings/issues/35

21

https://github.com/facebookresearch/poincare-embeddings/issues/35

Under review as a conference paper at ICLR 2025

graph name noun mammal verbf acm mesh tetrap csphd
nodes 82115 1180 13543 2114 58737 11262 1025
edges 743086 6540 48621 8121 300287 527580 3978
BFKL

BFKL + DHRG

Poincare 2D

Poincare 2D + DHRG
Poincare 3D

Lorentz 2D

Lorentz 2D + DHRG
Lorentz 3D
coalescent2
coalescent3 907366
KVK

CLOVE

CLOVE + DHRG
LPCS
Mercator fast
Mercator full
d-Mercator

Itiling

BFKL

BFKL + DHRG
Poincare 2D

Poincare 2D + DHRG
Poincare 3D

Lorentz 2D

Lorentz 2D + DHRG
Lorentz 3D
penalty
anneal2
anneal3
coalescent2
coalescent3
KVK
CLOVE
CLOVE + DHRG
LPCS
HypViewer
Mercator fast E 19.895 38.833 25.654 49917 = 38.554 26.238
Mercator full 18.450 38.899 20.254 38.062

d-Mercator
Itiling

BFKL

BFKL + DHRG
Poincare 2D 0.195

Poincare 2D + DHRG 0.204 0.116 0.285

Poincare 3D ;
-0.246 -().183

embedding time [s]

radius [absolute units]

Poincare 5D

Lorentz 2D

Lorentz 2D + DHRG
Lorentz 3D

penalty

anneal2

anneal3

coalescent2
coalescent3

KVK

CLOVE

CLOVE + DHRG
LPCS 0.341
HypViewer 0.047 0.124 0.134 0.134 0.122 0.014 = 0416
Mercator fast
Mercator full
d-Mercator

Itiling

Euclidean 50D
Euclidean 200D
BFKL

BFKL + DHRG
Poincare 2D

Poincare 2D + DHRG
Poincare 3D

Poincare 5D

MAP: Mean Average Precision

Lorentz 2D
Lorentz 2D + DHRG
Lorentz 3D
| penalty 17.9
S | anneal2 132
% anneal3 18.2
S | coalescent2 9.5
; coalescent3 61.4
g | KVK
CLOVE
CLOVE + DHRG
LPCS 282.0 9.6 14.3 73 79.0 117.8
HypViewer 4452.4 1457 276.1 71.0 5222 5559.7
Mercator fast 177.8 8.8 16.2 20.2 89.3
Mercator full [28T 421 96
d-Mercator 250.8 8042 2372 51508
Itiling - 39.5 -
Euclidean 50D

Euclidean 200D

Table 3: Our results on real-world hierarchies. Darker cell color indicate better results.

22

Under review as a conference paper at ICLR 2025

graph name astrop condma grqc hepph facebo yeast diseas follow openfl ias CElegs Humanl Drosol Mouse3
nodes 17903 21363 4158 11204 4039 1458 516 74946 3397 23748 279 493 350 1076
edges (undirected) 196972 91286 13422 117619 88234 1948 1188 537952 19230 58414 2287 7773 2887 90811

BFKL

BFKL + DHRG
Poincare 2D 20481 10025 1321 11920 8580 235 155 65600 2020 7396 254 807

Poincare 2D + DHRG | 20687 10265 1335 11993 8618 240 157 65878 2030 7476 255 811 324 8792
Poincare 3D 20485 10002 1366 12153 8624 235 156 68445 2061 7902 795

Lorentz 2D 14741 8761 6317 183 130 49531 1501 5604 639

Lorentz 2D + DHRG 14891 7475 8807 6371 200 137 49814 1517 5691 640

Lorentz 3D 14612 7479 1155 9392 6319 134 51675 5778 1554

coalescent2 13557 23340

coalescent3 - - 15012

KVK - - 3910 15687 1278 214

CLOVE

CLOVE + DHRG
LPCS

Mercator fast
Mercator full
d-Mercator
Itiling
BFKL
BFKL + DHRG
Poincare 2D
Poincare 2D + DHRG
Poincare 3D

Lorentz 2D

Lorentz 2D + DHRG
Lorentz 3D

penalty

anneal2

anneal3

coalescent2
coalescent3
KVK
CLOVE
CLOVE + DHRG 18.738 16.208 14.384
LPCS
Mercator fast 70.081 64.709 42.147 53510 31.315 22.056 26306 173.262 33.530 63.496 23.148
Mercator full 56.490 52.331 40.502 51.965 30.507 25.973 24.869 - 35790 63.223 24.585
d-Mercator - 16.448
Itiling - -
BFKL

BFKL + DHRG
Poincare 2D

Poincare 2D + DHRG
Poincare 3D

Poincare 5D

Lorentz 2D

Lorentz 2D + DHRG
Lorentz 3D

penalty

anneal2

anneal3

coalescent2 b 0.387 0.585 0.302 0.453 0.222
coalescent3 . 0.359 0.565 0.303 0.289
KVK

CLOVE

CLOVE + DHRG
LPCS

Mercator fast
Mercator full
d-Mercator

orig TreeRep rec
orig TreeRep norec
Itiling

Euclidean 50D
Euclidean 200D
BFKL

BFKL + DHRG
Poincare 2D
Poincare 2D + DHRG .
Poincare 3D
Poincare 5D

Lorentz 2D

Lorentz 2D + DHRG
Lorentz 3D

penalty . 145.4
anneal2 158.2 -
anneal3 1204 -

coalescent2 3 437.4 623.6 96.3

coalescent3 186.1 5126 2188

KVK 128.6 - 47.4

CLOVE 159.8 750.8 80.6 48.2

CLOVE + DHRG 81.1

LPCS 181.2 49.5 169~ 7630.1 1580 734.0
Mercator fast 209.5 6869 101.4 5 8073.4 951.3
Mercator full 153.9 - 770.3
d-Mercator . 5054 16593 106.7 172.5 273 - 430.9 4560.5
Itiling - - -

Euclidean 50D
Euclidean 200D

embedding time [s]

radius [absolute units]

MAP: Mean Average Precision

MR: MeanRank

Table 4: Our results on real-world networks. Darker cell color indicate better results.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251

1252
1253
1254
1255
1256
1257
1258
1259
1260
1261

1262
1263
1264
1265
1266
1267
1268
1269
1270
1271

1272
1273
1274
1275
1276
1277
1278
1279
1280
1281

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

I [graph name

[astrop

condma grqc

hepph

facebo yeast diseas follow openfl ias CElegs Humanl Drosol Mouse3 |

BFKL

BFKL + DHRG
Poincare 2D
Poincare 2D + DHRG
Poincare 3D
Lorentz 2D
Lorentz 2D + DHRG
Lorentz 3D
penalty

anneal2

anneal3
coalescent2
coalescent3

KVK

CLOVE

CLOVE + DHRG
LPCS

Mercator fast
Mercator full
d-Mercator

Itiling

GSR: Greedy Success Ratio

0.060
0.082

0.026 0.052
0.031 0.056

0.017 0.053

0.006 0.019
B 0.055

0.014 0.038
0.043 0.068
0.005 0.013

0.072
0.073

0.078

0.055
0.072

0.053

0.029

0.061
0.064

0.047
0.051
0.036

0.529
0.616

0.465
0.625

0.427
0.569

0.760
0.829

0.281
0.365

0.121
0.048 0.153 0.062
0.068 [O950 -
0.023 0.040 -

0.472
0.534

0.418
0.437

0.455
0.524

0.127 0.587

0.127 0.066

BFKL

BFKL + DHRG
Poincare 2D
Poincare 2D + DHRG
Poincare 3D
Lorentz 2D
Lorentz 2D + DHRG
Lorentz 3D
penalty

anneal2

anneal3
coalescent2
coalescent3

KVK

CLOVE

CLOVE + DHRG
LPCS

Mercator fast
Mercator full
d-Mercator

Itiling

GRE: Greedy Routing Efficiency

0.025 0.050
0.028 0.053

0.016 0.051

0.006 0.018
- 0.053

0.014 0.037
0.040
0.005 0.013

0.068
0.068

0.027

0.044
0.048
0.032

0.060 0.149

0.402 0.794

0.481 0.395 0.776
0.553 0.529 0.805

0.432
0.584

0.410
0.476

0.381
0.407

0.736
0.785

0.420
0.480

0.113 0023

0.039

BFKL

BFKL + DHRG
Poincare 2D
Poincare 2D + DHRG
Poincare 3D

Lorentz 2D

Lorentz 2D + DHRG
Lorentz 3D

penalty

anneal2

anneal3

coalescent2
coalescent3

KVK

CLOVE

CLOVE + DHRG
LPCS

Mercator fast
Mercator full
d-Mercator

LL: normalized loglikelihood

0271 0.487

0.108 0.251
0.394

0.210

0.253 0.246 0.425

0.452

0.437

0.334 0.181

0.202
0.308

0.150 0.105 0.250

0.262

BFKL

BFKL + DHRG
Poincare 2D
Poincare 2D + DHRG
Poincare 3D

Lorentz 2D

Lorentz 2D + DHRG
Lorentz 3D

penalty

anneal2

anneal3

coalescent2
coalescent3

KVK

CLOVE

CLOVE + DHRG
LPCS

Mercator fast
Mercator full
d-Mercator

ICV: Information Control Value

0.431

0.435 0.344 0.349
0.479 0.380 0.370

0480 04527 0386

0.550

0.482
0.520
0.485

0.537
0.503
0.506
0.541
0.525

0.463
0.434
0.442
0.412

0.551
0.579

0.532
0.601 0290 0.348 0.299

0.274 0.362 -
0.575 0.414 -

0.462
0.467 0290 0.459

0.471 0.300
0.474 0.419

Table 5: Our results on real-world networks. Darker cell color indicate better results. Log-likelihood
(LL) is normalized by dividing by the value of N from Section [C|and subtracting from 1.

24

Under review as a conference paper at ICLR 2025

+x¥d4@BOEqOOmIOn w

txkxEIOORBOMADOF DO s m Sowa

% dx*xdBoDEsEdOobEDO+e s

+x%0dBa00mEA0 wwsn

¥ 409bODAB¥BEOEOS X D S8 oo

¥ 94POXIO+EDBEORKOBS B 8 m cumen

+x9%¥9090nmEOEOm s e

+x409%xRbIODtEmOREOE s W0

+xa%xd0c8xqo0mEomEe

+xa¥400dEEmOEOEE

+X¥BOBEOIDABO+Em e

+xodqmmomo¥dEOeE W

+x*¥00dmEB00qE

+x*¥EEBOodoDEIOEE

% 909+0dbbEEOsHEsseBno

+Xx¥0dERQAOB+OBORE D DG e E U

A o syes

T % B ER

* o B B0

¥ qax¥ F e e w
+ *

0d8m ¢ cone e

* g6 Wtgm &e SR

* oy @ e N
* 9% 2 aggo & °

* a¢ MeP gm oo = ®

* a*s e ga "

* *o of mae °=

dmot ® @ mwm

* o Bago¥* 48 N L
o ERERL TR
+* W om o = e
b oodp v wl som .

arapn

graph

+x9mpobamackeoBdemED

% modo0d0sdbEmEL¥EEOE

% B00dd0dpEmem¥LOEREn o

% BdoododbmbkmesoBEe U

+X4b40DbEEIEORD OB B KB X

txd9d0bbmEdoomsemcOkE

% bbEOREOEBAIOOBEAKE

% pabdomEooEdEKcoem

% podabqommOEncO¥em

% bbmoddEomOdoEcekE

¥ bEDEEOAIEOOQE 0B KE

* pP9dposEmOBOdeomKE

% baobdmEdOBONOEKeE

* p9oapsodmmOomkcsom

% PAdobOtEdEEKDR D B OB X

% *mERddoormboRodEs s

¥ ApodbEB¥BEOdDEEBOX®E

4 AP0dPROI+EkmOEROE BE S X

% pbodddomssEOcoaKE

% bdoabEEdOBEDOE¥eE O

% bEDAdoudomEDOEeKE

avinjo sy

*m g0 % @k =
¥mog <B* > gB @ &

*m o 9 b W =t 8 @

+ox < bRg k8 x
+x T L
P

* camgh e ®

* > Qs Fo ®

¥ obsgpe ok ®

* coam®x B

¥ o oam ek B

¥ b emomw B

* b osamatt so B

* b o bchdEe 90 8 x
* *ed apoa o =
* <o gy w TOxE
* aa > Bk moe B &

* oo oF
% cemme® ®
* bt ®

graph

graph

Figure 7: Quality assessment of embedders on real-world hierarchies and networks: MAP.

+x40d9d0mkommmon =

+xpaBOOmEbPIOtORK S B E B X W

% 490d0+smBRkBOOBbEDEXE ©

+x44090%mmB00 o

¥ 9904bOEDEEAKEOO0EE 86X owm

490+domobmEORIkebXEEE

+x9900dEmEsOEEOKE

+x9909+torEmEREbKO SO xEE WO

+xd0d9d0%meE0B0eEx

+x40d90damEm¥0BOBE

+x¥BOdEIBODMO+eE

+Xx0dEEEOIKDOEE G o

+x0a*momOQOEE U

+x¥mBO0o0dmq0mOeE

% 990+dobEBfocbOEEE@E G M

+x0d%¥Bdom+BEEEODOEDEdE W

a0 Syes

name

:
M
N
A
4
M
*
4
le
i
x
he
+ox Y -
b ¥
N aore M
B P

araph

araph

+x9mobdmbogsodmmkms D

¥ mobdodobaBEmeO¥nE

¥ mooqpocmELIBERO¥EaE

mdo0odabodbEEmOfeEE

+Xb490EPIOBEEOD® S B KX

+xbdacEsbaomOsemmORE

¥ bEbEOOEAIE0OBmEq¥E

% paocsdbdomsmmonken

* podddobmEsOmEOOXE

% bpddcmmodEsomDeka

¥ PEDEBOQEIEOOOEAKE

% pmddommsamobodomxs &

% bnodmdsOomEIDOEOKE

* pEdoedomdobe*mmon

% PEdOdEDPEEO+OBEDO] KB X

% PaRQObPEBOBdOOEKEEE o

¥ 4b0QEDIOEBEE SO 0S KB X

% 90dr+odpmEREEBODE kDS X

4% pbEscdoddmEmOOeKE wo

*# bddombmqEEOsOD¥eE w0

% pEbEEJddoscEdoneKE WO

i jo sy

arapn

graph

world hierarchies and networks: -log(MR).

Figure 8: Quality assessment of embedders on real

experimental results might be caused by differences in hyperparameters; the repository only gives the

values of hyperparameters used to reproduce the 10-dimensional embeddings.

H REPEATED EXPERIMENTS

In Tables[8]and 0] we list the results of repeated experiments on the NOUN hierarchy and the GRQC,

YEAST, MOUSE3, HUMAN1, DROSOPHILA1 and CELEGANS networks. In most cases, the differences

are minor and do not affect the rankings.

25

Under review as a conference paper at ICLR 2025

* name + x x name
i o eeKL ¥ a I 4 BF
x T B BFKL:DHRG. o * < 4 + B BFKLIOHRG
. & 8 Fenay a a a o x o
o @ © Loenzo A A a x * © LorentzzD
¥ O Lorentzao + 3 + + ° a = O Lorentzap
. e T - i e
g] S g oxox moox o @ o m o+ Xnmw
£ R S S S S S [
S0t & % B, = o 3 a a a o v o + + F + o o
H x & 7 Py E} B svocer 3 o a ° a + a * * ° a B g
i B L S T G S
2 & @ v ames S o a ® a ® v a a ° A < Ameasd
g 1 L ¥ ° £ o H v 2 v ¥ % 1 ¥ 3 3 3 7 e
* X T H a M s x a M = Toorep
R % T & . E e - D S s
F . 4 & 2 E o Coneccany s @ ° @ 4 a ° o + ® et
Y i o Conkscen a o u ® a s a a v a ® Cosescenia
S oy 5 - % . . o o - o o o o o s M o o
£ o - S-S S SR S S SR S+
) 0 - p
. Y 4 I ¢ & 3 5 3 o .. 5 &] 5
3 3 e I
- oo
o0 » * * +
T . s ves g 2 5 e TL]3 rane
L S 4 T E 30 §. v . P X Lo
=< 2 4 F . 0t % 'R RS S ss 2 vt oo v v oo ov v v ox T
¢ REEE N S Fe RN S 5 40 D A0 SR S-S B S S S 1o
] * * e B e U A O Lorenzao x X v % ®m + A ®m A + ® O V . A A B O % * O Lorenizap
. = g b X porezo [v o B x + om s o ox . v v v o = B o e
. 8 & s . e, P T I O
E . % g A= O O T A R
2 g 8 L % e 3 e o ¥ m a4 % 4 o v A B v A 5 8 om & s m @ Ol
g iy ® " Ll 2 6w § BB 4+ A x o @ v ®m o8 8 o v v A 8 v &
3 = g s s 5 9 me E o s s 6 6 A s + 4 o v A A& ® v A s oy A& v o
) l ¥ oa ¥ § Yamw o oA m v x A O 8 0 v 8 o ® x 0 @ A O B o o o A
§ow i P £ ® ®w 0 @ ®B v ®m ¥ A v ® A % O o ® & o o & flum
ld eetten © o = ®8 0o ® ®m @® o = B x ® ® reeRiep
+ g - Ir., R oom fh rme,
@ X Eucieanson g © ® O ® vy o ® & & A A o0 6 & = ® A 8 O 5 g
e PO D S S -
a & xvx % % ® ®w = B O & % 0 ¥ O o ® A ©0o & ® O vV 0 vk
. * o © o o 0o 0o A s o 0 % o £ = o = o o ® = w @ Khwor
s S
graph . graph

Figure 9: Quality assessment of embedders on real-world networks: greedy success rate (GSR).

+ name + x x name
o ¥ by i by 0 e
H = x ° 2 2 B sncions
- x x L B A 2 a x x s
- o © + a o * © Lorentz2D
x 2 3 v e + x s a M 3 Loz
R L 2 1 I i i K 1 1 H Pooeandd
PR % * b ¥ ° M o H + 4 oo
: an S S S S SR S ek A
- 2 4 = M g a a + ° a a + + w * a Mecoo o
g & b n 8 & o 2 o a ° 2 + o x * 3 a & o-vecaor
H * 2 LS v H a o v o M M * 4 a o @ Hovenzd
H L * 2 2 [Y M M S H x A H o 2 3 Arveis
H P e el - e S S S 4
g ® X TreeRep L] o L a L v a L] o & Rep
Oom % x4 " & % § e 2 s ® H ° M ° a I o ¥ b’
[y . s & b4 4 © Conescenz s = ¢ * v . ® o + s ® Cosescenz
© Coumond . s . s ° o s . v . o Coatrens
a
%W o a5 il) o a H a M a H N . M o o
8 - az B u * HypCLOVE @ o o ® ® @ a o ® a * HypCLOVE.
8 LPCS o ® ®) L3 a @ a PCS
. 3 4 " € s & topons i ? 3 2 . H 4 H H 1 o
graph . graph
£ s o« % +
L i H R R
" [1 § F 4 o o o
H H H ¥ e S “wowF
id y ¥ 7 &5 9% §¥% o o b4, 0 A v 4 v oy ox x oA x4+ % . o
@ 3 s b o % 3 b a5 oo X x A & ¥ & x o a4 + v v 4 - a
L L 2% = $ R I I I I B I B T S S S B S o
. g & & Z LI o A Poincare20 B vy ¢ v v B 4 0 ®B O v 0 O ¥ a4 0 o B B O
[0 3 O . u ammen sy oy A B v 8w oo A m A A e o m o % o o o x
LIS & - @ B S L 0 A A A % o v A ® o & & v & ¥ ®m A A gy &
2 2 s QU ¥ 4 o 4 o m a4 + v x o m v ® A o 8 v A e & &
P g 5 . 3 g M B S 2o triiiiiiyILITTVINY
§ P, T vhem 3 & 4 2 8 0 O 4 & + m O m 0 m oy A4 s a0 Y
&% 8 o Ameasd Zo o = ® % A o B o A 8 A @ B @ A o B o o o
0s0 s X g e ® & g ® « o s s @m @ = 8 o v s A+ o o 8 v v & s
e x @ I o 4 8 5 8 o s ®mom v iom ao@ a "o o @ om a
Ll g = =® LI 8 6 6 0o ® v o % & @ o 0 o o6 © © ® A ® O &
s i o = m s s v om oo A x m & % e = = s & e
oo ot c m ¢ x = & s a A e oo o m " ox o A @ o=
a o K ¥ % o = x B e & O o ¥ 0 o & A o & B O Y o0
oz * e @ o s o o a4 o o ¥ ¥ o ¥ = o s 8 o @ = ® @ oo
nue © e % 8 8o 0 x s o o & o 6 6 X 0 s v v e @ DY
. - R S
araph

Figure 10: Quality assessment of embedders on real-world networks: greedy routing efficiency
(GRE).

26

Under review as a conference paper at ICLR 2025

i £ B8 . 3 e % : . : e
o g = % B ekowre 2 + ® x - B BrLOHRG
@ @ penalty o = + o ® Penaty.
& gﬁ, * " ﬁ © Loenzzo x + o x a © Lotenzzp
. b S o . . + . . H o S Lo
* 2 oz : 5 I 3 B H H 2 rontanzo
* 4 puincarea - 2 i by I $) 3 i 2 pancarean
8 oo 2 roncanto
O Meraworlst 5 " Iy hd 2 4 " ¢ £ O Mercator fast
= B Meraorul £ + ° @ * 4 + L] L] L] B Mercatorfull
v i3 s B - - H = . H . 9 e
o 0 H b H o o H x a 3 Ao
3 H 5 T v H b4 b H H 3 G
3 M K I H b 1 : H
B ¥ eewios. o s = ° * 2 * 2 ° % Coseemtos.
oz o Coescon . = . 2 ° 3 ° ° u o Godescen
£ Conceos a ° o v v a v b a ° Covciens
I N) b b v o 2 M a & o
3 e - P 2 x . A o v o * fpcove
L] B B B s * * * s B o a v a o pes
) @ Hpviower ® B ® B @ * x ® * @ Hypviwer
aapn gapn
coxow o - * o owmox +
3,15**@**% ii 3 Siﬂtnnam: x4 + e
g = g © @ x4 X + + "
o B e é Q e 3 . . 3O uowo XX 8 0 x v o+ ox x4 b o+ o+ +ox *Or L x mmooe
] =, " g HER - P e 6 e x o+ 4 X A ok ox e o * RS
L] - O Lorenzad v v vy = B @ & v vV V , V V ® e A A A o o O Lorenizap
i] é o § fnew v . o o e & a4 o F P R D
. o o & poincare3d 5w " A A B A & O 8 & v & O A o & &4 & e A poncaread
N s ¥ D 5 4 4 v o0 ® 0 O A & 8 O » B O s m e o o 4 Mecusp
- Bhaaw 8 0 m 0 2 0 m o= 0 & o v & & = s e s o0 ® aox QI
] d el ¢ A v A 4 o o m & oo os o= 4 5 o= % o & @ o
z a fores R R ERE R s o e e A 5w
vamwo fu e o &4 v v o @ 8 o 4 a & v oy & % 8 om o m Y mwaw
M £ o o s @ o ®m 0o 0 & 0 & & & O * o e = m o Ui
» = 3 Exdommaon 2 % 5 4 & 8o ®m 48 % 85 b 9 8 L
8 © 5 % 8 @ % A 8 = 2 e o o = vooomom s v Xalio
© Goterz + % 0 4 x 3 + 8 8 o 8 8 o@ O s B v v v o0 % o
£ ot B s ® o v v m o8 % a4 % 0 5 8 s v @ o8 o0 v o4 ocues
& kv o & @ + x O 0O v A v o ®B O Vv B O A v B 8 B kv
* npiom s o o % 4 4 x @ vy 0 o % 8 @ @ A O § v v v Fiwoor
N :W‘v‘w’ °© @ ® x & Yy % % ® ® @ B % % % @ x o T @ O o Fypviewer
grapn oaon

Figure 11: Quality assessment of embedders on real-world networks: -log(GSF).

= a v .
. L] v v - v -
@ ux 1 o o a o v name
Ot = 8 I I ? 2 2 a sniome
. = 4 1 s o o a o N a] o o b
voe S - 1 ¢ H S e S am— P g
ay g% 3 IS ° A s ° + A ° ° ° 2 incanio
] 2 3 2 et
3 ® o 3 ¥ & = % 2 Guo & ¢ T - & ¥ + 1 T 2 e
Bos L + S 2 B é ° H = = x x ® ® B + x 0 Mercaor
= * & Bx a ® 2 B -herc
L) " H + + x v v o x x a
x P = H B fonea
L B L 2 1 kS o s x a + x + s B a < horeao
oy iy L] 7 c 1 4 s L IS 5 4 4 & T Conescaniz
04] + + Coalescent3
3 . M a a v a ° v v B a *
3 o ok 3 oo L T T I3 T 1 M i i % opctove
s a & o tres X ires
L ® HypViewer L] v ° + 3 ® a a L ® Hypviewer
s s s 2 ° ° + a + x + o o
3 s s s s A + o + 2
araon graph
os ° o v & o o =
® I L ® ®8 v ®8 v v Vv Vv vV v ® B V v v o & & v
3 [4 s name 5 8 8 B A 6 0 ® 0 ® 8 8 v v @ 8 & 8 ® A & O name
. Fa o o 8 o = 4 A 0o = @ o 8 oo w s o o A O o & Ou
& sLomc a oredeonme
L4 v a poany 9 v o m B x ®m a0 8 o m m A + & a a8 o o o
vov . T % 5 < toenazo 2 0 A4 x x + 0 0 = 8 8 o 8 0 0 & 0 5 @ A x Olewn
v b ; & & 4t A porcanzd © o m o ® @ A m o o A 0 O ® O O A O A& v A A
L g s fgadd 22 SIm feoo ooy oseoo smoao 0 s s s oamosowooosow fhmm
: $ &8, TR - o + oM B 4 8 o + o v @ o o A m o x o = ®m @ @ A o @ o
{ a «2 L A 2 & o % P & Bawewo £ A A A o0 4 A © & A A o 6 vy 4 o o o m y m o 8w
- PEEIE AR S A & S R S T S S S S e S e e e e e e
« % e N b
PRI ¥ I 7 cotes 4 v e v e et o mv AA e vou w8 g & o
LR S Y r 2 % x K 6 & 4+ v x B v o 4+ &4 A v oo v & A Y 4+ v B om X
o ¥ topeiove 3 typctove
= b4 PRt TTIII1] A o 8+ 1 T N T s
= 4 @ rpviewer x o x 4+ o+ ox B o 4 4+ x x 4+ o 8 Hpvew
5w 4 o mom o+ x x ® o x + + ®m ox = o+ x ®m @ = x
03 + T T T e T T

graph

Figure 12: Quality assessment of embedders on real-world networks: information control value
(ICV).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

wes [l

HypCLOVE+DHRG

HypCLOVE .

KVK

Coalescent2
TreeRep .

LTiling

Anneal2D

MR

Mercator full
Mercator fast
Poincare2D+DHRG
Poincare2D
Lorentz2D+DHRG
Lorentz2D
BFKL+DHRG
BFKL

LPCS .

HypCLOVE+DHRG
HypCLOVE
KVK

percentile of ranks

Coalescent2 .

TreeRep
LTiling
Anneal2D

SR

o Mercator full
Mercator fast
Poincare2D+DHRG
Poincare2D
Lorentz2D+DHRG
Lorentz2D
BFKL+DHRG

BFKL

“o
<
%,
%,
<

PO PSP

7 D7 (D7 7 A7 >
S’

O

0 %

percentile of ranks

LPCS .

HypCLOVE+DHRG

HypCLOVE

KVK . .
Coalescent2
Anneal2D

5 Mercator full ‘
- Mercator fast
Poincare2D+DHRG
Poincare2D
Lorentz2D+DHRG
Lorentz2D
BFKL+DHRG

BFKL

S & O P P
ST

< .100

percentile of ranks

Ty

Coalescent2 .

TreeRep

LPCS
HypCLOVE+DHRG
HypCLOVE

LTiling
Anneal2D

SF

o Mercator full
Mercator fast
Poincare2D+DHRG

Poincare2D

Lorentz2D+DHRG

Lorentz2D .

BFKL+DHRG

BFKL .

NSRS IS N P
VFFEITEEIEY
percentile of ranks

Figure 13: Aggregates for MR, ICV, GSR, and GSF measures.

28

Under review as a conference paper at ICLR 2025

comparison of MAP, T=0.1 comparison of MAP, T=0.4 comparison of MAP, T=0.7

comparison of greedy success, T=0.1 comparison of greedy success, T=0.4 comparison of greedy success, T=0.7

O\ — n=2000 — n=2000
— n=1000 - — n=1000
— n=500 — n=500

— n=2000
— n=1000| &
— n=500

Figure 14: Density plots of the differences between the values of quality measures obtained by
Lorentz 2D and BFKL embedders. Top to bottom: MAP, -log(MR), GSR, -log(GSF). Left to right:
T =0.1,T = 0.4, T = 0.7. Negative values indicate that BFKL embedder performed better.

29

Under review as a conference paper at ICLR 2025

MAP MR GSR GSF j(\Y
Coeff. | Pr(> |z]) Coeff. | Pr(> |z]) Coeff. | Pr(> [z]) Coeff. | Pr(> |z]) Coeff. | Pr(> [z])
Intercept -1.9583 | 9.11e-08 | -1.5132 | 2.11e-08 | 0.7312 | 0.00468 | 0.4256 | 0.09397 | 47.2737 | 4.25e-13
Temp=0.4 -0.8864 | 0.004922 | -0.3956 | 0.124942 | -2.0924 | 4.27e-12 | -2.1689 | 2.09e-12 -1.5689 | 0.000458
Temp=0.7 -4.6115 1.59e-14 | -0.5732 | 0.028647 | -3.8869 <2e-16 | -4.0383 <2e-16 -4.4975 | 6.87e-10
Size = 1000 1.5956 | 0.000119 | 1.1338 | 0.000113 | 0.8173 | 0.00796 | 1.0527 | 0.00103 2.8439 | 1.80e-05
Size = 2000 4.0095 <2e-16 | 1.8908 | 5.62e-11 | 2.4526 | 6.34e-13 | 2.7747 | 1.29e-14 7.2818 | 6.62¢-09
RBFKL/RLZ — — — — — — — -58.9436 2.76e-13
N 450 450 450 450 450
ACC,, 0.8598 0.6707 0.8008 0.8047 0.9044
ACChonch 0.7178 0.6711 0.5289 0.5556 0.8667
K 0.6288 0.1324 0.5992 0.6053 0.4724

Table 6: Results of logit regressions for the determinants of BFKL embedder outperforming Lorentz
2D embedder in terms of quality measures. ACC,., and « are average accuracy and Kappa from
20-fold cross-validation; ACCp.p,cp, is the accuracy of the naive model (always predict mode).

graph name NOUN VERB | ASTRO COND GRQC HEPPH
Poincaré 2D MR (ours) 88.0 15.7 | 1127.0 889.4 68.8 302.2
Poincaré 2D MR 90.7 10.7 — — — —
Poincaré 2D MAP (ours) 0.105 0.314 0.324 0.391 0.660 0.472
Poincaré 2D MAP 0.118 0.365 — — — —
Lorentz 2D MR (ours) 43.0 42.1 | 1104.8 949.2 81.4 293.2
Lorentz 2D MR 22.8 3.64 — — — —
Lorentz 2D MAP (ours) 0.168 0.184 0.306 0.345 0.599 0.417
Lorentz 2D MAP 0.305 0.579 — — — —
Euclidean 50D MR (ours) 1.5 1.2 1.0 1.0 1.0 1.0
Euclidean 50D MR 1281.7 — — — — —
Euclidean 50D MAP (ours) 0.921 0.908 0.988 0.968 1.000 0.980
Euclidean 50D MAP 0.140 — 0.376 0.356 0.522 0.434

Table 7: Our results compared with the results from [Nickel and Kiela, 2017; Nickel and Kiela, 2018].

I TRIVIA ABOUT THE NOUN DATASET

This Appendix gives details about our experiments with the NOUN dataset, i.e., the WordNet hyper-
nymy structure. This was the first hierarchy that PE/LE have been benchmarked on, common in ML
studies.

We get MAP of 0.284 using BFKL which is significantly better than the result of Poincaré 2D of
0.118, but not the result of Lorentz 2D of 0.305, according to Nickel and Kiela (2018)). However, the
results obtained by us are different: 0.105 for 2D PE and 0.168 for 2D LE. Furthermore, while the
PE/LE papers mention the good performance of their embedding methods, on our machine, BFKL is
almost 100 times faster than LE, which is especially impressive given that BFKL runs on a single
CPU. Furthermore, the DHRG improvement improves the BFKL embedding from dMAP 0.050 to
dMAP 0.411, while LE is improved from dMAP 0.192 to dMAP 0.320. This suggests that the layered
approach of BFKL produces a better structure of the embedding. Furthermore, the combination of
BFKL+DHRG is still more than 10 times faster than 2D LE. (The dMAP result of 0.050 is very low
compared to the continuous result of 0.284; this seems to be an outlier, in our other experiments the
results of MAP and dMAP are very similar.)

This is a very large hierarchy, so it is not feasible to run slower embedders on it. We have also run the
new CLOVE embedder, which achieves MAP of 0.769, which is significantly better than the earlier
two-dimensional embedders. Furthermore, it runs over 3 times faster than BFKL. It is possible to
apply the DHRG imrpovement to this embedding, obtaining an even better value of MAP (0.791).

These results are consistent across multiple runs (Table[10).

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

graph name
nodes
edges (undirected)

grqc yeast
4158 1458
13422 1948

GSR

BFKL

BFKL + DHRG
Poincare 2D
Poincare 3D
Lorentz 2D
Lorentz 2D + DHRG
Lorentz 3D
penalty

anneal2

anneal3

KVK

CLOVE

LPCS

Mercator fast
Mercator full

d-Mercator

0.059
(0.055,0.065)

0.062
(0.060,0.064)

0.060 0.065
(0.056,0.067) | (0.061,0.068)

0.058
(0.054,0.064)

0.048
(0.048,0.049)
0.068
(0.067,0.070)

0.015 0.021
(0.014,0.016) | (0.019,0.023)

0.059
(0.058,0.060)

0.492
(0.463,0.519)

0.524
(0.523,0.525)

0.582
(0.579,0.585)

0.509
(0.483,0.531)

0.534
(0.532,0.535)

GRE

BFKL

BFKL + DHRG
Poincare 2D
Poincare 3D
Lorentz 2D
Lorentz 2D + DHRG
Lorentz 3D
penalty

anneal2

anneal3

KVK

CLOVE

LPCS

Mercator fast
Mercator full

d-Mercator

0.056 0.061
(0.053,0.061) | (0.059,0.063)

0.057 0.064
(0.053,0.066) | (0.061,0.067)

0.055
(0.052,0.061)

0.048
(0.047,0.048)
0.066
(0.065,0.068)
0.021

(0.014,0.016) | (0.019,0.022)

0.058
(0.057,0.059)

0.448
(0.425,0.472)

0.481
(0.480,0.482)

0.533
(0.530,0.536)

Table 8: Repeated experiments: greedy routing measures. Mean values from 5 runs. Bootstrapped

confidence intervals in brackets.

31

0.622
(0.599,0.637)

0.427
(0.410,0.439)

(0.436,0.445)

0.563
(0.562,0.566)

0.548
(0.523,0.560)

0.387
(0.372,0.398)

0.410
(0.406,0.414)

0.522
(0.521,0.524)

0.758
(0.745,0.779)

0.830
(0.829,0.832)

0.732
(0.719,0.751)

.786
(0.785,0.787)

0.840
(0.839,0.840)

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

graph name
nodes
edges (undirected)

grqc
4158
13422

yeast
1458
1948

CElegs
279
2287

Humanl1
493
7773

Drosol
350
2887

Mouse3
1076
90811

BFKL

BFKL + DHRG
Poincare 2D
Poincare 3D

Lorentz 2D

Lorentz 2D + DHRG
Lorentz 3D

MAP

penalty

anneal2

anneal3

KVK

CLOVE

LPCS

Mercator fast
Mercator full
d-Mercator

orig TreeRep rec

orig TreeRep norec

0.492
(0.484,0.505)

0.465
(0.460,0.472)

0.317
(0.314,0.319)

0.535
(0.525,0.540)

0.215
(0.207,0.223)

0.265
(0.253,0.294)

0.337
(0.336,0.337)

0.199
(0.191,0.207)

0.220
(0.207,0.233)

0.353
(0.338,0.363)

0.411
(0.411,0.412)

0.264
(0.249,0.277)

0.263
(0.254,0.277)

0.209
(0.196,0.221)

0.270
(0.270,0.270)

0.233
(0.223,0.241)

0.233
(0.228,0.244)

-

0.236
(0.226,0.241)

0.243
(0.232,0.254)

BFKL

BFKL + DHRG
Poincare 2D
Poincare 3D

Lorentz 2D

Lorentz 2D + DHRG
Lorentz 3D

MR

penalty
anneal2
anneal3
KVK
CLOVE
LPCS
Mercator fast
Mercator full

d-Mercator

171.1
(161.1,181.5)

158.2
(153.9,164.6)

500.6
(478.4,509.2)

53.4
(51.5,56.7)

56.2
(53.3,59.9)
72.9
(70.9,74.7)

56.8
(55.3,59.5)

187.8
(174.2,201.7)

Table 9: Repeated experiments: MAP and MR measures. Mean values from 5 runs. Bootstrapped

confidence intervals in brackets.

32

37.5
(36.7,38.7)

42.9
(42.0,43.6)
52.2
(49.3,53.9)

37.8
(37.7,37.8)

50.1
(48.6,50.9)
48.5
(46.3,49.7)

46.6
(45.3,48.7)
43.3
(40.6,46.5)

55.6
(52.6,58.7)
67.0
(64.1,70.7)

63.0
(61.8,64.0)
75.7
(74.4,76.4)

54.3
(54.3,54.4)

164.9
(161.0,167.9)

157.0
(151.5,161.6)

Under review as a conference paper at ICLR 2025

embedder MAP dMAP MR dMR

BFKL 0.280 0.049 64.7 807.5
(0.276,0.286) | (0.048,0.049) (63.3,66.0) (784.3,824.3)

BFKL + DHRG

Poincare 2D 0.105 0.018 89.5 2536.2
(0.104,0.105) | (0.018,0.018) (88.1,90.7) | (2500.6,2565.1)

Poincare 2D + DHRG 0.056 0.062 362.3 370.3
(0.056,0.056) | (0.062,0.063) | (339.7,379.7) (351.7,388.9)

Poincare 3D

Lorentz 2D 0.196 0.193
(0.195,0.196) | (0.191,0.193) (41.2,42.3)

Lorentz 2D + DHRG

CLOVE

CLOVE + DHRG

Table 10: Repeated experiments on the NOUN hierarchy. Mean values from 5 runs. Bootstrapped
confidence intervals in brackets.

33

	Introduction
	Theoretical background
	Preliminaries on hyperbolic geometry
	Hyperbolic geometry in visualization, NT, and algorithmic communities
	Hyperbolic geometry in ML community

	Our results
	Comparison on real-world taxonomies and scale-free networks
	Visualization
	Dimensionality
	Comparison on artificial scale-free networks

	Conclusion
	Implementation used
	Computing distances, discrete MAP and MR
	Control value
	Real-world hierarchies and networks used
	Results on real-world hierarchies and networks
	Artificial networks
	Discrepancies
	Repeated experiments
	Trivia about the Noun dataset

