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ABSTRACT

Hyperbolic embeddings are well-studied both in the machine learning and algo-
rithm community. However, as the research proceeds independently in those two
communities, comparisons and even awareness seem to be currently lacking. We
compare the performance (time needed to compute embeddings) and the quality of
the embeddings obtained by the popular approaches, both on real-life hierarchies
and networks and simulated networks. In particular, according to our results, the
algorithm by Blisius et al (ESA 2016) is about 100 times faster than the Poincaré
embeddings (NIPS 2017) and Lorentz embeddings (ICML 2018) by Nickel and
Kiela, while achieving results of similar (or, in some cases, even better) quality.

1 INTRODUCTION

An embedding is an instance of some mathematical structure contained within another instance, such
as a group that is a subgroup. In general topology, embedding is a homeomorphism onto its images.
Homeomorphisms are the isomorphisms in the category of topological spaces — they are the mappings
that preserve all the topological properties of a given space. Given a network (V, E), where V is the
set of vertices and F is the set of edges, its embedding into some geometry G isamap m : V — G.

In hyperbolic geometry, all the postulates of Euclid hold, except for the parallel axiom. While parallel
lines stay at a constant distance in Euclidean geometry, similar lines in hyperbolic geometry diverge
exponentially. Recently, the area of hyperbolic embedders for networks —that is, algorithms for
embedding networks into hyperbolic geometry— has gained popularity within the Machine Learning
(ML) community. Those embedders exploit the properties of hyperbolic geometry, such as exponential
growth, which make them a perfect match for visualizing and modeling hierarchical structures.

Probably the most influential paper [Nickel and Kiela (2017) (Poincaré embeddings) shows that
hyperbolic embeddings achieve impressive results compared to Euclidean and translational ones.
The results have been improved even further in |Nickel and Kiela| (2018)) (Lorentz embeddings) by
changing the used model of hyperbolic geometry. In the ML literature, those works are recognized as
some of the first studies on hyperbolic embeddings (Gu ef al., 2019). However, it is worth noting that
a rich history of hyperbolic embedding research precedes these papers. Hyperbolic embeddings have
been initially devised in the network theory (NT) community through the Hyperbolic Random Graph
model (HRG) Krioukov et al.|(2010). The algorithmic properties of this model, including embedding
techniques, have been extensively studied in the algorithmic community. Surprisingly, there is limited
cross-referencing between these research communities. For example, machine learning papers we
have examined rarely cite algorithmic works, and vice versa. Also, we lack comparative studies that
bridge those communities.

We believe the insights in the algorithmic/NT papers could significantly benefit the ML community.
In this paper, we gather and experimentally compare 14 approaches from different communities using
both real-world (30 networks, including hierarchies, connectomes, and other networks) and simulated
data (450 two-dimensional networks).

Against this background, our contributions are as follows:

* We present the first experimental comparison of hyperbolic embedders from the ML, NT,
and algorithmic communities, establishing crucial connections among these research areas.
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Figure 1: Tessellations of the hyperbolic plane. Bitruncated order-3 heptagonal tiling on the right.

» We find that an O(n) algorithm for creating hyperbolic embeddings (BFKL) (Blisius ef al.,
2016) that predates (Nickel and Kiela, [2017) is orders of magnitude faster while achieving
results of comparable quality, or in some cases, better. Mercator embeddings |Garcia-Pérez
et al.|(2019) typically achieve results of intermediate quality while also being slow; TreeRep
Sonthalia and Gilbert|(2020) achieves good embedding quality on hierarchies but bad quality
on networks.

* While higher dimension yields better embeddings according to standard quality measures
(mAP, MeanRank, greedy routing success, and stretch), this is usually an artifact of opti-
mization. Using information criteria principles, we introduce a new measure (Information
Control Value, ICV). Contrary to the standard measures, ICV penalizes embeddings of large
radius and/or dimension, enhancing the robustness of our comparisons.

2 THEORETICAL BACKGROUND

2.1 PRELIMINARIES ON HYPERBOLIC GEOMETRY

We start with the basics of hyperbolic geometry. For simplicity, we will focus on the hyperbolic
plane H?, although the same ideas work in higher dimensions. See e.g. the book |Cannon e al.|(1997)
for a more thorough formal exposition, or the game HyperRogue Kopczynski et al.|(2017) to gain

intuitions. Recall the Euclidean space E™ is R™ with distance dg(x, y) = \/g+(x — y,x — y), where
g+(($1a oo 75(:71)’ (y17 e 7yn)) = Z?:l TiYi-

In modern terms, the simplest non-Euclidean geometry is spherical geometry. A two-dimensional
sphere of radius 1is S = {z € R3 : g, (x,2) = 1}. The distance is measured in terms of great
circle arcs; a point in distance r in direction (angle) ¢ from the central point Cy = (0,0,1) has
coordinates (sin(¢) sin(r), cos(¢) sin(r), cos(r)). The spherical distance between z and y can be
computed as arccos(g4 (z,y)); this is straightforward when y = Cj, and also true in general, since
g+ is invariant under the isometries (i.e., rotations) of the sphere.

Gaussian curvature is a measure of difference of surface geometry from Euclidean geometry. A
sphere of radius R, RS?, has constant Gaussian curvature K = 1/R2. The hyperbolic plane is the
opposite of spherical geometry, that is, it has constant negative Gaussian curvature. Hyperbolic
surfaces are less ubiquituous, because they do not embed symetrically into E3 — that would essentially
require R to be imaginary. However, they appear in nature when maximizing surface area is needed
(e.g., lettuce leaves), and can be embedded symetrically in the Minkowski spacetime. The hyperbolic
plane H? is thus {z € R® : x3 > 0,g_(z,2) = —1}, where g_ is the Minkowski inner product
g—((x1,22,23), (Y1,Y2,Y3)) = T1y1 + T2y2 — x3y3 (the coordinate 3 works like a time coordinate
in special relativity). This is called the Minkowski hyperboloid model; many intuitions from spherical
geometry work in this model, for example, a point in distance r in direction (angle) ¢ from the
central point Cy = (0,0, 1) has coordinates p(r,¢) = (sin(¢)sinh(r), cos(¢) sinh(r), cosh(r)).
The hyperbolic distance between x and y can be computed as arcosh(g_(z,y)).

While the formulas of the Minkowski hyperboloid model tend to be intuitively obtainable by analogy
to the sphere model, this model is not applicable to visualization, since it naturally lives in Minkowski
spacetime rather than the usual three-dimensional space (we use Lorentz transformations rather than
Euclidean rotations for isometries involving the time coordinate). The most common method of
visualization of the hyperbolic plane is the Poincaré disk model, first devised by Eugenio Beltrami,
obtained as the stereographic projection of the Minkowski hyperboloid: p(z,y,2) = (17, 7).
This maps the (infinite) hyperbolic plane to a disk in the Euclidean plane. Figure [1| shows some
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tessellations of the hyperbolic plane in the Poincaré disk model. Each shape of the same shade in
each of these tessellations is of the same size; the Poincaré disk model distorts distances so that the
same hyperbolic distance appears smaller when closer to the boundary of the disk.

The Poincaré disk model is called a model (rather than projection) because it is often used directly,
as an alternative representation of hyperbolic geometry. Many models are used; for us, the third
important model is the native polar coordinates (r, ¢). The formulas from converting from native
polar coordinates to the hyperboloid model are given above as p(r, ¢). All models describe the
same (isometric) abstract metric space, so theoretically could be equivalently used in computations,
although various models differ by how robust they are to numerical precision issues (as we will see
later, hyperbolic geometry exhibits exponential growth, which makes such issues very significant
Celinska-Kopczynska and Kopczynski| (2024b)). All can be generalized to higher dimensions
and allow interpolation between possible values of curvature K. In our experience, people new to
computational hyperbolic geometry use Poincaré model because introductory materials often focus on
it; however, they have then difficulties computing distances and isometries, while such computations
are straightforward in the hyperboloid model due to the full symmetry and spherical analogies. We
see the difference between |[Nickel and Kielal (2017 and Nickel and Kielal (2018)) as an example
of this. The Minkowski hyperboloid is popular as the underlying model in the visualizations of
hyperbolic geometry (Phillips and Gunn, 1992} | Kopczynski et al.| [2017) due to simplicity and being a
generalization of the homogeneous coordinates commonly used in computer graphics. The choice of
the model may affect numerical precision (Floyd et al.l 2002; (Celinska-Kopczynska and Kopczynskil
2024b). As we will see later, native polar coordinates are commonly used for hyperbolic embeddings
of social networks (Friedrich ef al.| [2023)).

2.2 HYPERBOLIC GEOMETRY IN VISUALIZATION, NT, AND ALGORITHMIC COMMUNITIES

While popular expositions of hyperbolic geometry usually focus on the sum of angles of a triangle
being less than 180 degrees, what is actually important to us is exponential growth. As can be easily
seen from the formula for p(r, ¢), a hyperbolic circle of radius r has circumference 27 sinh(r);
sinh(r) grows exponentially with . This exponential growth, as well as the tree-like nature of
the hyperbolic space, can be seen in Figure [I] and has found application in the visualization of
hierarchical data, such as trees in the hyperbolic plane (Lamping ef al.,|1995) and three-dimensional
hyperbolic space (Munzner, |(1998)). Drawing a binary tree of large depth h on Euclidean paper, while
keeping all the edges to be of the same length, is difficult, because we eventually run out of space to
fit all 2" leaves. The hyperbolic plane, with its exponential growth, solves this issue perfectly.

This leads us to another application of hyperbolic geometry, that is, the modelling of scale-free
networks. Scale-free networks are commonly found in nature, technology, and as social structures.
They are characterized by the power law distribution of degrees (the probability that a random
vertex has degree > d is proportional to d—?), as well as the high clustering coefficient (if node a is
connected to b and ¢, the nodes b and c are also likely to be connected). Despite this ubiquiteness,
it is not straightforward to find a mathematical model which exhibits both these properties. One
such model is the Hyperbolic Random Graph model (HRG) (Krioukov et al.||2010), characterized by
parameters N, R, ., T In this model, N nodes {1, ..., N} are distributed randomly in a hyperbolic
disk of radius R. Their angular coordinates ¢ are distributed uniformly, while their radial coordinates
r are distributed according to the density function f(r) = asinh(ar)/(cosh(aR —1). Let us denote
with m (i) € H? the position of node 4. Every pair of nodes a and b is then connected with probability

pla,b) = (1 + exp((6(m(a), m(b)) — R))/2T))~", ¢y

where §(a, b) is the hyperbolic distance between the points in H? representing the two nodes. The
radial coordinates corresponds to popularity (smaller r = more popular) while the angular coordinates
correspond to similarity (closer ¢ = more similar); the connections in a network are based on
popularity and similarity. It can be shown that a random graph thus obtained has high clustering
coefficient, and power law distribution of degrees with 3 = 2« + 1. Hyperbolic random graphs can
be generated naively in O(nQ) (Aldecoa et al.,|2015), in subquadratic time (von Looz et al.| 2015)
and in linear time (Bringmann et al.} 2019). Earlier work include (Kleinberg, 2007) and (Shavitt and
Tankell 2008)).

The next development is the embedding of real scalefree networks into the hyperbolic plane. An
embedding of a network (V) E) into geometry G is a mapping m : V' — G. InBoguiia et al.|(2010)
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such an embedding of Internet was obtained, and found to be highly appropriate for greedy routing. In
greedy routing, a node a wants to find a connection to another node b by finding one of its neighbors
¢ which is the closest to b, then the neighbor of ¢ which is closed to b, and so on. Greedy routing is
successful when we eventually reach b; the stretch factor (GSF) is the average ratio of the number
of steps to the minimum possible. Using greedy routing with the distances from the hyperbolic
embedding achieves success rate (GSR) 90%, which is significantly higher than, e.g., greedy routing
based on actual geographical distances between the network nodes.

However, the embedded method used in/Boguna et al.|(2010) required substantial manual intervention
and did not scale to large networks (Krioukov ef al.| 2010). Further research focused on finding
unsupervised and efficient algorithms. An embedder is an algorithm which finds an embedding.
While, technically, any mapping is an embedding, we generally want the geometric structure of m to
be consistent with the structure of the network. We typically use quality measures to measure this
consistency. GSR and GSF are examples of such embedding quality measures. MLE embedders,
based on the maximum likelihood estimation (MLE) method from statistics, work by finding an
embedding that maximizes the log-likelihood (LL). LL is the logarithm of the probability that if, for
every pair of nodes (a, b), we independently connect the nodes a and b with the probability computed
according to the formula [T] (for some R and 7'). LL can be also seen as a quality measure — good LL
is achieved when connected nodes are placed close (distance less than R) and disconnected nodes are
far away (distance greater than R). Note that embedding is a difficult computational problem — even
computing LL according to the formula requires time O(n?), which is significant for large networks.
The first algorithm for embedding large networks works in time O(nd) (Papadopoulos ef al.L|2015b)),
later improved to O(nz) (Papadopoulos et al., 2015a; Wang et al., 2016).

In Blisius et al.|(2016)), a quasilinear algorithm for finding hyperbolic embeddings is found. This
algorithm computes the HRG parameters based on the statistics of the network. Then, it embeds
the network in layers, starting from the nodes with the greatest degree, which form the center of the
network. The algorithm, which we call the BFKL embedder, is evaluated on a number of scale-free
network from the SNAP database (Leskovec and Krevl,|2014) as well as randomly generated networks
generated according to the HRG model. It is shown that the greedy routing based on the BFKL
embeddings again achieves good GSR.

One embedding method is spring embedders (Kobourov, [2013). A spring embedder simulates
forces acting on the graph: attractive forces pulling connected nodes together, and repulsive forces
pushing unconnected nodes away. Spring embedders have been adapted to non-Euclidean embeddings
(Kobourovl 2013), however, the straightforward adaptation to hyperbolic geometry does not produce
good embeddings of large radius (Bldsius ef al.,[2016). The official implementation of Blasius ef al.
(2016) includes a spring embedder as a method of improving the result of the quasilinear algorithm;
however, the running time of this step is ©(n?), which is too slow for large graphs. In|Celifiska-
Kopczynska and Kopczynskil (2022), an alternative approach is given to this problem. This approach
is based on hyperbolic tilings, as shown in Figure[I]and previously used in HyperRogue Kopczynski
et al.|(2017). The nodes of our graph are mapped not to points of the hyperbolic plane, but rather to
the tiles of such a tiling. Also, the distances are computed in a discrete way, as the number of tiles.
This is called DHRG, the discrete HRG model. This works, because such tilings distances are a good
approximation of hyperbolic distances (to a greater extent than similar approximations in Euclidean
space (Celinska-Kopczynska and Kopczynski| (2022)), and because the radii of HRG embeddings
are large — the typical radii are on the order of R = 30 tiles of the bitruncated order-3 heptagonal
tiling (I). One benefit of such a discrete representation is avoiding numerical precision issues. The
other benefit is algorithmic: given a tile ¢; and a set of tiles 7', we can compute an array a such that
a[i] is the number of tiles in 7 in distance i from ¢; in time just O(R?). The time of preprocessing
(add or remove a tile from T') is O(R?) per tile. This gives us an efficient algorithm to compute the
loglikelihood of a DHRG embedding, and also to improve a DHRG embedding by local search.

There is extensive literature on the HRG model, for example, on its algorithmic properties. In
(Blisius et al.l[2018])) the impact of numerical errors on hyperbolic embeddings and greedy routing is
evaluated. InMuscoloni et al.|(2017);|Garcia-Pérez et al.|(2019) ML algorithms are used to obtain or
improve embeddings. In particular, the Mercator embedder is the current standard in the network
theory community. Most research concentrates on two-dimensional embeddings. Higher-dimensional
embeddings have been studied recently (Bringmann et al.,[2019; Budel et al.| |2023; Kovacs et al.,
2022} Jankowski ef al.,|2023)). A recent work (Celinska-Kopczynska and Kopczynski, 2024a) embeds
into 3D Thurston geometries using tiles and simulated annealing.
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2.3 HYPERBOLIC GEOMETRY IN ML COMMUNITY

In |Nickel and Kiela| (2017}, Riemannian stochastic gradient descent (RSGD) method is applied
to find hyperbolic embeddings. The algorithm is benchmarked on data that exhibits clear latent
hierarchical structure (WordNet noun hierarchy) as well as on social networks (scientific collaboration
communities). The quality is evaluated using MeanRank (MR) and Mean Average Precision (MAP).
MR is the average, over all edges v — v, of r,, ,,, which is the number of vertices w such that there
is no edges from u to w and w is closer to u than v (including u, not including v, thus MR > 1).
MAP is the mean of average precision scores (AP) for all vertices. The average precision score of

vertex v is defined as Zle i/7ruy;, where k is the number of vertices v such that u — v, and v;
is the ¢-th closest of these vertices. In case of WordNet, © — v iff v is a hypernym of u; this is a
transitive relation. In|Nickel and Kiela (2018]), the results are improved by using the hyperboloid
model (referred to as Lorentz model) instead of Poincaré model. The results are evaluated using MR,
MAP, and Spearman rank order, on multiple real-world taxonomies including the WordNet noun and
verb hierarchies, the Enron email corpus, and the historical linguistics data.

In [Sala et al.| (2018) the effects of numerical precision is studied, more precisely, the tradeoff
between the number of dimensions and the number of bits used for representating the angles. Also a
combinatorial method of embedding tree-like graphs is given. In|Yu and De Sal (2019), a tiling-based
model (LTiling) is suggested to combat the numerical precision issues. The main idea is somewhat
similar to DHRG, although while in DHRG only tiles are used, in LTiling both tiles and coordinates
within the tile are used. In|Gu et al.| (2019) the networks are embedded not in H", but in products
of lower-dimensional spaces with hyperbolic, Euclidean or spherical geometry. In/Chamberlain et
al.|(2017) hyperbolic embeddings are applied to neural networks. In|Guo ez al.|(2022) a method for
visualizing higher-dimensional hyperbolic embeddings in H? is proposed. In TreeRep (Sonthalia and
Gilbertl 2020), it is proposed that, instead of learning a hyperbolic embedding, we should instead
learn a tree.

In Nickel and Kielal (2017), the early papers on hyperbolic visualizations (Lamping et al.| (1995)),
but not Munzner| (1998))) and the HRG model are cited, although the authors and reviewers seem
to not be aware of the extensive literature on hyperbolic embeddings. The Poincaré embeddings
are thus compared only to Euclidean and translational embeddings. This continues in the other
papers mentioned in this section. We have found citation to NT research in|Ganea et al.|(2018)); in
Sonthalia and Gilbert| (2020), Blasius ef al.|(2016) is in the bibliography, but surprisingly, not referred
to in text, despite the focus on speed; this paper also cites early work on hyperbolic embedding
(Chepoi and Dragan| |2000), hyperbolic multi-dimensional scaling (Cvetkovski and Crovella| (2011,
and embedding of §-hyperbolic graphs into trees (Chepoi and Dragan, [2000; Chepoi et al., [2008;
Abraham et al.l 2007). Comparisons between the results of different communities seem lacking.

3 OUR RESULTS

3.1 COMPARISON ON REAL-WORLD TAXONOMIES AND SCALE-FREE NETWORKS
For every network, we use the following experimental setup.

* Apply the following embedders to it: Poincaré embedding (PE) Nickel and Kiela| (2017,
Lorentz embedding (LE) Nickel and Kiela| (2018)), BFKL Blisius ef al.| (2016), DHRG
embedding improvement |Celinska-Kopczynska and Kopczynski (2022) (applied to LE and
BFKL), 2-dimensional and 3-dimensional coalescent embedder [Muscoloni et al.| (2017),
KVK embedder [Kitsak ez al|(2020), fast and full Mercator embedding |Garcia-Pérez ef|
al.| (2019)), 3-dimensional Mercator embedding Jankowski et al.|(2023), LTiling (Yu and
De Sal, 2019), TreeRep (Sonthalia and Gilbertl, 2020), Anneal (Celinska-Kopczynska and
Kopczynski), [2024a)).

 Evaluate the obtained embeddings according to quality measures from the literature: MAP,
MR, GSF, GSR.

The achievable quality of the embedding depends on the embedding dimension (achieving better
results can be explained with higher dimensionality), therefore, in most cases, we compare 2D and
3D embeddings. (TreeRep is included because trees can be embedded into the hyperbolic plane.)
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Figure 2: Quality assessment of embedders on real-world networks.

For comparison we also evaluate 5D PE, and 50D and 200D Euclidean embeddings (EE) Nickel and;
Kiela| (2017). Product space embeddings (Gu et al.}2019)) are an interesting approach, but they use
higher-dimensional spaces, so they cannot be compared to 2D or 3D methods. The hMDA method
from (Sala et al.|, [2018)) looks interesting, but it depends on the scaling factor, and it is not clear how
to learn this parameter; therefore we do not include this method in our experiments. Most embedders
are randomized, so we have repeated a portion of experiments using different seeds; this does not
usually change the rankings (Appendix [G).

We also apply a similar setup to hierarchies, but we also include the classic HypViewer tree embedder
(Munzner, |1998) (if the hierarchy is not a strict tree, the parent is picked randomly) and do not
evaluate on the measures which are meaningful only for networks (GSF and GSR).

We use the official implementations and hyperparameters (see Appendix [A). The hyperparameters
for SGD Euclidean embeddings are not given in the current official repository; we use the same
parameters as for Poincaré (learning rate 1). The details are given in the supplementary material.

An implementation of MR and MAP is available with Nickel and Kielal (2018)). However, on most
graphs, this implementation fails to evaluate the BFKL embedding due to a numerical precision error.
Lorentz embeddings use a disk of radius of up to 30 bitruncated tiles (based on the constant used in
the official implementation), while the BFKL embedding computes the appropriate radius for this
network as 34.43 absolute units, which is 44 tiles. This larger radius leads to numerical precision
errors. Therefore, we use our own implementation of these evaluations; we also compare discrete
embeddings using both the standard MAP and MR and their discrete equivalents AIMAP and dMR,
which can be computed faster (see Appendix [B). We can expect the scores thus obtained to be less
extreme than their continuous equivalents due to lower precision.

We start with the WordNet hypernymy structure that PE/LE have been benchmarked on. We get MAP
of 0.284 using BFKL which is significantly better than the result of Poincaré 2D of 0.118, but not the
result of Lorentz 2D of 0.305, according to|Nickel and Kiela (2018]). However, the results obtained by
us are different: 0.105 for 2D PE and 0.168 for 2D LE. Furthermore, while the PE/LE papers mention
the good performance of their embedding methods, on our machine, BFKL is almost 100 times faster
than LE, which is especially impressive given that BFKL runs on a single CPU. Furthermore, the
DHRG improvement improves the BFKL embedding from dMAP 0.050 to dMAP 0.411, while LE
is improved from dMAP 0.192 to dMAP 0.320. This suggests that the layered approach of BFKL
produces a better structure of the embedding. Furthermore, the combination of BFKL+DHRG is
still more than 10 times faster than 2D LE. (The dMAP result of 0.050 is very low compared to the
continuous result of 0.284; this seems to be an outlier, in our other experiments the results of MAP
and dMAP are very similar.)

Figure E] shows our results for various benchmark datasets used in PE/LE, BFKL, and other sources.
These include hierarchies: the WordNet verb hierarchy (VERBF), ACM and MeSH taxonomies,
Stanford CS PhD network (De Nooy ef al.,2018)), the fetrapoda subtree from the tree of life project
(Maddison et al., [2007). For all hierarchies, v — v iff v is a superset (ancestor) of u; this is a
transitive relation. In case of VERBF, we had to add an extra root node, ince BFKL requires the
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network to be connected. We also include real-world networks: the social circles from Facebook,
scientific collaboration networks AstroPH, HepPH, CondMat and GrQC (Leskovec and Krevl, 2014),
disease relationships 2007), protein interactions in yeast bacteria (Jeong et al.l 2001), and
the brain connectome data (Allard and Serrano), [2020). We have not included other networks used in
BFKL benchmarks because they are too large for slower algorithms such as Poincaré and Lorentz
embeddings. In LE, the Enron email corpus and the historical linguistics data are analyzed using
weighted edges, so we cannot compare them to BFKL or DHRG. Detailed results in Appendix [D}

Surprisingly, while BFKL has been designed specifically for scale-free networks and greedy routing
and LE have been benchmarked on hierarchies and MAP and MR, our results show that BFKL or
DHRG achieves significantly better results on many hierarchies (BFKL: NOUN,VERBF,MESH; DHRG:
mesh,tetrapoda), while Lorentz embeddings tend to achieve better results on networks, especially for
greedy routing (better GSR and GSF). Still, the quality of BFKL, BFKL+DHRG, and 2D LE turns
out to be similar for the scale-free networks in our experiments, according to MR and MAP. One
counterexample in the YEAST network, where BFKL achieves significantly better results than Lorentz
on MAP (0.756 vs 0.532). In all cases, BFKL (and even BFKL+DHRG) is orders of magnitude faster,
making LE not practical on larger graphs.

HypViewer produces quite bad MR and MAP; however, it aims to put similar nodes
close, while due to how the transitive graphs are constructed for hypernymy hierarchies, high MR
and MAP measures are achieved when similar categories (e.g., ’lion” and tiger”) are closer to their
hypernyms (feline, mammal, animal, entity) than to each other, which promotes longer edges on the
outer levels of the hierarchy, and shorter in the center. The fast mode of Mercator usually produces
worse embeddings than BFKL, while full Mercator usually achieves results between BFKL and 2D
LE. Unfortunately, the full Mercator is slower than 2D LE for larger graphs. TreeRep is based on the
idea of learning a tree instead of a hyperbolic embedding. We agree with this proposition for tree-like
hierarchies, but for networks such as FACEBOOK and the connectomes, hyperbolic embeddings
achieve significantly better results. (Hyperbolic plane is tree-like in large scale and Euclidean-like
in small scale, and thus may potentially combine the advantages of both approaches). LTiling did
not generally achieve better results than 2D LE in our experiments, while being significantly slower
(contrary to DHRG, tiles are used only to improve numerical precision, not to make the process
faster); however, this might be due to incorrectly set hyperparameters or testing on smaller, more
shallow hierarchies, so the numerical precision issues did not yet become relevant. The coalescent
embedder got rather bad results in our experiments. The KVK embedder often achieved great results,
but unfortunately turned out to be very slow — significantly slower than LE.

Figure 3: Top row: NOUN (Lorentz 2D). VERB (left to right: Lorentz 2D, Lorentz 2D+DHRG, BFKL).
Bottom row: DROSOPHILIA1 (Lorentz 2D, Lorentz 2D+DHRG, BFKL, BFKL+DHRG).

3.2  VISUALIZATION

One application of 2D embeddings is visualization. We rendered the embeddings using the tools from
DHRG; see Figure[3] All pictures are in Poincaré model, centered on the center of the hyperbolic
disk used for embedding. One observation is that Lorentz embeddings tend to put nodes close to the
center, while the center is generally avoided in BFKL, and DHRG improves the balance.
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Figure 4: Density plots of the differences between the values of quality measures (MAP and GSR)
obtained by Lorentz 2D and BFKL. Negative values indicate that BFKL performed better.

3.3 DIMENSIONALITY

According to all our experiments so far, higher-dimensional embeddings achieve better results than
lower-dimensional ones. This result trivially stems from an artifact in optimization. Reduced number
of dimensions could be seen as imposing a restriction on that dimension; usually optimization without
restrictions yields better results. To make comparisons more fair we have to use information criteria
to properly control for this artifact. We introduce the information control value (ICV), based on
the Minimum Description Length (MDL) principle (Rissanen, [1978)), which takes into account
both the quality of edge prediction and the description length of the embedding; this description
length is longer (worse) in more complex embeddings, such as those of higher dimension or radius.
This is welcome, since more complex embeddings are harder to visualize, and also embeddings of
higher radius are more prone to numerical errors (Blasius ef al., 2018} |Sala et al.| |2018} |Celinska-
Kopczynska and Kopczynski, |2024b). According to our results, two-dimensional embeddings achieve
better results for most real-world networks. The embedders we compare do not try to optimize the
radius of the embedding, except Anneal, which enforces embeddings of small radius. In order to
further improve ICV, we have also implemented a variant of DHRG which aims to reduce the radius
of the embedding; BFKL thus improved is called Penalty. See Appendix [C|for the description of
ICV and the Penalty approach.

3.4 COMPARISON ON ARTIFICIAL SCALE-FREE NETWORKS

For a more statistical analysis, we have also compared BFKL and Lorentz 2D embeddings on
artificially generated scale-free networks. We use the generator from BFKL based on the HRG model,
with default v = 0.75, network sizes n € {500, 1000, 2000} and temperature 7' € {0.1,0.4,0.7}.

Fig|11] depicts the densities of the differences between the values of quality measures obtained
by Lorentz 2D and BFKL embedders, and Table [I] contains results of the logit regressions on
the determinants of the probability that BFKL embedder would perform better than Lorentz 2D
embedder in terms of a given quality measure. No matter the quality measure, according to our
results, the greater the graph, the higher probability that BFKL will perform better, however with
rising temperature, that probability decreases. Real-world networks are considered to have fairly
large values of T, such as T' = 0.7 used for Internet mapping (Blasius et al.l |2016; Boguna et al.,
2010), which is consistent with our results on real-world scale-free networks. Although our models
were aimed at intepretation instead of prediction, we included information on the prediction quality,
both from cross-validation and benchmark. Both models are of a satisfactory quality.
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MAP greedy
Coeff. | Pr(> [z]) | Coeff. | Pr(> |z])
Intercept -1.9583 | 9.11e-08 | 0.7312 | 0.00468

Temp=0.4 -0.8864 | 0.004922 | -2.0924 | 4.27e-12
Temp=0.7 -4.6115 | 1.59e-14 | -3.8869 <2e-16
Size = 1000 | 1.5956 | 0.000119 | 0.8173 | 0.00796
Size = 2000 | 4.0095 <2e-16 | 2.4526 | 6.34e-13

N 450 450

ACC,, 0.8598 0.8008
ACChench 0.7178 0.5289
K 0.6288 0.5992

Table 1: Results of logit regressions for the determinants of BFKL embedder outperforming Lorentz
2D embedder in terms of quality measures. ACC,., and x are average accuracy and Kappa from
10-fold cross-validation; ACCype,p, is the accuracy of the naive model (always predict mode).

T=0.1 T=0.4 T=0.7

Figure 5: Comparisons of percentage gains in quality (MAP) of the 2D Lorentz embedding against
the markup in time expenditure in comparison to BFKL embedder. X axis is the percentage gain in
quality and the Y axis is how many times longer it takes.

Even if our results suggest that in many cases Lorentz 2D embedder outperforms BFKL embedders, it
still comes at a high time cost. In Fig[5] we present trade-off between the markup in time expenditure
(how many times longer it takes to compute) in comparison to BFKL and the percentage gain in
the quality of the embedding (measured with MAP) resulting from using Lorentz 2D embedder.
We conclude that there is no significant monotonic relationship between the time spent and the
percentage gain in quality (p-values in Kendall-tau significance tests, as we encounter ties in our data
that may make Spearman’s rho inappropriate to use, are: 0.5282, 0.3141, and 0.0103 if we control for
temperature 0.1, 0.4, and 0.7, respectively. The last result is insignificant at 1% level of significance).

4 CONCLUSION

We have compared the popular hyperbolic embedders in three communities, paying special attention
to BFKL embedder against 2D Lorentz embeddings. Our main motivation for this comparison is the
apparent lack of awareness of the algorithmic results on hyperbolic embeddings in the ML community.
In all experiments, the BFKL embedder runs significantly (about 100 times) faster, while achieving
results generally of similar quality, although in some cases one or the other embedder may get
noticeably better results, depending on the input graph and the quality measure. Higher-dimensional
Lorentz embedding generally gets better results than both kinds of 2D embeddings, even in 3D;
however, this no longer holds when we take information criteria into account. A more detailed study
of our proposed criterion will be a subject of further research.

We have also found discrepancies between our results and the results in|Nickel and Kiela (2017;[2018))
that we could not explain. In particular: in|Nickel and Kiela (2017) 200D SGD Euclidean embeddings
are performing worse than even low-dimensional Poincaré embeddings, but in our experiments, they
consistently achieve significantly higher results; in |Nickel and Kiela (2018) Lorentz embeddings
achieve significantly better results than Poincaré, while in our experiments, their performance is
similar, and Poincaré is sometimes better. We could not reproduce the ACM and MESH taxonomies
used in [Nickel and Kielal (2018)) (the number of edges and even nodes is not consistent with the
numbers given — we are using our own data in this paper). See Appendix [F for details.
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A IMPLEMENTATION USED

We have downloaded the embedders from the following repositories:

e Poincaré and Lorentz: https://github.com/facebookresearch/
poincare-embeddings (last commit on Sep 16, 2021), Attribution-NonCommercial
4.0 International

* BFKL: https://bitbucket.org/HaiZhung/hyperbolic—embedder/
overview (last commit on Sep 8, 2016), no license given

* DHRG: https://github.com/zenorogue/hyperrogue/tree/master/
rogueviz/dhrg (last commit on April 1, 2023), GPL v3

* TreeRep: https://github.com/rsonthal/TreeRep (last commit on Jun 23,
2023), GPL v3

e LTiling: https://github.com/ydtydr/HyperbolicTiling Learning (last
commit Mar 19, 2020), Attribution-NonCommercial 4.0 International

e HypViewer: https://graphics.stanford.edu/~munzner/h3/download,
html|(last modified in 2003), license in the COPYRIGHT file

e Mercator: https://github.com/networkgeometry/mercator| (last commit
Jun 21, 2022), GPL v3

e d-Mercator: https://github.com/networkgeometry/d-mercator (last com-
mit Nov 23, 2023), GPL v3

e Simulated annealing: supplementary material in https://openreview.net/
forum?id=dgWobzl1AGb, GPL v3

e Coalescent: https://github.com/biomedical-cybernetics/
coalescent_embeddingl(last commit Jul 8, 2019)

¢ KVK: https://bitbucket.org/dk-1ab/2020_code_hyperlink/src/
master/ (last commit Jun 11, 2011)

We have downloaded the connectome datasets from |https://github.com/
networkgeometry/navigable_brain_maps_data. The scale-free networks are
from the SNAP database (Leskovec and Krevl, 2014). The tree-of-life and GitHub followers graph
dataset have been included with DHRG.

We use the following hardware:
[1] Intel® Core™ i7-9700K CPU @ 3.60GHz, NVIDIA GeForce GTX 1060 6GB/PCle/SSE2

[2] 11th Gen Intel® Core™ i7-11850H @ 2.50GHz, OpenGL renderer string: NVIDIA RTX A3000
Laptop GPU/PCle/SSE2

Software: Arch Linux, g++ 12.2.1 to 13.2.1

The times reported in the paper have been obtained on [1]. Some experiments have been run on [2].
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B COMPUTING DISTANCES, DISCRETE MAP AND MR

The distance between two points p(r1, ¢1) and p(ra, ¢2) in the hyperbolic plane can be computed as
follows: (let ¢ = ¢1 — ¢2)

3(p(r1, ¢1),p(r2, ¢2)) = 6(p(r1,0), p(r2, ¢))
= arcosh g_((sinh(ry),0, cosh(ry)),
(sinh(rz) cos ¢, sinh(rs) sin ¢, cosh(rz))
= arcosh (sinh(ry) sinh(ry) cos ¢ + cosh(r1) cosh(rq))
= arcosh (cosh(r; — r9) + (1 — cos(¢)) sinh(ry ) sinh(r3))

The last formula has better numerical properties (Blasius et al.| 2016; |Celinska-Kopczynska and
Kopczynskil, [2024b)). The distance formula in the Poincaré disk model can be computed similarly,
although converting from Poincaré to hyperboloid needs solving a quadratic equation.

Still, the computation is somewhat slow: for each of O(n) nodes, O(n) distances from the other
nodes need to be computed and sorted. Therefore, we also apply the discretization from DHRG. As
already mentioned, discretization allows us to compute, for every node ¢, an array a such that ai]
is the number of tiles in 7" in distance 7 from ¢, in time O(R2). If ¢t has e; edges, we can compute a
similar array b[¢] restricted to connected tiles in time O(e; R). Note that the formulas for MR and
MAP given in Nickel et al.|(2016)) are for the case of continuous distances, and need to be adjusted
for discrete values obtained from the DHRG model. In the case of MR, a non-edge with distance tie
contributes 0.5 to 7, ,,, and in the case of MAP, if there are b[d] edges and a[d] total nodes in distance
d, we assume k-th of these edges to be ranked after a[d](k — 0.5)/b[d] nodes. We can compute such
MR and MAP knowing a[i] and b[i] for every node in total time O(nR? 4+ mR), where m is the
number of edges.

C CONTROL VALUE

This section describes the information control value (ICV), the embedding quality measure suggested
by us. This value is based on the Minimum Description Length (MDL) principle (Rissanen, |1978]).
According to this principle, the shortest description of the data is the best model. We need — log,(p)
bit of information to describe an event happening with probability p.

In case of geometric embeddings, the description length consists of two parts: the description of the
embedding itself, and the loglikelihood of obtaining the connections, given the embeddings. The
second part is related to the loglikelihood used in the BFKL embedder. Recall that every pair of nodes
a and b is then connected with probability p(a, b) = p(§(a, b)) = (1 + exp((6(a,b) — R))/2T))~1,
where d(a, b) is the hyperbolic distance between the points in H? representing the two nodes. To
compute the log-likelihood, we sum log(p(a, b)) for every connected pair of nodes, and log(1 —
p(a, b)) for every unconnected pair of nodes. To compute the description length in bits, we use the
same formula, except that we use — log, (p) instead of the natural logarithm log(p). The parameters
R and T are chosen in order to maximize the log-likelihood (equivalently, minimize the description
length).

In a d-dimensional embedding, every node i is described with coordinates (r;, ¢;), where r; is the
distance from the center, and ¢; € S-1 is the angular coordinate. We assume that r; has exponential
distribution Exp(\) restricted to [0, Rq.]- We choose Rypqz to be the maximum r;, and A which
maximizes the likelihood. Let fr be the density of this distribution of the radial coordinates ;. For
¢;, we assume that it is uniformly distributed in Sé-1,

We assume that our coordinates are given with limited accuracy e. That is, instead of the precise
(r;, ¢;) obtained in our embedding, we use (7, ¢}) such that p(r}, ¢}) is close to p(r;, ¢;). To describe
7} such that |r; — ]| < ¢, we need — log, f:‘"'j: f(r)dr bits. In case of angular coordinates, we need

to divide the sphere of radius 7;, whose volume is proportional to sinh® ™" (), by the area of (d — 1)
region of diameter €, which is proportional to €41, Therefore, to describe (j)g, we need d; - (log, € —
log, sinh(r;)) bits (as long as r; > €). Since we know the positions of nodes a and b with error €, in
the formula for p(a, b) we take not p(6(a, b)), but p’(a,b) = 3(p(5(a,b) — €) + p(6(a,b) + €)).
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For the given €, we obtain the total description length L as a sum of description lengths of 7}, ¢} for all
nodes 7, and p’(a, b) for all pairs of nodes (a, b). We choose the ¢ which minimalizes this description
length L. Generally, a smaller € increases the description length for r; and ¢}, but decreases the
description length of p'(a, b).

To normalize the total description length, we compare L with the description length N of the naive
non-geometric representation, which simply assigns the same connection probability p to every pair
of nodes. Theoretically, a good geometric represesentation should obtain L < N; however, some of
the algorithms we study obtain L > N. If there are n nodes and m edges, the minimum description
length —mlog, p — ((5) — m)logy(1 — p) is obtained for p = m/ (). Our control value is then
N/(N + L). This value is bounded from below by 0 (the worst case L = co) and from above by 1
(which would be obtained for L = 0). Good geometric representation achieve the control value of at
least %, which corresponds to L = N.

Note that, for d; < ds, a dj-dimensional hyperbolic embedding e; can be considered a ds-
dimensional embedding, simply by considering the H? that e; uses as a subspace of —bbH?.
All quality measures found in the literature and studied in this paper (log-likelihood, MAP, MR,
GSR and GSF) will give exactly the same result whether e; is considered d;-dimensional or ds-
dimensional; in other words, these measures will always give advantage to higher-dimensional
embedding methods. In contrary, the control value will penalize higher-dimensional embeddings,
as the part of the description length which corresponds to (¢;) will be larger in higher dimension.
Furthermore, control value will also penalize embeddings of larger radius. This is welcome, since
embeddings of large radius are harder to visualize, and also more prone to numerical errors (Blisius
et al.,|2018; |Sala et al., 2018} |Celinska-Kopczynska and Kopczynskil 2024b).

In the Penalty variant of BFKL+DHRG, a node placed in distance of § steps from the center of the
model costs K - log(rs), where 75 is the number of tiles in distance 4. Instead of optimizing only the
loglikelihood, we optimize the sum of loglikelihood and this cost. For K = 1 this cost corresponds
to the part of description used to describe the angular coordinate. In our experiments we take K = 2,
to make the embeddings even smaller.

D REAL-WORLD HIERARCHIES AND NETWORKS

The detailed results of our evaluation on real-world hierarchies can be found in Table 2l We also
include MAMMAL (the mammal subtree of Noun). The detailed results of our evaluation on real-
world networks can be found in Tables [3[4] Figures|[6][7] [l 0] and[I0|contain visualizations of MAP,
MR, GSR, GSF, and ICV on those hierarchies and networks.

Note that some algorithms are very slow, making them not feasible to run on large graphs. We do not
provide the results in these cases.

E ARTIFICIAL NETWORKS

Table 5] and Figure [T1] show the details of our evaluation of BFKL versus Lorentz 2D on artificial
networks.

F DISCREPANCIES

In Table @ our results are compared to the results obtained in |[Nickel and Kiela| (2017} 2018). Note
that VERB is different than VERBF used in our paper, which includes one extra node that is an ancestor
of every other node. Furthermore, the ACM hierarchy in Nickel and Kielal (2018)) is given as 2299
nodes and 6526 edges, while ours has 2114 nodes and 8121 edges; and the MESH hierarchy is given
as 28470 nodes and 191849 edges, while ours has 58737 nodes and 300290 edges.
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graph name noun mammal verbf acm mesh tetrap  csphd
nodes 82115 1180 13543 2114 58737 11262 1025
edges 743086 6540 48621 8121 300287 527580 3978
Lorentz 2D embed time [s] 38578 269 2057 333 19832 19706 239
Lorentz 2D eval time [s] 1913.62 0.79 51.14 1.87 872.12 40.79 0.24
Lorentz 3D embed time [s] 39850 279 2259 332 15700 19892 182
BFKL embed time [s] 428 66 37 4 342 738 2
DHRG improve time [s] 1209 4 563 5 849 858 12
coalescent2 embed time [s] 5 23 370 5
coalescent3 embed time [s] 12 56 9
kvk embed time [s] 1927 3689 1228
Poincare 2D embed time [s] 51794 408 2544 443 19137 26256 232
Poincare 3D embed time [s] 51347 369 2778 457 20941 26648 233
Mercator fast embed time [s] 37202 18 914 38 16617 1770 2
Merecator full embed time [s] 41 4729 113 104459 4802 23
d-Mercator embed time [s] 151 4450 214 65667 24761 48
Itiling embed time [s] 63074 5613 2037
Lorentz 2D radius AU 14.509 14509 14509 13290  14.509  14.509 14.509
Lorentz 3D radius AU 14.509 13.194 13412 11.879 12.717 14509 13.679
BFKL radius AU 30.992 21.120 20.733 14945 26.835 25.632 13.639
penalty radius AU 26.008 21.881 22354 16511 25933 24706 14.431
anneal2 radius AU 7.602

anneal3 radius AU 3.650

coalescent2 radius AU 14.146 15.313 13.865
coalescent3 radius AU 14.146 15.313 13.865
kvk radius AU 15.650 14.755 14.627
Poincare2D radius AU 12.207 12205 12208 12205 12207 12.205 12.200
Poincare3D radius AU 12.208 12205 12202 12.118 12207 12205 12.199
HypViewer radius AU 27.523 10.703 14963  7.145 17.330 72.251 4.114
RogueViz radius AU 11.908 7.665 10.105  8.248 11.573 9.921  7.525
Mercator fast radius AU 53.492 19.895 38.833 25.654 49917 38.554 26.238
Mercator full radius AU 18.450 38.899 20.254 38.062 28.056 26.055
d-Mercator radius AU 12.647 18262 12.152 17.665 16.871 18.676
Itiling radius 13.285 12.508 13.885
Lorentz 2D radius grid 29 28 28 25 28 29 28
BFKL radius grid 44 40 43 29 44 42 27
MAP Lorentz2D 0.168 0.834  0.220  0.600 0.133 0.696  0.827
dMAP Lorentz2D 0.192 0.825  0.239  0.590 0.177 0.691  0.306
dMAP Lorentz2D + DHRG 0.320 0.850  0.543  0.675 0.414 0.715  0.256
MAP Lorentz2D + DHRG 0.322 0.855  0.554  0.679 0.417 0.712  0.253
MAP Lorentz3D 0.503 0.950  0.527  0.853 0.375 0.939  0.334
MAP BFKL 0.284 0219 0348 0423 0.321 0.276  0.248
dMAP BFKL 0.050 0212 0308 0421 0.137 0.256  0.247
dMAP BFKL + DHRG 0.411 0.487 0574  0.533 0.456 0.707  0.230
MAP BFKL + DHRG 0.418 0488  0.580  0.532 0.466 0.707  0.229
MAP penalty 0.327 0.293  0.294 0419 0.300 0.691  0.256
MAP anneal2 0.254

MAP anneal3 0.237

MAP coalescent2 0.493 0.359 0.140
MAP coalescent3 0.139 0.086 0.159
MAP kvk 0.704 0.728 0.233
MAP landscape 200D 0.302 0.437 0465  0.480 0.346 0.586  0.215
MAP landscape 50D 0.055 0.258  0.176  0.281 0.084 0.262  0.183
MAP Poincare 2D 0.105 0.792 0330  0.657 0.195 0.530  0.863
MAP Poincare 3D 0.492 0.943 0526  0.852 0.376 0.917  0.903
MAP Poincare 5D 0.641 0.960  0.632  0.894 0.486 0.943  0.909
MAP Euclidean50D 0.921 0.999 0923  0.999 0.824 0.997  1.000
MAP Euclidean200D 0.946 1.000 0931  0.999 0.871 0.998  1.000
MAP HypViewer 0.047 0.124  0.134  0.134 0.122 0.014 0416
MAP RogueViz 0.065 0.134  0.125  0.126 0.121 0.115  0.191
MAP Mercator fast 0.495 0.695  0.622 0512 0.456 0.645  0.209
MAP Mercator full 0.841 0727  0.752 0.548 0.752  0.251
MAP d-Mercator 0.054 0.023 0.033 0.009 0.014  0.213
MAP ltiling 0.201  0.522 0.319
MR Lorentz2D 43.0 1.8 25.8 4.0 55.6 215 6.5
dMR Lorentz2D 42.4 0.9 25.2 3.1 54.5 21.5 6.0
MR Lorentz2D + DHRG 30.7 1.9 49 2.8 14.1 31.3 20.4
dMR Lorentz2D + DHRG 28.9 1.0 4.1 1.8 13.9 29.1 17.7
MR Lorentz3D 15.1 1.2 8.4 1.7 253 72 4.4
MR BFKL 62.6 43.1 16.7 9.3 223 102.1 35.8
dMR BFKL 794.0 42.7 17.5 8.2 84.6 109.0 352
dMR BFKL + DHRG 382 8.8 7.6 5.0 9.9 15.2 42.5
MR BFKL + DHRG 38.1 10.0 8.6 6.1 113 15.9 45.0
MR penalty 483 17.9 182 79 18.7 16.8 40.2
MR anneal2 19.7

MR anneal3 27.6

MR coalescent2 9.5 224 41.0
MR coalescent3 61.4 582 31.5
MR kvk 33 3.0 27.0
MR landscape 200D 189.8 14.0 14.8 8.1 37.7 40.9 56.9
MR landscape 50D 1952.2 41.3 14438 422 901.8 2475  108.0
MR Poincare 2D 89.3 2.1 13.1 32 42.5 37.4 59
MR Poincare 3D 16.0 1.2 8.5 1.7 253 9.7 4.1
MR Poincare 5D 10.7 1.1 6.7 1.4 19.9 6.9 38
MR Euclidean50D 15 1.0 1.2 1.0 2.1 1.0 1.0
MR Euclidean200D 1.3 1.0 1.1 1.0 1.6 1.0 1.0
MR HypViewer 4452.4 1457 276.1 77.0 5222 5559.7 4685
MR RogueViz 408.5 50.3 125.0 495 197.7 269.7  386.3
MR Mercator fast 177.8 8.8 16.2 20.2 89.3 106.1 29.8
MR Mercator full 2.8 7.7 42 29.6 19.9 21.7
MR d-Mercator 250.8 8042 2372 5150.8 55224 40.3
MR ltiling 39.5 5.4 5.1

Table 2: Our results on real-world hierarchies.
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graph name astrop  condma grqc  hepph  facebo yeast  diseas follow CElegs Humanl Drosol Mouse3
nodes 17903 21363 4158 11204 4039 1458 516 74946 279 493 350 1076
edges 393944 182572 26844 235238 176468 3896 2376 1075904 4574 15546 5774 181622
Lorentz 2D embed time [s] 14741 7349 986 8761 6317 183 130 49531 204 639 255 6413
Lorentz 2D eval time [s] 88.98 12031 4.98 37.18 5.37 1.05 028 143231 0.15 0.29 0.19 0.81
Lorentz 3D embed time [s] 14612 7479 1155 9392 6319 184 134 51675 216 1554 248 6252
BFKL embed time [s] 179 91 7 82 26 1 1 269 1 2 1 17
DHRG improve time [s] 323 436 64 74 15 25 5 2222 8 1 1 27
coalescent2 embed time [s] 13557 23340 162 3147 164 9 3 2 4 3 35
coalescent3 embed time [s] 373 3075 499 20 4 2 5 3 40
kvk embed time [s] 13910 15687 1278 214 76 1 119 1
Poincare 2D embed time [s] 20481 10025 1321 11920 8580 235 155 65600 254 807 323 8781
Poincare 3D embed time [s] 20485 10002 1366 12153 8624 235 156 68445 260 795 328 8716
Mercator fast embed time [s] 1565 2088 85 587 33 4 4 29707 5 6 11 39
Mercator full embed time [s] 8906 15167 454 3797 408 47 7 195644 7 9 13 65
d-Mercator embed time [s] 5110 7393 313 2291 403 44 27 21 38 24 528
Itiling embed time [s] 19721 3200 1592 2795 7307 7237
Lorentz 2D radius AU 11.651  10.941 10962 12.335 11.555 9.563 11.142 10.698  6.483 11.664  7.713  10.492
Lorentz 3D radius AU 12415 11.088 10.178 12.649 12930  9.707 10.369 10.671 9.541 9.349 10523 12.521
BFKL radius AU 15430 17.677 21.792 21.883 12.576 16267 12.680 20904  7.787 7.421 8.178 8.625
penalty radius AU 14229 13978 14613 16380 10267 14754  9.995 16,729  8.038 7.713 8.238  10.060
anneal2 radius AU 7.602 7.602  7.602  7.600 7.598 7.602 7.602 7.602
anneal3 radius AU 3.650 3.650  3.650  3.650 3.650 3.650 3.650 3.650
coalescent2 radius AU 19.585  19.939 16.666 18.648 16.608 14.570 12.492 11.262 12401 11.716  13.962
coalescent3 radius AU 16.666  18.557  16.608 14.570 12.492 11.262 12.401  11.716  13.962
kvk radius AU 18.332 17.367 15119 12972 10.063 11.699
Poincare2D radius AU 12.199 12,197 11.666  12.209 12.199 11.455 12.198 12.146  6.702 12.196 8.205  10.793
Poincare3D radius AU 12207 10906 10493  12.199 12200 9.571 10.336 11123 9.240 9.762  11.025  12.199
Mercator fast radius AU 70.081 64709 42.147 53510 31315 22056 26306 173262 16.438 20.775 23.148  28.747
Mercator full radius AU 56.490  52.331 40.502 51.965 30.507 25973 24.869 16.261 15998 24.585  30.338
d-Mercator radius AU 12.119 14326 22544 19.129 17288 11.746 10.418 13.956 14.604 16448  16.730
TreeRep diameter rec 21.902  21.095 12.000 22.734 16.656 11.359 11.758  10.406 9.500
TreeRep diameter norec 21711 21.790 13.406 26.836  17.000 9.000 12.344  12.000 8.000
Itiling radius 11.157 8.822  9.663 6.485 9.193

Lorentz 2D radius grid 22 21 20 23 22 18 21 20 12 21 14 20
BFKL radius grid 31 35 42 45 25 32 24 44 15 14 16 17
MAP Lorentz2D 0.306 0.345  0.599 0.417 0.605 0532  0.889 0.039  0.494 0.654  0.386 0.574
dMAP Lorentz2D 0.307 0.353  0.595 0.447 0.602  0.522  0.881 0.032 0482 0.649 0372 0.568
dMAP Lorentz2D + DHRG 0.444 0.572  0.751 0.534 0.636  0.806  0.900 0.105 0492 0.652 0379 0.592
MAP Lorentz2D + DHRG 0.439 0.565  0.745 0.530 0.632 0796  0.897 0.098  0.482 0.651 0.369 0.586
MAP Lorentz3D 0.461 0.595  0.784 0.574 0.683  0.760  0.920 0.129  0.577 0722 0495 0.651
MAP BFKL 0.208 0.278  0.480 0.320 0.531  0.756  0.827 0.128  0.454 0.575 0.381 0.558
dMAP BFKL 0.207 0.276  0.466 0.318 0525 0750 0.824 0.128  0.447 0.569 0377 0.553
dMAP BFKL + DHRG 0.195 0.262  0.492 0.294 0541  0.750  0.826 0.097  0.460 0.587 0.383 0.576
MAP BFKL + DHRG 0.195 0.264  0.487 0.298 0.541 0755  0.829 0.098  0.458 0.583 0.387 0.575
MAP penalty 0.238 0.209 0457 0.363 0538 0755  0.777 0.112 0448 0.588 0.374 0.573
MAP anneal2 0.613 0.607  0.648  0.858 0.527 0.670  0.482 0.605
MAP anneal3 0.647 0.621  0.667  0.905 0.587 0.779 0514 0.654
MAP coalescent2 0.084 0.015  0.058 0.106 0365  0.387  0.585 0.302 0.453 0.222 0.506
MAP coalescent3 0.224 0.057 0215 0359  0.565 0.303 0.528 0.289 0.491
MAP kvk 0.657 0.587 0.760  0.814 0.496 0.418

MAP landscape 200D 0.191 0.248  0.462 0.252 0510  0.694  0.786 0.443 0.576 0376 0.558
MAP landscape 50D 0.175 0.196  0.370 0.165 0390  0.509  0.647 0.385 0529  0.337 0.515
MAP Poincare 2D 0.321 0392 0.642 0.471 0.603  0.685  0.889 0.048 0492 0.630  0.384 0.576
MAP Poincare 3D 0.462 0.597  0.781 0.578 0.683 0772 0.929 0.135  0.576 0.722  0.480 0.652
MAP Poincare 5D 0.512 0.662  0.815 0.628 0713 0.845 0.932 0.185  0.600 0.728 0.519 0.670
MAP Euclidean50D 0.988 0.968  1.000 0.980 1.000  1.000  1.000 1.000 1.000 1.000 0.943
MAP Euclidean200D 0.994 0.975  1.000 0.984 1.000  1.000  1.000 1.000 1.000 1.000 1.000
MAP Mercator fast 0.172 0.222 0.387 0.253 0368  0.680  0.805 0218  0.336 0.411 0.270 0.520
MAP Mercator full 0.244 0.265  0.467 0.331 0.494  0.754 0861 0.484 0.552 0435 0.584
MAP d-Mercator 0.044 0.078 0319 0.193 0310 0216 0395 0.370 0.635 0.339 0.583
MAP TreeRep rec orig 0.443  0.690 0398  0.820  0.902 0.228 0269  0.263 0.284
MAP TreeRep norec orig 0.347 0499  0.676 0.407  0.820 0.864 0.223 0.278 0.277 0.290
MAP TreeRep rec 0.437  0.680 0355 0817  0.894 0.205 0.241 0.243 0.233
MAP TreeRep norec 0492 0.668 0360 0.816  0.852 0.204 0.259 0250 0.227
MAP ltiling 0.589 0.519  0.877 0.488 0.637

MR Lorentz2D 1104.8 949.2 81.4 2932 552 377 6.7 6708.6 315 445 46.9 96.8
dMR Lorentz2D 1121.6 965.7 82.0 297.5 54.3 374 5.8 6854.0 31.3 439 472 98.4
MR Lorentz2D + DHRG 1160.8  1069.2 89.8 320.8 573 332 75 6688.5 32.8 443 47.6 96.5
dMR Lorentz2D + DHRG 11317 1043.9 86.1 310.8 537 31.2 6.4 6601.8 30.8 42.6 45.5 93.5
MR Lorentz3D 876.1 647.1 51.5 242.6 449 222 43 5585.8 272 25.0 387 84.2
MR BFKL 1880.0  1717.0  169.2 5582 84.0 50.4 9.2 7660.1 38.0 50.9 520 104.0
dMR BFKL 19193 17648  195.8 632.6 84.9 50.5 8.5 9339.0 38.2 50.8 519 106.2
dMR BFKL + DHRG 1749.3 17156 1559 558.7 80.0 44.9 7.6 6855.0 36.4 46.7 483 98.0
MR BFKL + DHRG 1763.9  1719.2  156.5 558.6 82.1 459 8.7 6897.2 37.6 48.6 49.7 99.7
MR penalty 15693 14964 1454 480.9 629 519 9.0 6995.1 375 46.4 49.6 98.1
MR anneal2 161.3 723 72.8 135 328 432 45.8 94.0
MR anneal3 119.6 46.5 64.6 8.4 27.5 22.1 38.6 79.6
MR coalescent2 2086.1 34047 4374 623.6 96.3 632 14.4 38.6 41.1 59.1 107.8
MR coalescent3 186.1  1450.1 218.8 45.4 11.6 41.5 28.7 49.8 113.8
MR kvk 128.6 792 474 9.3 34.6 476

MR landscape 200D 20204 24392 2343 808.5 103.0 71.6 12.1 43.0 522 53.0 112.4
MR landscape 50D 26445 37487 3962 1328.6 2329 1260 25.0 56.1 66.7 63.1 134.0
MR Poincare 2D 1153.7 887.3 76.0 298.5 453 32.7 6.5 6567.3 31.6 514 46.6 96.2
MR Poincare 3D 924.3 647.8 49.8 242.3 43.0 21.2 3.8 5522.7 28.1 25.1 39.3 84.1
MR Poincare 5D 725.9 492.5 36.5 206.4 326 13.7 34 4897.4 25.0 24.7 35.1 80.1
MR Euclidean50D 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 15.3
MR Euclidean200D 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
MR Mercator fast 20813  2046.1  209.5 686.9 101.4 510 7.7 8073.4 37.7 415 544 103.5
MR Mercator full 15133 1539.9 1539 476.8 71.8 457 6.7 34.2 41.2 475 99.7
MR d-Mercator 5590.7 45473 5054 16593 106.7 1725 27.3 343 24.1 412 92.8
MR TreeRep rec 45474 3938 5358 1288 15.4 112.3 185.0 117.5 380.2
MR TreeRep norec 3986.4  423.6 597.7  111.0 309 107.7 167.2 1222 414.9
MR ltiling 80.7 39.8 5.6 315 43.0

Table 3: Our results on real-world networks.
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graph name astrop condma  grqc hepph facebo yeast diseas follow CElegs Humanl Drosol Mouse3
GSR BFKL 0.060 0.026 0.052 0.072 0463 0.06I 0.153 0.047 0.775 0.778 0.649 0.904
GSR BFKL + DHRG 0.075 0.027 0.044 0.068 0.454 0.054 0.158 0.050 0.753 0.752 0.629 0.917
GSR BFKL + DDHRG | 0.077 0.029 0.053 0.070 0451 0.064 0.186 0.051 0.776 0.818 0.652 0.920
GSR Lorentz2D 0.159 0.053 0.099 0.169 0460 0.141 0220 0.035 0.899 0.880 0.747 0.943
GSR Lorentz2D + DD | 0.227 0.103 0.115 0.173 0437 0.135 0.175  0.037  0.838 0.923 0.684 0.923
GSR penalty 0.073 0.017 0.053 0.078 0384 0.060 0220 0.026 0.797 0.756 0.629 0914
GSR anneal2 0.074 0.417 0.079 0.161 0.908 0.905 0.826 0.968
GSR anneal3 0.089 0464 0.122 0233 0.923 0.949 0.844 0.952
GSR coalescent2 0.034 0.006 0.019 0.055 0371 0.045 0.128 0.465 0.529 0.427 0.808
GSR coalescent3 0.055 0.026  0.300 0.051 0.160 0.625 0.616 0.569 0.831
GSR kvk 0.109 0413 0.098 0.164 0.892 0.779

GSR Poincare2D 0.142 0.060 0.101 0.153 0515 0.149 0233  0.036  0.897 0.841 0.727 0.943
GSR Poincare3D 0.259 0.146  0.176 0200 0.542 0216 0261  0.098  0.933 0.915 0.847 0.964
GSR Mercator fast 0.031 0.014 0.038 0.053 0365 0.048 0.153 0.062 0.524 0.534 0.437 0.829
GSR Mercator full 0.140 0.043 0.068 0.122 0.442 0.068 0.195 0.868 0.784 0.783 0.960
GSR d-Mercator 0.014 0.005 0.013 0.029 0.127 0.023 0.040 0.587 0.786 0.562 0.880
GSR TreeRep rec 0.223  0.285 0.700 0.288  0.805 0.651 0.524 0.577 0.925
GSR TreeRep norec 0.141 0223 0.828 0306 0.777 0.613 0.541 0.684 0.877
GSR ltiling 0.102 0.126  0.205 0.897 0.855

GSF BFKL 13.98 29.09 13.18 11.96 1.70  8.66 4.00 1795 1.43 1.46 1.65 1.20
GSF BFKL + DHRG 11.52 28.04 1472 1249 1.65  9.19 370 17.81 1.41 1.44 1.64 1.19
GSF BFKL + DDHRG | 11.59 27.54 1326 1239 1.68 835 349  17.69 1.41 1.43 1.63 1.19
GSF Lorentz2D 6.34 16.17  7.38 5.66 1.86  4.90 336 2698 1.32 1.31 1.58 1.21
GSF Lorentz2D + DD 4.39 794 621 531 172 458 4.12 2471 1.36 1.30 1.65 1.21
GSF penalty 11.99 42.19 1296 11.02 225 882 3.02 3478 1.42 1.49 1.72 1.21
GSF anneal2 833 1.98 692 4.01 1.29 1.29 1.35 1.15
GSF anneal3 7.31 1.87 499 2.87 1.24 1.19 1.34 1.15
GSF coalescent2 2679 12698 41.23 15.12 1.89 13.49 5.04 2.18 1.94 2.35 1.24
GSF coalescent3 1293 17.72 207  9.82 3.74 1.63 1.68 1.75 1.19
GSF kvk 6.19 1.76 529 3.65 1.31 1.46

GSF Poincare2D 7.108  14.193 7.253 5999 1.674 4.643 2955 26.483 1.324 1.367 1.596 1.200
GSF Poincare3D 3.80 5.65 428 4.62 144 322 2.56 9.65 1.23 1.23 1.32 1.08
GSF Mercator fast 27.01 51.82 17.68 15.84 1.99 1197 4.11 14.01 1.96 2.02 2.25 1.25
GSF Mercator full 7.23 19.12  10.21 7.56 .72 8.05 3.14 1.32 1.45 1.40 1.11
GSF d-Mercator 51.84  109.12 37.48 22.38 567 1896 11.81 1.78 1.40 1.83 1.19
GSF TreeRep rec 3.469 2.866 1.261 2449 1211 1.613 1.922 1.737 1.198
GSF TreeRep norec 5.348 3.443 1.172 2565 1.195 1.647 1.871 1.553 1.233
GSF ltiling 7.223 5222 3362 1.333 1.373

LL Lorentz2D 0.420 0.445 0.662 0.638 0.708 0.548 0.794  0.265 0.349 0.463 0.311 0.407
LL Lorentz3D 0.551 0.593 0.769 0.735 0.746 0.658 0.846  0.381 0.422 0.553 0.391 0.461
LL BFKL 0.254 0.271 0487 0452 0554 0.586 0.651 0230 0.283 0.371 0.259 0.348
LL penalty 0.346 0.314 0543 0564 0.672 0.588 0.698 0286  0.312 0.412 0.300 0.406
LL anneal2 0.632 0.703 0.554 0.735 0.369 0.470 0.345 0.426
LL anneal3 0.668 0.720  0.566  0.805 0.417 0.598 0.383 0.473
LL coalescent2 0.210 0.108 0251 0470 0518 0413 0.581 0.222 0.329 0.181 0.348
LL coalescent3 0394 0.153 0334 0.181 0425 0.226 0.386 0.242 0.332
LL kvk 0.669 0.662 0.642 0.741 0.348 0.327

LL Poincare2D 0.413 0456 0.675 0.649 0.714 0.614 0.807 0272  0.348 0.438 0.309 0.409
LL Poincare3D 0.548 0594 0.770 0.737 0.748 0.658 0.856 0.384 0415 0.552 0.388 0.461
LL Mercator fast 0.253 0.246 0425 0437 0545 0535 0.696 0250  0.262 0.308 0.251 0.368
LL Mercator full 0.384 0361 0.554 0574 0.624 0.608 0.753 0.340 0.391 0.327 0.401
LL d-Mercator 0.022 0.037 0.254 0.185 0425 0.174 0334 0.290 0.490 0.313 0.414
ICV Lorentz2D 0.589 0.553 0578 0.662 0.723 0450 0.529 0.538  0.540 0.588 0.533 0.613
ICV Lorentz3D 0.598 0.537 0532 0.654 0.697 0.373 0439 0.536  0.484 0.579 0.488 0.616
ICV BFKL 0.521 0.466 0431 0550 0.644 0353 0456 0487 0513 0.567 0.510 0.590
ICV penalty 0.559 0.519 0537 0.624 0709 0372 0528 0.520  0.522 0.585 0.524 0.611
ICV anneal2 0.609 0.730 0525 0.564 0.537 0.598 0.535 0.620
ICV anneal3 0.598 0.732  0.484 0.561 0.541 0.637 0.537 0.634
ICV coalescent2 0.496 0.425 0427 0567 0616 0.353 0.441 0.473 0.531 0.467 0.584
ICV coalescent3 0.366 -nan  0.523  0.288  0.348 0.408 0.487 0.412 0.563
ICV kvk 0.493 0.683 0368 0.461 0.519 0.512

ICV Poincare2D 0.587 0.552 0575 0.666 0.723 0433 0513 0.538  0.539 0.573 0.533 0.613
ICV Poincare3D 0.595 0.537 0531 0.656 0.696 0.373 0.440  0.535 0.482 0.572 0.481 0.612
ICV Mercator fast 0.435 0344 0349 0482 0.601 0290 0.348 0299  0.459 0.506 0.434 0.579
ICV Mercator full 0.479 0.380 0370 0.520 0.632 0.274 0.362 0.475 0.541 0.442 0.589
ICV d-Mercator 0.480 0452 0386 0485 0575 0.353 0414 0.419 0.525 0.412 0.589

Table 4: Our results on real-world networks. Greedy stretch factor (GSF), log-likelihood (LL), and
control value (ICV) measures. Log-likelihood (LL) is normalized by dividing by the value of N from
Section[C|and subtracting from 1.
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Figure 6: Quality assessment of embedders on real-world hierarchies and networks: MAP.
MAP MR GSR GSF ICvV
Coeff. [ Pr(> [2]) | Coeff. | Pr(> [z]) | Coeff. [ Pr(> [2]) | Coeff. | Pr(> [2]) Coeff. | Pr(> [z])
Intercept -1.9583 | 9.11e-08 | -1.5132 | 2.11e-08 | 0.7312 | 0.00468 | 0.4256 | 0.09397 | 47.2737 | 4.25e-13
Temp=0.4 -0.8864 | 0.004922 | -0.3956 | 0.124942 | -2.0924 | 4.27e-12 | -2.1689 | 2.09e-12 | -1.5689 | 0.000458
Temp=0.7 -4.6115 | 1.59e-14 | -0.5732 | 0.028647 | -3.8869 <2e-16 | -4.0383 <2e-16 -4.4975 | 6.87e-10
Size = 1000 1.5956 | 0.000119 1.1338 | 0.000113 | 0.8173 0.00796 1.0527 0.00103 2.8439 | 1.80e-05
Size = 2000 4.0095 <2e-16 | 1.8908 | 5.62e-11 | 2.4526 | 6.34e-13 | 2.7747 | 1.29e-14 7.2818 | 6.62e-09
Rprip/Ris — — — — — — — | -58.9436 | 2.76e-13
N 450 450 450 450 450
ACC,, 0.8598 0.6707 0.8008 0.8047 0.9044
ACCpench 0.7178 0.6711 0.5289 0.5556 0.8667
K 0.6288 0.1324 0.5992 0.6053 0.4724

Table 5: Results of logit regressions for the determinants of BFKL embedder outperforming Lorentz
2D embedder in terms of quality measures. ACC,, and « are average accuracy and Kappa from
20-fold cross-validation; ACCypey,.p, s the accuracy of the naive model (always predict mode).

G REPEATED EXPERIMENTS

In Tables[7] [8] [9]and [I0] we list the results of repeated experiments on the NOUN hierarchy and the
GRQC, textscyeast, MOUSE3, HUMAN1, DROSOPHILA and CELEGANS networks. In most cases, the
differences are minor and do not affect the rankings.
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Figure 7: Quality assessment of embedders on real-world hierarchies and networks: -log(MR).
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Figure 8: Quality assessment of embedders on real-world networks: greedy success rate (GSR).
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Figure 10: Quality assessment of embedders on real-world networks: information control value
(ICV).
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Figure 11: Density plots of the differences between the values of quality measures obtained by
Lorentz 2D and BFKL embedders. Top to bottom: MAP, -log(MR), GSR, -log(GSF). Left to right:
T =0.1,T = 0.4, T = 0.7. Negative values indicate that BFKL embedder performed better.
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graph name NOUN VERB ASTRO COND GRQC HEPPH
Poincaré 2D MR (ours) 88.0 15.7 | 1127.0 889.4 68.8 302.2
Poincaré 2D MR 90.7 10.7 — — — —
Poincaré 2D MAP (ours) 0.105 0.314 0.324 0.391 0.660 0.472
Poincaré 2D MAP 0.118 0.365 — — — —
Lorentz 2D MR (ours) 43.0 42.1 | 1104.8 949.2 81.4 293.2
Lorentz 2D MR 22.8 3.64 — — — —
Lorentz 2D MAP (ours) 0.168 0.184 0.306 0.345 0.599 0.417
Lorentz 2D MAP 0.305 0.579 — — — —
Euclidean 50D MR (ours) 1.5 1.2 1.0 1.0 1.0 1.0
Euclidean 50D MR 1281.7 — — — — —
Euclidean 50D MAP (ours) 0.921 0.908 0.988 0.968 1.000 0.980
Euclidean 50D MAP 0.140 — 0.376 0.356 0.522 0.434

Table 6: Our results compared with the results from [Nickel and Kiela, 2017; Nickel and Kiela, 2018].

graph name noun rl/nou r2/nou r3/nou r4/nou
MAP Lorentz2D 0.168 0.171 0.169 0.172  0.170
dMAP Lorentz2D 0.192 0.191 0.193 0.193 0.193
dMAP Lorentz2D + DHRG | 0.320 0.324 0326 0.321 0.327
dMAP BFKL 0.050 0.049 0.049 0.049 0.048
dMAP BFKL + DHRG 0411 0469 0450 0442 0438
MAP Poincare 2D 0.105 0.104 0.105 0.105 0.105
MAP Poincare 3D 0492 0485 0489 0493 0.490
MR Lorentz2D 43.0 432 41.7 424 42.5
dMR Lorentz2D 424 42.7 41.1 41.9 42.0
dMR Lorentz2D + DHRG 28.9 28.6 27.2 294 28.0
dMR BFKL 794.0 7725 8099 8393  821.7
dMR BFKL + DHRG 38.2 33.6 344 339 34.3
MR Poincare 2D 89.3 90.8 91.4 87.3 88.5
MR Poincare 3D 16.0 16.4 16.4 15.5 16.3

Table 7: Repeated experiments on the NOUN hierarchy.

graph name grqc rl/grq 12/grq r3/grq r4/grq | yeast rl/yea r2/yea r3/yea rd/yea
MAP Lorentz2D 0.599 0.601 0.588 0.598 0.603 | 0.532 0.531 0512 0529 0.527
dMAP Lorentz2D 0.595 0598 0585 0593 0.602 | 0.522 0518 0502 0512 0518
dMAP Lorentz2D + DHRG | 0.751 0.753 0.745 0.752 0.754 | 0.806 0.798 0.768 0.811  0.783
MR Lorentz2D 81.4 71.2 71.6 74.4 71.9 | 37.7 39.0 37.9 39.2 38.0
dMR Lorentz2D 82.0 71.6 79.0 75.0 7277 | 374 38.7 37.4 39.3 38.4
dMR Lorentz2D + DHRG 86.1 74.5 84.9 81.4 78.9 | 31.2 30.8 31.3 332 31.8
dMR BFKL 1958 184.7 2159 206.0 1747 | 50.5 52.4 51.8 53.6 59.6
dMR BFKL + DHRG 1559 1462 169.7 1604 1315 | 449 45.7 454 48.2 56.3

Table 8: Repeated experiments on the GRQC and YEAST networks.
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graph name mouse3  rl/mou  r2/mou  r3/mou  r4/mou | humanl rl/hum  r2/hum  r3/hum  r4/hum
MAP Lorentz2D 0.574 0.572 0.574 0.575 0.570 0.654 0.633 0.644 0.643 0.651
dMAP Lorentz2D 0.568 0.567 0.568 0.568 0.563 0.649 0.627 0.637 0.637 0.646
dMAP Lorentz2D + DHRG 0.592 0.587 0.591 0.592 0.588 0.652 0.630 0.641 0.640 0.651
dMAP BFKL 0.553 0.559 0.558 0.557 0.553 0.569 0.536 0.567 0.582 0.557
dMAP BFKL + DHRG 0.576 0.581 0.579 0.579 0.575 0.587 0.555 0.580 0.599 0.572
MAP Poincare 2D 0.576 0.570 0.578 0.576 0.575 0.628 0.643 0.646 0.646 0.636
MAP Poincare 3D 0.650 0.654 0.652 0.650 0.652 0.699 0.722 0.718 0.715 0.715
MAP Mercator fast 0.520 0.520 0.520 0.520 0.520 0.411 0411 0.411 0.411 0.412
MAP Mercator full 0.584 0.585 0.585 0.585 0.583 0.552 0.547 0.547 0.551 0.549
MAP TreeRep rec orig 0.284 0.271 0.294 0.275 0.299 0.269 0.298 0.284 0.290 0.302
MAP TreeRep norec orig 0.290 0.304 0.301 0.283 0.316 0.278 0.273 0.291 0.282 0.307
MAP TreeRep rec 0.233 0.238 0.243 0.222 0.242 0.241 0.283 0.262 0.255 0.280
MAP TreeRep norec 0.227 0.257 0.241 0.233 0.259 0.259 0.249 0.266 0.257 0.286
MR Lorentz2D 96.8 96.6 96.2 96.2 97.1 445 40.3 39.0 38.6 39.9
dMR Lorentz2D 98.4 97.8 97.7 97.8 99.1 43.9 40.2 39.3 38.6 39.5
dMR Lorentz2D + DHRG 93.5 93.5 93.0 934 94.4 42.6 38.0 36.9 36.6 379
dMR BFKL 106.2 103.0 103.7 103.5 104.6 50.8 51.4 51.6 479 49.4
dMR BFKL + DHRG 98.0 96.8 96.4 97.1 97.4 46.7 48.5 479 433 473
MR Poincare 2D 96.5 97.1 96.2 96.8 96.3 46.4 40.0 39.8 39.9 43.1
MR Poincare 3D 85.0 84.6 84.2 84.4 84.2 30.4 25.3 25.6 26.9 25.7
MR Mercator fast 103.5 103.5 103.5 103.5 103.5 415 415 41.5 41.6 41.6
MR Mercator full 99.7 99.5 99.4 99.4 99.5 41.2 412 41.1 41.1 41.3
MR TreeRep rec 380.246 381.121 408.380 418.490 405.135 | 185.004 131.951 160.604 153.917 129.617
MR TreeRep norec 414914 381.244 403.176 381.503 392.632 | 167.198 164.443 136.862 153.998 140.229
GSR Poincare2D 0.944 0.931 0.948 0.945 0.943 0.834 0.839 0.889 0.869 0.883
GSR Poincare3D 0.969 0.971 0.969 0.965 0.971 0.898 0.917 0.915 0.926 0.909
GSR Mercator fast 0.829 0.832 0.830 0.829 0.833 0.534 0.531 0.535 0.533 0.536
GSR Mercator full 0.960 0.958 0.961 0.960 0.962 0.784 0.785 0.819 0.799 0.795
GSR TreeRep rec 0.925 0.879 0.845 0.867 0.821 0.524 0.555 0.550 0.532 0.629
GSR TreeRep norec 0.877 0.840 0.820 0.882 0.861 0.541 0.568 0.589 0.584 0.494
GSF Poincare2D 1.197 1.209 1.195 1.198 1.197 1.375 1.352 1.328 1.337 1.348
GSF Poincare3D 1.08 1.08 1.08 1.08 1.08 1.26 1.23 1.24 1.24 1.24
GSF Mercator fast 1.25 1.25 1.25 1.26 1.25 2.02 2.03 2.01 2.02 2.01
GSF Mercator full 1.11 1.11 1.11 1.11 1.11 1.45 1.45 1.40 1.43 1.44
GSF TreeRep rec 1.198 1.229 1.287 1.320 1.316 1.922 1.888 1.843 1.902 1.722
GSF TreeRep norec 1.233 1.299 1.305 1.213 1.245 1.871 1.824 1.811 1.731 2.005

Table 9: Repeated experiments on the MOUSE3 and HUMAN 1 connectomes.
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graph name drosop rl/dro r2/dro r3/dro r4/dro celega rl/cel r2/cel r3/cel rd/cel
MAP Lorentz2D 0.386 0.388 0.386 0.398 0.391 0.494 0.491 0.488 0.482 0.500
dMAP Lorentz2D 0.372 0.375 0.373 0.381 0.374 0.482 0.479 0.476 0.471 0.488
dMAP Lorentz2D + DHRG 0.379 0.391 0.385 0.401 0.401 0.492 0.490 0.486 0.485 0.500
MAP Lorentz2D + DHRG 0.369 0.381 0.376 0.392 0.396 0.482 0.480 0.476 0.475 0.490
MAP BFKL 0.381 0.388 0.389 0.386 0.376 0.454 0.469 0.454 0.462 0.471
dMAP BFKL 0.377 0.386 0.384 0.378 0.371 0.447 0.461 0.449 0.456 0.467
dMAP BFKL + DHRG 0.383 0.400 0.403 0.391 0.382 0.460 0.470 0.460 0.469 0.473
MAP BFKL + DHRG 0.387 0.397 0.401 0.392 0.380 0.458 0.467 0.460 0.465 0.469
MAP Poincare 2D 0.397 0.385 0.389 0.392 0.384 0.492 0.495 0.478 0.499 0.500
MAP Poincare 3D 0.482 0.483 0.488 0.488 0.473 0.576 0.575 0.571 0.575 0.583
MAP Mercator fast 0.270 0.271 0.270 0.270 0.270 0.336 0.337 0.337 0.337 0.336
MAP Mercator full 0.435 0.417 0.418 0.419 0.425 0.484 0.480 0.498 0.482 0.486
MAP TreeRep rec orig 0.263 0.241 0.245 0.260 0.274 0.228 0.218 0.206 0.241 0.236
MAP TreeRep norec orig 0.277 0.257 0.252 0.255 0.258 0.223 0.257 0.270 0.239 0.249
MAP TreeRep rec 0.243 0.222 0.219 0.236 0.245 0.205 0.190 0.188 0.213 0.198
MAP TreeRep norec 0.250 0.229 0.228 0.226 0.234 0.204 0.239 0.236 0.207 0.216
MR Lorentz2D 46.9 47.1 475 475 46.9 31.5 31.6 313 31.5 32.0
dMR Lorentz2D 472 47.2 47.3 47.5 47.0 313 31.6 312 315 31.8
MR Lorentz2D + DHRG 47.6 479 48.1 48.0 47.8 32.8 327 325 324 32.7
dMR Lorentz2D + DHRG 45.5 45.6 46.0 45.7 458 30.8 30.7 30.7 30.5 30.6
MR BFKL 52.0 54.4 535 52.4 52.9 38.0 36.4 39.5 36.9 36.8
dMR BFKL 51.9 53.8 53.1 52.4 524 38.2 36.4 39.5 36.5 36.7
dMR BFKL + DHRG 483 49.1 48.0 48.3 48.4 36.4 34.0 36.8 34.8 353
MR BFKL + DHRG 49.7 50.7 49.4 49.7 50.2 37.6 355 38.0 36.4 36.8
MR Poincare 2D 472 47.1 46.3 48.5 47.1 31.6 31.1 32.0 31.0 314
MR Poincare 3D 39.1 39.0 39.9 39.8 39.8 28.1 273 273 26.6 27.0
MR Mercator fast 54.4 543 54.3 54.3 543 37.7 37.8 37.8 37.8 37.8
MR Mercator full 47.5 47.8 48.0 47.9 471 34.2 344 34.0 34.1 343
MR TreeRep rec 117.506  123.417 134.651 129.946 122314 | 112.256 117.753 104263 113.346 111.039
MR TreeRep norec 122.196  125.698 111.734 126.610 120.817 | 107.666 103.975 100.043  91.454 104.623
GSR BFKL 0.649 0.641 0.623 0.618 0.614 0.775 0.796 0.763 0.774 0.796
GSR BFKL + DHRG 0.629 0.619 0.630 0.620 0.617 0.753 0.744 0.755 0.772 0.770
GSR BFKL + DDHRG 0.652 0.632 0.640 0.641 0.624 0.776 0.757 0.775 0.780 0.798
GSR Lorentz2D 0.747 0.727 0.742 0.758 0.742 0.899 0.891 0.889 0.871 0.894
GSR Lorentz2D + DD 0.684 0.662 0.658 0.688 0.696 0.838 0.834 0.843 0.831 0.849
GSR Poincare2D 0.753 0.715 0.757 0.723 0.743 0.897 0.896 0.874 0.903 0.898
GSR Poincare3D 0.821 0.814 0.826 0.844 0.820 0.933 0.943 0.925 0.933 0.958
GSR Mercator fast 0.437 0.439 0.448 0.433 0.445 0.524 0.525 0.525 0.522 0.525
GSR Mercator full 0.783 0.745 0.758 0.735 0.769 0.868 0.829 0.865 0.836 0.827
GSR TreeRep rec 0.577 0.580 0.596 0.695 0.708 0.651 0.603 0.560 0.670 0.571
GSR TreeRep norec 0.684 0.636 0.580 0.664 0.602 0.613 0.719 0.681 0.628 0.647
GSF BFKL 1.65 1.63 1.69 1.68 1.70 1.43 1.42 1.43 1.42 1.40
GSF BFKL + DHRG 1.64 1.63 1.62 1.65 1.67 1.41 1.42 1.41 1.40 1.40
GSF BFKL + DDHRG 1.63 1.63 1.65 1.65 1.69 1.41 1.43 1.40 1.40 1.40
GSF Lorentz2D 1.58 1.60 1.56 1.55 1.57 1.32 1.33 1.33 1.35 1.32
GSF Lorentz2D + DD 1.65 1.65 1.65 1.60 1.59 1.36 1.36 1.36 1.36 1.34
GSF Poincare2D 1.558 1.640 1.549 1.608 1.590 1.324 1.322 1.354 1.316 1.310
GSF Poincare3D 1.34 1.36 1.33 1.32 1.35 1.23 1.22 1.23 1.23 1.22
GSF Mercator fast 2.25 2.25 2.20 2.27 2.21 1.96 1.96 1.96 1.97 1.97
GSF Mercator full 1.40 1.45 1.43 1.45 1.41 1.32 1.36 1.32 1.37 1.37
GSF TreeRep rec 1.737 1.721 1.592 1.488 1.462 1.613 1.613 1.770 1.498 1.731
GSF TreeRep norec 1.553 1.580 1.753 1.547 1.652 1.647 1.433 1.483 1.668 1.538

Table 10: Repeated experiments on the DROSOPHILA 1 and CELEGANS connectomes.
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