

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053

BRIDGING ML AND ALGORITHMS: COMPARISON OF HYPERBOLIC EMBEDDINGS

Anonymous authors

Paper under double-blind review

ABSTRACT

Hyperbolic embeddings are well-studied in the machine learning, network theory, and algorithm communities. However, as the research proceeds independently in those communities, comparisons and even awareness seem to be currently lacking. We compare the performance (time needed to compute embeddings) and the quality of the embeddings obtained by the popular approaches, both on real-life hierarchies and networks, and simulated networks. In particular, according to our results, the algorithm by Bläsius et al (ESA 2016) is about 100 times faster than the Poincaré embeddings (NIPS 2017) and Lorentz embeddings (ICML 2018) by Nickel and Kiela, while achieving results of similar (or, in some cases, even better) quality.

1 INTRODUCTION

An *embedding* is an instance of some mathematical structure contained within another instance, such as a group that is a subgroup. In general topology, embedding is a homeomorphism onto its images. Homeomorphisms are the isomorphisms in the category of topological spaces – they are the mappings that preserve all the topological properties of a given space. Given a network (V, E) , where V is the set of vertices and E is the set of edges, its embedding into some geometry \mathbb{G} is a map $m : V \rightarrow \mathbb{G}$.

In hyperbolic geometry, all the postulates of Euclid hold, except for the *parallel axiom*. While parallel lines stay at a constant distance in Euclidean geometry, similar lines in hyperbolic geometry diverge exponentially. Recently, the area of *hyperbolic embedders* for networks – that is, algorithms for embedding networks into hyperbolic geometry – has gained popularity within the Machine Learning (ML) community. Those embedders exploit the properties of hyperbolic geometry, such as exponential growth, which make them a perfect match for visualizing and modeling hierarchical structures.

Probably the most influential paper (Nickel and Kiela, 2017) (*Poincaré embeddings*) shows that hyperbolic embeddings achieve impressive results compared to Euclidean and translational ones. The results have been improved even further in the follow-up (Nickel and Kiela, 2018) (*Lorentz embeddings*) by changing the used model of hyperbolic geometry. In the ML literature, those works are recognized as some of the first studies on hyperbolic embeddings (Gu et al., 2019). However, it is worth noting that a rich history of hyperbolic embedding research precedes these papers. Hyperbolic embeddings have been initially devised in the network theory (NT) community through the *Hyperbolic Random Graph* model (HRG) (Krioukov et al., 2010). The algorithmic properties of this model, including embedding techniques, have been extensively studied in the algorithmic community. Surprisingly, there is limited cross-referencing between these research communities. For example, machine learning papers we have examined rarely cite algorithmic works, and vice versa. Also, we lack comparative studies that bridge those communities.

We believe the insights in the algorithmic/NT papers could significantly benefit the ML community. In this paper, we gather and experimentally compare 14 approaches from different communities using both real-world (38 networks, including 7 hierarchies, 21 connectomes, and 10 other networks) and simulated data (450 two-dimensional networks).

Against this background, our contributions are as follows:

- We present the first experimental comparison of hyperbolic embedders from the ML, NT, and algorithmic communities, establishing crucial connections among these research areas.

Figure 1: Tessellations of the hyperbolic plane. Bitruncated order-3 heptagonal tiling on the right.

- We find that an $\tilde{O}(n)$ algorithm for creating hyperbolic embeddings (BFKL) (Bläsius *et al.*, 2016) that predates (Nickel and Kiela, 2017) is orders of magnitude faster while achieving results of comparable quality, or in some cases, better. Mercator embeddings (García-Pérez *et al.*, 2019) typically achieve results of intermediate quality while also being slow; TreeRep Sonthalia and Gilbert (2020) achieves good embedding quality on hierarchies but bad quality on networks. The recent embedder CLOVE (Balogh *et al.*, 2025) is also worth of attention, both due to its quality and time performance.
- While higher dimension yields better embeddings according to standard quality measures (mAP, MeanRank, greedy routing success ratio and efficiency), this is usually an artifact of optimization. Using information criteria principles, we introduce a new measure (Information Control Value, ICV). Contrary to the standard measures, ICV penalizes embeddings of large radius and/or dimension, enhancing the robustness of our comparisons.

2 THEORETICAL BACKGROUND

2.1 PRELIMINARIES ON HYPERBOLIC GEOMETRY

We start with the basics of hyperbolic geometry. For simplicity, we will focus on the hyperbolic plane \mathbb{H}^2 , although the same ideas work in higher dimensions. See e.g. the book (Cannon *et al.*, 1997) for a more thorough formal exposition, or the game HyperRogue (Kopczyński *et al.*, 2017) to gain intuitions. Recall the Euclidean space \mathbb{E}^n is \mathbb{R}^n with distance $\delta_E(x, y) = \sqrt{g_+(x - y, x - y)}$, where $g_+((x_1, \dots, x_n), (y_1, \dots, y_n)) = \sum_{i=1}^n x_i y_i$.

In modern terms, the simplest non-Euclidean geometry is spherical geometry. A two-dimensional sphere of radius 1 is $\mathbb{S}^2 = \{x \in \mathbb{R}^3 : g_+(x, x) = 1\}$. The distance is measured in terms of great circle arcs; a point in distance r in direction (angle) ϕ from the central point $C_0 = (0, 0, 1)$ has coordinates $(\sin(\phi) \sin(r), \cos(\phi) \sin(r), \cos(r))$. The spherical distance between x and y can be computed as $\arccos(g_+(x, y))$; this is straightforward when $y = C_0$, and also true in general, since g_+ is invariant under the isometries (i.e., rotations) of the sphere.

Gaussian curvature is a measure of difference of surface geometry from Euclidean geometry. A sphere of radius R , $R\mathbb{S}^2$, has constant Gaussian curvature $K = 1/R^2$. The hyperbolic plane is the opposite of spherical geometry, that is, it has constant negative Gaussian curvature. Hyperbolic surfaces are less ubiquitous, because they do not embed symmetrically into \mathbb{E}^3 – that would essentially require R to be imaginary. However, they appear in nature when maximizing surface area is needed (e.g., lettuce leaves), and can be embedded symmetrically in the Minkowski spacetime. The hyperbolic plane \mathbb{H}^2 is thus $\{x \in \mathbb{R}^3 : x_3 > 0, g_-(x, x) = -1\}$, where g_- is the Minkowski inner product $g_-((x_1, x_2, x_3), (y_1, y_2, y_3)) = x_1 y_1 + x_2 y_2 - x_3 y_3$ (the coordinate x_3 works like a time coordinate in special relativity). This is called the Minkowski hyperboloid model; many intuitions from spherical geometry work in this model, for example, a point in distance r in direction (angle) ϕ from the central point $C_0 = (0, 0, 1)$ has coordinates $p(r, \phi) = (\sin(\phi) \sinh(r), \cos(\phi) \sinh(r), \cosh(r))$. The hyperbolic distance between x and y can be computed as $\text{arcosh}(g_-(x, y))$.

While the formulas of the Minkowski hyperboloid model tend to be intuitively obtainable by analogy to the sphere model, this model is not applicable to visualization, since it naturally lives in Minkowski spacetime rather than the usual three-dimensional space (we use Lorentz transformations rather than Euclidean rotations for isometries involving the time coordinate). The most common method of visualization of the hyperbolic plane is the *Poincaré disk model*, first devised by Eugenio Beltrami, obtained as the stereographic projection of the Minkowski hyperboloid: $p(x, y, z) = (\frac{x}{z+1}, \frac{y}{z+1})$.

108 This maps the (infinite) hyperbolic plane to a disk in the Euclidean plane. Figure 1 shows some
 109 tessellations of the hyperbolic plane in the Poincaré disk model. Each shape of the same shade in
 110 each of these tessellations is of the same size; the Poincaré disk model distorts distances so that the
 111 same hyperbolic distance appears smaller when closer to the boundary of the disk.

112 The Poincaré disk model is called a *model* (rather than *projection*) because it is often used directly,
 113 as an alternative representation of hyperbolic geometry. Many models are used; for us, the third
 114 important model is the *native polar* coordinates (r, ϕ) . The formulas from converting from native
 115 polar coordinates to the hyperboloid model are given above as $p(r, \phi)$. All models describe the
 116 same (isometric) abstract metric space, so theoretically could be equivalently used in computations,
 117 although various models differ by how robust they are to numerical precision issues (as we will see
 118 later, hyperbolic geometry exhibits exponential growth, which makes such issues very significant
 119 (Celińska-Kopczyńska and Kopczyński, 2024b)). All can be generalized to higher dimensions
 120 and allow interpolation between possible values of curvature K . In our experience, people new to
 121 computational hyperbolic geometry use Poincaré model because introductory materials often focus on
 122 it; however, they have then difficulties computing distances and isometries, while such computations
 123 are straightforward in the hyperboloid model due to the full symmetry and spherical analogies. We
 124 see the difference between (Nickel and Kiela, 2017) and (Nickel and Kiela, 2018) as an example
 125 of this. The Minkowski hyperboloid is popular as the underlying model in the visualizations of
 126 hyperbolic geometry (Phillips and Gunn, 1992; Kopczyński *et al.*, 2017) due to simplicity and being a
 127 generalization of the *homogeneous coordinates* commonly used in computer graphics. The choice of
 128 the model may affect numerical precision (Floyd *et al.*, 2002; Celińska-Kopczyńska and Kopczyński,
 129 2024b). As we will see later, native polar coordinates are commonly used for hyperbolic embeddings
 130 of social networks (Friedrich *et al.*, 2023).

131 2.2 HYPERBOLIC GEOMETRY IN VISUALIZATION, NT, AND ALGORITHMIC COMMUNITIES

132 While popular expositions of hyperbolic geometry usually focus on the sum of angles of a triangle
 133 being less than 180 degrees, what is actually important to us is exponential growth. As can be easily
 134 seen from the formula for $p(r, \phi)$, a hyperbolic circle of radius r has circumference $2\pi \sinh(r)$;
 135 $\sinh(r)$ grows exponentially with r . This exponential growth, as well as the tree-like nature of the
 136 hyperbolic space, can be seen in Figure 1 and has found application in the visualization of hierarchical
 137 data, such as trees in the hyperbolic plane (Lamping *et al.*, 1995) and three-dimensional hyperbolic
 138 space (Munzner, 1998). Drawing a binary tree of large depth h on Euclidean paper, while keeping all
 139 the edges to be of the same length, is difficult, because we eventually run out of space to fit all 2^h
 140 leaves. The hyperbolic plane, with its exponential growth, solves this issue perfectly.

141 This leads us to another application of hyperbolic geometry: the modelling of scale-free networks.
 142 Scale-free networks are commonly found in nature, technology, and social structures. They are
 143 characterized by the *power law* distribution of degrees (the probability that a random vertex has
 144 degree $\geq d$ is proportional to $d^{-\beta}$), as well as the high *clustering coefficient* (if node a is connected
 145 to b and c , the nodes b and c are also likely to be connected). Despite this ubiquity, it is not
 146 straightforward to find a mathematical model that exhibits both these properties. One such model is
 147 the *Hyperbolic Random Graph model* (HRG) (Krioukov *et al.*, 2010), characterized by parameters
 148 N, R, α, T . In this model, N nodes $\{1, \dots, N\}$ are distributed randomly in a hyperbolic disk of
 149 radius R . Their angular coordinates ϕ are distributed uniformly, while their radial coordinates r are
 150 distributed according to the density function $f(r) = \alpha \sinh(\alpha r) / (\cosh(\alpha R) - 1)$. Let us denote with
 151 $m(i) \in \mathbb{H}^2$ the position of node i . Every pair of nodes a and b is then connected with probability

$$152 \quad p(a, b) = (1 + \exp((\delta(m(a), m(b)) - R)) / 2T))^{-1}, \quad (1)$$

153 where $\delta(a, b)$ is the hyperbolic distance between the points in \mathbb{H}^2 representing the two nodes. The
 154 radial coordinates correspond to *popularity* (smaller r = more popular) while the angular coordinates
 155 correspond to *similarity* (closer ϕ = more similar); the connections in a network are based on
 156 popularity and similarity. It can be shown that a random graph thus obtained has a high clustering
 157 coefficient and a degree distribution that follows a power law with $\beta = 2\alpha + 1$. There is extensive
 158 literature on the HRG model, including its algorithmic properties. Hyperbolic random graphs can
 159 be generated naively in $O(n^2)$ (Aldecoa *et al.*, 2015), in subquadratic time (von Looz *et al.*, 2015),
 160 and in linear time (Bringmann *et al.*, 2019). Earlier works include (Kleinberg, 2007) and (Shavitt
 161 and Tunkel, 2008). Despite being relatively popular, HRG is not the only generative model based on
 a similarity-popularity mechanism. Other approaches with similar properties include the earlier \mathbb{S}^1

162 model (Serrano *et al.*, 2008) allowing arbitrary degree distributions, GIRG (Bringmann *et al.*, 2018)
 163 in which the similarity space is a torus of some dimension d , generalized PSO (Papadopoulos *et al.*,
 164 2012) in which additional *external edges* are added as the network grows, E-PSO (Papadopoulos *et*
 165 *al.*, 2015b), which uses only the external edges, and nPSO (Muscoloni and Cannistraci, 2018), which
 166 models realistic networks with communities using a non-uniform angular distribution.

167 With the theoretical generative models came the *embeddings* of real scale-free networks into the
 168 hyperbolic plane. An embedding of a network (V, E) into geometry \mathbb{G} is a mapping $m : V \rightarrow \mathbb{G}$.
 169 In (Boguñá *et al.*, 2010), such an embedding of the Internet was obtained and found to be highly
 170 appropriate for *greedy routing*. In greedy routing, a node a wants to find a connection to another node
 171 b by finding one of its neighbors c which is the closest to b , then the neighbor of c which is closest to
 172 b , and so on. Greedy routing is successful when we eventually reach b ; in the *original* variant, it fails
 173 immediately when all the neighbors of c are further away from b than c ; in the *modified* variant, such
 174 hops are allowed, and the method fails when we reach a cycle.

175 However, the embedding method used by Boguñá *et al.* (2010) required substantial manual inter-
 176 vention and did not scale to large networks (Krioukov *et al.*, 2010). Further research focused on
 177 finding unsupervised and efficient algorithms. An *embedder* is an algorithm that finds an embedding.
 178 While technically, any mapping is an embedding, we generally want the geometric structure of
 179 m to be consistent with the structure of the network. *MLE embedders*, based on the maximum
 180 likelihood estimation (MLE) method from statistics, work by finding an embedding that maximizes
 181 the *loglikelihood* (LL). LL is the logarithm of the probability that if, for every pair of nodes (a, b) , we
 182 independently connect the nodes a and b with the probability computed according to the formula 1
 183 (for some R and T). Alternatively, *spring embedders* (Kobourov, 2013) simulate forces acting on the
 184 graph: attractive forces pulling connected nodes together, and repulsive forces pushing unconnected
 185 nodes away. Spring embedders have been adapted to non-Euclidean embeddings (Kobourov, 2013);
 186 however, the straightforward adaptation to hyperbolic geometry does not produce good embeddings
 187 of large radius (Bläsius *et al.*, 2016).

188 Note that embedding is a difficult computational problem – even computing LL according to the for-
 189 mula requires time $O(n^2)$, which is significant for large networks. The first algorithm for embedding
 190 large networks, HyperMap, worked in time $O(n^3)$ (Papadopoulos *et al.*, 2015b), later improved to
 191 $O(n^2)$ in HyperMapCN (Papadopoulos *et al.*, 2015a) and Wang *et al.* (2016a). Bläsius *et al.* (2016)
 192 developed a quasilinear algorithm for finding hyperbolic embeddings. This algorithm computes the
 193 HRG parameters based on the network’s statistics. Then, it embeds the network in layers, starting
 194 from the nodes with the greatest degree, which form the center of the network. The algorithm, which
 195 we call the *BFKL* embedder, is evaluated on several scale-free networks from the SNAP database
 196 (Leskovec and Krevl, 2014) as well as randomly generated networks generated according to the HRG
 197 model. Eventually, Wang *et al.* (2016b) introduced a simple $O(n)$ algorithm based on hierarchical
 198 community detection Blondel *et al.* (2008), ordering the communities based on the *Community*
 199 *Intimacy* between pairs of communities, and basing the angular coordinates on this order and the
 radial coordinates on the degree.

200 Time complexity is just one facet of the quality assessment. We need some measures of the goodness-
 201 of-fit of an embedder. Embedders specialized to solve specific tasks popularized different measures.
 202 E.g., greedy routing performance is now commonly assessed using the stretch factor (GSF), greedy
 203 success rate (GSR), and greedy routing efficiency (GRE). The *stretch factor* (GSF) is the average
 204 ratio of the number of steps to the minimum possible (for successful paths). *Greedy success rate*
 205 (GSR) yields the share of the successful routings. Boguñá *et al.* (2010) showed that using greedy
 206 routing with the distances from the hyperbolic embedding achieves (GSR) 90%, which is significantly
 207 higher than, e.g., greedy routing based on actual geographical distances between the network nodes;
 208 Bläsius *et al.* (2016) found that greedy routing based on the BFKL embeddings again achieves
 209 good GSR. In (Bläsius *et al.*, 2018), the impact of numerical errors on the quality of hyperbolic
 210 embeddings and greedy routing is evaluated. *Greedy Routing Efficiency* (GRE) (Muscoloni *et al.*,
 211 2017) is the average of x/y over all pairs of nodes, where y is the number of steps used by greedy
 212 routing and x is the minimum possible; contrary to GSF, for failed routing we assume this ratio to be
 213 0 (therefore, failed routings no longer can contribute positively to the measure). LL also became a
 214 quality measure – good LL is achieved when connected nodes are placed close (distance less than R),
 215 and disconnected nodes are far away (distance greater than R). For tasks focused on angular positions
 (e.g., problems related to the similarity space, such as community detection), other measures, such

216 as C-Score (Muscoloni *et al.*, 2017), became a standard. Other methods include mapping accuracy
 217 Zhang *et al.* (2021) and geometric congruence Cannistraci and Muscoloni (2022).
 218

219 The official implementation of Bläsius *et al.* (2016) includes a spring embedder as a method of
 220 improving the result of the quasilinear algorithm; however, the running time of this step is $\Omega(n^2)$,
 221 which is too slow for large graphs. In (Celińska-Kopczyńska and Kopczyński, 2022), an alternative
 222 approach based on hyperbolic tilings, as shown in Figure 1 and previously used in HyperRogue
 223 (Kopczyński *et al.*, 2017), was introduced. The nodes of our graph are mapped not to points of the
 224 hyperbolic plane, but rather to the tiles of such a tiling. Also, the distances are computed in a discrete
 225 way, as the number of tiles. This is called DHRG, the *discrete* HRG model. This works, because such
 226 tilings’ distances are a good approximation of hyperbolic distances (to a greater extent than similar
 227 approximations in Euclidean space (Celińska-Kopczyńska and Kopczyński, 2022)), and because
 228 the radii of HRG embeddings are large – the typical radii are on the order of $R = 30$ tiles of the
 229 bitruncated order-3 heptagonal tiling (1). One benefit of such a discrete representation is avoiding
 230 numerical precision issues. The other benefit is algorithmic: given a tile t_1 and a set of tiles T , we
 231 can compute an array a such that $a[i]$ is the number of tiles in T in distance i from t_1 in time just
 232 $O(R^2)$. The time of preprocessing (add or remove a tile from T) is $O(R^2)$ per tile. This gives us
 233 an efficient algorithm to compute the loglikelihood of a DHRG embedding, and also to improve a
 234 DHRG embedding in terms of LL by local search. Muscoloni *et al.* (2017) (Coalescent embedding)
 235 and García-Pérez *et al.* (2019) (Mercator) introduce ML algorithms to obtain or improve embeddings.
 236

237 Most research concentrates on two-dimensional embeddings, including the recent state-of-the-art,
 238 CLOVE (Balogh *et al.*, 2025), which arranges the communities using the existing algorithms for
 239 the Travelling Salesman Problem. Higher-dimensional embeddings have been studied recently
 240 (Bringmann *et al.*, 2019; Budel *et al.*, 2023; Kovács *et al.*, 2022; Jankowski *et al.*, 2023). A recent
 241 work (Celinska-Kopczynska and Kopczynski, 2024a) embeds into 3D Thurston geometries using
 242 tiles and simulated annealing.
 243

2.3 HYPERBOLIC GEOMETRY IN ML COMMUNITY

244 Nickel and Kiela (2017) applied the Riemannian Stochastic Gradient Descent (RSGD) method to find
 245 hyperbolic embeddings. The algorithm is benchmarked on data that exhibit a clear latent hierarchical
 246 structure (the WordNet noun hierarchy) and on social networks (scientific collaboration communities).
 247 The quality is evaluated using new measures: MeanRank (MR) and Mean Average Precision (MAP).
 248 MR is the average, over all edges $u \rightarrow v$, of $r_{u,v}$, which is the number of vertices w such that there
 249 is no edges from u to w and w is closer to u than v (including u , not including v , thus $MR \geq 1$).
 250 MAP is the mean of average precision scores (AP) for all vertices. The average precision score of
 251 vertex u is defined as $\sum_{i=1}^k i/r_{u,v_i}$, where k is the number of vertices v such that $u \rightarrow v$, and v_i is
 252 the i -th closest of these vertices. In the case of WordNet, $u \rightarrow v$ iff v is a hypernym of u ; this is a
 253 transitive relation. In (Nickel and Kiela, 2018), the results are improved by using the hyperboloid
 254 model (referred to as the Lorentz model) instead of Poincaré model and evaluated using MR, MAP,
 255 and Spearman rank order on multiple real-world taxonomies, including the WordNet noun and verb
 256 hierarchies, the Enron email corpus, and the historical linguistics data.
 257

258 While studies in NT on hyperbolic geometry seem to be inspired by the theoretical and applicational
 259 premises (using geometry as the means to understand nature), ML researchers quickly recognized the
 260 potential of including hyperbolic geometry as a part of an analytic pipeline, even in classification
 261 tasks (see, e.g., Chamberlain *et al.* (2017) application of hyperbolic embeddings to neural networks).
 262 That is why solutions to numerical precision issues have become a vibrant research area. Sala *et*
 263 *al.* (2018) studied the tradeoff between the number of dimensions and the number of bits used for
 264 representing the angles. They also gave a combinatorial method of embedding tree-like graphs. Yu
 265 and De Sa (2019) suggested a tiling-based model (LTiling) to combat the numerical precision issues.
 266 Their main idea is somewhat similar to DHRG, although while DHRG only uses the tiles, LTiling also
 267 includes the coordinates within the tiles. In TreeRep (Sonthalia and Gilbert, 2020), it is proposed that,
 268 instead of learning a hyperbolic embedding, we should instead learn a tree. Gu *et al.* (2019) embed
 269 networks not in \mathbb{H}^n , but in products of lower-dimensional spaces with hyperbolic, Euclidean, or
 270 spherical geometry, and in Guo *et al.* (2022), a method for visualizing higher-dimensional hyperbolic
 271 embeddings in \mathbb{H}^2 is proposed.
 272

270 In Nickel and Kiela (2017), the early papers on hyperbolic visualizations ((Lamping *et al.*, 1995), but
 271 not (Munzner, 1998)) and the HRG model are cited, although the authors and reviewers seem not to
 272 be aware of the extensive literature on hyperbolic embeddings, including the paper (Muscoloni *et al.*,
 273 2017) which uses ML methods and has appeared on arXiv in Feb 2016. The Poincaré embeddings are
 274 thus compared only to Euclidean and translational embeddings. This continues in the other papers
 275 mentioned in this section. As a result, many papers even directly claim or suggest that Nickel and
 276 Kiela (2017) were the first to consider hyperbolic embeddings, e.g., "Initial works on hyperbolic
 277 embeddings include Nickel & Kiela (2017) [...]" (Gu *et al.*, 2019).

278 We have found citations to NT research in Ganea *et al.* (2018); in Sonthalia and Gilbert (2020),
 279 Bläsius *et al.* (2016) is in the bibliography, but surprisingly, not referred to in text, despite the
 280 focus on speed; this paper also cites early work on hyperbolic embedding (Chepoi and Dragan,
 281 2000), hyperbolic multi-dimensional scaling (Cvetkovski and Crovella, 2011), and embedding of
 282 δ -hyperbolic graphs into trees (Chepoi and Dragan, 2000; Chepoi *et al.*, 2008; Abraham *et al.*, 2007).
 283 Comparisons between the results of different communities seem lacking.

285 3 OUR RESULTS

287 3.1 COMPARISON ON REAL-WORLD TAXONOMIES AND SCALE-FREE NETWORKS

289 For every network, we use the following experimental setup.

- 291 • Apply the following embedders to it: Poincaré embedding (PE) Nickel and Kiela (2017),
 292 Lorentz embedding (LE) Nickel and Kiela (2018), BFKL Bläsius *et al.* (2016), 2-dimensional
 293 and 3-dimensional *coalescent* embedder Muscoloni *et al.* (2017), HyperLink embedder
 294 (KVK) Kitsak *et al.* (2020), fast and full Mercator embedding García-Pérez *et al.* (2019),
 295 3-dimensional Mercator embedding Jankowski *et al.* (2023), LTiling (Yu and De Sa, 2019),
 296 TreeRep (Sonthalia and Gilbert, 2020), Anneal (Celinska-Kopczynska and Kopczynski,
 297 2024a), LPCS (Wang *et al.*, 2016b), CLOVE (Balogh *et al.*, 2025), DHRG embedding
 298 improvement Celińska-Kopczyńska and Kopczyński (2022) (applied to BFKL, PE, LE, and
 299 CLOVE).
- 300 • Evaluate the obtained embeddings according to quality measures from the literature: MAP,
 301 MR, GSF, GSR, GRE, and LL.

302 Apart from networks, we also conduct analysis on hierarchies; in this case we include the classic
 303 HypViewer tree embedder (Munzner, 1998) (if the hierarchy is not a strict tree, the parent is picked
 304 randomly) and do not evaluate on measures meaningful only for networks (GSF, GRE, and GSR).
 305 For all hierarchies, $u \rightarrow v$ iff v is a superset (ancestor) of u ; this is a transitive relation. We use
 306 the networks and hierarchies that have already been used as benchmarks in influential papers on
 307 hyperbolic embeddings. For the complete list of the networks and the hierarchies we used, see
 308 Appendix D.

309 An implementation of MR and MAP is available with Nickel and Kiela (2018). However, on larger
 310 graphs, some embedders (such as BFKL) generate embeddings of large radius. This implementation
 311 fails to evaluate such embeddings due to a numerical precision error. Therefore, we use our own
 312 implementation which avoids this issue. See Appendix B.

313 In the case of greedy routing measures, we prefer to use the original formulations, in which we
 314 immediately fail when there is no neighbor closer to the target. This is because some embedders use
 315 discrete tessellations, making it likely that some distances are equal. For original formulations, we
 316 can route randomly, and use the expected route length (Celinska-Kopczynska and Kopczynski, 2024a).
 317 In the modified formulations, such an approach is ill-defined. Similar to (Celińska-Kopczyńska
 318 and Kopczyński, 2022), to aid comparisons, we report the LL values for the R and T values that
 319 maximize the log-likelihood (see Formula 1). We restrict our analysis to quality measures related to
 320 distance preservation; to our best knowledge, there are no measures that allow comparing the quality
 321 of angular positions in real-world embeddings.

322 The achievable quality of the embedding depends on the embedding dimension (achieving better
 323 results can be explained with higher dimensionality), therefore, in most cases, we compare 2D and
 3D embeddings. (We include TreeRep because trees can be embedded into the hyperbolic plane.)

Figure 2: Quality assessment of embedders on real-world networks and hierarchies. Darker colors indicate that the given embedder occurred more frequently in the given percentile of ranks (higher percentiles are better) over all graphs benchmarked.

For comparison, we also evaluate 5D PE, 50D, and 200D Euclidean embeddings (EE) (Nickel and Kiela, 2017). Product space embeddings (Gu *et al.*, 2019) are an interesting approach, but they use higher-dimensional spaces, so they cannot be compared with 2D or 3D methods. The hMDS method from (Sala *et al.*, 2018) looks interesting, but it depends on the scaling factor, and it is not clear how to learn this parameter; therefore, we do not include this method in our experiments. Most embedders are randomized, so we have repeated a portion of experiments using different seeds; this does not usually change the rankings (Appendix H). We use the official implementations and hyperparameters; see Appendix A and the supplementary material.

Figure 2 shows the aggregate results, while details can be found in Appendices E (plots and tables) and I (NOUN hierarchy). Surprisingly, while BFKL has been designed specifically for scale-free networks and greedy routing, and LE has been benchmarked on hierarchies and MAP and MR, our results show that BFKL or DHRG achieves significantly better results on many hierarchies (BFKL: NOUN, VERB, MESH; DHRG: mesh, tetrapoda), while Lorentz embeddings tend to achieve better results on networks, especially for greedy routing (better GSR and GSF). Still, the quality of BFKL, BFKL+DHRG, and 2D LE is similar across scale-free networks in our experiments, as measured by MR and MAP. One counterexample in the YEAST network, where BFKL achieves significantly better results than Lorentz on MAP (0.756 vs 0.542). In all cases, BFKL (and even BFKL+DHRG) is orders of magnitude faster, making LE impractical for larger graphs. The new CLOVE embedder tends to achieve even better results on hierarchies, in even better time. In many cases, DHRG is able to improve the results of fast embedders such as CLOVE while remaining reasonably quick.

HypViewer (Munzner, 1998) produces quite bad MR and MAP; however, it aims to put similar nodes close together, while due to how the transitive graphs are constructed for hypernymy hierarchies, high MR and MAP measures are achieved when similar categories (e.g., "lion" and "tiger") are closer to their hypernyms (feline, mammal, animal, entity) than to each other, which promotes longer edges on the outer levels of the hierarchy, and shorter edges in the center. The fast mode of Mercator usually produces worse embeddings than BFKL, while full Mercator usually achieves results between BFKL and 2D LE. Unfortunately, the full Mercator is slower than 2D LE for larger graphs. TreeRep is based on the idea of learning a tree instead of a hyperbolic embedding. We agree with this proposition for tree-like hierarchies, but for networks such as FACEBOOK and the connectomes, hyperbolic embeddings achieve significantly better results. (Hyperbolic plane is tree-like in large scale and Euclidean-like in small scale, and thus may potentially combine the advantages of both approaches). LTiling did not generally achieve better results than 2D LE in our experiments, while being significantly slower (contrary to DHRG, tiles are used only to improve numerical precision, not to make the process faster); however, this might be due to incorrectly set hyperparameters or testing on smaller, more shallow hierarchies, so the numerical precision issues did not yet become relevant. Despite the claimed $O(n)$ time, the official implementation of the LPCS embedder turned out relatively slow in our experiments – this was probably caused by some MATLAB optimizations that were not implemented in GNU Octave; we have reimplemented it in C++, and our implementation is fast. Its results are quite bad on connectomes, but on hierarchies and other networks, its results are comparable to BFKL. The coalescent embedder also performed relatively poorly in our experiments.

378 The KVK embedder often achieved excellent results, but unfortunately turned out to be very slow –
 379 significantly slower than LE. Anneal works great for connectomes (which were its original area of
 380 application), but often turns out to be not that good for other data; this is probably because Anneal
 381 can only produce embeddings of small radius, and connectomes, being physical networks, can have
 382 good embeddings of small radius.

401 Figure 3: Top row: NOUN (Lorentz 2D). VERB (left to right: Lorentz 2D, Lorentz 2D+DHRG, BFKL).
 402 Bottom row: DROSOPHILIA1 (Lorentz 2D, Lorentz 2D+DHRG, BFKL, BFKL+DHRG).

404 3.2 VISUALIZATION

406 One application of 2D embeddings is visualization. We rendered the embeddings using the tools from
 407 DHRG; see Figure 3. All pictures are in Poincaré model, centered on the center of the hyperbolic
 408 disk used for embedding. One observation is that Lorentz embeddings tend to put nodes close to the
 409 center, while the center is generally avoided in BFKL, and DHRG improves the balance.

411 3.3 DIMENSIONALITY

413 According to all our experiments so far, higher-dimensional embeddings achieve better results than
 414 lower-dimensional ones. This result is trivially an artifact of optimization. Reducing the number of
 415 dimensions could be seen as imposing a restriction on that dimension; usually optimization without

431 Figure 4: Density plots of the differences between the values of quality measures (MAP and GSR)
 432 obtained by Lorentz 2D and BFKL. Negative values indicate that BFKL performed better.

restrictions yields better results. To make comparisons fairer, we need to use information criteria to control for this artifact properly. We introduce the *information control value* (ICV), based on the Minimum Description Length (MDL) principle (Rissanen, 1978), which takes into account both the quality of edge prediction and the description length of the embedding; this description length is longer (worse) in more complex embeddings, such as those of higher dimension or radius. This is welcome, since more complex embeddings are harder to visualize, and also embeddings of higher radius are more prone to numerical errors (Bläsius *et al.*, 2018; Sala *et al.*, 2018; Celińska-Kopczyńska and Kopczyński, 2024b). According to our results, two-dimensional embeddings perform better for most real-world networks. The embedders we compare do not optimize the embedding radius, except Anneal, which enforces embeddings of small radii. To further improve ICV, we have also implemented a variant of DHRG that aims to reduce the embedding radius; the resulting improved BFKL is called **Penalty**. See Appendix C for the description of ICV and the Penalty approach.

Figure 5: Quality assessment of embedders on simulated networks. Darker colors indicate that the given embedder occurred more frequently in the given percentile of ranks (higher percentiles are better) over all graphs benchmarked.

3.4 COMPARISON ON ARTIFICIAL SCALE-FREE NETWORKS

For a more statistical analysis, we have also compared BFKL and Lorentz 2D embeddings on artificially generated scale-free networks. We use the generator from BFKL based on the HRG model, with default $\alpha = 0.75$, network sizes $n \in \{500, 1000, 2000\}$ and temperature $T \in \{0.1, 0.4, 0.7\}$.

Fig 14 depicts the densities of the differences between the values of quality measures obtained by 2D LE and BFKL, and Table 1 contains results of the logit regressions on the determinants of the probability that BFKL would perform better than 2D LE in terms of a given quality measure. No matter the quality measure, according to our results, the greater the graph, the higher the probability that BFKL will perform better; however, with rising temperature, that probability decreases. Real-world networks are considered to have fairly large values of T , such as $T = 0.7$ used for Internet mapping (Bläsius *et al.*, 2016; Boguñá *et al.*, 2010), which is consistent with our results on real-world scale-free networks. Although our models were aimed at interpretation instead of prediction, we included information on the prediction quality, both from cross-validation and benchmarking. Both models are of satisfactory quality.

Even if our results suggest that, in many cases, 2D LE outperforms BFKL, it still comes at a high time cost. In Fig 6, we present the trade-off between the markup in time expenditure (how many times longer it takes to compute) in comparison to BFKL and the percentage gain in the quality of the embedding (measured with MAP) resulting from using 2D LE. We conclude that there is no significant monotonic relationship between the time spent and the percentage gain in quality (p-values in Kendall-tau significance tests, as we encounter ties in our data that may make Spearman's rho inappropriate to use, are: 0.5282, 0.3141, and 0.0103 if we control for temperature 0.1, 0.4, and 0.7, respectively. The last result is insignificant at 1% significance level).

Figure 5 depicts an aggregate ranking of all embedders. Regarding MAP and MR measures, we note apparent differences in the embedders' performance. LPCS tends to perform relatively poorly (usually in the bottom 10%), while 2D LE is significantly improved by discretization in the case of MAP. Unsurprisingly, fast Mercator performs worse than full Mercator. In contrast to the analysis of

	MAP		GSR		GRE	
	Coeff.	Pr($> z $)	Coeff.	Pr($> z $)	Coeff.	Pr($> z $)
Intercept	-1.9583	9.11e-08	0.7312	0.00468	0.6887	0.00749
Temp=0.4	-0.8864	0.004922	-2.0924	4.27e-12	-2.0929	3.97e-12
Temp=0.7	-4.6115	1.59e-14	-3.8869	<2e-16	-3.9425	<2e-16
Size = 1000	1.5956	0.000119	0.8173	0.00796	0.7814	0.01153
Size = 2000	4.0095	<2e-16	2.4526	6.34e-13	2.5229	2.75e-13
N	450		450		450	
ACC _{cv}	0.8598		0.8008		0.8029	
ACC _{bench}	0.7178		0.5289		0.5356	
κ	0.6288		0.5992		0.6019	

Table 1: Results of logit regressions for the determinants of BFKL embedder outperforming Lorentz 2D embedder in terms of quality measures. ACC_{cv} and κ are average accuracy and Kappa from 10-fold cross-validation; ACC_{bench} is the accuracy of the naive model (always predict mode).

Figure 6: Comparisons of percentage gains in quality (MAP) of the 2D Lorentz embedding against the markup in time expenditure in comparison to BFKL embedder. X axis is the percentage gain in quality and the Y axis is how many times longer it takes.

the real-world networks, CLOVE’s performance is mediocre here – it occurs rarely within the top 10% of embedders. Regarding the greedy routing measures, we see little difference. Interestingly, LPCS and Coalescent embeddings tend to perform worse than other embedders on simulated networks generated from the HRG model. An analysis of possible explanations for this finding could constitute a future research line.

4 CONCLUSION

We have compared the popular hyperbolic embedders in three communities, paying special attention to BFKL embedder against 2D Lorentz embeddings. Our main motivation for this comparison is the apparent lack of awareness of the algorithmic results on hyperbolic embeddings in the ML community. In all experiments, the BFKL embedder runs significantly (about 100 times) faster, while achieving results generally of similar quality, although in some cases one or the other embedder may get noticeably better results, depending on the input graph and the quality measure. Higher-dimensional Lorentz embedding generally gets better results than both kinds of 2D embeddings, even in 3D; however, this no longer holds when we take information criteria into account. A more detailed study of our proposed criterion will be the subject of further research.

We have also found discrepancies between our results and the results in (Nickel and Kiela, 2017; 2018). In particular, in (Nickel and Kiela, 2017) 200D SGD Euclidean embeddings are performing worse than even low-dimensional Poincaré embeddings, but in our experiments, they consistently achieve significantly higher results (this particular case of non-reproducibility has been previously observed and studied in (Bansal and Benton, 2021)); in (Nickel and Kiela, 2018) Lorentz embeddings achieve significantly better results than Poincaré, while in our experiments, their performance is similar, and Poincaré is sometimes better. We could not reproduce the ACM and MESH taxonomies used in (Nickel and Kiela, 2018) (the number of edges and even nodes is not consistent with the numbers given – we are using our own data in this paper). See Appendix G for details.

540 REFERENCES
541

542 Ittai Abraham, Mahesh Balakrishnan, Fabian Kuhn, Dahlia Malkhi, Venugopalan Ramasubramanian,
543 and Kunal Talwar. Reconstructing approximate tree metrics. In *Proceedings of the Twenty-Sixth*
544 *Annual ACM Symposium on Principles of Distributed Computing*, PODC '07, page 43–52, New
545 York, NY, USA, 2007. Association for Computing Machinery.

546 Rodrigo Aldecoa, Chiara Orsini, and Dmitri Krioukov. Hyperbolic graph generator. *Computer*
547 *Physics Communications*, 196:492–496, nov 2015.

548 Antoine Allard and M. Ángeles Serrano. Navigable maps of structural brain networks across species.
549 *PLOS Computational Biology*, 16(2):1–20, 02 2020.

550 Sámuel Balogh, Bendegúz Sulyok, Tamás Vicsek, and Gergely Palla. Clove, a travelling salesman’s
551 approach to hyperbolic embeddings of complex networks with communities. *Communications*
552 *Physics*, 8, 10 2025.

553 Sameer Bansal and Adrian Benton. Comparing Euclidean and hyperbolic embeddings on the WordNet
554 nouns hypernymy graph. In João Sedoc, Anna Rogers, Anna Rumshisky, and Shabnam Tafreshi,
555 editors, *Proceedings of the Second Workshop on Insights from Negative Results in NLP*, pages 49–
556 53, Online and Punta Cana, Dominican Republic, November 2021. Association for Computational
557 Linguistics.

558 Thomas Bläsius, Tobias Friedrich, Anton Krohmer, and Sören Laue. Efficient embedding of scale-free
559 graphs in the hyperbolic plane. In *European Symposium on Algorithms (ESA)*, pages 16:1–16:18,
560 2016.

561 Thomas Bläsius, Tobias Friedrich, Maximilian Katzmann, and Anton Krohmer. Hyperbolic embed-
562 dings for near-optimal greedy routing. In *Algorithm Engineering and Experiments (ALENEX)*,
563 pages 199–208, 2018.

564 Vincent D Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefebvre. Fast unfolding
565 of communities in large networks. *Journal of Statistical Mechanics: Theory and Experiment*,
566 2008(10):P10008, oct 2008.

567 Marián Boguñá, Fragkiskos Papadopoulos, and Dmitri Krioukov. Sustaining the internet with
568 hyperbolic mapping. *Nature Communications*, 1(6):1–8, Sep 2010.

569 Mihail Bota and Larry W. Swanson. Online workbenches for neural network connections. *Journal of*
570 *Comparative Neurology*, 500(5):807–814, 2007.

571 Karl Bringmann, Ralph Keusch, and Johannes Lengler. Geometric inhomogeneous random graphs.
572 *Theoretical Computer Science*, 2018.

573 Karl Bringmann, Ralph Keusch, and Johannes Lengler. Geometric inhomogeneous random graphs.
574 *Theoretical Computer Science*, 760:35–54, 2019.

575 Gabriel Budel, Maksim Kitsak, Rodrigo Aldecoa, Konstantin Zuev, and Dmitri Krioukov. Random
576 hyperbolic graphs in $d + 1$ dimensions, 2023.

577 Carlo Cannistraci and Alessandro Muscoloni. Geometrical congruence, greedy navigability and
578 myopic transfer in complex networks and brain connectomes. *Nature Communications*, 13, 11
579 2022.

580 James W. Cannon, William J. Floyd, Richard Kenyon, Walter, and R. Parry. Hyperbolic geometry.
581 In *In Flavors of geometry*, pages 59–115. University Press, 1997. Available online at <http://www.msri.org/communications/books/Book31/files/cannon.pdf>.

582 Dorota Celińska-Kopczyńska and Eryk Kopczyński. Discrete Hyperbolic Random Graph Model.
583 In Christian Schulz and Bora Uçar, editors, *20th International Symposium on Experimental*
584 *Algorithms (SEA 2022)*, volume 233 of *Leibniz International Proceedings in Informatics (LIPIcs)*,
585 pages 1:1–1:19, Dagstuhl, Germany, 2022. Schloss Dagstuhl – Leibniz-Zentrum für Informatik.

594 Dorota Celinska-Kopczynska and Eryk Kopczynski. Modelling brain connectomes networks: Solv
 595 is a worthy competitor to hyperbolic geometry! In *ECAI 2024 - 27th European Conference*
 596 *on Artificial Intelligence, 19-24 October 2024, Santiago de Compostela, Spain - Including 13th*
 597 *Conference on Prestigious Applications of Intelligent Systems (PAIS 2024)*, volume 392 of *Frontiers*
 598 *in Artificial Intelligence and Applications*, pages 1792–1799. IOS Press, 2024.

599 Dorota Celińska-Kopczyńska and Eryk Kopczyński. Numerical aspects of hyperbolic geometry. In
 600 *Computational Science – ICCS 2024: 24th International Conference, Malaga, Spain, July 2–4,*
 601 *2024, Proceedings, Part VI*, page 115–130, Berlin, Heidelberg, 2024. Springer-Verlag.

602 Benjamin Paul Chamberlain, James Clough, and Marc Peter Deisenroth. Neural embeddings of
 603 graphs in hyperbolic space, 2017.

604 Victor Chepoi and Feodor Dragan. A note on distance approximating trees in graphs. *European*
 605 *Journal of Combinatorics*, 21(6):761–766, 2000.

606 Victor Chepoi, Feodor F. Dragan, Bertrand Estellon, Michel Habib, and Yann Vaxès. Notes on
 607 diameters, centers, and approximating trees of δ -hyperbolic geodesic spaces and graphs. *Electronic*
 608 *Notes in Discrete Mathematics*, 31:231–234, 2008. The International Conference on Topological
 609 and Geometric Graph Theory.

610 Andrey Cvetkovski and Mark Crovella. Multidimensional scaling in the poincaré disk. *ArXiv*,
 611 abs/1105.5332, 2011.

612 Wouter De Nooy, Andrej Mrvar, and Vladimir Batagelj. *Exploratory Social Network Analysis with*
 613 *Pajek: Revised and Expanded Edition for Updated Software*. Structural Analysis in the Social
 614 Sciences. Cambridge University Press, 3 edition, 2018.

615 Sven Dorkenwald, Philipp J Schubert, Marius F Killinger, Gregor Urban, Shawn Mikula, Fabian
 616 Svara, and Joergen Kornfeld. Automated synaptic connectivity inference for volume electron
 617 microscopy. *Nat. Methods*, February 2017.

618 William J. Floyd, Brian Weber, and Jeffrey R. Weeks. The achilles' heel of $o(3, 1)$? *Exp. Math.*,
 619 11(1):91–97, 2002.

620 Tobias Friedrich, Maximilian Katzmann, and Leon Schiller. Computing voronoi diagrams in the
 621 polar-coordinate model of the hyperbolic plane, 2023.

622 Octavian-Eugen Ganea, Gary Bécigneul, and Thomas Hofmann. Hyperbolic entailment cones for
 623 learning hierarchical embeddings. In Jennifer G. Dy and Andreas Krause, editors, *Proceedings*
 624 *of the 35th International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, July 10-15, 2018*, volume 80 of *Proceedings of Machine Learning Research*,
 625 pages 1632–1641. PMLR, 2018.

626 Guillermo García-Pérez, Antoine Allard, M Ángeles Serrano, and Marián Boguñá. Mercator: uncovering
 627 faithful hyperbolic embeddings of complex networks. *New Journal of Physics*, 21(12):123033,
 628 dec 2019.

629 Kwang-II Goh, Michael E. Cusick, David Valle, Barton Childs, Marc Vidal, and Albert-László
 630 Barabási. The human disease network. *Proceedings of the National Academy of Sciences*,
 631 104(21):8685–8690, 2007.

632 William Gray Roncal, Zachary H. Koterba, Disa Mhembere, Dean M. Kleissas, Joshua T. Vogelstein,
 633 Randal Burns, Anita R. Bowles, Dimitrios K. Donavos, Sephira Ryman, Rex E. Jung, Lei Wu,
 634 Vince Calhoun, and R. Jacob Vogelstein. Migraine: Mri graph reliability analysis and inference for
 635 connectomics. In *2013 IEEE Global Conference on Signal and Information Processing*, pages
 636 313–316, 2013.

637 Albert Gu, Frederic Sala, Beliz Gunel, and Christopher Ré. Learning mixed-curvature representations
 638 in product spaces. In *International Conference on Learning Representations*, 2019.

639 Yunhui Guo, Haoran Guo, and Stella Yu. Co-sne: Dimensionality reduction and visualization for
 640 hyperbolic data, 2022.

648 Patric Hagmann, Leila Cammoun, Xavier Gigandet, Reto Meuli, Christopher Honey, Van Wedeen,
 649 and Olaf Sporns. Mapping the structural core of human cerebral cortex. *PLoS biology*, 6:e159, 08
 650 2008.

651

652 Logan Harriger, Martijn P. van den Heuvel, and Olaf Sporns. Rich club organization of macaque
 653 cerebral cortex and its role in network communication. *PLoS ONE*, 7, 2012.

654

655 Moritz Helmstaedter, Kevin L. Briggman, Srinivas C. Turaga, Viren Jain, H. Sebastian Seung, and
 656 Winfried Denk. Connectomic reconstruction of the inner plexiform layer in the mouse retina.
 657 *Nature*, 500:168–174, 2013.

658

659 Robert Jankowski, Antoine Allard, Mari'an Bogun'a, and M. Ángeles Serrano. The d-mercator
 660 method for the multidimensional hyperbolic embedding of real networks. *Nature Communications*,
 661 14, 2023.

662

663 H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai. Lethality and centrality in protein networks.
 664 *Nature*, 411(6833):41–42, may 2001.

665

666 Marcus Kaiser and Claus C. Hilgetag. Nonoptimal component placement, but short processing paths,
 667 due to long-distance projections in neural systems. *PLoS Computational Biology*, 2, 2006.

668

669 Maksim Kitsak, Ivan Voitalov, and Dmitri Krioukov. Link prediction with hyperbolic geometry. *Phys.
 670 Rev. Res.*, 2:043113, Oct 2020.

671

672 R. Kleinberg. Geographic routing using hyperbolic space. In *IEEE INFOCOM 2007 - 26th IEEE
 673 International Conference on Computer Communications*, pages 1902–1909, 2007.

674

675 Stephen G. Kobourov. Force-directed drawing algorithms. In Roberto Tamassia, editor, *Handbook of
 676 Graph Drawing and Visualization*, pages 383–408. Chapman and Hall/CRC, 2013.

677

678 Eryk Kopczyński, Dorota Celińska, and Marek Čtrnáct. HyperRogue: Playing with hyperbolic
 679 geometry. In *Proceedings of Bridges : Mathematics, Art, Music, Architecture, Education, Culture*,
 680 pages 9–16, Phoenix, Arizona, 2017. Tessellations Publishing.

681

682 Bianka Kovács, Sámuel Balogh, and Gergely Palla. Generalised popularity-similarity optimisation
 683 model for growing hyperbolic networks beyond two dimensions. *Scientific Reports*, 12, 01 2022.

684

685 Dmitri Krioukov, Fragkiskos Papadopoulos, Maksim Kitsak, Amin Vahdat, and Mariá n Boguñá.
 686 Hyperbolic geometry of complex networks. *Physical Review E*, 82(3), sep 2010.

687

688 John Lamping, Ramana Rao, and Peter Pirolli. A focus+context technique based on hyperbolic
 689 geometry for visualizing large hierarchies. In *Proceedings of the SIGCHI Conference on Human
 690 Factors in Computing Systems, CHI '95*, pages 401–408, New York, NY, USA, 1995. ACM
 691 Press/Addison-Wesley Publishing Co.

692

693 Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network dataset collection.
 694 <http://snap.stanford.edu/data>, June 2014.

695

696 David R Maddison, Katja-Sabine Schulz, Wayne P Maddison, et al. The tree of life web project.
 697 *Zootaxa*, 1668(1):19–40, 2007.

698

699 Nikola Markov, Mária Ercsey-Ravasz, Camille Lamy, Ana Rita, Ana Ribeiro Gomes, Loïc Ma-
 700 grou, Pierre Misery, Pascale Giroud, Pascal Barone, Colette Dehay, Zoltan Toroczkai, Kenneth
 701 Knoblauch, David Essen, and Henry Kennedy. The role of long-range connections on the specificity
 702 of the macaque interareal cortical network. *Proceedings of the National Academy of Sciences*, 110,
 703 03 2013.

704

705 George A. Miller. WordNet: A lexical database for English. In *Human Language Technology:
 706 Proceedings of a Workshop held at Plainsboro, New Jersey, March 8-11, 1994*, 1994.

707

708 Tamara Munzner. Exploring large graphs in 3d hyperbolic space. *IEEE Computer Graphics and
 709 Applications*, 18(4):18–23, 1998.

702 Alessandro Muscoloni and Carlo Vittorio Cannistraci. A nonuniform popularity-similarity opti-
 703 mization (nps) model to efficiently generate realistic complex networks with communities. *New*
 704 *Journal of Physics*, 20(5):052002, may 2018.

705 Alessandro Muscoloni, Josephine Maria Thomas, Sara Ciucci, Ginestra Bianconi, and Carlo Vittorio
 706 Cannistraci. Machine learning meets complex networks via coalescent embedding in the hyperbolic
 707 space. *Nature Communications*, 8(1), nov 2017.

708 Maximilian Nickel and Douwe Kiela. Poincaré embeddings for learning hierarchical representations.
 709 In I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
 710 nett, editors, *Advances in Neural Information Processing Systems 30*, pages 6341–6350. Curran
 711 Associates, Inc., 2017.

712 Maximilian Nickel and Douwe Kiela. Learning continuous hierarchies in the lorentz model of
 713 hyperbolic geometry. In Jennifer G. Dy and Andreas Krause, editors, *Proceedings of the 35th*
 714 *International Conference on Machine Learning, ICML 2018, Stockholm, Sweden, July 10-15, 2018*, volume 80 of *Proceedings of Machine Learning Research*, pages
 715 3776–3785. PMLR, 2018.

716 Maximilian Nickel, Lorenzo Rosasco, and Tomaso Poggio. Holographic embeddings of knowledge
 717 graphs. In *Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence*, AAAI’16,
 718 pages 1955–1961. AAAI Press, 2016.

719 Fragkiskos Papadopoulos, Maksim Kitsak, M. Angeles Serrano, Marian Boguñá, and Dmitri Krioukov.
 720 Popularity versus Similarity in Growing Networks. *Nature*, 489:537–540, Sep 2012.

721 Fragkiskos Papadopoulos, Rodrigo Aldecoa, and Dmitri Krioukov. Network geometry inference
 722 using common neighbors. *Physical Review E*, 92(2), aug 2015.

723 Fragkiskos Papadopoulos, Constantinos Psomas, and Dmitri Krioukov. Network mapping by replay-
 724 ing hyperbolic growth. *IEEE/ACM Transactions on Networking*, 23(1):198–211, feb 2015.

725 Mark Phillips and Charlie Gunn. Visualizing hyperbolic space: Unusual uses of 4x4 matrices. In
 726 *Proc. I3D*, pages 209–214, New York, NY, USA, 1992. Association for Computing Machinery.

727 Jorma Rissanen. Modeling by shortest data description. *Automatica*, 14(5):465–471, September
 728 1978.

729 F B Rogers. Medical subject headings. *Bull. Med. Libr. Assoc.*, 51:114–116, January 1963.

730 Frederic Sala, Chris De Sa, Albert Gu, and Christopher Re. Representation tradeoffs for hyperbolic
 731 embeddings. In *Proc. ICML*, pages 4460–4469, Stockholm, Sweden, 2018. PMLR.

732 JW Scannell, Colin Blakemore, and MP Young. Analysis of connectivity in the cat cerebral cortex.
 733 In *Journal of Neuroscience*, 1995.

734 Jack W. Scannell, Gully A. Burns, Claus C. Hilgetag, Molly A. O’Neil, and Malcolm P. Young. The
 735 connectional organization of the cortico-thalamic system of the cat. *Cerebral cortex*, 9 3:277–99,
 736 1999.

737 M. Ángeles Serrano, Dmitri Krioukov, and Marián Boguñá. Self-similarity of complex networks and
 738 hidden metric spaces. *Phys. Rev. Lett.*, 100:078701, Feb 2008.

739 Yuval Shavitt and Tomer Tanel. Hyperbolic embedding of internet graph for distance estimation and
 740 overlay construction. *IEEE/ACM Transactions on Networking*, 16(1):25–36, 2008.

741 Kazunori Shinomiya, Aljoscha Nern, Ian A. Meinertzhagen, Stephen M. Plaza, and Michael B. Reiser.
 742 Neuronal circuits integrating visual motion information in *drosophila melanogaster*. *Current*
 743 *Biology*, 32(16):3529–3544.e2, 2022.

744 Rishi Sonthalia and Anna Gilbert. Tree! i am no tree! i am a low dimensional hyperbolic embedding.
 745 In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin, editors, *Advances in Neural*
 746 *Information Processing Systems*, volume 33, pages 845–856. Curran Associates, Inc., 2020.

756 Lav R. Varshney, Beth L. Chen, Eric Paniagua, David H. Hall, and Dmitri B. Chklovskii. Structural
757 properties of the *caenorhabditis elegans* neuronal network. *PLOS Computational Biology*, 7(2):1–
758 21, 02 2011.

759

760 Moritz von Looz, Henning Meyerhenke, and Roman Prutkin. Generating random hyperbolic graphs
761 in subquadratic time. In Khaled Elbassioni and Kazuhisa Makino, editors, *Algorithms and
762 Computation*, pages 467–478, Berlin, Heidelberg, 2015. Springer Berlin Heidelberg.

763

764 Zuxi Wang, Qingguang Li, Fengdong Jin, Wei Xiong, and Yao Wu. Hyperbolic mapping of complex
765 networks based on community information. *Physica A: Statistical Mechanics and its Applications*,
766 455:104–119, 2016.

767

768 Zuxi Wang, Yao Wu, Qingguang Li, Fengdong Jin, and Wei Xiong. Link prediction based on
769 hyperbolic mapping with community structure for complex networks. *Physica A: Statistical
Mechanics and its Applications*, 450:609–623, 2016.

770

771 Malcolm P. Young. The organization of neural systems in the primate cerebral cortex. *Proceedings:
Biological Sciences*, 252(1333):13–18, 1993.

772

773 Tao Yu and Christopher M De Sa. Numerically accurate hyperbolic embeddings using tiling-based
774 models. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett,
775 editors, *Advances in Neural Information Processing Systems*, volume 32. Curran Associates, Inc.,
776 2019.

777

778 Yi-Jiao Zhang, Kai-Cheng Yang, and Filippo Radicchi. Systematic comparison of graph embedding
methods in practical tasks. *Phys. Rev. E*, 104:044315, Oct 2021.

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810
811

A IMPLEMENTATION USED

812
813
We have downloaded the embedders from the following repositories, and use the following settings:

- 814 • Poincaré and Lorentz: <https://github.com/facebookresearch/poincare-embeddings> (last commit on Sep 16, 2021), Attribution-NonCommercial 4.0 International
815
816
817 We use the hyperparameters `-epochs 1500 -negr 50 -burnin 20`
818 `-dampening 0.75 -ndproc 4 -eval_each 100 -fresh -sparse`
819 `-burnin_multiplier 0.01 -neg_multiplier 0.1 -lr_type`
820 `constant -lr 1 -train_threads 1 -dampening 1.0 -batchsize`
821 `50 -gpu 0` from the example `train-nouns.sh` from the repository, except that
822 we requested using the GPU (`-train_threads 1 -gpu 0`). We also add the
823 hyperparameters specifying a method (`-manifold poincare -dim 2`). For
824 Lorentz 2D, Poincaré 3D, Poincaré 5D, Lorentz 3D, we replace `-lr 1` with `-lr 0.5`
825 `-no-maxnorm` (this setting comes from the suggestion about Lorentz embeddings in
826 `train-nouns.sh`). The hyperparameters for SGD Euclidean embeddings are not given
827 in the current official repository; we use the same parameters as for Poincaré (learning rate
828 1).
829
- 830 • BFKL: <https://bitbucket.org/HaiZhung/hyperbolic-embedder/overview> (last commit on Sep 8, 2016), no license given
831
832 This method estimates the hyperparameters in `estimateHyperbolicParameters`
833 method. We do not modify the original settings. The temperature (T) parameter for
834 embedding is set to a low value 0.1 which should work well for embeddings, the parameter
835 α is estimated based on fitting the power law, and the radius (R) is computed using a
836 formula.
837
- 838 • DHRG: <https://github.com/zenorogue/hyperrogue/tree/master/rogueviz/dhrg> (last commit on April 1, 2023), GPL v3
839
840 This method is parameterized by the tessellation used; we use the bitruncated order-3
841 heptagonal tiling. It does not create embeddings from scratch, but rather improves them
842 using local search; we allow up to 110 iterations of local search. Local search computes
843 the loglikelihood using the logistic function. We test it on the BFKL and Lorentz 2D
844 embeddings. For the *penalty* variant, we set the parameter to 2 (see Appendix C), and
845 perform 100 iterations of local search.
846
- 847 • TreeRep: <https://github.com/rsonthal/TreeRep> (last commit on Jun 23, 2023), GPL v3
848
849 This method has no settings or hyperparameters (other than the number of threads, which
850 we set to 8 as suggested in the repository).
851
- 852 • Ltiling: https://github.com/ydtydr/HyperbolicTiling_Learning (last commit Mar 19, 2020), Attribution-NonCommercial 4.0 International
853
854 We use the hyperparameters from the `-epochs 1000 -negr 50 -burnin`
855 `20 -dampening 0.75 -ndproc 4 -eval_each 100 -sparse`
856 `-burnin_multiplier 0.01 -neg_multiplier 0.1 -lr_type`
857 `constant -train_threads 2 -dampening 1.0 -batchsize 50`
858 `-manifold Ltiling_rsgd -dim 2 -com_n 1 -lr 0.3 -no-maxnorm`
859 from the `train-nouns.sh` example.
860
- 861 • HypViewer: <https://graphics.stanford.edu/~munzner/h3/download.html> (last modified in 2003), license in the `COPYRIGHT` file
862
863 This method has no hyperparameters. For non-strict hierarchies we pick the parent randomly.
864
- 865 • Mercator: <https://github.com/networkgeometry/mercator> (last commit Jun 21, 2022), GPL v3
866
867 Mercator has a setting for *fast* or *full* embedding; the *fast* method skips the likelihood
868 maximization step. We apply both variants. We do post-processing of the inferred values
869 of the radial positions. The parameter β can be provided, but we use the default behavior,
870 in which β is inferred to reproduce the average local clustering coefficient of the original
871 edgelist.
872

864 • d-Mercator: <https://github.com/networkgeometry/d-mercator> (last commit Nov 23, 2023), GPL v3
 865 The hyperparameters are similar to Mercator, except only *full* embedding is available for
 866 greater dimensions.
 867
 868 • Simulated annealing: supplementary material in <https://openreview.net/forum?id=dqWobz1AGb>, GPL v3
 869 This method is parameterized by the tessellation used; we use the bitruncated order-3
 870 heptagonal tiling for 2D embeddings, and the subdivided(2) {4,3,5} honeycomb for 3D
 871 embeddings (the g711 and g435b2 settings from the original paper). As in the original
 872 paper, we set the parameter controlling the number of tiles to $M = 20000$. The number of
 873 iterations of simulated annealing is $N_S = 10000|V|$. As in the original paper, We run the
 874 embedder twice; the first pass is to obtain good initial values of the R and T parameters.
 875
 876 • Coalescent: https://github.com/biomedical-cybernetics/coalescent_embedding (last commit Jul 8, 2019)
 877 We use the hyperparameters and settings from RUN_EXAMPLE.m. Specifically, 2D embed-
 878 dings uses RA1-LE-EA. 3D embeddings use RA1-ISO. We run the code in Octave (the free
 879 alternative of MatLab), which has no access to graphallshortestpaths function; we
 880 solve this issue by computing the table of shortest paths with our own C++ implementa-
 881 tion.
 882
 883 • KVK: https://bitbucket.org/dk-lab/2020_code_hyperlink/src/master/ (last commit Jun 11, 2011)
 884 This embedder has two parameters, γ controlling the power-law exponent, and temperature
 885 T . For simulated networks we use the actual temperature (thus giving more information to
 886 the embedder), while for real-world networks, we use 0.1, similar to BFKL. As explained in
 887 the paper, $\gamma = 2\alpha + 1$; we take α estimated by BFKL.
 888
 889 • LPSC: the source code is included with the paper at <https://www.sciencedirect.com/science/article/pii/S0378437116000182>
 890 The source code is in MatLab. According to readme, before we call the MatLab func-
 891 tion main_LPSC, we need to use the Fast Modularity Optimization (FMO) algorithm
 892 proposed by Blondel et al. to detect the hierarchical community structure, using the
 893 multilevel.community function in R (the name of this function is currently depre-
 894 cated in favor of cluster_louvain); the source code of this part has not been included,
 895 thus we had to write our own, and also adapt the main_LPSC function to the situation
 896 when cluster_louvain returns a different number of community levels than 3. The
 897 code also has a hyperparameter gama (the power law exponent); we use the R function
 898 fit_power_law(degree(g)) to estimate this exponent. We also had to fix some bugs
 899 (the code did not work when only two communities were found) and Octave warnings.
 900 Since the official implementation ran very slow in Octave, we have also reimplemented
 901 the algorithm in C++ (script/lpcs-remake.cpp). Our reimplementation fixes a bug in Con-
 902 nectNextCom.m (which compares the intimacies of x(1) and x(2), while, according to the
 903 paper, intimacies of the first and last subcommunity in x should be compared here). In
 904 the following tables, embedding time is given for the original implementation, but not the
 905 reimplementation (the reimplementation is generally very fast).
 906
 907 • CLOVE: <https://github.com/samu32ELTE/hypCLOVE> (last commit Oct 16, 2025)
 908 We use the default values of all settings and hyperparameters: γ to fit the degree distribution,
 909 degree fitting sample size of 100, automatically detected dendrogram, Leiden community
 910 detection method, exponential coarsening, the number 1 of anchor communities, Christofides
 911 algorithm for solving the Travelling Salesman Problem, degree_greedy node arrange-
 912 ment, community sector sizing based on the number of nodes in the community, and PSO
 913 radial coordinates assigned. For some hierarchies, the official implementation of CLOVE
 914 detects $\gamma < 2$, and fails with a parameter inference error. In these cases, we use $\gamma = 2$
 915 instead.

915 For replicability we also control the PRNG seed.
 916

917 We have downloaded the connectome datasets from https://github.com/networkgeometry/navigable_brain_maps_data. The scale-free networks are

918 from the SNAP database (Leskovec and Krevl, 2014). The tree-of-life and GitHub followers graph
919 dataset have been included with DHRG.
920

921 We use the following hardware:

922 [1] Intel® Core™ i7-9700K CPU @ 3.60GHz, NVIDIA GeForce GTX 1060 6GB/PCIe/SSE2, 96
923 GB RAM (we used zram for the embedders which did not fit in RAM)

924 [2] 11th Gen Intel® Core™ i7-11850H @ 2.50GHz, OpenGL renderer string: NVIDIA RTX A3000
925 Laptop GPU/PCIe/SSE2
926

927 Software: Arch Linux, g++ 12.2.1 to 15.2.1 (DHRG, BFKL, KVK, Anneal, Mercator), Julia 1.9.3
928 (TreeRep), Python 3.6 (Poincaré, Lorentz, Itiling, Mercator), Octave 10.3 (Coalescent, LPCS), R
929 4.5.2 (LPCS, creation of graphs)

930 The times reported in the paper have been obtained on [1]. Some experiments have been run on [2].
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

972 **B COMPUTING DISTANCES, DISCRETE MAP AND MR**
973

974 The distance between two points $p(r_1, \phi_1)$ and $p(r_2, \phi_2)$ in the hyperbolic plane can be computed as
975 follows: (let $\phi = \phi_1 - \phi_2$)

976
$$\begin{aligned} \delta(p(r_1, \phi_1), p(r_2, \phi_2)) &= \delta(p(r_1, 0), p(r_2, \phi)) \\ &= \text{arcosh } g_-((\sinh(r_1), 0, \cosh(r_1)), \\ &\quad (\sinh(r_2) \cos \phi, \sinh(r_2) \sin \phi, \cosh(r_2))) \\ &= \text{arcosh } (\sinh(r_1) \sinh(r_2) \cos \phi + \cosh(r_1) \cosh(r_2)) \\ &= \text{arcosh } (\cosh(r_1 - r_2) + (1 - \cos(\phi)) \sinh(r_1) \sinh(r_2)) \end{aligned}$$

983 The last formula has better numerical properties (Bläsius *et al.*, 2016; Celińska-Kopczyńska and
984 Kopczyński, 2024b). The distance formula in the Poincaré disk model can be computed similarly,
985 although converting from Poincaré to hyperboloid needs solving a quadratic equation.

986 Still, the computation is somewhat slow: for each of $O(n)$ nodes, $O(n)$ distances from the other
987 nodes need to be computed and sorted. It is possible to apply the discretization method from DHRG
988 to quickly compute a discrete analog of MAP and MR (that we call dMAP and dMR). As mentioned
989 in Section 2.2, discretization allows us to compute, for every node t , an array a such that $a[i]$ is the
990 number of tiles in T in distance i from t , in time $O(R^2)$. If t has e_t edges, we can compute a similar
991 array $b[i]$ restricted to connected tiles in time $O(e_t R)$. Note that the formulas for MR and MAP given
992 in Nickel *et al.* (2016) are for the case of continuous distances, and need to be adjusted for discrete
993 values obtained from the DHRG model. In the case of MR, a non-edge with distance tie contributes
994 0.5 to $r_{u,v}$, and in the case of MAP, if there are $b[d]$ edges and $a[d]$ total nodes in distance d , we
995 assume k -th of these edges to be ranked after $a[d](k - 0.5)/b[d]$ nodes. We can compute such MR
996 and MAP knowing $a[i]$ and $b[i]$ for every node in total time $O(nR^2 + mR)$, where m is the number
997 of edges.

998 **C CONTROL VALUE**
999

1000 This section describes the *information control value* (ICV), the embedding quality measure suggested
1001 by us. This value is based on the Minimum Description Length (MDL) principle (Rissanen, 1978).
1002 According to this principle, the shortest description of the data is the best model. We need $-\log_2(p)$
1003 bit of information to describe an event happening with probability p .

1004 In case of geometric embeddings, the description length consists of two parts: the description of the
1005 embedding itself, and the loglikelihood of obtaining the connections, given the embeddings. The
1006 second part is related to the loglikelihood used in the BFKL embedder. Recall that every pair of nodes
1007 a and b is then connected with probability $p(a, b) = p(\delta(a, b)) = (1 + \exp((\delta(a, b) - R)/2T))^{-1}$,
1008 where $\delta(a, b)$ is the hyperbolic distance between the points in \mathbb{H}^2 representing the two nodes. To
1009 compute the log-likelihood, we sum $\log(p(a, b))$ for every connected pair of nodes, and $\log(1 -$
1010 $p(a, b))$ for every unconnected pair of nodes. To compute the description length in bits, we use the
1011 same formula, except that we use $-\log_2(p)$ instead of the natural logarithm $\log(p)$. The parameters
1012 R and T are chosen in order to maximize the log-likelihood (equivalently, minimize the description
1013 length).

1014 In a d -dimensional embedding, every node i is described with coordinates (r_i, ϕ_i) , where r_i is the
1015 distance from the center, and $\phi_i \in \mathbb{S}^{d-1}$ is the angular coordinate. We assume that r_i has exponential
1016 distribution $\text{Exp}(\lambda)$ restricted to $[0, R_{\max}]$. We choose R_{\max} to be the maximum r_i , and λ which
1017 maximizes the likelihood. Let f_R be the density of this distribution of the radial coordinates r_i . For
1018 ϕ_i , we assume that it is uniformly distributed in \mathbb{S}^{d-1} .

1019 We assume that our coordinates are given with limited accuracy ϵ . That is, instead of the precise
1020 (r_i, ϕ_i) obtained in our embedding, we use (r'_i, ϕ'_i) such that $p(r'_i, \phi'_i)$ is close to $p(r_i, \phi_i)$. To describe
1021 r'_i such that $|r_i - r'_i| < \epsilon$, we need $-\log_2 \int_{r_i - \epsilon}^{r_i + \epsilon} f(r) dr$ bits. In case of angular coordinates, we need
1022 to divide the sphere of radius r_i , whose volume is proportional to $\sinh^{d-1}(r_i)$, by the area of $(d-1)$
1023 region of diameter ϵ , which is proportional to ϵ^{d-1} . Therefore, to describe ϕ'_i , we need $d_i \cdot (\log_2 \epsilon -$
1024 $\log_2 \sinh(r_i))$ bits (as long as $r_i > \epsilon$). Since we know the positions of nodes a and b with error ϵ , in
1025 the formula for $p(a, b)$ we take not $p(\delta(a, b))$, but $p'(a, b) = \frac{1}{2}(p(\delta(a, b) - \epsilon) + p(\delta(a, b) + \epsilon))$.

1026 For the given ϵ , we obtain the total description length L as a sum of description lengths of r'_i, ϕ'_i for all
 1027 nodes i , and $p'(a, b)$ for all pairs of nodes (a, b) . We choose the ϵ which minimizes this description
 1028 length L . Generally, a smaller ϵ increases the description length for r'_i and ϕ'_i , but decreases the
 1029 description length of $p'(a, b)$.

1030 To normalize the total description length, we compare L with the description length N of the naïve
 1031 non-geometric representation, which simply assigns the same connection probability p to every pair
 1032 of nodes. Theoretically, a good geometric representation should obtain $L < N$; however, some of
 1033 the algorithms we study obtain $L > N$. If there are n nodes and m edges, the minimum description
 1034 length $-m \log_2 p - \binom{n}{2} - m \log_2(1 - p)$ is obtained for $p = m/\binom{n}{2}$. Our *control value* is then
 1035 $N/(N + L)$. This value is bounded from below by 0 (the worst case $L = \infty$) and from above by 1
 1036 (which would be obtained for $L = 0$). Good geometric representation achieve the control value of at
 1037 least $\frac{1}{2}$, which corresponds to $L = N$.

1038 Note that, for $d_1 < d_2$, a d_1 -dimensional hyperbolic embedding e_1 can be considered a d_2 -
 1039 dimensional embedding, simply by considering the \mathbb{H}^{d_1} that e_1 uses as a subspace of $-bbH^{d_2}$.
 1040 All quality measures found in the literature and studied in this paper (log-likelihood, MAP, MR,
 1041 GSR and GSF) will give exactly the same result whether e_1 is considered d_1 -dimensional or d_2 -
 1042 dimensional; in other words, these measures will always give advantage to higher-dimensional
 1043 embedding methods. In contrary, the *control value* will penalize higher-dimensional embeddings,
 1044 as the part of the description length which corresponds to (ϕ_i) will be larger in higher dimension.
 1045 Furthermore, *control value* will also penalize embeddings of larger radius. This is welcome, since
 1046 embeddings of large radius are harder to visualize, and also more prone to numerical errors (Bläsius
 1047 *et al.*, 2018; Sala *et al.*, 2018; Celińska-Kopczyńska and Kopczyński, 2024b).

1048 In the Penalty variant of BFKL+DHRG, a node placed in distance of δ steps from the center of the
 1049 model costs $K \cdot \log(r_\delta)$, where r_δ is the number of tiles in distance δ . Instead of optimizing only the
 1050 loglikelihood, we optimize the sum of loglikelihood and this cost. For $K = 1$ this cost corresponds
 1051 to the part of description used to describe the angular coordinate. In our experiments we take $K = 2$,
 1052 to make the embeddings even smaller.

1053 1054 D REAL-WORLD HIERARCHIES AND NETWORKS USED

1055 The list of real-world hierarchies and networks we benchmark all the embedders on is available in
 1056 Table 2. In case of VERBF, we had to add an extra root node, since BFKL requires the network to be
 1057 connected. We have not included other networks used in BFKL benchmarks because they are too
 1058 large for slower algorithms such as Poincaré and Lorentz embeddings. In LE, the Enron email corpus
 1059 and the historical linguistics data are analyzed using weighted edges, so we cannot compare them to
 1060 BFKL or DHRG.

1061 1062 E RESULTS ON REAL-WORLD HIERARCHIES AND NETWORKS

1063 The detailed results of our evaluation on real-world hierarchies can be found in Table 3. We also
 1064 include MAMMAL (the mammal subtree of Noun). The detailed results of our evaluation on real-
 1065 world networks can be found in Tables 4,5. Figures 7, 8, 9, 10, 11, and 12 contain visualizations of
 1066 MAP, MR, GSR, GSF, and ICV on those hierarchies and networks. Figure 13 shows the aggregate
 1067 information for the remaining measures.

1068 Note that some algorithms are very slow, making them not feasible to run on large graphs. We do not
 1069 provide the results in these cases.

1070 1071 F ARTIFICIAL NETWORKS

1072 Table 6 and Figure 14 show the details of our evaluation of BFKL versus Lorentz 2D on artificial
 1073 networks.

	name	type	details	V	E	source
1080	ias	Internet	autonomous systems	23748	58414	IM (Boguñá <i>et al.</i> , 2010)
1081	facebook	social	social circles	4039	88234	BDsG (Leskovec and Krevl, 2014)
1082	followers-2009	social	GitHub followers	74946	537952	D
1083	openflights	transport	transport network	3397	38460	MC (OpenFlights website)
1084	grqc	citation	general relativity	4158	13422	PSTY (Leskovec and Krevl, 2014)
1085	astroph	citation	astrophysics	17903	196972	P (Leskovec and Krevl, 2014)
1086	condmat	citation	condensed matter	21363	91286	P (Leskovec and Krevl, 2014)
1087	hepph	citation	high-energy physics	11204	117619	P (Leskovec and Krevl, 2014)
1088	yeast	biology	yeast metabolism	1458	1948	STY (Jeong <i>et al.</i> , 2001)
1089	diseasome	biology	disease relationships	516	1188	ST (Goh <i>et al.</i> , 2007)
1090	noun	hierarchy	WordNet	82115	743086	PLSTY (Miller, 1994)
1091	acm	hierarchy	ACM classification	2114	8121	L
1092	mammal	hierarchy	WordNet	1180	6540	pY (Miller, 1994)
1093	verbf	hierarchy	WordNet	13543	48621	LY (Miller, 1994)
1094	mesh	hierarchy	hierarchy	58737	300287	L (Rogers, 1963)
1095	tetrapoda	hierarchy	hierarchy	11262	527580	(Maddison <i>et al.</i> , 2007)
	cspdh	hierarchy	hierarchy	1025	3978	STG (De Nooy <i>et al.</i> , 2018)
1096	CElegans	cell	nervous system	279	2287	sMAT Varshney <i>et al.</i> (2011)
1097	Drosophila1	cell	optic medulla	350	2887	MA Shinomiy <i>et al.</i> (2022)
1098	Drosophila2	cell	optic medulla	1770	8904	A Shinomiy <i>et al.</i> (2022)
1099	Mouse2	cell	retina	916	77584	A Helmstaedter <i>et al.</i> (2013)
1100	Mouse3	cell	retina	1076	90811	A Helmstaedter <i>et al.</i> (2013)
1101	ZebraFinch2	cell	basal-ganglia (Area X)	610	15342	A Dorkenwald <i>et al.</i> (2017)
1102	Macaque1	area	cortex	94	1515	A Kaiser and Hilgetag (2006)
1103	Macaque2	area	cortex	71	438	A Young (1993)
1104	Macaque3	area	cortex	242	3054	A Harriger <i>et al.</i> (2012)
1105	Macaque4	area	cortex	29	322	A Markov <i>et al.</i> (2013)
1106	Cat1	area	cortex	65	730	A Scannell <i>et al.</i> (1995)
1107	Cat2	area	cortex and thalamus	95	1170	A Scannell <i>et al.</i> (1999)
1108	Cat3	area	cortex	52	515	A Scannell <i>et al.</i> (1999)
1109	Human1	area	cortex	493	7773	A Hagmann <i>et al.</i> (2008)
1110	Human2	area	cortex	496	8037	A Hagmann <i>et al.</i> (2008)
1111	Human6	area	whole brain	116	1164	A Gray Roncal <i>et al.</i> (2013)
1112	Human7	area	whole brain	110	965	A Gray Roncal <i>et al.</i> (2013)
1113	Human8	area	whole brain	246	11060	A Gray Roncal <i>et al.</i> (2013)
	Rat1	area	nervous system	503	23029	A Bota and Swanson (2007)
	Rat2	area	nervous system	502	24655	A Bota and Swanson (2007)
	Rat3	area	nervous system	493	25978	A Bota and Swanson (2007)

Table 2: Our benchmark graphs. 'Cell' and 'area' are connectomes. The edges are directed in hierarchies and undirected otherwise. Letters signify the embedders which used this benchmark: I (Boguñá *et al.*, 2010), B (Bläsius *et al.*, 2016), D (Celińska-Kopczyńska and Kopczyński, 2022), P (Nickel and Kiela, 2017), L (Nickel and Kiela, 2018), S (Sala *et al.*, 2018), G (Gu *et al.*, 2019), Y (Yu and De Sa, 2019), M (García-Pérez *et al.*, 2019), T (Sonthalia and Gilbert, 2020), A (Allard and Serrano, 2020; Celinska-Kopczynska and Kopczynski, 2024a), C (Balogh *et al.*, 2025). Small letters appear in the repository but are not discussed in the paper.

G DISCREPANCIES

In Table 7, our results are compared to the results obtained in Nickel and Kiela (2017; 2018). Note that VERB is different than VERBF used in our paper, which includes one extra node that is an ancestor of every other node. Furthermore, the ACM hierarchy in Nickel and Kiela (2018) is given as 2299 nodes and 6526 edges, while ours has 2114 nodes and 8121 edges; and the MESH hierarchy is given as 28470 nodes and 191849 edges, while ours has 58737 nodes and 300290 edges.

The discrepancy in the result of Euclidean higher-dimensional embeddings has been previously observed and studied in Bansal and Benton (2021); the reported values did arise as a result of using a different setting where the Euclidean embeddings were regularized¹. Other differences in

¹<https://github.com/facebookresearch/poincare-embeddings/issues/35>

1134	graph name	noun	mammal	verbfl	acm	mesh	tetrap	cspfd
1135	nodes	82115	1180	13543	2114	58737	11262	1025
1136	edges	743086	6540	48621	8121	300287	527580	3978
1137	embedding time [s]							
1138	BFLK	428	66	37	4	342	738	2
1139	BFLK + DHRG	1637	70	600	8	1191	1596	4
1140	Poincare 2D	51794	408	2544	443	19137	26256	232
1141	Poincare 2D + DHRG	52104	410	2569	446	19339	26295	234
1142	Poincare 3D	51347	369	2778	457	20941	26648	233
1143	Lorentz 2D	38578	269	2057	333	19832	19706	239
1144	Lorentz 2D + DHRG	38995	277	2310	336	20008	20126	243
1145	Lorentz 3D	39850	279	2259	332	15700	19892	182
1146	coalescent2	-	5	-	23	67132	-	5
1147	coalescent3	-	12	-	56	907366	-	9
1148	KVK	-	1927	-	3689	-	-	1228
1149	CLOVE	117	1	12	2	76	18	1
1150	CLOVE + DHRG	3376	4	282	8	1162	377	3
1151	LPCS	-	3	11636	30	-	1272	3
1152	Mercator fast	37202	18	914	38	16617	1770	2
1153	Mercator full	-	41	4729	113	104459	4802	23
1154	d-Mercator	-	151	4450	214	65667	24761	48
1155	tiling	-	63074	5613	-	-	-	2037
1156	radius (absolute units)							
1157	BFLK	30.992	21.120	20.733	14.945	26.835	25.632	13.639
1158	BFLK + DHRG	26.018	23.521	25.159	17.630	26.163	24.706	15.915
1159	Poincare 2D	12.207	12.205	12.208	12.205	12.207	12.205	12.200
1160	Poincare 2D + DHRG	14.643	14.556	14.644	14.618	14.644	14.644	14.065
1161	Poincare 3D	12.208	12.205	12.202	12.118	12.207	12.205	12.199
1162	Lorentz 2D	14.509	14.509	14.509	13.290	14.509	14.509	14.509
1163	Lorentz 2D + DHRG	17.605	16.323	16.481	14.598	16.509	17.514	16.631
1164	Lorentz 3D	14.509	13.194	13.412	11.879	12.717	14.509	13.679
1165	penalty	26.008	21.881	22.354	16.511	25.933	24.706	14.431
1166	anneal2	-	7.602	-	7.602	-	-	7.602
1167	anneal3	-	3.650	-	3.650	-	-	3.650
1168	coalescent2	-	14.146	-	15.313	-	-	13.865
1169	coalescent3	-	14.146	-	15.313	-	-	13.865
1170	KVK	-	15.650	-	14.755	-	-	14.627
1171	CLOVE	22.632	14.146	19.027	15.313	21.962	18.658	13.865
1172	CLOVE + DHRG	25.225	15.382	20.811	16.234	25.302	21.237	15.864
1173	LPCS	22.632	14.146	19.027	15.313	21.962	18.658	13.865
1174	HypViewer	27.523	10.703	14.963	7.145	17.330	72.251	4.114
1175	Mercator fast	53.492	19.895	38.833	25.654	49.917	38.554	26.238
1176	Mercator full	-	18.450	38.899	20.254	38.062	28.056	26.055
1177	d-Mercator	-	12.647	18.262	12.152	17.665	16.871	18.676
1178	tiling	-	13.285	12.508	-	-	-	13.885
1179	MAP: Mean Average Precision							
1180	BFLK	0.284	0.219	0.348	0.423	0.321	0.276	0.667
1181	BFLK + DHRG	0.418	0.489	0.580	0.532	0.466	0.707	0.615
1182	Poincare 2D	0.105	0.792	0.330	0.657	0.195	0.530	0.863
1183	Poincare 2D + DHRG	0.056	0.465	0.204	0.421	0.116	0.285	0.725
1184	Poincare 3D	0.492	0.943	0.526	0.852	0.376	0.917	0.903
1185	Poincare 5D	-	0.951	-	-	-	-	0.844
1186	Lorentz 2D	0.194	0.835	0.246	0.600	0.183	0.699	0.845
1187	Lorentz 2D + DHRG	0.322	0.856	0.554	0.679	0.417	0.712	0.678
1188	Lorentz 3D	0.503	0.951	0.527	0.853	0.375	0.939	0.897
1189	penalty	0.327	0.293	0.294	0.419	0.300	0.691	0.687
1190	anneal2	-	0.314	-	0.255	-	-	0.775
1191	anneal3	-	0.274	-	0.240	-	-	0.830
1192	coalescent2	-	0.494	-	0.359	-	-	0.376
1193	coalescent3	-	0.139	-	0.086	-	-	0.428
1194	KVK	-	0.705	-	0.729	-	-	0.624
1195	CLOVE	0.776	0.826	0.778	0.860	0.816	0.596	0.653
1196	CLOVE + DHRG	0.791	0.865	0.871	0.838	0.825	0.770	0.612
1197	LPCS	0.340	0.564	0.571	0.481	0.518	0.497	0.341
1198	HypViewer	0.047	0.124	0.134	0.134	0.122	0.014	0.416
1199	Mercator fast	0.495	0.695	0.622	0.512	0.456	0.645	0.209
1200	Mercator full	-	0.842	0.727	0.753	0.548	0.752	0.672
1201	d-Mercator	-	0.054	0.023	0.033	0.009	0.014	0.213
1202	tiling	-	0.201	0.522	-	-	-	0.857
1203	Euclidean 50D	0.921	0.999	0.923	0.999	0.824	0.997	1.000
1204	Euclidean 200D	0.946	1.000	0.931	0.999	0.871	0.998	1.000
1205	MR: MeanRank							
1206	BFLK	62.6	43.1	16.7	9.3	22.3	102.1	35.8
1207	BFLK + DHRG	38.1	10.0	8.6	6.1	11.3	15.9	45.0
1208	Poincare 2D	89.3	2.1	13.1	3.2	42.5	37.4	5.9
1209	Poincare 2D + DHRG	360.7	8.1	45.3	10.5	172.5	97.0	14.5
1210	Poincare 3D	16.0	1.2	8.5	1.7	25.9	9.7	4.1
1211	Poincare 5D	-	1.2	-	-	-	-	3.9
1212	Lorentz 2D	42.3	1.8	25.7	4.0	55.1	21.5	6.5
1213	Lorentz 2D + DHRG	30.7	1.9	4.9	2.8	14.1	31.3	20.4
1214	Lorentz 3D	15.1	1.2	8.4	1.7	25.3	7.2	4.4
1215	penalty	48.3	17.9	18.2	7.9	18.7	16.8	40.2
1216	anneal2	-	13.2	-	19.6	-	-	31.8
1217	anneal3	-	18.2	-	28.6	-	-	15.3
1218	coalescent2	-	9.5	-	22.4	-	-	41.0
1219	coalescent3	-	61.4	-	58.2	-	-	31.5
1220	KVK	-	3.3	-	3.0	-	-	27.0
1221	CLOVE	19.0	2.7	3.9	1.9	2.7	47.1	27.5
1222	CLOVE + DHRG	21.6	2.3	3.0	2.1	2.9	13.7	28.3
1223	LPCS	282.0	9.6	14.3	7.3	79.0	117.8	51.3
1224	HypViewer	4452.4	145.7	276.1	77.0	522.2	5559.7	468.5
1225	Mercator fast	177.8	8.8	16.2	20.2	89.3	106.1	29.8
1226	Mercator full	-	2.8	7.7	4.2	29.6	19.9	21.7
1227	d-Mercator	-	250.8	804.2	237.2	5150.8	5522.4	40.3
1228	tiling	-	-	39.5	5.4	-	-	5.1
1229	Euclidean 50D	1.5	1.0	1.2	1.0	2.1	1.0	1.0
1230	Euclidean 200D	1.3	1.0	1.1	1.0	1.6	1.0	1.0

Table 3: Our results on real-world hierarchies. Darker cell color indicate better results.

1188		graph name	astrop	condma	grqc	hepph	facebo	yeast	diseas	follow	openfl	ias	CElegs	Human1	Droso1	Mouse3
1189		nodes	17903	21363	4158	11204	4039	1458	516	74946	3397	23748	279	493	350	1076
1190		edges (undirected)	196972	91286	13422	117619	88234	1948	1188	537952	19230	58414	2287	7773	2887	90811
1191	embedding time [s]	BFKL	179	91	7	82	26	1	1	269	11	40	1	2	1	17
1192		BFKL + DHRG	550	579	79	168	43	26	2	2634	29	440	3	3	2	45
1193		Poincare 2D	20481	10025	1321	11920	8580	235	155	65600	2020	7396	254	807	323	8781
1194		Poincare 3D	20485	10002	1366	12153	8624	235	156	68445	2061	7902	260	795	328	8716
1195		Lorentz 2D	14741	7349	986	8761	6317	183	130	49531	1501	5604	204	639	255	6413
1196		Lorentz 2D + DHRG	14891	7475	1005	8807	6371	200	137	49814	1517	5691	208	640	256	6436
1197		Lorentz 3D	14612	7479	1155	9392	6319	184	134	51675	1485	5778	216	1554	248	6252
1198		coalescent2	13557	23340	162	3147	164	9	3	-	83	-	2	4	3	35
1199		coalescent3	-	-	373	15012	499	20	4	-	259	-	2	5	3	40
1200		KVK	-	-	13910	-	15687	1278	214	-	7918	-	76	1	119	1
1201		CLOVE	26	31	5	15	7	2	1	188	4	17	1	1	1	3
1202		CLOVE + DHRG	279	321	55	339	161	6	2	1560	59	405	2	4	3	134
1203		LPCS	-	-	2504	15440	32	253	7	-	-	-	2	2	1	33
1204		Mercator fast	1565	2088	85	587	33	4	4	29707	56	2721	5	6	11	39
1205		Mercator full	8906	15167	454	3797	408	47	7	195644	338	18053	7	9	13	65
1206		d-Mercator	5110	7393	313	2291	403	44	27	-	259	9136	21	38	24	528
1207		Itiling	-	-	19721	-	-	3200	1592	-	25772	-	2795	7307	-	7237
1208	radius [absolute units]	BFKL	15.430	17.677	21.792	21.883	12.576	16.267	12.680	20.904	25.030	23.228	7.787	7.421	8.178	8.625
1209		BFKL + DHRG	18.501	20.715	24.921	26.097	14.906	18.801	14.146	26.057	24.128	25.991	9.250	8.747	9.796	10.060
1210		Poincare 2D	12.199	12.197	11.666	12.209	12.199	11.455	12.198	12.146	12.205	12.206	6.702	12.196	8.205	10.793
1211		Poincare 2D + DHRG	14.109	14.089	12.872	14.089	14.060	12.870	13.739	13.515	14.062	14.668	7.555	12.952	9.300	12.224
1212		Poincare 3D	12.207	10.906	10.493	12.199	12.200	9.571	10.336	11.123	-	12.199	9.240	9.762	11.025	12.199
1213		Lorentz 2D	11.651	10.941	10.962	12.335	11.555	9.563	11.142	10.696	12.261	13.250	6.483	11.664	7.713	10.492
1214		Lorentz 2D + DHRG	13.552	12.967	12.250	14.099	13.181	11.228	12.301	12.425	13.640	15.312	7.588	11.384	8.267	11.665
1215		Lorentz 3D	12.415	11.088	10.178	12.649	12.930	9.707	10.369	10.671	12.323	12.589	9.541	9.349	10.523	12.521
1216		penalty	14.229	13.978	14.613	16.380	10.267	14.754	9.995	16.729	23.986	24.966	8.038	7.713	8.238	10.060
1217		anneal2	-	-	7.602	-	7.602	7.602	7.602	-	7.602	-	7.602	7.602	7.602	7.602
1218		anneal3	-	-	3.650	-	3.650	3.650	3.650	-	3.650	-	3.650	3.650	3.650	3.650
1219		coalescent2	19.585	19.939	16.666	18.648	16.608	14.570	12.492	-	16.261	-	11.262	12.401	11.716	13.962
1220		coalescent3	-	-	16.666	18.648	16.608	14.570	12.492	-	16.261	-	11.262	12.401	11.716	13.962
1221		KVK	-	-	18.332	-	17.567	15.119	12.972	-	17.881	-	10.063	-	11.699	-
1222		CLOVE	19.585	19.939	16.666	18.648	16.608	14.570	12.492	22.449	16.261	20.151	11.262	12.401	11.716	13.962
1223		CLOVE + DHRG	24.590	25.191	18.702	23.591	18.738	16.208	14.384	27.425	18.376	23.944	13.283	13.835	13.753	15.710
1224		LPCS	19.585	19.939	16.666	18.648	16.608	14.570	12.492	22.449	16.261	20.151	11.262	12.401	11.716	13.962
1225		Mercator fast	70.081	64.709	42.147	53.510	31.315	22.056	26.306	173.262	33.530	63.496	16.438	20.775	23.148	28.747
1226		Mercator full	56.490	52.331	40.502	51.965	30.507	25.973	24.869	-	35.790	63.223	16.261	15.998	24.585	30.338
1227		d-Mercator	12.119	14.326	22.544	19.129	17.288	11.746	10.418	-	10.304	17.880	13.956	14.604	16.448	16.730
1228		Itiling	-	-	11.157	-	-	8.822	9.663	-	12.055	-	6.485	9.193	-	-
1229	MAP: Mean Average Precision	BFKL	0.208	0.278	0.480	0.320	0.531	0.756	0.827	0.128	0.459	0.547	0.454	0.575	0.381	0.558
1230		BFKL + DHRG	0.195	0.264	0.487	0.298	0.541	0.755	0.829	0.098	0.465	0.561	0.458	0.583	0.387	0.575
1231		Poincare 2D	0.321	0.392	0.642	0.471	0.603	0.685	0.889	0.048	0.438	0.193	0.492	0.630	0.384	0.576
1232		Poincare 2D + DHRG	0.377	0.471	0.640	0.493	0.600	0.677	0.877	0.019	0.387	0.162	0.382	0.606	0.254	0.505
1233		Poincare 3D	0.462	0.597	0.781	0.578	0.683	0.772	0.929	0.135	-	0.472	0.576	0.722	0.480	0.652
1234		Poincare 5D	0.512	0.670	0.828	0.629	0.714	0.872	0.933	0.187	0.548	0.666	0.600	0.728	0.519	0.671
1235		Lorentz 2D	0.325	0.375	0.614	0.456	0.607	0.542	0.889	0.046	0.413	0.148	0.494	0.654	0.386	0.574
1236		Lorentz 2D + DHRG	0.439	0.565	0.745	0.530	0.632	0.796	0.897	0.098	0.475	0.355	0.482	0.651	0.369	0.586
1237		Lorentz 3D	0.461	0.595	0.784	0.574	0.683	0.760	0.920	0.129	0.509	0.472	0.577	0.722	0.495	0.651
1238		penalty	0.238	0.209	0.457	0.363	0.538	0.755	0.777	0.112	0.449	0.447	0.448	0.588	0.374	0.573
1239		anneal2	-	-	0.611	-	0.603	0.647	0.848	-	0.401	-	0.536	0.673	0.479	0.607
1240		anneal3	-	-	0.650	-	0.624	0.680	0.921	-	0.426	-	0.577	0.815	0.513	0.652
1241		coalescent2	0.084	0.015	0.058	0.106	0.365	0.387	0.585	-	0.208	-	0.302	0.453	0.222	0.506
1242		coalescent3	-	-	0.224	0.184	0.215	0.359	0.565	-	0.162	-	0.303	0.528	0.289	0.491
1243		KVK	-	-	0.657	-	0.587	0.760	0.814	-	0.483	-	0.496	-	0.418	-
1244		CLOVE	0.512	0.625	0.685	0.584	0.555	0.777	0.807	0.437	0.580	0.698	0.461	0.575	0.415	0.463
1245		CLOVE + DHRG	0.495	0.618	0.722	0.599	0.593	0.787	0.813	0.368	0.670	0.687	0.467	0.581	0.418	0.552
1246		LPCS	0.301	0.454	0.571	0.428	0.251	0.671	0.632	0.149	0.213	0.213	0.561	0.263	0.353	0.209
1247		Mercator fast	0.172	0.222	0.387	0.253	0.368	0.680	0.805	0.218	0.488	0.455	0.336	0.411	0.270	0.520
1248		Mercator full	0.244	0.265	0.467	0.331	0.494	0.754	0.861	-	0.557	0.523	0.484	0.552	0.435	0.584
1249		d-Mercator	0.044	0.078	0.319	0.193	0.310	0.216	0.395	-	0.113	0.045	0.370	0.635	0.339	0.583
1250		orig TreeRep rec	-	0.437	0.680	-	0.355	0.817	0.894	-	0.572	-	0.205	0.241	0.243	0.233
1251		orig TreeRep norec	-	0.492	0.668	-	0.360	0.816	0.852	-	0.561	-	0.204	0.259	0.250	0.227
1252		Itiling	-	-	0.589	-	-	0.519	0.877	-	0.402	-	0.488	0.637	-	-
1253	MR: MeanRank	Euclidean 50D	0.988	1.000	0.980	1.000	1.000	1.000	1.000	0.452	1.000	0.831	1.000	1.000	1.000	1.000
1254		Euclidean 200D	0.994	0.975	1.000	0.984	1.000	1.000	1.000	0.826	1.000	0.866	1.000	1.000	1.000	1.000
1255		BFKL	1880.0	1717.0	169.2	558.2	84.0	50.4	9.2	7660.1	56.1	709.7	38.0	50.9	52.0	104.0
1256		BFKL + DHRG	1763.9	1719.2	156.5	558.6	82.1	45.9	8.7	6897.2	53.8	680.1	37.6	48.6	49.7	99.7
1257		Poincare 2D	1153.7	88												

1242

1243

1244

1245

	graph name	astrop	condma	grqc	hepph	facebo	yeast	diseas	follow	openfl	ias	CElegs	Human1	Drosol1	Mouse3
CSR: Greedy Success Ratio	BFKL	0.060	0.026	0.052	0.072	0.463	0.061	0.153	0.047	0.545	0.494	0.775	0.778	0.649	0.904
	BFKL + DHRG	0.082	0.031	0.056	0.073	0.454	0.064	0.195	0.051	0.516	0.475	0.787	0.830	0.675	0.926
	Poincare 2D	0.142	0.060	0.101	0.153	0.515	0.149	0.233	0.036	0.392	0.409	0.897	0.841	0.727	0.943
	Poincare 2D + DHRG	0.142	0.070	0.087	0.137	0.625	0.116	0.210	0.013	0.350	0.331	0.684	0.835	0.452	0.867
	Poincare 3D	0.259	0.146	0.176	0.200	0.542	0.216	0.261	0.098	-	0.697	0.933	0.915	0.847	0.964
	Lorentz 2D	0.159	0.053	0.099	0.169	0.460	0.141	0.220	0.035	0.395	0.360	0.899	0.880	0.747	0.943
	Lorentz 2D + DHRG	0.237	0.107	0.120	0.178	0.441	0.135	0.180	0.037	0.402	0.506	0.856	0.929	0.700	0.930
	Lorentz 3D	0.272	0.144	0.176	0.208	0.474	0.249	0.270	0.096	0.456	0.711	0.929	0.921	0.841	0.962
	penalty	0.073	0.017	0.053	0.078	0.384	0.060	0.220	0.026	0.525	0.454	0.797	0.756	0.629	0.914
	anneal2	-	-	0.078	-	0.394	0.083	0.154	-	0.360	-	0.899	0.871	0.865	0.965
GR: Greedy Routing Efficiency	anneal3	-	-	0.093	-	0.415	0.129	0.219	-	0.404	-	0.925	0.972	0.841	0.945
	coalescent2	0.034	0.006	0.019	0.055	0.371	0.045	0.128	-	0.249	-	0.465	0.529	0.427	0.808
	coalescent3	-	-	0.055	0.072	0.300	0.051	0.160	-	0.226	-	0.625	0.616	0.569	0.831
	KVK	-	-	0.109	-	0.413	0.098	0.164	-	0.492	-	0.892	-	0.779	-
	CLOVE	0.434	0.242	0.140	0.308	0.471	0.111	0.166	0.506	0.662	0.784	0.866	0.862	0.844	0.972
	CLOVE + DHRG	0.384	0.211	0.124	0.250	0.457	0.101	0.160	0.404	0.624	0.730	0.823	0.824	0.780	0.934
	LPCS	0.145	0.118	0.085	0.118	0.281	0.092	0.121	0.111	0.189	0.617	0.455	0.472	0.418	0.760
	Mercator fast	0.031	0.014	0.038	0.053	0.365	0.048	0.153	0.062	0.437	0.430	0.524	0.534	0.437	0.829
	Mercator full	0.140	0.043	0.068	0.122	0.442	0.068	0.195	-	0.568	0.526	0.868	0.784	0.783	0.960
	d-Mercator	0.014	0.005	0.013	0.029	0.127	0.023	0.040	-	0.127	0.066	0.587	0.786	0.562	0.880
GR: Greedy Routing Efficiency	Itiling	-	-	0.102	-	-	0.126	0.205	-	0.369	-	0.897	0.855	-	-
	BFKL	0.055	0.025	0.050	0.068	0.451	0.060	0.149	0.044	0.526	0.482	0.688	0.671	0.574	0.848
	BFKL + DHRG	0.072	0.028	0.053	0.068	0.444	0.063	0.188	0.048	0.493	0.466	0.697	0.709	0.593	0.856
	Poincare 2D	0.120	0.054	0.094	0.137	0.496	0.142	0.228	0.032	0.370	0.397	0.778	0.733	0.630	0.870
	Poincare 2D + DHRG	0.122	0.061	0.081	0.122	0.596	0.111	0.204	0.013	0.324	0.317	0.599	0.726	0.402	0.794
	Poincare 3D	0.221	0.127	0.158	0.177	0.534	0.202	0.253	0.087	-	0.666	0.830	0.818	0.758	0.933
	Lorentz 2D	0.134	0.047	0.092	0.150	0.442	0.134	0.213	0.030	0.372	0.348	0.778	0.769	0.644	0.867
	Lorentz 2D + DHRG	0.193	0.092	0.109	0.156	0.432	0.130	0.177	0.033	0.378	0.487	0.739	0.802	0.598	0.854
	Lorentz 3D	0.231	0.126	0.159	0.183	0.468	0.234	0.261	0.085	0.435	0.681	0.832	0.822	0.756	0.931
	penalty	0.066	0.016	0.051	0.072	0.361	0.059	0.211	0.025	0.499	0.443	0.699	0.662	0.555	0.843
GR: Greedy Routing Efficiency	anneal2	-	-	0.071	-	0.376	0.080	0.150	-	0.334	-	0.789	0.766	0.752	0.892
	anneal3	-	-	0.086	-	0.392	0.122	0.212	-	0.375	-	0.820	0.883	0.745	0.887
	coalescent2	0.032	0.006	0.018	0.052	0.370	0.044	0.125	-	0.235	-	0.432	0.481	0.395	0.776
	coalescent3	-	-	0.053	0.069	0.298	0.050	0.157	-	0.216	-	0.584	0.553	0.529	0.805
	KVK	-	-	0.099	-	0.406	0.094	0.161	-	0.467	-	0.782	-	0.684	-
	CLOVE	0.340	0.194	0.122	0.240	0.454	0.106	0.162	0.419	0.622	0.747	0.749	0.727	0.740	0.922
	CLOVE + DHRG	0.311	0.175	0.113	0.213	0.448	0.097	0.157	0.345	0.591	0.699	0.724	0.700	0.698	0.900
	LPCS	0.122	0.099	0.079	0.106	0.273	0.089	0.118	0.098	0.179	0.593	0.420	0.410	0.381	0.736
	Mercator fast	0.030	0.014	0.037	0.050	0.363	0.047	0.150	0.058	0.421	0.424	0.480	0.476	0.407	0.785
	Mercator full	0.121	0.040	0.063	0.110	0.434	0.067	0.190	-	0.541	0.514	0.761	0.683	0.698	0.915
LL: normalized loglikelihood	d-Mercator	0.013	0.005	0.013	0.027	0.113	0.023	0.039	-	0.117	0.064	0.538	0.702	0.520	0.839
	Itiling	-	-	0.094	-	-	0.120	0.201	-	0.348	-	0.775	0.743	-	-
	BFKL	0.254	0.271	0.487	0.452	0.554	0.586	0.651	0.230	0.457	0.579	0.283	0.371	0.259	0.348
	BFKL + DHRG	0.321	0.298	0.534	0.496	0.605	0.608	0.693	0.308	0.514	0.616	0.302	0.397	0.293	0.401
	Poincare 2D	0.413	0.456	0.675	0.649	0.714	0.614	0.807	0.272	0.621	0.510	0.348	0.438	0.309	0.409
	Poincare 2D + DHRG	0.434	0.485	0.657	0.647	0.711	0.600	0.792	0.231	0.585	0.457	0.293	0.423	0.250	0.339
	Poincare 3D	0.548	0.594	0.770	0.737	0.748	0.658	0.856	0.384	-	0.633	0.415	0.552	0.388	0.461
	Lorentz 2D	0.420	0.445	0.662	0.638	0.708	0.548	0.794	0.265	0.606	0.479	0.349	0.463	0.311	0.407
	Lorentz 2D + DHRG	0.501	0.542	0.727	0.707	0.720	0.660	0.799	0.314	0.635	0.590	0.352	0.460	0.318	0.417
	Lorentz 3D	0.551	0.593	0.769	0.735	0.746	0.658	0.846	0.381	0.669	0.634	0.422	0.553	0.391	0.461
LL: normalized loglikelihood	penalty	0.346	0.314	0.543	0.564	0.672	0.588	0.698	0.286	0.508	0.555	0.312	0.412	0.300	0.406
	anneal2	-	-	0.634	-	0.701	0.552	0.731	-	0.604	-	0.373	0.476	0.346	0.426
	anneal3	-	-	0.667	-	0.721	0.578	0.809	-	0.622	-	0.410	0.638	0.381	0.473
	coalescent2	0.210	0.108	0.251	0.470	0.518	0.413	0.581	-	0.501	-	0.222	0.329	0.181	0.348
	coalescent3	-	-	0.394	0.467	0.334	0.181	0.425	-	0.399	-	0.226	0.386	0.242	0.332
	KVK	-	-	0.669	-	0.662	0.642	0.741	-	0.629	-	0.348	-	0.327	-
	CLOVE	0.419	0.532	0.606	0.444	0.567	0.640	0.694	0.383	0.507	0.673	0.284	0.358	0.240	0.180
	CLOVE + DHRG	0.501	0.570	0.695	0.670	0.636	0.659	0.719	0.435	0.657	0.685	0.303	0.380	0.302	0.364
	LPCS	0.335	0.489	0.591	0.551	0.254	0.597	0.527	0.275	0.462	0.633	0.150	0.202	0.105	0.250
	Mercator fast	0.253	0.246	0.425	0.437	0.545	0.535	0.696	0.250	0.587	0.482	0.262	0.308	0.251	0.368
LL: normalized loglikelihood	Mercator full	0.384	0.361	0.554	0.574	0.624	0.608	0.753	-	0.636	0.603	0.340	0.391	0.327	0.401
	d-Mercator	0.022	0.037	0.254	0.185	0.425	0.174	0.334	-	0.122	0.068	0.290	0.490	0.313	0.414
ICV: Information Control Value	BFKL	0.521	0.466	0.431	0.550	0.644	0.353	0.456	0.487	0.467	0.428	0.513	0.567	0.510	0.590
	BFKL + DHRG	0.536	0.462	0.447	0.558	0.662	0.335	0.450	0.494	0.488	0.428	0.507	0.571	0.510	0.609
	Poincare 2D	0.587	0.552	0.575	0.666	0.723	0.433	0.513	0.538	0.598	0.513	0.539	0.573	0.533	0.613
	Poincare 2D + DHRG	0.578	0.535	0.539	0.650	0.710	0.389	0.464	0.516	0.564	0.473	0.508	0.561	0.503	0.584
	Poincare 3D	0.595	0.537	0.531	0.656	0.696	0.373	0.440	0.535	-	0.451	0.482	0.572	0.481	0.612
	Lorentz 2D	0.589	0.553	0.578	0.662	0.723	0.450	0.529	0.538	0.597	0.501	0.540	0.588	0.533	0.613
	Lorentz 2D + DHRG	0.607	0.565	0.584	0.684	0.723	0.436	0.520	0.543	0.593	0.499	0.534	0.588	0.531	0.615

Figure 7: Quality assessment of embedders on real-world hierarchies and networks: MAP.

Figure 8: Quality assessment of embedders on real-world hierarchies and networks: $-\log(\text{MR})$.

experimental results might be caused by differences in hyperparameters; the repository only gives the values of hyperparameters used to reproduce the 10-dimensional embeddings.

H REPEATED EXPERIMENTS

In Tables 8 and 9 we list the results of repeated experiments on the NOUN hierarchy and the GRQC, YEAST, MOUSE3, HUMAN1, DROSOPHILA1 and CELEGANS networks. In most cases, the differences are minor and do not affect the rankings.

Figure 9: Quality assessment of embedders on real-world networks: greedy success rate (GSR).

Figure 10: Quality assessment of embedders on real-world networks: greedy routing efficiency (GRE).

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425

Figure 11: Quality assessment of embedders on real-world networks: $-\log(\text{GSF})$.

1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Figure 12: Quality assessment of embedders on real-world networks: information control value (ICV).

Figure 13: Aggregates for MR, ICV, GSR, and GSF measures.

1558 Figure 14: Density plots of the differences between the values of quality measures obtained by
1559 Lorentz 2D and BFKL embedders. Top to bottom: MAP, $-\log(\text{MR})$, GSR, $-\log(\text{GSF})$. Left to right:
1560 $T = 0.1$, $T = 0.4$, $T = 0.7$. Negative values indicate that BFKL embedder performed better.

1561
1562
1563
1564
1565

	MAP		MR		GSR		GSF		ICV	
	Coeff.	Pr($> z $)	Coeff.	Pr($> z $)						
Intercept	-1.9583	9.11e-08	-1.5132	2.11e-08	0.7312	0.00468	0.4256	0.09397	47.2737	4.25e-13
Temp=0.4	-0.8864	0.004922	-0.3956	0.124942	-2.0924	4.27e-12	-2.1689	2.09e-12	-1.5689	0.000458
Temp=0.7	-4.6115	1.59e-14	-0.5732	0.028647	-3.8869	<2e-16	-4.0383	<2e-16	-4.4975	6.87e-10
Size = 1000	1.5956	0.000119	1.1338	0.000113	0.8173	0.00796	1.0527	0.00103	2.8439	1.80e-05
Size = 2000	4.0095	<2e-16	1.8908	5.62e-11	2.4526	6.34e-13	2.7747	1.29e-14	7.2818	6.62e-09
R_{BFKL}/R_{L2}	—	—	—	—	—	—	—	—	-58.9436	2.76e-13
N	450		450		450		450		450	
ACC _{cv}	0.8598		0.6707		0.8008		0.8047		0.9044	
ACC _{bench}	0.7178		0.6711		0.5289		0.5556		0.8667	
κ	0.6288		0.1324		0.5992		0.6053		0.4724	

Table 6: Results of logit regressions for the determinants of BFKL embedder outperforming Lorentz 2D embedder in terms of quality measures. ACC_{cv} and κ are average accuracy and Kappa from 20-fold cross-validation; ACC_{bench} is the accuracy of the naive model (always predict mode).

graph name	NOUN	VERB	ASTRO	COND	GRQC	HEPPH
Poincaré 2D MR (ours)	88.0	15.7	1127.0	889.4	68.8	302.2
Poincaré 2D MR	90.7	10.7	—	—	—	—
Poincaré 2D MAP (ours)	0.105	0.314	0.324	0.391	0.660	0.472
Poincaré 2D MAP	0.118	0.365	—	—	—	—
Lorentz 2D MR (ours)	43.0	42.1	1104.8	949.2	81.4	293.2
Lorentz 2D MR	22.8	3.64	—	—	—	—
Lorentz 2D MAP (ours)	0.168	0.184	0.306	0.345	0.599	0.417
Lorentz 2D MAP	0.305	0.579	—	—	—	—
Euclidean 50D MR (ours)	1.5	1.2	1.0	1.0	1.0	1.0
Euclidean 50D MR	1281.7	—	—	—	—	—
Euclidean 50D MAP (ours)	0.921	0.908	0.988	0.968	1.000	0.980
Euclidean 50D MAP	0.140	—	0.376	0.356	0.522	0.434

Table 7: Our results compared with the results from [Nickel and Kiela, 2017; Nickel and Kiela, 2018].

I TRIVIA ABOUT THE NOUN DATASET

This Appendix gives details about our experiments with the NOUN dataset, i.e., the WordNet hypernymy structure. This was the first hierarchy that PE/LE have been benchmarked on, common in ML studies.

We get MAP of 0.284 using BFKL which is significantly better than the result of Poincaré 2D of 0.118, but not the result of Lorentz 2D of 0.305, according to Nickel and Kiela (2018). However, the results obtained by us are different: 0.105 for 2D PE and 0.168 for 2D LE. Furthermore, while the PE/LE papers mention the good performance of their embedding methods, on our machine, BFKL is almost 100 times faster than LE, which is especially impressive given that BFKL runs on a single CPU. Furthermore, the DHRG improvement improves the BFKL embedding from dMAP 0.050 to dMAP 0.411, while LE is improved from dMAP 0.192 to dMAP 0.320. This suggests that the layered approach of BFKL produces a better structure of the embedding. Furthermore, the combination of BFKL+DHRG is still more than 10 times faster than 2D LE. (The dMAP result of 0.050 is very low compared to the continuous result of 0.284; this seems to be an outlier, in our other experiments the results of MAP and dMAP are very similar.)

This is a very large hierarchy, so it is not feasible to run slower embedders on it. We have also run the new CLOVE embedder, which achieves MAP of 0.769, which is significantly better than the earlier two-dimensional embedders. Furthermore, it runs over 3 times faster than BFKL. It is possible to apply the DHRG improvement to this embedding, obtaining an even better value of MAP (0.791).

These results are consistent across multiple runs (Table 10).

1620
1621
1622
1623
1624
1625

	graph name	grqc	yeast	CElegs	Human1	Drosophila	Mouse3
	nodes	4158	1458	279	493	350	1076
	edges (undirected)	13422	1948	2287	7773	2887	90811
CSR	BFKL	0.059 (0.055, 0.065)	0.062 (0.060, 0.064)	0.781 (0.770, 0.792)	0.779 (0.742, 0.804)	0.629 (0.618, 0.641)	0.905 (0.903, 0.908)
	BFKL + DHRG	0.060 (0.056, 0.067)	0.065 (0.061, 0.068)	0.789 (0.777, 0.800)	0.822 (0.791, 0.866)	0.660 (0.654, 0.669)	0.927 (0.924, 0.931)
	Poincare 2D	-	0.146 (0.133, 0.154)	0.894 (0.879, 0.900)	0.864 (0.845, 0.880)	0.733 (0.721, 0.747)	0.942 (0.934, 0.946)
	Poincare 3D	-	0.232 (0.222, 0.245)	0.939 (0.930, 0.950)	0.917 (0.913, 0.922)	0.830 (0.819, 0.842)	0.968 (0.965, 0.970)
	Lorentz 2D	0.107 (0.102, 0.114)	0.137 (0.131, 0.143)	0.889 (0.875, 0.894)	0.882 (0.855, 0.907)	0.743 (0.733, 0.751)	0.938 (0.935, 0.941)
	Lorentz 2D + DHRG	0.133 (0.124, 0.139)	0.138 (0.133, 0.145)	0.850 (0.842, 0.855)	0.881 (0.857, 0.910)	0.692 (0.677, 0.706)	0.931 (0.928, 0.935)
	Lorentz 3D	-	0.241 (0.234, 0.245)	0.921 (0.914, 0.928)	0.922 (0.911, 0.930)	0.834 (0.829, 0.840)	0.966 (0.964, 0.969)
	penalty	0.058 (0.054, 0.064)	0.059 (0.058, 0.060)	0.782 (0.748, 0.798)	0.783 (0.758, 0.811)	0.622 (0.599, 0.637)	0.915 (0.908, 0.920)
	anneal2	0.076 (0.075, 0.078)	0.089 (0.084, 0.097)	0.916 (0.901, 0.933)	0.896 (0.847, 0.928)	0.841 (0.825, 0.858)	0.968 (0.964, 0.971)
	anneal3	0.091 (0.089, 0.093)	0.125 (0.117, 0.136)	0.929 (0.921, 0.937)	0.951 (0.932, 0.963)	0.846 (0.835, 0.855)	0.947 (0.945, 0.950)
	KVK	0.119 (0.105, 0.131)	0.099 (0.098, 0.100)	0.871 (0.860, 0.884)	-	0.794 (0.784, 0.816)	-
	CLOVE	0.158 (0.146, 0.166)	0.105 (0.094, 0.109)	0.844 (0.831, 0.857)	0.831 (0.813, 0.852)	0.829 (0.819, 0.839)	0.968 (0.966, 0.970)
	LPCS	0.085 (0.083, 0.086)	0.089 (0.086, 0.093)	0.492 (0.463, 0.519)	0.509 (0.483, 0.531)	0.427 (0.410, 0.439)	0.758 (0.745, 0.779)
	Mercator fast	-	0.048 (0.048, 0.049)	0.524 (0.523, 0.525)	0.534 (0.532, 0.535)	0.440 (0.436, 0.445)	0.830 (0.829, 0.832)
	Mercator full	-	0.068 (0.067, 0.070)	0.845 (0.830, 0.860)	0.797 (0.787, 0.811)	0.758 (0.744, 0.772)	0.960 (0.959, 0.961)
	d-Mercator	0.015 (0.014, 0.016)	0.021 (0.019, 0.023)	0.582 (0.579, 0.585)	0.788 (0.787, 0.789)	0.563 (0.562, 0.566)	0.881 (0.880, 0.881)
GRE	BFKL	0.056 (0.053, 0.061)	0.061 (0.059, 0.063)	0.692 (0.685, 0.699)	0.674 (0.643, 0.695)	0.561 (0.553, 0.569)	0.850 (0.849, 0.852)
	BFKL + DHRG	0.057 (0.053, 0.066)	0.064 (0.061, 0.067)	0.691 (0.681, 0.695)	0.704 (0.676, 0.740)	0.583 (0.578, 0.589)	0.859 (0.855, 0.864)
	Poincare 2D	-	0.139 (0.127, 0.147)	0.776 (0.763, 0.782)	0.750 (0.738, 0.761)	0.633 (0.624, 0.644)	0.869 (0.864, 0.872)
	Poincare 3D	-	0.217 (0.208, 0.230)	0.835 (0.829, 0.842)	0.817 (0.812, 0.819)	0.745 (0.736, 0.754)	0.937 (0.934, 0.938)
	Lorentz 2D	0.099 (0.095, 0.105)	0.131 (0.126, 0.136)	0.771 (0.762, 0.776)	0.768 (0.747, 0.785)	0.644 (0.637, 0.650)	0.865 (0.861, 0.866)
	Lorentz 2D + DHRG	0.120 (0.113, 0.125)	0.132 (0.127, 0.138)	0.737 (0.733, 0.743)	0.763 (0.745, 0.786)	0.600 (0.589, 0.612)	0.855 (0.852, 0.859)
	Lorentz 3D	-	0.225 (0.219, 0.230)	0.824 (0.818, 0.829)	0.820 (0.813, 0.825)	0.750 (0.745, 0.756)	0.935 (0.933, 0.937)
	penalty	0.055 (0.052, 0.061)	0.058 (0.057, 0.059)	0.686 (0.661, 0.700)	0.680 (0.662, 0.707)	0.548 (0.523, 0.560)	0.842 (0.837, 0.845)
	anneal2	0.070 (0.069, 0.072)	0.086 (0.081, 0.094)	0.802 (0.790, 0.816)	0.779 (0.739, 0.800)	0.733 (0.720, 0.746)	0.894 (0.891, 0.897)
	anneal3	0.084 (0.082, 0.085)	0.119 (0.112, 0.128)	0.826 (0.820, 0.833)	0.863 (0.843, 0.875)	0.751 (0.742, 0.759)	0.890 (0.888, 0.892)
	KVK	0.108 (0.095, 0.118)	0.095 (0.094, 0.096)	0.765 (0.756, 0.775)	-	0.701 (0.691, 0.716)	-
	CLOVE	0.136 (0.127, 0.141)	0.100 (0.090, 0.104)	0.738 (0.727, 0.745)	0.701 (0.692, 0.717)	0.727 (0.718, 0.735)	0.918 (0.916, 0.920)
	LPCS	0.078 (0.077, 0.080)	0.086 (0.083, 0.089)	0.448 (0.425, 0.472)	0.443 (0.420, 0.463)	0.387 (0.372, 0.398)	0.732 (0.719, 0.751)
	Mercator fast	-	0.048 (0.047, 0.048)	0.481 (0.480, 0.482)	0.475 (0.474, 0.476)	0.410 (0.406, 0.414)	0.786 (0.785, 0.787)
	Mercator full	-	0.066 (0.065, 0.068)	0.744 (0.732, 0.756)	0.693 (0.685, 0.705)	0.679 (0.668, 0.690)	0.916 (0.915, 0.916)
	d-Mercator	0.014 (0.014, 0.016)	0.021 (0.019, 0.022)	0.533 (0.530, 0.536)	0.704 (0.703, 0.705)	0.522 (0.521, 0.524)	0.840 (0.839, 0.840)

Table 8: Repeated experiments: greedy routing measures. Mean values from 5 runs. Bootstrapped confidence intervals in brackets.

1666
1667
1668
1669
1670
1671
1672
1673

1674

1675

1676

1677

1678

1679

1680

	graph name nodes edges (undirected)	grqc 4158 13422	yeast 1458 1948	CElegs 279 2287	Human1 493 7773	Droso1 350 2887	Mouse3 1076 90811
MAP	BFKL	0.492 (0.484,0.505)	0.735 (0.725,0.747)	0.462 (0.456,0.468)	0.568 (0.550,0.579)	0.384 (0.379,0.387)	0.562 (0.559,0.564)
	BFKL + DHRG	0.497 (0.489,0.512)	0.735 (0.723,0.747)	0.464 (0.460,0.467)	0.575 (0.560,0.586)	0.391 (0.384,0.397)	0.577 (0.574,0.578)
	Poincare 2D	- (0.641,0.682)	0.671 (0.482,0.498)	0.493 (0.573,0.580)	0.640 (0.634,0.645)	0.387 (0.384,0.390)	0.575 (0.572,0.577)
	Poincare 3D	- (0.748,0.771)	0.765 (0.573,0.580)	0.576 (0.486,0.496)	0.719 (0.637,0.650)	0.482 (0.387,0.394)	0.652 (0.571,0.574)
	Lorentz 2D	0.612 (0.605,0.615)	0.535 (0.525,0.540)	0.491 (0.486,0.496)	0.645 (0.637,0.650)	0.390 (0.387,0.394)	0.573 (0.571,0.574)
	Lorentz 2D + DHRG	0.745 (0.741,0.747)	0.782 (0.764,0.795)	0.481 (0.477,0.486)	0.637 (0.628,0.646)	0.383 (0.374,0.391)	0.584 (0.583,0.586)
	Lorentz 3D	- (0.759,0.770)	0.764 (0.572,0.575)	0.574 (0.572,0.575)	0.715 (0.710,0.719)	0.489 (0.481,0.493)	0.653 (0.652,0.654)
	penalty	0.465 (0.460,0.472)	0.735 (0.725,0.747)	0.451 (0.442,0.458)	0.578 (0.566,0.592)	0.376 (0.357,0.386)	0.574 (0.571,0.575)
	anneal2	0.610 (0.607,0.613)	0.642 (0.635,0.646)	0.536 (0.529,0.539)	0.669 (0.666,0.672)	0.474 (0.473,0.478)	0.608 (0.607,0.609)
	anneal3	0.650 (0.648,0.652)	0.677 (0.674,0.680)	0.582 (0.577,0.586)	0.795 (0.780,0.808)	0.514 (0.511,0.517)	0.653 (0.653,0.654)
	KVK	0.639 (0.573,0.663)	0.750 (0.742,0.756)	0.489 (0.483,0.493)	- (0.423,0.439)	0.432 (0.423,0.439)	- (0.423,0.439)
	CLOVE	0.684 (0.683,0.685)	0.775 (0.772,0.777)	0.460 (0.458,0.465)	0.561 (0.546,0.571)	0.415 (0.409,0.422)	0.466 (0.461,0.473)
	LPCS	0.574 (0.571,0.579)	0.668 (0.657,0.673)	0.265 (0.253,0.294)	0.353 (0.338,0.363)	0.209 (0.196,0.221)	0.398 (0.386,0.409)
	Mercator fast	- (0.679,0.684)	0.682 (0.336,0.337)	0.337 (0.411,0.412)	0.411 (0.270,0.270)	0.270 (0.270,0.270)	0.520 (0.520,0.520)
	Mercator full	- (0.752,0.755)	0.753 (0.482,0.493)	0.486 (0.548,0.551)	0.549 (0.418,0.431)	0.423 (0.584,0.585)	0.585 (0.584,0.585)
	d-Mercator	0.317 (0.314,0.319)	0.215 (0.207,0.223)	0.370 (0.367,0.372)	0.636 (0.635,0.637)	0.346 (0.342,0.350)	0.583 (0.583,0.583)
	orig TreeRep rec	- (0.191,0.207)	- (0.191,0.207)	0.199 (0.249,0.277)	0.264 (0.223,0.241)	0.233 (0.226,0.241)	0.236 (0.226,0.241)
	orig TreeRep norec	- (0.207,0.233)	- (0.207,0.233)	0.220 (0.254,0.277)	0.263 (0.228,0.244)	0.233 (0.228,0.244)	0.243 (0.232,0.254)
MR	BFKL	171.1 (161.1,181.5)	53.4 (51.5,56.7)	37.5 (36.7,38.7)	50.1 (48.6,50.9)	53.0 (52.4,53.8)	102.1 (101.5,103.3)
	BFKL + DHRG	153.8 (140.5,163.1)	49.0 (46.5,55.0)	36.9 (36.0,37.5)	48.5 (46.3,49.7)	49.9 (49.6,50.4)	98.9 (98.4,99.4)
	Poincare 2D	- (30.7,33.5)	32.7 (31.1,31.7)	31.4 (31.1,31.7)	42.8 (39.9,49.1)	47.1 (46.6,47.9)	96.5 (96.2,96.9)
	Poincare 3D	- (21.5,22.7)	22.1 (21.5,22.7)	27.3 (26.9,27.8)	25.7 (25.3,26.4)	39.6 (39.2,39.8)	84.3 (84.2,84.5)
	Lorentz 2D	75.3 (72.2,79.1)	38.3 (37.8,38.9)	31.6 (31.4,31.8)	40.5 (39.1,42.8)	47.2 (47.0,47.4)	96.6 (96.3,96.9)
	Lorentz 2D + DHRG	84.5 (80.3,87.6)	33.4 (32.9,34.2)	32.6 (32.5,32.7)	40.5 (39.4,42.6)	47.9 (47.7,48.0)	96.3 (96.1,96.8)
	Lorentz 3D	- (20.9,22.4)	21.6 (20.9,22.4)	27.2 (27.0,27.3)	26.5 (25.6,27.9)	39.3 (38.8,39.9)	84.0 (83.9,84.1)
	penalty	143.5 (131.7,152.0)	56.2 (53.3,59.9)	36.5 (35.5,37.4)	46.6 (45.3,48.7)	49.7 (49.4,50.0)	97.1 (96.8,97.7)
	anneal2	156.0 (151.8,160.7)	72.9 (70.9,74.7)	32.9 (32.6,33.4)	43.3 (40.6,46.5)	46.2 (45.8,46.5)	93.7 (93.3,93.8)
	anneal3	121.4 (118.9,123.1)	56.8 (55.3,59.5)	27.1 (26.6,27.7)	20.1 (18.2,22.6)	38.9 (38.7,39.1)	79.7 (79.6,79.7)
	KVK	130.1 (125.4,141.2)	49.6 (48.1,50.7)	36.1 (35.2,36.9)	- (47.2,47.6)	47.4 (47.2,47.6)	- (47.2,47.6)
	CLOVE	158.2 (153.9,164.6)	49.4 (48.6,50.9)	42.9 (42.0,43.6)	55.6 (52.6,58.7)	63.0 (61.8,64.0)	164.9 (161.0,167.9)
	LPCS	127.3 (124.3,130.4)	48.8 (47.6,49.9)	52.2 (49.3,53.9)	67.0 (64.1,70.7)	75.7 (74.4,76.4)	157.0 (151.5,161.6)
	Mercator fast	- (50.7,50.9)	50.8 (37.7,37.8)	37.8 (37.7,37.8)	41.5 (41.5,41.6)	54.3 (54.3,54.4)	103.5 (103.5,103.5)
	Mercator full	- (45.4,46.0)	45.7 (34.1,34.3)	34.2 (34.1,34.3)	41.2 (41.1,41.3)	47.8 (47.6,47.9)	99.5 (99.4,99.6)
	d-Mercator	500.6 (478.4,509.2)	187.8 (174.2,201.7)	34.7 (34.3,35.0)	24.1 (24.1,24.1)	41.0 (40.9,41.1)	92.8 (92.8,92.8)

Table 9: Repeated experiments: MAP and MR measures. Mean values from 5 runs. Bootstrapped confidence intervals in brackets.

1721

1722

1723

1724

1725

1726

1727

1728
 1729
 1730
 1731
 1732
 1733
 1734
 1735
 1736
 1737
 1738
 1739
 1740
 1741
 1742
 1743
 1744
 1745

embedder	MAP	dMAP	MR	dMR
BFKL	0.280 (0.276,0.286)	0.049 (0.048,0.049)	64.7 (63.3,66.0)	807.5 (784.3,824.3)
BFKL + DHRG	0.452 (0.430,0.466)	0.442 (0.423,0.456)	34.8 (33.7,37.3)	34.9 (33.9,37.3)
Poincare 2D	0.105 (0.104,0.105)	0.018 (0.018,0.018)	89.5 (88.1,90.7)	2536.2 (2500.6,2565.1)
Poincare 2D + DHRG	0.056 (0.056,0.056)	0.062 (0.062,0.063)	362.3 (339.7,379.7)	370.3 (351.7,388.9)
Poincare 3D	0.490 (0.487,0.492)		16.1 (15.7,16.3)	
Lorentz 2D	0.196 (0.195,0.196)	0.193 (0.191,0.193)	41.8 (41.2,42.3)	42.0 (41.4,42.4)
Lorentz 2D + DHRG	0.326 (0.323,0.328)	0.324 (0.321,0.326)	30.1 (29.2,30.8)	28.4 (27.6,29.0)
Lorentz 3D	0.504 (0.503,0.505)		14.8 (14.7,15.0)	
CLOVE	0.769 (0.763,0.777)	0.630 (0.624,0.636)	18.8 (18.3,19.7)	23.1 (22.6,24.1)
CLOVE + DHRG	0.791 (0.788,0.795)	0.783 (0.779,0.787)	21.7 (21.1,22.6)	20.9 (20.5,21.6)

1762 Table 10: Repeated experiments on the NOUN hierarchy. Mean values from 5 runs. Bootstrapped
 1763 confidence intervals in brackets.

1764
 1765
 1766
 1767
 1768
 1769
 1770
 1771
 1772
 1773
 1774
 1775
 1776
 1777
 1778
 1779
 1780
 1781