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ABSTRACT

A treatment is usually appropriate for some group (the “sick” group) on whom it
has an effect, but it can also have a side-effect when given to subjects from another
group (the “healthy” group). In a non-targeted trial both sick and healthy subjects
may be treated, producing heterogeneous effects within the treated group. Infer-
ring the correct treatment effect on the sick population is then difficult, because the
effect and side-effect are tangled. We propose an efficient nonparametric approach
to untangling the effect and side-effect, called PCM (pre-cluster and merge). We
prove its asymptotic consistency in a general setting and show, on synthetic data,
more than a 10x improvement in accuracy over existing state-of-the-art.

1 INTRODUCTION

A standard approach to causal effect estimation is the targeted randomized controlled trial (RCT),
see (8; 13; 15; 17; 23). To test a treatment’s effect on a sick population, subjects are recruited
and admitted into the trial based on eligibility criteria designed to identify sick subjects. The trial
subjects are then randomly split into a treated group that receives the treatment and a control group
that receives the best alternative treatment (or a placebo). “Targeted” means only sick individuals
are admitted into the trial via the eligibility criteria, with the implicit assumption that only a single
treatment-effect is to be estimated. This ignores the possibility of treated subgroups among the sick
population with heterogeneous effects. Further, one often does not have the luxury of a targeted
RCT. For example, eligibility criteria for admittance to the trial may not unambiguously identify
sick subjects, or one may not be able to control who gets into the trial. When the treatment is not
exclusively applied on sick subjects, we say the trial is non-targeted and new methods are needed
to extract the treatment effect on the sick, (25). Non-targeted trials are the norm whenever subjects
self-select into an intervention, which is often the case across domains stretching from healthcare to
advertising. We propose a nonparametric approach to causal inference in non-targeted trials, based
on a pre-cluster and merge strategy.

Assume a population is broken into ℓ groups with different expected treatment effects in each group.
Identify each group with the level of its treatment effect, so there are effect levels c = 0, 1, . . . , ℓ−1.
For example, a population’s subjects can be healthy, c = 0, or sick, c = 1. We use the Rubin-
Neyman potential outcome framework, (19). A subject is a tuple s = (x, c, t, y) sampled from a
distribution D, where x ∈ [0, 1]d is a feature-vector such as [age, weight], c indicates the subject’s
level, t indicates the subjects treatment cohort, and y is the observed outcome. The observed out-
come is one of two potential outcomes, v if treated or v̄ if not treated. We consider strongly ignorable
trials: given x, the propensity to treat is strictly between 0 and 1 and the potential outcomes {v, v̄}
depend only on x, independent of t. In a strongly ignorable trial, one can use the features to identify
counterfactual controls for estimating effect. The level c is central to the scope of our work. Math-
ematically, c is a hidden effect modifier which determines the distribution of the potential outcomes
(c is an unknown and possibly complex function of x). The level c dichotomizes the feature space
into subpopulations with different effects. One tries to design the eligibility criteria for the trial to
ensure that the propensity to treat is non-zero only for subjects in one level. What to do when the
eligibility criteria allow more than one level into the trial is exactly the problem we address. Though
our work applies to a general number of levels, all the main ideas can be illustrated with just two
levels, c ∈ {0, 1}. For the sake of concreteness, we denote these two levels healthy and sick.
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A trial samples n subjects, s1, . . . , sn. If subject i is treated, ti = 1 and the observed outcome
yi = vi, otherwise ti = 0, and the observed outcome is v̄i (consistency). The treated group is
T = {i | ti = 1}, the control group is C = {i | ti = 0}, and the sick group is S = {i | ci = 1}. Our
task is to determine if the treatment works on the sick, and if there is any side-effect on the healthy.
We wish to estimate the effect and side-effect, defined as

EFF = ED[v − v̄ | c = 1] (1)
SIDE-EFF = ED[v − v̄ | c = 0].

Most prior work estimates EFF using the average treatment effect for the treated, the ATT (1),

ATT = averagei∈T (vi)− averagei∈T (v̄i), (2)

which assumes all treated subjects are sick. There are several complications with this approach.

(i) Suppose a subject is treated with probability p(x, c), the propensity to treat. For a non-uniform
propensity to treat, the treated group has a selection bias, and ATT is a biased estimate of EFF.
Ways to address this bias include inverse propensity weighting, (18), matched controls, (1), and
learning the outcome function y(x, t), see for example (2; 3; 10; 12; 22; 23). Alternatively, one
can simply ignore this bias and accept that ATT is estimating E[v − v̄ | t = 1].

(ii) The second term on the RHS in (2) can’t be computed because we don’t know the counterfac-
tual v̄ for treated subjects. Much of causal inference deals with accurate unbiased estimation
of averagei∈T (v̄i), (4; 9). Our goal is not to improve counterfactual estimation. Hence, in our
experiments, we use off-the-shelf counterfactual estimators.

(iii) (Focus of our work) The trial is non-targeted and some (often most) treated subjects are healthy.

To highlight the challenge in (iii) above, consider a simple case with uniform propensity to treat,
p(x, c) = p. Conditioning on at least one treated subject,

E[ATT] = P[sick]× EFF + P[healthy]× SIDE-EFF.

The ATT is a mix of effect and side effect and is therefore biased when the treatment effect is
heterogeneous across levels. In many settings, for example healthcare, P[sick] ≪ P[healthy] and the
bias is extreme, rendering ATT useless. Increasing the number of subjects won’t resolve this bias.
State-of-the-art causal inference packages provide methods to compute ATT, specifically aimed at
accurate estimates of the counterfactual averagei∈T (v̄i), (5; 21). These packages suffer from the
mixing bias above. We propose a fix which can be used as an add-on to these packages.

Our Contribution. Our main result is an asymptotically consistent distribution independent algo-
rithm to extract the correct effect levels and associated subpopulations in non-targeted trials, when
the number of effect-levels is unknown. Our main result is Theorem 1. Assume a non-targeted trial
has a treated group with n subjects sampled from an unknown distribution D. There is an algorithm
which identifies ℓ̂ effect-levels with estimated expected effect µ̂c in level c, and assigns each subject
si to a level ĉi which, under mild technical conditions, satisfies:
Theorem 1. All of the following hold with probability 1− o(1):

(1) ℓ̂ = ℓ, i.e., the correct number of effect levels ℓ is identified.
(2) µ̂c = E[v − v̄ | c] + o(1), i.e., the effect at each level is estimated accurately.
(3) The fraction of subjects assigned the correct effect level is 1 − o(1). The effect level ĉi is

correct if µĉi matches, to within o(1), the expected treatment effect for the subject.

For the formal assumptions, see Section 3. Parts (1) and (2) say the algorithm extracts the correct
number of levels and their expected effects. Part (3) says the correct subpopulations for each level
are extracted. Knowing the correct subpopulations is useful for post processing, for example to
understand the effects in terms of the features. Our algorithm satisfying Theorem 1 is given in Sec-
tion 2. The algorithm uses an unsupervised pre-cluster and merge strategy which reduces the task of
estimating the effect-levels to a 1-dimensional optimal clustering problem that provably extracts the
correct levels asymptotically as n → ∞. Our algorithm assumes an unbiased estimator of counter-
factuals, for example some established method (5; 21). In practice, this means one can control for
confounders. If unbiased counterfactual estimation is not possible, then any form of causal effect
analysis is doomed. Our primary goal is untangling the heterogeneous effect levels, hence we use
an off-the-shelf gradient boosting algorithm to get counterfactuals in our experiments (5).
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We demonstrate that our algorithm’s performance on synthetic data matches the theory. Subpopula-
tion effect-analysis is a special case of heterogeneous treatment effects (HTE), (12; 20; 23). Hence,
we also compare with X-Learner, a state-of-the art algorithm for HTE (12) and Bayes optimal pre-
diction of effect-level. In comparison to X-Learner, our algorithm extracts visually better subpopu-
lations, and has an accuracy that is more than 10× better for estimating per-subject expected effects.
Note, HTE algorithms do not extract subpopulations with effect-levels. They predict effect given
the features x. One can, however, try to infer subpopulations from predicted effects. Our algorithm
also significantly outperforms Bayes optimal based on individual effects, which suggests that some
form of pre-cluster and merge strategy is necessary. This need for some form of clustering has
been independently observed in (11, chapter 4) who studies a variety of clustering approaches in a
non-distribution independent setting with a known number of levels.

2 ALGORITHM: PRE-CLUSTER AND MERGE FOR SUBPOPULATION EFFECTS
(PCM)

Our algorithm uses a nonparametric pre-cluster and merge strategy that achieves asymptotic consis-
tency without any user-specified hyperparameters. The inputs are the n subjects s1, . . . , sn, where

{si}ni=1 = {(xi, ti, yi, ȳi)}ni=1.

Note, both the factual yi and counterfactual ȳi are inputs to the algorithm. To use the algorithm
in practice, of course, the counterfactual must be estimated, and for our demonstrations we use
an out-of-the-box gradient boosting regression algorithm from (7; 16) to estimate counterfactuals.
Inaccuracy in counterfactual estimation will be accommodated in our analysis. The need to estimate
counterfactuals does impact the algorithm in practice, due to an asymmetry in most trials: the treated
population is much smaller than the controls. Hence, one might be able to estimate counterfactuals
for the treated population but not for the controls due to lack of coverage by the (small) treated
population. In this case, our algorithm is only run on the treated population. It is convenient to
define individual treatment effects ITEi = (yi − ȳi)(2ti − 1), where yi is the observed factual and
ȳi the counterfactual (2ti − 1 = ±1 ensuring that the effect computed is for treatment versus no
treatment). There are five main steps.

1: [PRE-CLUSTER] Cluster the xi into K ∈ O(
√
n) clusters Z1, . . . , ZK .

2: Compute ATT for each cluster Zj , ATTj = averagexi∈Zj
ITEi.

3: [MERGE] Group the {ATTj}Kj=1 into ℓ̂ effect-levels, merging the clusters at each level
to get subpopulations X0, X1, . . . , Xℓ̂−1. (Xc is the union of all clusters at level c.)

4: Compute subpopulation effects µ̂c = averagexi∈Xc
ITEi, for c = 0, . . . , ℓ̂− 1.

5: Assign subjects to effect levels, update the populations Xc and expected effects µ̂c.

We now elaborate on the intuition and details for each step in the algorithm.

Step 1. The clusters in the pre-clustering step play two roles. The first is to denoise individual
effects using in-cluster averaging. The second is to group like with like, that is clusters should be
homogeneous, containing only subjects from one effect-level. This means each cluster-ATT will
accurately estimate a single level’s effect (we do not know which). We allow for any clustering
algorithm. However, our theoretical analysis (for simplicity) uses a specific algorithm, box-
clustering, based on an ε-net of the feature space. One could also use a standard clustering
algorithm such as K-means. We compare box-clustering with K-means in the appendix.

Step 2. Denoising of the individual effects using in-cluster averaging. Assuming clusters are ho-
mogeneous, each cluster ATT will approximate some level’s effect.

Step 3. Assuming the effects in different levels are well separated, this separation gets emphasized
in the cluster-ATTs, provided clusters are homogeneous. Hence, we can identify effect-levels from
the clusters with similar effects, and merge those clusters into subpopulations. Two tasks must be
solved. Finding the number of subpopulations ℓ̂ and then optimally grouping the clusters into ℓ̂

subpopulations. To find the subpopulations, we use ℓ̂-means with squared 1-dim clustering error.
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Our algorithm sets ℓ̂ to achieve an ℓ̂-means error at most log n/n1/2d. So,

optimal 1-dim clustering error(ℓ̂− 1) > log n/n1/2d

optimal 1-dim clustering error(ℓ̂) ≤ log n/n1/2d

Simultaneously finding ℓ̂ and optimally partitioning the clusters into ℓ̂ groups can be solved using
a standard dynamic programming algorithm in O(K2ℓ̂) time using O(K) space (24).
Note, our algorithm will identify the number of effect levels provided such distinct subpopula-
tions exist in the data. If it is known that only two subpopulations exist, sick and healthy, then ℓ̂
can be hard-coded to 2.

Step 4. Assuming each cluster is homogeneous and clusters with similar effects found in step 3
are from the same effect-level, the subpopulations formed by merging the clusters with similar
effects will be nearly homogeneous. Hence, the subpopulation-ATTs will be accurate estimates
of the effects at each level.

Step 5. Each subject xi is implicitly assigned a level ĉi based on the subpopulation Xc to which
it belongs. However, we can do better. By considering the

√
n nearest neighbors to xi, we can

obtain a smoothed effect for xi. We use this smoothed effect to place xi into the subpopulation
whose effect matches best, hence placing xi into a level. Unfortunately, running this algorithm
for all n subjects is costly, needing sophisticated data structures to reduce the expected run time
below O(n2). As an alternative, we center an (1/n1/2d)-hypercube on xi and smooth xi’s effect
using the average effect over points in this hypercube. This approach requires O(n

√
n) run time

to obtain the effect-level for all subjects, significantly better than O(n2) when n is large. Once
the effect-levels for all subjects are obtained, one can update the subpopulations Xc and the
corresponding effect-estimates µ̂c.

The run time of the algorithm is O(nℓ+ n
√
n) (expected and with high probability) and the output

is nearly homogeneous subpopulations which can now be post-processed. An example of useful
post-processing is a feature-based explanation of the subpopulation-memberships. Note that we still
do not know which subpopulation(s) are the sick ones, hence we cannot say which is the effect and
which is the side effect. A post-processing oracle would make this determination. For example, a
doctor in a medical trial would identify the sick groups from subpopulation-demographics.

Note. The optimal 1-d clustering can be done directly on the smoothed ITEs from the (1/n1/2d)-
hypercubes centered on each xi, using the same thresholds in step 3. One still gets asymptotic
consistency, however the price is an increased run time to O(n2ℓ). This is prohibitive for large n.

3 ASYMPTOTIC CONSISTENCY: PROOF OF THEOREM 1

To prove consistency, we must make our assumptions precise. In some cases the assumptions are
stronger than needed, for simplicity of exposition.

A1. The feature space X is [0, 1]d and the marginal feature-distribution is uniform, D(x) = 1.
More generally, X is compact and D(x) is bounded, 0 < δ ≤ D(x) ≤ ∆ (can be relaxed).

A2. The level c is an unknown function of the feature x, c = h(x). Potential effects depend only
on c. Conditioning on c, effects are well separated. Let µc = ED[v − v̄|c]. Then,

|µc − µc′ | ≥ κ for c ̸= c′

A3. Define the subpopulation for level c as Xc = h−1(c). Each subpopulation has positive
measure, P[x ∈ Xc] = βc ≥ β > 0.

A4. For a treated subject xi with outcome yi, it is possible to produce an unbiased estimate of the
counterfactual outcome ȳi. Effectively, we are assuming an unbiased estimate of the individual
treatment effect ITEi = yi − ȳi is available. Any causality analysis requires some estimate of
counterfactuals and, in practice, one typically gets counterfactuals from the untreated subjects
after controlling for confounders (5; 21).

A5. Sample averages concentrate. Essentially, the estimated ITEs are independent. This is true
in practice because the subjects are independent and the counterfactual estimates use a predictor
learned from the independent control population. For m i.i.d. subjects, let the average of the
estimated ITEs be ν̂ and the expectation of this average be ν. Then,

P[|ν̂ − ν| > ϵ] ≤ e−γmϵ2 .
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The parameter γ > 0 is related to distributional properties of the estimated ITEs. Higher variance
ITE estimates result in γ being smaller. Concentration is a mild technical assumption requiring
the estimated effects to be unbiased well behaved random variables, to which a central limit
theorem applies. Bounded effects or normally distributed effects suffice for concentration.

A6. The boundary between the subpopulations has small measure. Essentially we require that
two subjects that have very similar features will belong to the same level with high probability
(the function c = h(x) is not a “random” function). Again, this is a mild technical assumption
which is taken for granted in practice. Let us make the assumption more precise. Define an ε-net
to be a subdivision of X into (1/ε)d disjoint hypercubes of side ε. A hypercube of an ε-net is
impure if it contains points from multiple subpopulations. Let Nimpure be the number of impure
hypercubes in an ε-net. Then εdNimpure ≤ αερ, where ρ > 0 and α is a constant. Note, d− ρ is
the boxing-dimension of the boundary. In most problems, ρ = 1.

A7. We use box-clustering for the first step in the algorithm. Given n, define ε(n) = 1/
⌊
n1/2d

⌋
.

All points in a hypercube of an ε(n)-net form a cluster. Note that the number of clusters is
approximately

√
n. The expected number of points in a cluster is nε(n)d ≈

√
n.

We prove Theorem 1 via a sequence of lemmas. The feature space X = [0, 1]d is partitioned into
levels X0, . . . , Xℓ−1, where Xc = h−1(c) is the set of points whose level is c. Define an ε-net
that partitions X into Nε = ε−d hypercubes of equal volume εd, where ε is the side-length of the
hypercube. Set ε = 1/

⌊
n1/2d

⌋
. Then, Nε =

√
n(1 − O(d/n1/2d)) ∼

√
n. Each hypercube in the

ε-net defines a cluster for the pre-clustering stage. There are about
√
n clusters and, since D(x) is

uniform, there are about
√
n points in each cluster. Index the clusters in the ε-net by j ∈ {1, . . . , Nε}

and define nj as the number of points in cluster j. Formally, we have,

Lemma 1. Suppose D(x) ≥ δ > 0. Then, P[minj nj ≥ 1
2δ

√
n] > 1−

√
n exp(−δ

√
n/8).

Proof. Fix a hypercube in the ε-net. Its volume is εd ≥ (1/n1/2d)d = 1/
√
n. A point lands in this

hypercube with probability at least δ/
√
n. Let Y be the number of points in the hypercube. Then,

Y is a sum of n independent Bernoullis and E[Y ] ≥ δ
√
n. By a Chernoff bound (14, page 70),

P[Y < δ
√
n/2] ≤ P[Y < E[Y ]/2] < exp(−E[Y ]/8) ≤ exp(−δ

√
n/8).

By a union bound over the Nε clusters,

P[some cluster has fewer than δ
√
n/2 points] < Nε exp(−δ

√
n/8) ≤

√
n exp(−δ

√
n/8).

The lemma follows by taking the complement event.

For uniform D(x), δ = 1 and every cluster has at least 1
2

√
n points with high probability. We can

now condition on this high probability event that every cluster is large. This means that a cluster’s
ATT is an average of many ITEs, which by A5 concentrates at the expected effect for the hypercube.
Recall that the expected effect in level c is defined as µc = ED[v − v̄|c]. We can assume, w.l.o.g.,
that µ0 < µ1 · · · < µℓ−1. Define νj as the expected average effect for points in the hypercube j and
ATTj as the average ITE for points in cluster j. since every cluster is large, every cluster’s ATTj will
be close to its expected average effect νj . More formally,

Lemma 2. P[maxj |ATTj − νj | ≤ 2
√

log n/γδ
√
n] ≥ 1− n−3/2 −

√
n exp(−δ

√
n/8).

Proof. Conditioning on minj nj ≥ 1
2δ

√
n and using A5, we have

P
[
|ATTj − νj | > 2

√
log n/γδ

√
n
∣∣∣min

j
nj ≥ 1

2δ
√
n
]
≤ exp(−2 log n) = 1/n2.

By a union bound, P[maxj |ATTj − νj | > 2
√
log n/γδ

√
n | minj nj ≥ 1

2δ
√
n] ≤ Nε/n

2. For any
events A,B, by total probability, P[A] ≤ P[A | B] + P[B]. Therefore,

P[max
j

|ATTj − νj | > 2

√
log n/γδ

√
n] ≤ Nε/n

2 + P[min
j

nj <
1
2δ

√
n]

To conclude the proof, use Nε ≤
√
n and Lemma 1.
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A hypercube in the ε-net is homogeneous if it only contains points of one level (the hypercube does
not intersect the boundary between levels). Let Nc be the number of homogeneous hypercubes for
level c and Nimpure be the number of hypercubes that are not homogeneous, i.e., impure.
Lemma 3. Nimpure ≤ αερNε and Nc ≥ Nε(β/∆− αερ).

Proof. A6 directly implies Nimpure ≤ αερNε. Only the pure level c or impure hypercubes can
contain points in level c. Using A3 and εd = 1/Nε, we have

β ≤ P[x ∈ Xc] ≤ (Nc +Nimpure)∆εd ≤ (Nc + αερNε)∆/Nε.

The result follows after rearranging the above inequality.

The main tools we need are Lemmas 2 and 3. Let us recap what we have. The cluster ATTs are
close to the expected average effect in every hypercube. The number of impure hypercubes is an
asymptotically negligible fraction of the hypercubes since ε ∈ O(1/n1/2d). Each level has an
asymptotically constant fraction of homogeneous hypercubes. This means that almost all cluster
ATTs will be close to a level’s expected effect, and every level will be well represented. Hence, if
we optimally cluster the ATTs, with fewer than ℓ clusters, we won’t be able to get clustering error
close to zero. With at least ℓ clusters, we will be able to get clustering error approaching zero. This
is the content of the next lemma, which justifies step 3 in the algorithm. An optimal k-clustering of
the cluster ATTs produces k centers θ1, . . . , θk and assigns each cluster ATTj to a center θ(ATTj) so
that the average clustering error err(k) =

∑
j(ATTj − θ(ATTj))

2/Nε is minimized. Given k, one
can find an optimal k-clustering in O(N2

ε k) time using O(Nε) space.

Lemma 4. With probability at least 1−n−3/2−
√
n exp(−δ

√
n/8), optimal clustering of the ATTs

with ℓ− 1 and ℓ clusters produces clustering errors which satisfy

err(ℓ− 1) ≥ (β/∆− αϵρ)
(
κ/2− 2

√
log n/γδ

√
n
)2

for logn√
n

< κ2γδ
16

err(ℓ) ≤ 1
4αε

ρ(µℓ−1 − µ0)
2 + 4 log n(1 + αερ)/γδ

√
n

Proof. With the stated probability, by Lemma 2, all ATTs are within 2
√
log n/γδ

√
n of the expected

effect for their respective hypercube. This, together with Lemma 3 is enough to prove the bounds.

First, the upper bound on err(ℓ). Choose cluster centers µ0, . . . , µℓ−1, the expected effect for each
level. This may not be optimal, so it gives an upper bound on the cluster error. Each homogeneous
hypercube has a expected effect which is one of these levels, and its ATT is within 2

√
log n/γδ

√
n

of the corresponding µ. Assign each ATT for a homogeneous hypercube to its corresponding µ. The
homogeneous hypercubes have total clustering error at most 4 log n(Nε − Nimpure)/γδ

√
n. For an

impure hypercube, the expected average effect is a convex combination of µ0, . . . , µℓ−1. Assign
these ATTs to either µ0 or µℓ−1, with an error at most (2

√
log n/γδ

√
n+ 1

2 (µℓ−1 − µ0))
2. Thus,

Nεerr(ℓ) ≤
4 log n(Nε −Nimpure)

γδ
√
n

+Nimpure(2

√
log n/γδ

√
n+ 1

2 (µℓ−1 − µ0))
2

≤
4 log n(Nε +Nimpure)

γδ
√
n

+
Nimpure(µℓ−1 − µ0)

2

2

The upper bound follows after dividing by Nε and using Nimpure ≤ αερNε.

Now, the lower bound on err(ℓ − 1). Consider any ℓ − 1 clustering of the ATTs with centers
θ0, . . . , θℓ−2. At least Nc ≥ Nε(β/∆ − αϵρ) of the ATTs are within 2

√
log n/γδ

√
n of µc. We

also know that µc+1 − µc ≥ κ. Consider the ℓ disjoint intervals [µc − κ/2, µc + κ/2]. By the
pigeonhole principle, at least one of these intervals [µc∗−κ/2, µc∗+κ/2] does not contain a center.
Therefore all the ATTs associated to µc∗ will incur an error at least κ/2 − 2

√
log n/γδ

√
n when

κ/2 > 2
√
log n/γδ

√
n. The total error is

Nεerr(ℓ− 1) ≥ Nc∗

(
κ/2− 2

√
log n/γδ

√
n
)2

.

Using Nc∗ ≥ Nε(β/∆− αϵρ) and dividing by Nε concludes the proof.
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Lemma 4 is crucial to estimating the number of levels. The error is βκ2/4∆(1+o(1)) for fewer than
ℓ clusters and 1

4αε
ρ(µℓ−1 − µ0)

2(1 + o(1)) for ℓ or more clusters. Any function τ(n) that asymp-
totically separates these two errors can serve as an error threshold. The function should be agnostic
to the parameters α, β, κ,∆, ρ, . . .. In practice, ρ = 1 and since ε ∼ 1/n1/2d, we have chosen
τ(n) = log n/nρ/2d. Since err(ℓ − 1) is asymptotically constant, ℓ − 1 clusters can’t achieve error
τ(n) (asymptotically). Since err(ℓ) ∈ O(ερ), ℓ clusters can achieve error τ(n) (asymptotically).
Hence, choosing ℓ̂ as the minimum number of clusters that achieves error τ(n) will asymptotically
output the correct number of clusters ℓ, with high probability, proving part (1) of Theorem 1.

We now prove parts (2) and (3) of Theorem 1, which follow from the accuracy of steps 4 and 5 in
the algorithm. We know the algorithm asymptotically selects the correct number of levels with high
probability. We show that each level is populated by mostly the homogeneous clusters of that level.

Lemma 5. With probability at least 1−n−3/2−
√
n exp(−δ

√
n/8), asymptotically in n, all the Nc

ATTs from the homogeneous hypercubes of level c are assigned to the same cluster in the optimal
clustering, and no ATTs from a different level’s homogeneous hypercubes is assigned to this cluster.

Proof. Similar to the proof of Lemma 4, consider the ℓ disjoint intervals [µc − κ/4, µc + κ/4]. One
center θc must be placed in this interval otherwise the clustering error is asymptotically constant,
which is not optimal. All the ATTs for level c are (as n gets large) more than κ/2 away from any
other center, and at most κ/2 away from θc, which means all these ATTs get assigned to θc.

Similar to Lemma 1, we can get a high-probability upper bound of a
√
n on the maximum number

of points in a cluster. Asymptotically, the number of points in the impure clusters is nimpure ∈
O(ερ

√
nNε). Suppose these impure points have expected average effect µ (a convex combination

of the µc’s). The number of points in level c homogeneous clusters is nc ∈ Ω(
√
nNε). Even if all

impure points are added to level c, the expected average effect for the points in level c is

E[ITE | assigned to level c] =
nimpureµ+ ncµc

nimpure + nc
= µc +O(ερ). (3)

Part (2) of Theorem 1 follows from the next lemma after setting ε ∼ 1/n1/2d and ρ = 1.

Lemma 6. Estimate µ̂c as the average ITE for all points assigned to level c (the cth order statistic
of the optimal centers θ0, . . . , θℓ̂−1). Then µ̂c = µc +O(ερ +

√
log n/n) with probability 1− o(1).

Proof. Apply a Chernoff bound. We are taking an average of proportional to n points with expec-
tation in (3). This average will approximate the expectation to within

√
log n/n with probability

1− o(1). The details are very similar to the proof of Lemma 2, so we omit them.

Part (3) of Theorem 1 now follows because all but the O(ερ) fraction of points in the impure clusters
are assigned a correct expected effect. An additional fine-tuning leads to as much as 2× improve-
ment in experiments. For each point, consider the ε-hypercube centered on that point. By a Chernoff
bound, each of these n hypercubes has Θ(

√
n) points, as in Lemma 1. All but a fraction O(ερ) of

these are impure. Assign each point to the center θc that best matches its hypercube-“smoothed” ITE,
giving new subpopulations Xc and corresponding subpopulation-effects µ̂c. This EM-style update
can be iterated. Our simulations show the results for one E-M update.

4 DEMONSTRATION ON SYNTHETIC DATA

We use a 2-dimensional synthetic experiment with three levels to demonstrate our pre-cluster and
merge algorithm (PCM). Alternatives to pre-clustering include state-of-the-art methods that directly
predict the effect such as meta-learners, and the Bayes optimal classifier based on ITEs. All methods
used a base gradient boosting forest with 400 trees to estimate counterfactuals. The subpopulations
in our experiment are shown in Figure 1, where black is effect-level 0, gray is level 1 and white is
level 2. We present detailed results with n = 200K. Extensive results can be found in the appendix.
Let us briefly describe the two existing benchmarks we will compare against.
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The treatment t is distributed randomly between the subjects. The out-
come y, conditioned on c and t, is Gaussian with std. dev. 5:

y(t, c) ∼ N(µ(t,c), 5)

The three sub-populations have treatment effects of 0,1,2. The expected
potential outcome for treatment and level (t, c) are:

µ(0,0) = 0 µ(1,0) = 0,
µ(0,1) = 0 µ(1,1) = 1,
µ(0,2) = 0 µ(1,2) = 2.

Figure 1: Subpopulations for synthetic data.

X-learner (12), is a meta-learner that estimates heterogeneous treatment effects directly from ITEs.
For the outcome and effect models of X-Learner we use a base gradient boosting learner with 400
estimators (6) implemented in scikit-learn (16). For the propensity model we use logistic regression.

Bayes Optimal uses the ITEs to reconstruct the subpopulations, given the number of levels and the
ground-truth outcome distribution y(t, c) from Figure 1. The Bayes optimal classifier is: cBayes = 0
if ITE ≤ 0.5, cBayes = 1 if 0.5 < ITE ≤ 1.5, cBayes = 2 if 1.5 < ITE. We also use these thresholds
to reconstruct subpopulations for X-learner’s predicted ITEs. Note: Neither the thresholds nor
the number of levels are available in practice. We compare the benchmark subpopulations re-
constructed with these thresholds to further showcase the power of our algorithm’s subpopulations,
which outperform the competition without access to the forbidden information.

Let ci be the level of subject i and ÎTEi the estimated ITE. The error is |µci − ÎTEi|, and we report the
mean absolute error in the table below. Our algorithm predicts a level ĉi and uses its associated effect
µ̂ĉi as ÎTEi. The other methods predict ITE directly for which we compute mean absolute error. As
mentioned above, we also show the error for the optimally reconstructed subpopulations, which is
not possible in practice, but included for comparison (red emphasizes not available in practice).

n PCM (this work) X-Learner Bayes Optimal
Subpopulations Predicted-ITE Subpopulations Raw-ITE

20K 0.35±0.39 3.04 ± 1.11 3.07 ± 2.41 4.57 ± 1.33 4.59 ± 3.49
200k 0.109±0.22 1.44 ± 0.83 1.50 ± 1.38 4.22 ± 1.28 4.24 ± 3.22
2M 0.036±0.13 0.34 ± 0.47 0.46 ± 0.56 4.01 ± 1.25 4.03 ± 3.05

Our algorithm is about 10× better than existing benchmarks even though we do not use the forbidden
information (number of levels and optimal thresholds). It is also clear that X-learner is significantly
better than Bayes optimal with just the raw ITEs. The next table shows subpopulation effects, again
red indicates the use of forbidden information on the number of levels and optimal thresholds. The
ground truth effects are µ0 = 0, µ1 = 1, µ2 = 2.

n PCM (this work) X-Learner Bayes Optimal
µ̂0 µ̂1 µ̂2 µ̂0 µ̂1 µ̂2 µ̂0 µ̂1 µ̂2

20K -0.21 0.91 2.07 -2.5 0.99 4.44 -3.94 1.00 5.99
200K 0.06 0.963 1.95 -1.16 1.01 2.87 -3.62 1.00 5.61
2M 0.04 0.996 1.993 -0.26 0.99 2.07 -3.41 1.00 5.41

Note that µ̂1 for X-learner and Bayes optimal are accurate, an artefact of knowing the optimal thresh-
olds (not realizable in practice). A detailed comparison of our algorithm (PCM) with X-Learner and
Bayes optimal subpopulations is shown in Figure 2. PCM clearly extracts the correct subpopula-
tions. X-Learner and Bayes optimal, even given the number of levels and optimal thresholds, does
not come visually close to PCM. Note, X-learner does display some structure but Bayes optimal on
just the ITEs is a disaster. This is further illustrated in the ITE-histograms in the second row. PCM
clearly shows three levels, where as X-learner ITEs and the raw ITEs suggest just one high variance
level. The 3rd row shows the confusion matrices for subpopulation assignment. The red indicates
use of information forbidden in practice, however we include it for comparison. The confusion
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PCM (this work) X-Learner Bayes Optimal
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C0 Pred C1 Pred C2 Pred
C0 True 0.92 0.085 0.0
C1 True 0.044 0.92 0.036
C2 True 0.0 0.026 0.973

C0 Pred C1 Pred C2 Pred
C0 True 0.58 0.16 0.26
C1 True 0.38 0.26 0.38
C2 True 0.15 0.20 0.65

C0 Pred C1 Pred C2 Pred
C0 True 0.54 0.07 0.39
C1 True 0.46 0.08 0.46
C2 True 0.39 0.074 0.54

Figure 2: Top row. PCM reconstructs superior subpopulations without access to the forbidden
information used by X-learner and Bayes optimal (number of levels and optimal thresholds). Middle
row. The ITE-histogram for PCM clearly shows 3 distinct effects, while the other methods suggest
a single high-variance effect. Bottom Row. Subpopulation confusion matrices show that PCM
extracts the correct subpopulations. The other methods fail even with the forbidden information.

matrix for PCM without forbidden information clearly dominates the other methods which use for-
bidden information. The high noise in the outcomes undermines the other methods, while PCM is
robust. In high noise settings, direct use of the ITEs without some form of pre-clustering fails.

Summary of experiments with synthetic data. Our algorithm accurately extracts subpopulations
at different effect-levels. Analysis of individual treatment effects fails when there is noise. Our ex-
periments show that practice follows the theory (more detailed experiments, including how cluster
homogeneity converges to 1, are shown in the appendix). We note that there is a curse of dimen-
sionality, namely the convergence is at a rate O(n−1/2d).

5 CONCLUSION

Our work amplifies the realm of causal analysis to non-targeted trials where the treated population
can consist of large subpopulations with different effects. Our algorithm uses a plug-and-play pre-
cluster and merge strategy that provably untangles the different effects. Experiments on synthetic
data show a 10× or more improvement over existing HTE-benchmarks. In our analysis, we did not
attempt to optimize the rate of convergence. Optimizing this rate could lead to improved algorithms.
Our work allows causal effects analysis to be used in settings such as health interventions, where
wide deployment over a mostly healthy population would mask the effect on the sick population.
Our methods can seemlessly untangle the effects without knowledge of what sick and healthy mean.
This line of algorithms can also help in identifying inequities between the subpopulations. One
significant contribution is to reduce the untangling of subpopulation effects to a 1-dim clustering
problem which we solve efficently. This approach may be of independent interest beyond causal-
effect analysis. The effect is just a function that takes on ℓ levels. Our approach can be used to
learn any function that takes on a finite number of levels. It could also be used to learn a piecewise
approximation to an arbitrary continuous function on a compact set.

9



REFERENCES

[1] Younathan Abdia, KB Kulasekera, Somnath Datta, Maxwell Boakye, and Maiying Kong.
Propensity scores based methods for estimating average treatment effect and average treatment
effect among treated: a comparative study. Biometrical Journal, 59(5):967–985, 2017.

[2] Ahmed M Alaa, Michael Weisz, and Mihaela Van Der Schaar. Deep counterfactual networks
with propensity-dropout. arXiv preprint arXiv:1706.05966, 2017.

[3] Susan Athey, Julie Tibshirani, and Stefan Wager. Generalized random forests. The Annals of
Statistics, 47(2):1148–1178, 2019.

[4] Heejung Bang and James M Robins. Doubly robust estimation in missing data and causal
inference models. Biometrics, 61(4):962–973, 2005.

[5] Keith Battocchi, Eleanor Dillon, Maggie Hei, Greg Lewis, Paul Oka, Miruna Oprescu, and
Vasilis Syrgkanis. EconML: A Python Package for ML-Based Heterogeneous Treatment Ef-
fects Estimation. https://github.com/microsoft/EconML, 2019. Version 0.x.

[6] Jerome H Friedman. Greedy function approximation: a gradient boosting machine. Annals of
statistics, pages 1189–1232, 2001.

[7] Jerome H Friedman. Stochastic gradient boosting. Computational statistics & data analysis,
38(4):367–378, 2002.

[8] Sander Greenland. Randomization, statistics, and causal inference. Epidemiology, pages 421–
429, 1990.

[9] Jens Hainmueller. Entropy balancing for causal effects: A multivariate reweighting method to
produce balanced samples in observational studies. Political analysis, 20(1):25–46, 2012.

[10] Jennifer L Hill. Bayesian nonparametric modeling for causal inference. Journal of Computa-
tional and Graphical Statistics, 20(1):217–240, 2011.

[11] Kwangho Kim. Causal Inference with Complex Data Structures and Non-Standard Effects.
PhD thesis, Carnegie Mellon University, 2020.
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A APPENDIX

We provide more detailed experimental results, specifically results for different n (20K, 200K and
2M) and a comparison of different clustering methods in the pre-clustering phase: box-only, PCM
(box plus 1 step of E-M improvement) and K-means. To calculate the counterfactual for treated
subjects, we train a gradient boosted forest on the control population.

B CONVERGENCE WITH n

B.1 RECONSTRUCTED SUBPOPULATIONS

We show subpopulation reconstructions for n ∈ {20K, 200K, 2M}.

PCM (this work) X-Learner Bayes Optimal

20k

200k

2M

Even with just 20K points in this very noisy setting, PCM is able to extract some meaningful sub-
population structure, while none of the other methods can.
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B.2 ITE HISTOGRAMS

We show the ITE histograms for n ∈ {20K, 200K, 2M}.

PCM (our work) X-Learner ITE
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C DIFFERENT PRE-CLUSTERING METHODS

We show the reconstructed subpopulations and effect errors for different pre-clustering methods.
Box-clustering without any E-M step is also provably consistent. Our algorithm PCM uses box-
clustering followed by an E-M step to improve the subpopulations using smoothed ITEs. We also
show K-means pre-clustering, for which we did not prove any theoretical guarantees.

Reconstruction.

PCM (this work) BOX KMEANS

20k

200k

2M

Histograms.
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PCM (our work) BOX KMEANS
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Error Table.

n PCM (this work) BOX KMEANS

20K 0.35±0.39 0.50 ± 0.52 0.54 ± 0.50

200k 0.109±0.22 0.17 ± 0.35 0.20 ± 0.37

2M 0.036±0.13 0.078 ± 0.214 0.065 ± 0.20
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D CLUSTER HOMOGENEITY

To further show how practice reflects the theory, we plot average cluster homogeneity versus n. The
cluster homogeneity is the fraction of points in a cluster that are from its majority level. Our entire
methodology relies on the pre-clustering step producing a vast majority of homogeneous clusters.
The rapid convergence to homogeneous clusters enables us to identify the correct subpopulations
and the corresponding effects via pre-cluster and merge.
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